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Abstract

The Scalable On-board Computer for Space Avionics (ScOSA) project aims to develop an on-board computer
which offers both reliability and high-performance through the use of a heterogeneous distributed system of
commercial-off-the-shelf and radiation-hardened processors. This system should operate without failures even
in the presence of single-event upsets (SEUs), which are common occurrences for electronic systems in space.
The ScOSA middleware includes several fault detection, isolation and recovery (FDIR) mechanisms for coping
with faults, but their effectiveness in the presence of radiation has not yet been proven, as testing such effects
on the ground is challenging. This paper presents our approach to investigate the effect of single-event upsets
on the ScOSA system and the effectiveness of its error handling mechanisms in their presence. A fault injector
has been instantiated in the FPGA co-processor of a commercial-off-the-shelf Xilinx system-on-chip from the
Zynq 7000 family using a Microblaze soft processor, which is used to simulate the effect of SEUs by flipping
bits in the main memory used by the kernel, middleware and applications.
A machine-learning-based image processing algorithm will be used as an example application and run using
the ScOSA middleware while the fault injector is active. The system will be executed multiple times, with
faults injected into different memory locations and at different times in each run. The system will be monitored
for FDIR events and unrecoverable failures. The operation of the middleware and the results of the sample
application will be compared to the results of a golden run, where no faults are injected, to assess the number
of unhandled errors at the middleware and application levels. The results are classified by severity, such as
incorrect algorithm results, handled FDIR events and unhandled system crashes. These results will then be
correlated with the fault location, such as kernel or application memory. By applying SEU simulation techniques
to an on-board software system, we aim to demonstrate the usefulness of such simulations as well as guiding
the further development of the ScOSA system to target further SEU mitigation efforts and improve the system’s
robustness, as well as characterizing the system’s robustness to SEUs occurring in different locations.
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1. INTRODUCTION

A big challenge for electronic devices in space is
the high amount of radiation they are exposed to.
The radiation induces so-called single-event effects
(SEEs) in the integrated circuits. SEEs can result
in permanent damage of electronic components,
e.g. single-event latchups, or to temporary effects,
the so-called soft errors or single-event upsets
(SEUs). Usually engineers tend to either shield the
electronic devices or implement redundancy when
a high-radiation environment is expected. Further-
more, radiation-hardened components can be used,
which are designed for such an environment and
already implement redundancy, shielding or tech-
nologies which are less affected by radiation. All of

those strategies eventually lead to increased costs,
especially in the context of space missions. For
this reason, nowadays missions tend to implement
low-cost commercial-off-the-shelf (COTS) hardware
combined with fault-tolerant software, which is able
to cope with a certain number of errors.

The overall use of COTS hardware in space missions
has been increasing in the last decade. Especially
for FPGAs, space-grade hardware is significantly
more expensive [1], while also lacking performance
compared to modern COTS devices [2]. However,
the difference in reliability and error resilience often
justifies the usage of space-grade hardware.
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To compensate for the lack of reliability in COTS
devices and enable the use of its improved per-
formance, different error detection mechanisms for
various devices have been tested, in space environ-
ments as well as in other radiation environments [3].
To test these error handling mechanisms, this paper
presents an FPGA-based fault injector and the out-
look on how to use it to analyze the robustness of a
system and its susceptibility to the effects of radiation
events.

The fault injector is intended to be used in a flight ex-
periment of the the German Aerospace Center (DLR),
namely the ScOSA Flight Experiment. It will be used
to test the integrated FDIR functionality of the ScOSA
system, as well as its SEU detection. To achieve that,
it will be run while an example application is executed,
to test the recovery mechanisms in a realistic setting.
The example program is a machine-learning image
processing application, which will also be used in the
flight experiment.

2. RELATED WORK

The German Aerospace Centre (DLR) researches
in the field of SEU robustness by means of a flight
project in which a new on-board computer architec-
ture shall be evaluated. It is called Scalable On-board
Computer for Space Avionics (ScOSA Flight Exper-
iment) [2] based on the projects ScOSA [4] and its
predecessor OBC-NG [5]. While the earlier projects
resulted in a reliable on-board architecture, the
ScOSA flight experiment aims to further develop
the on-board system. Furthermore, the overall goal
of the flight experiment project is to increase the
technical readiness level of the on-board computer
by means of an extensive evaluation in-orbit. For this
reason, several space applications shall be executed
by ScOSA. One of them will be the SEU detection,
which will be developed with the help of the SEU
injector. In this way, we can compare the results from
the SEU detector in-orbit with the results produced on
ground using the SEU injector in order to understand
how realistic the fault injection is.

