Transmitter Beam Bias Verification for Optical Satellite Data Downlinks with Open-Loop Pointing – the 3-OGS-Experiment

<u>Dirk Giggenbach¹</u>, Petro Karafillis², Jonas Rittershofer¹, Andreas Immerz¹, Andreas Spörl², Steffen Gaißer³, Sabine Klinkner³, Marcus T. Knopp⁴

¹Institute of Communications and Navigation, German Aerospace Center (DLR) ²German Space Operations Center, DLR ³Institute of Space Systems, University of Stuttgart ⁴Responsive Space Cluster Competence Center, DLR

ESA-ICSO-2022, Dubrovnik, 20221003

Knowledge for Tomorrow

Content

- Optical Data Downlinks from LEO Satellites
- The OSIRISv1 on Flying Laptop Satellite
- Scenario and the Three Ground Stations at DLR
- The verification trial and comparison with pointing error from star cams
- Summary

Why go for "LASER" in Data Downlinks from LEO Satellites?

- The RF frequency bands are already crowded from terrestrial mobile telecom and space links, much more traffic is expected in the next years
- Directed Optical Links allow smaller transmitter structures (lenses) and also ground receivers (telescopes)
- More power efficient and higher data rates possible: few Watt allow several GigaBit/s downlink speed
- Further optical technologies can be applied like Quantum Communications (QKD) or precise timing by
 optical intersatellite links, as well as coherent communication and sensor technologies
- Simple OLEODL: focus on Optical On/Off-Keying (O3K) transmission of up to 10Gbps onto bulk Avalanche Photo Detectors in the OGS

OLEODL: Optical Low Earth Orbit data DownLink **OGS**: Optical Ground Station

Types of Laser Transmitters for OLEODL

a)

Terminal with Coarse-Pointing Assembly for hemispherical Field-of-View, and active tracking of a Beacon from Ground \rightarrow OSIRISv3 on Titania

b)

Dynamic Coarse Body-Pointing by Satellite during OGS-overflight; only the Fine-Pointing by Tracking of the Beacon is done through the Optical Terminal \rightarrow OSIRIS4CUBE on PIXL

C)

No tracking, full Body-Pointing through Satellite's attitude knowledge from star-camera sensors \rightarrow OSIRISv1 on Flying Laptop

Find the angular offset between Star-Cameras and Laser-Direction, after shocks from rocket launch.

OSIRIS: Optical Space InfraRed downllnk System

The OSIRISv1 on Flying Laptop

Divergence of Star Cameras Collimators is 1mrad FWHM

Flying Laptop Satellite, OSIRIS-transmitters: Collimators below arrow

[1] GSOC-OGS [2] IKN-TOGS **Optical ground station** 60cm telescope aperture 30cm telescope \bigcirc (1) aperture 3 Data-RFE Beam-Tracking-**Rx-Tele** Distriscope Cam bution (1) Telescope (2) Benchtop SOFA (3) Alt-Alt-Mount CPA Power Mount-Meter Control Lens 4 ▲ Beacon BS4 IR-Cam Rx-Lens З WFoV-SOFA: BS2 Cam Telescop optic RFE Small OGS BS1 Lens BS3 **Focal Assembly** 2 Rx-L1 Optical Lens 1 Power ADC Daylight-Meter Cam optic

[3] Satellite Flash Finder (SFF)

2cm Rx-lens aperture

- Primary development-goal was an automated (unattended) hardware to find a first "Flash" from a (scanning) new OSIRIS terminal, and identify by time the intended pointing direction of the satellite
- SFF now also serves as a simple and automated intensity sensor, by using the infrared camera and calculating power

Expected Received-Intensity Estimation from LinkBudget

A precise estimation of the axial intensity is required for the algorithm to work accurately

Find offset of lowest intensity difference, • between measured and numerical estimation

Video: The 3 OGSs as seen from FLP-satellite, during part of this downlink

Residual spot axis migration derived from 30GS measurements and estimated by Flying Laptop

... but 3OGS verification on ground estimates up to $\sim_{-1.2}$ 600 x 800 µrad, and a rather constant offset direction -1.2

Conclusion and Outlook

- This specific downlink showed a rather fixed offset from the satellite, pointing ~0.6mrad North to GSOC-OGS, plus additional dynamic variation
- This remaining Pointing Offset we think stems from downlink-individual thermal offset of the laser collimator versus the star cameras attitude
- Knowledge of maximum intensity is most crucial for the algorithm, this can be ambiguous through uncertain atmospheric attenuation
- An automated SatFlashFinder shall be used for identifying first Laser Signal from any new OSIRIS
- Then use *Three common SFF Sensors* for Pointing Calibration, instead of different OGS-types
- ... larger spacing of these 3 sensors is required for better decorrelation of intensities and observing larger offset angles

