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1. Motivation: Potential of photovoltaics on greenhouses 

• In Spain (ES) and the Netherlands (NL), horticultural crop production contributes 

strongly to the gross domestic product (46k ha and 10k ha covered by greenhouses 

(GH) in Spain and Netherlands)

• For regions with high irradiation levels (e.g. Southern Spain) or reduced land 

availability and high electricity consumption (e.g. Netherlands) → PV modules on top 

of horticultural greenhouses (APV GH) is a promising concept

• Advantage: Diversification of farmers’ income (highly fluctuating horticultural market)

• This study investigates economic feasibility of APV GH concepts for El Ejido, Spain 

and Bleiswijk, Netherlands

0.7% income reduction per 1% 

irradiance reduction [8], [15] 

ES: only if reduction > 30%

Economic analysis has been performed based on the model of [13]. The results are shown relative to the “GH only” 

scenario

• WSPV GH scenario outperforms other scenarios in all economic indicators

• Also promising results by conventional PV modules integrated in glass greenhouses  scenario

• dual-use of land+GH structure and reduction in O&M costs increases land profitability by a factor of 2.2 for 

WSPV GH scenario in ES

• investment costs are decreased by replacement of glass roof cover by PV modules

• Expected low costs of WSPV modules in the future play major role in analysis

• performed with System Advisor 

Model (SAM)

• gable roof greenhouse, south 

side covered by PV modules

• Typical Meteorogical Year by 

PVGIS 

• tilt angles: 10°, 20°, 25° for ES;  

a 20°, 25°, 30° for NL 

2.a) Greenhouse and PV Combinations

Wavelength-selective PV modulesConventional PV modules

PV park PV park next to GH Only GH

Raspa y amagado GH 3

Multitunel GH 4

NL type glass GH 5

2.b) Wavelength-selective PV (WSPV) 

2.c) PV yield modeling 

2.d) Crop yield modeling  

3. Results: Economic Benefits of AgriPV concepts   

4. Conclusion and future improvements

WSPV cell prototype

• photosynthesis mostly driven by blue & red fraction of 

spectrum

• a spectrally selective solar cell (SSSC) technology using an 

ultra-thin a-Ge:H based pin cell embedded in an optical 

cavity was developed by DLR [6]
transmission

reflection

Technology Principle

Typical values for GH size, investment and O&M 

costs for PV and GH installation and electricity 

selling prizes taken from [1], [2].  

Assumed crop income and cycles:  Assumed income reduction due to shadowing:  

ES: two short crop cycles → income: 

24.000€/ha for raspa y amagado, 

27.400€/ha for multitunel [1] 

NL: one continuous cycle → income: 

90.000€/ha for glass GH [2]

AugSep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

two short cycles: 6 4 months

continuously all year (12 months)

3.a) Energy self-consumption and heating

• WSPV scenario: 99% of available 

surface covered with WSPV

(assumed efficiency 7%)

→ installed capacity of 1004kWp 

(NL) and 885kWp (ES) per gh

• Conventional PV scenarios: 

efficiency 21%, adopted to same 

installed capacity as WSPV 

scenario

• Assumed annual energy and heat demand: NL type GH energy and 

heat demand 10x higher than ES greenhouses [1], [2], [9], [10]

• AgriPV scenarios: PV yield used for energy self-consumption, 

remaining surplus then used for heating, remaining excess then 

sold to grid. 

• Typical values for electricity and oil prices, subsidies taken from 

[11], [12]

Usage of correlation of solar irradiance, outside temperature,

crop requirements and GH parameters [10]  

Qh,j = max[ UL((Tsp-∆Tc) - Ta,j) - 𝜏1𝛼GHIj, 0]

→ GH is heated if Ta,j drops below crop specific cultivation 

range: tomatoes     Tday = (15 ± 5)°C, Tnight = 5°C 

watermelon Tday = (23 ± 3)°C, Tnight = 10°C 

UL (kWh/m2/K)  GH heat loss coefficient             Ta,j (°C)  outside temperature per hour j

Tsp (°C)      crop dependent temperature            𝜏1 (-)    GH cover transmittance

distinguish between night and day   𝛼 (-)     GH absorbance

∆Tc   (°C)      crop cultivation range                GHIj (kW/m2)  solar irradiance for hour j (sum) 

3.b) Economic Indicators: finding the most promising option for a horticultural company with limited amount of land available  

WSPV scenario: Calculation of crop growth factor (0.645) 

according to optimized WSPV transmission spectrum and plant 

action taken from [7]

→ES: no income reduction

→NL: ~11%  for conv. PV and ~5% for WSPV scenarios

• PV for greenhouses is an attractive investment for farmers in the near future

• climate change and frequent extreme weather situations, i.e. persistent heat 

during summers, enforced soiling events or hail and storm support this statement

• in El Ejido, for example, PV installations can replace the white painting for GH, 

which usually reduces damaging levels of irradiation

• APV GH lead to a diversification of the growers’ income by reduced dependency 

on fluctuating market situation for horticultural products

• electricity and heat self-production and consumption leads to a higher 

independence from increasing oil and electricity prices

Land Equivalent Ratio LER [14] 

𝐿𝐸𝑅 =
𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑟𝑖, 𝐴𝑔𝑟𝑖𝑃𝑉
𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑟𝑖, 𝑜𝑛𝑙𝑦𝐺𝐻

+
𝑌𝑖𝑒𝑙𝑑𝑒𝑙, 𝐴𝑔𝑟𝑖𝑃𝑉
𝑌𝑖𝑒𝑙𝑑𝑒𝑙, 𝑜𝑛𝑙𝑦𝑃𝑉

LER > 1 indicates increased productivity

Combination of PV and agriculture 

leads to an increased spatial efficiency:

NL: WSPV GH

NL: conv. PV glass GH

ES: conv. PV GH

ES: WSPV GH

ES: conv. PV glass GH

Estimation of heat demand in ES
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• WSPV modules on greenhouses outperform the ‘only greenhouse’ scenario at the  

two sites in ES and NL 

• scenarios with conventional PV modules on greenhouses also show promising 

results

• further improvements on crop and PV yield modeling will improve the accuracy of 

the developed model

• the complex interplay of irradiation, GH microclimate and biological processes will 

be resolved more accurately 

• influence of reduced irradiance and altered spectrum will be further investigated