The ScOSA system is a distributed and heteroge-
neous hardware architecture combined with a layered
middleware utilizing the Tasking Framework [6] as
an execution platform. The central idea of ScOSA is
that it combines radiation-hardened processors with
COTS processors, such that it can take advantage
of the reliability of the former and the performance
of the latter. The ScOSA middleware abstracts this
distributed architecture away from the application
developer and at the same time it utilizes it to recover
from soft errors which led to processor crashes. In
the presence of a processor loss, the middleware will
automatically activate a new configuration in which
the tasks that were executed by the lost processor
will migrate to remaining processors. In addition
to this reconfiguration mechanism the middleware

provides the application developer with common tools
to increase the fault-tolerance, such as checkpointing
states and triple modular redundancy (TMR). Further-
more, the middleware comes with a network protocol
which supports Ethernet and SpaceWire.

The protocol enables the middleware to send mes-
sages reliably to other participants of the distributed
system. Application developers will implement their
space application by means of the Tasking Frame-
work, such that the middleware can handle the
applications for reconfiguration. The Tasking Frame-
work decomposes applications into tasks, which are
stateless, and channels which connect the tasks to
each other and contain data. With this data-flow
oriented programming paradigm, the middleware
is able to allocate the tasks to different nodes and
reorganize this allocation in case of failed nodes.

As space systems need to meet high requirements
regarding reliability and robustness, testing is an
important part of the development of such systems.
Generally, SEUs occur under the influence of heavy
ion and proton radiation and are difficult to predict.
Since generating that kind of radiation is complicated
and expensive, it is not common to generate them
on-ground for testing. Instead, different types of
simulation have been applied to predict the behaviour
of electronic components. One possible example for
a solution is the fully-physical simulation based on
measured in-orbit data [7].

However, to analyze the behaviour in error cases,
fault injection has proven to be useful and FPGA-
based fault injectors have been successfully devel-
oped, for example in the SCHIFI-project [8], which
focusses on the development of a highly flexible fault
injector. However, its fault injection does not happen
during runtime, but before the program execution,
which is an important difference to the fault injector
presented in this paper.

Another example of FPGA-based fault injection
demonstrates the usefulness of this technology in the
area of reliability testing, as the work by Miklo et al.
is not only capable of real-time fault injection but can
also be used in safety-critical areas such as nuclear
power applications [9].

The machine-based image classification application
that will be used as an example application for the
developed fault injector is currently being developed.
It is based on the OBPMark project [10], which com-
bines machine-learning object detection with bench-
marking of on-board software in spacecraft.

3. THEORETICAL BACKGROUND

SEEs are radiation events caused by radiation in the
upper atmosphere or space environments. They oc-
cur when a charged particle with high energy hits a
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semiconductor circuit and interferes with the electri-
cal behaviour of the circuit [11].
They can lead to different kinds of errors, ranging
from single-bit changes to permanent damage to the
circuit. Even though a bitflip does not cause damage
on a hardware level, the consequences can still be
severe. Ranging from a changed value to wrong
control sequences, the occurrence of a soft error can
even cause a mission loss if not adequately handled.

Even though a hardware-level simulation of SEUs
is possible and simulates the issues on a level that
makes it possible to make statements about the
behaviour of the circuit, it is not necessary for testing
the functionality. For testing or validating the design,
the complexity of such a simulation might even be a
disadvantage. An alternative way to simulate the be-
haviour of the system, without adding the complexity
of particle-level simulations, is fault injection. While
it doesn’t provide the randomness or accuracy of a
fully-physical simulation, it provides the ability to put
the system into a state equivalent that following a soft
error occurrence.

The usage of fault injection also has some advan-
tages from the perspective of testing. It enables
us to generate faults in specific areas of the circuit,
manipulate the distribution in time and memory of the
occurring faults and repeat the test when the system
is in various states. Moreover, the rates with which
radiation errors occur in reality are quite low [12]
and depend highly on the environment [13], which
would make testing under real-life circumstances
even harder.

In our work we evaluate the fault injection capabilities
of a Xilinx Zynq 7020 system-on-chip as a hardware
platform. It is a commonly used COTS hardware plat-
form which consists of an Arm Cortex A9 processing
system and an FPGA fabricated in a 28nm process. It
provides a sufficient amount of processing power and
also a variety of interfaces to the processing system
as well as peripherals.

4. FAULT INJECTION

The basic idea of the project is to use the memory in-
terfaces of the FPGA to manipulate contents located
in the processing system’s memory. This is achieved
by using the Advanced eXtensible Interface (AXI) bus
of the programmable logic (PL) part of the SoC.

The Zynq 7020 platform provides different interfaces
between the PL and the memory. For using the AXI
interface, Xilinx provides two types of interfaces.
While the accelerator ports utilize caches for ac-
celeration, the high-performance ports provide an
uncached access to the memory. For the purpose of
direct memory access, the high-performance ports
are preferred. To use those, the interface needs to
be accessed by the PL. An AXI interconnect module,

provided as an intellectual property (IP) block from
the FPGA manufacturer Xilinx, was used. The IP
block is available in the IP catalogue integrated into
the Xilinx development tool Vivado and can be used
with every Xilinx hardware that supports the AXI
infrastructure.

To control the memory interface and manipulate
specific hardware addresses, the fault injector con-
tains a softcore processor which is instantiated in
the FPGA. While any simple processor would be
suitable, a Xilinx Microblaze is used because it is
known to work well with the other components from
the manufacturer. The block diagram representing
the FPGA design is shown in Figure 1. The processor
is programmed bare-metal, as it the functionality and
complexity of an operating system is not needed.
The number of injected errors can be configured in
software, as well as the distribution in time and mem-
ory. To control the Microblaze software, an external
UART interface is used to transmit control commands
that were defined beforehand. Implementing the
control commands with an external interface makes
the fault injector independent from the system under
test and eliminates the possibility of interfering with
its own control instance. Furthermore, implementing
the fault injector as an FPGA component instead of
a software solution has several advantages. On a
hardware level, the fault injector does not interfere
with the timing of the system under test and does not
add extra clock cycles to avoid affecting the overall
timing of the circuit.

The Microblaze is programmed in C using the Vitis
programming platform provided by Xilinx. The mem-
ory areas for the fault injection can be addressed
directly using their hardware addresses, since they
are known from the address map defined by the AXI
interface. On the side of the processing system,
the Linux operating system will allocate memory to
the middleware and applications at runtime. These
are virtual addresses that can be resolved to their
physical counterparts using Linux system calls.

The program itself implements functions to flip spe-
cific bits at a given address, as well as flipping a
given number of bits randomly within an address
range defined by the control commands. To make the
random distribution of injected faults reproduceable,
the random-number generator produces pseudo-
random locations based on a seed value that is also
communicated using a control command.

Even though the Microblaze processor has more ca-
pabilities than what is currently used, the hardware
implementation only uses a small part of the FPGA
resources which enables the SoC to use the PL part
for other components as well. As shown in Table 1,
the utilization after completing synthesis and imple-
mentation uses up to 10% of the FPGA resources. It
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FIG 1. Block diagram of the hardware components for fault injection

also shows the absolute utilization, broken down by
different resources available in the FPGA.

TAB 1. FPGA utilization for different resources after im-
plementation

5. FAULT DETECTION

A simple method for detecting SEUs in memory
is to continually read the memory using the CPU
and monitor its contents for changes. Using this
method, the SEU detector requests an area in main
memory with non-cached access from the operating
system, obtains its physical address and passes this
address to the programmable logic. The detector
initializes this memory by filling it with a known bit
pattern and continually reads back the stored values,
monitoring for any deviation from the known pattern.
This method allows the detector to reliably detect
any changes in this memory caused by SEUs, or in
validation, by the fault injector. However, it is only
applicable for memory areas which are dedicated
exclusively to SEU detection. This makes it useful for
characterizing the rate of SEU occurrence in main
memory in flight for particular hardware, but it cannot
be used as part of an FDIR system to detect and
subsequently mitigate SEUs occurring in memory
used for other purposes.

In order to detect SEUs occurring in memory used by
other parts of the system, the ScOSA middleware im-
plements higher-level FDIR mechanisms [2]. These

include heartbeat messages sent between nodes to
allow monitoring of the status by other nodes; a re-
configuration service to allow applications to migrate
to other nodes if their host node fails; a reintegration
service to allow restarted nodes to rejoin the system;
checkpoints which back up applications’ state data
to the local and remote nodes to allow recovery after
restarts; and a voter service, providing triple-modular
redundancy. In order to maximize the amount of
memory available to applications, the error-correcting
codes in the memory are not enabled. Instead,
ScOSA relies on its own FDIR mechanisms. Our
future work will include analyzing the effectiveness
of these mechanisms, using the FPGA-based fault
injector to simulate SEUs in the memory.

The faults caused by SEUs can lead to failures at
several severity levels. If an SEU occurs in memory
which is then overwritten before any further read
operations on that memory take place, the fault is ef-
fectively scrubbed and will not propagate to a failure.
If the memory is read, the program execution could
remain correct but lead to incorrect algorithm results.
It could also lead to incorrect program execution
resulting in a crash of a single process or, especially
if the error occurs in the memory of the operating
system, a crash of the entire node. We categorize
these failures as incorrect algorithm results, handled
FDIR events and unhandled system crashes respec-
tively, in a method similar to that used by Carlisle and
George [14].

To detect the first of these failures, incorrect algo-
rithm results, we intend to run an image-processing
machine-learning algorithm, representative of a
typical on-board processing application, both with
and without fault injection. By running the algorithm
without fault injection, we generate a “golden run”
whose results can be compared to subsequent runs
with active fault injection. Following completion of
the algorithm, the results will be compared offline
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to those of the golden run. If the algorithm runs to
completion and no faults are detected by the FDIR
but the offline analysis finds a difference to the results
of the golden run, we categorize the failure as an
incorrect algorithm result. If no difference to the
golden run is found, it is categorized as no failure.

In order to assess the effectiveness of the ScOSA
middleware’s inbuilt FDIR mechanisms, we monitor
the notifications output by the middleware to detect
anomalous behavior and FDIR activity. If FDIR ac-
tions are necessary, such as the restarting of a node,
but the algorithm results are identical to those of the
golden run, we characterize the run as a handled
FDIR event.

In the most serious case, an SEU or series of SEUs
may lead to system crashes that the FDIR system
cannot handle or does not handle correctly. We
characterize the run as an unhandled system crash
if this results in no output being produced, or the
output differing from the golden run despite FDIR
intervention.

By injecting SEUs into different parts of the system,
such as kernel memory, middleware memory, appli-
cation memory and FPGA registers, and characteriz-
ing the results, we aim to demonstrate the effective-
ness of ScOSA’s FDIR mechanisms, and also identify
weaknesses, which can then be used to improve the
FDIR mechanisms and assess the risk for different
mission requirements.

6. SUMMARY & OUTLOOK

This paper gave an overview of the FPGA-based fault
injection implemented for the ScOSA project and the
related SEU detection mechanisms. It showed how
a hardware design based on a Microblaze proces-
sor can be used to manipulate data located in the
memory of a Zynq 7020 platform and how it can be
controlled.

The next goals are integrating the fault injector with
the ScOSA system and its SEU detection. To test
the ScOSA middleware under realistic conditions,
the test runs will be executed with an example
application running. The chosen application is a
machine-learning-based image-classification algo-
rithm which will be run using the ScOSA middleware
while the fault injector is active. The system will
be executed multiple times, with faults injected into
different locations and at different times in each run.
The distribution of the injected errors can be either
pseudo-randomly determined or controlled manually,
which applies to both the distribution in time and
memory. That means that the faults can also be
injected in specific memory areas, such as those
used by the operating system, the middleware or the
application. To make the test runs reproduceable, the
pseudo-random runs are created using a seed value

for the random number generator which will be stored
together with the results of the corresponding run.

The system will be monitored for FDIR events and
unrecoverable failures. An unrecoverable failure oc-
curs when the monitored system is in a non-functional
state without the ability to recover from it by itself,
using the implemented FDIR mechanisms. The
occurrence of an unrecoverable failure would also
detect possible weaknesses in the ScOSA FDIR
mechanisms.

The operation of the middleware and the results of the
sample application will be compared to the results of
a golden run, where no faults are injected, to assess
the number of unhandled errors at the middleware
and application levels. The results are classified by
severity, such as incorrect algorithm results, handled
FDIR events and unhandled system crashes. These
results will then be correlated with the fault location,
such as kernel memory or application memory. The
fault injector also serves the purpose of testing the
SEU detection, as it will be part of the ScOSA flight
experiment.

By applying SEU simulation techniques to an on-
board software system, we aim to demonstrate the
usefulness of such simulations as well as guiding
the further development of the ScOSA system to
target further SEU mitigation efforts and improve the
system’s robustness, as well as characterizing it to
SEUs occurring in different locations.
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