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e Institute of Data Science, German Aerospace Center (DLR), Jena, Germany   

A R T I C L E  I N F O   

Keywords: 
Terrain elevation 
Accuracy assessment 
GEDI 
ICESat-2 

A B S T R A C T   

Accurate measurements of terrain elevation are crucial for many ecological applications. In this study, we sought 
to assess new global three-dimensional Earth observation data acquired by the spaceborne Light Detection and 
Ranging (LiDAR) missions Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics 
Investigation (GEDI). For this, we examined the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 
(20 × 14 m and 100 × 14 m segments) and the “GEDI Level 2A Footprint Elevation and Height Metrics”, version 
2 (25 m circle). We conducted our analysis across four land cover classes (bare soil, herbaceous, forest, savanna), 
and six forest types (temperate broad-leaved, temperate needle-leaved, temperate mixed, tropical upland, 
tropical floodplain, and tropical secondary forest). For assessment of terrain elevation estimates from spaceborne 
LiDAR data we used high resolution airborne data. Our results indicate that both LiDAR missions provide ac
curate terrain elevation estimates across different land cover classes and forest types with mean error less than 1 
m, except in tropical forests. However, using a GEDI algorithm with a lower signal end threshold (e.g., algorithm 
5) can improve the accuracy of terrain elevation estimates for tropical upland forests. Specific environmental 
parameters (terrain slope, canopy height and canopy cover) and sensor parameters (GEDI degrade flags, terrain 
estimation algorithm; ICESat-2 number of terrain photons, terrain uncertainty) can be applied to improve the 
accuracy of ICESat-2 and GEDI-based terrain estimates. Although the goodness-of-fit statistics from the two 
spaceborne LiDARs are not directly comparable since they possess different footprint sizes (100 × 14 m segment 
or 20 × 14 m segment vs. 25 m circle), we observed similar trends on the impact of terrain slope, canopy cover 
and canopy height for both sensors. Terrain slope strongly impacts the accuracy of both ICESat-2 and GEDI 
terrain elevation estimates for both forested and non-forested areas. In the case of GEDI the impact of slope is, 
however, partly caused by horizontal geolocation error. Moreover, dense canopies (i.e., canopy cover higher than 
90%) affect the accuracy of spaceborne LiDAR terrain estimates, while canopy height does not, when considering 
samples over flat terrains. Our analysis of the accuracy and precision of current versions of spaceborne LiDAR 
products for different vegetation types and environmental conditions provides insights on parameter selection 
and estimated uncertainty to inform users of these key global datasets.   

1. Introduction 

With the launch of two new National Aeronautics and Space 

Administration (NASA) spaceborne Light Detection and Ranging 
(LiDAR) missions in late 2018 – the Ice, Cloud, and Land Elevation 
Satellite-2 (ICESat-2) and the Global Ecosystem Dynamics Investigation 
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(GEDI) – a new suite of three-dimensional (3D) data of Earth’s land 
surface has been produced. These missions are designed to provide ac
curate vertical information about land surfaces, such as vertical vege
tation structure, and terrain elevation. Information on vertical 
vegetation structure is required to assess the status and temporal dy
namics of forests and provides baseline data to estimate terrestrial car
bon stocks and emissions (Baccini et al., 2012; Saatchi et al., 2011). 
Information on terrain elevation is crucial for applications such as hy
drological modeling (Sanders 2007; Wilson et al., 2007) and modeling of 
soil erosion (De Vente et al., 2013). Furthermore, accurate ground 
detection is key for estimation of vertical vegetation structure parame
ters from LiDAR (e.g., relative vegetation heights, and vegetation den
sity at different height ranges), since these structure metrics are 
calculated as height above the ground. Terrain elevation data below the 
forest canopy can also aid in estimating vegetation height from global 
Digital Elevation Models (DEMs) (e.g., Kellndorfer et al., 2004; Simard 
et al., 2006). For this, however, the penetration depth of the signal must 
be considered (Schlund et al., 2019). 

LiDARs are active systems that send pulses of light and measure their 
travel time. Some systems also measure the returned intensity. Knowing 
precisely the travel time of the signal, the distance to scattering objects 
can be calculated (Lim et al., 2003). LiDARs for terrestrial applications 
usually operate in the near-infrared (NIR) range of the electromagnetic 
spectrum between 900 and 1545 nm. Due to its ability to resolve small 
gaps within tree crowns, LiDAR is able to detect the ground under dense 
canopies as well as derive vegetation structure and understory infor
mation. A LiDAR system illuminates an area (the instantaneous laser 
footprint) by sending a laser pulse, which can generate one or many 
returns depending on the Earth’s surface characteristics (bare-ground or 
vegetated). The laser footprint can vary in size from centimeters for an 
airborne sensor to tens of meters for a spaceborne instrument (e.g., 25 m 
for the GEDI instrument). 

ICESat-2 was launched in September 2018 and carries an innovative 
instrument, the Advanced Topographic Laser Altimeter System (ATLAS). 
In contrast to its predecessor ICESat, the ICESat-2 mission follows a 
different acquisition concept and uses different technology. Unlike the 
waveform LiDAR sensor used by ICESat GLAS (Geoscience Laser 
Altimeter System), ATLAS is a photon-counting LiDAR (PCL) that uses 
less energy per pulse, allowing high repetition rates (Markus et al., 
2017). High repetition rates improve sampling density along track, 
collecting laser footprints every 70 cm (Markus et al., 2017). In contrast 
to the dual-wavelength green (532 nm) and infrared (1064 nm) ICESat 
GLAS instrument, ICESat-2 ATLAS operates 532 nm (green) lasers with a 
repetition rate of 10 kHz (Markus et al., 2017). The choice of wavelength 
was set by the low dead-time and efficiency of the single photon de
tectors. The illuminated footprint size of ATLAS is around 14–17 m 
(Markus et al., 2017; Popescu et al., 2018) at the beginning of the 
mission and will increase to around 20 m at the end of the 3-year 
planned mission (Neuenschwander and Pitts 2019). ICESat-2 possesses 
three laser beam pairs, which are separated by ca. 3.3 km (Neuensch
wander and Pitts 2019), allowing data collection along six parallel 
tracks and thus improving spatial coverage. Each beam pair comprises a 
strong and weak beam with an energy ratio of 4:1 and a spatial sepa
ration of 90 m, which helps to determine cross-track slope (Markus et al., 
2017; Popescu et al., 2018). The main application of ICESat-2 is moni
toring of the cryosphere, i.e., mapping of changes in glacier and 
ice-sheet elevation and corresponding contributions to sea-level change 
and estimation of sea ice thickness. Additionally, ICESat-2 collects 
LiDAR samples over land areas and provides height measurements over 
global forests. The operation of a laser with a wavelength of 532 nm is 
optimal for ice and snow monitoring. However, this wavelength is not 
ideal for vegetation monitoring due to a reduced reflectance from leaves 
compared with near-infrared, higher background solar noise (Swatan
tran et al., 2016) and lower atmospheric transmittance. 

In December 2018, the GEDI sensor was successfully launched and 
installed on the International Space Station (ISS). Because the GEDI 

lasers operate from the ISS, the data collection coverage is limited to 
regions between 51.6◦N and 51.6◦S, thus covering temperate and 
tropical forests but omitting most boreal forests. GEDI was specifically 
designed for vegetation monitoring and operates three 1064 nm lasers 
(Dubayah et al., 2020a). Two are full-power lasers while the third laser 
is split into two coverage beams, generating a total of four beams. 
Coverage beams use approx. 1/3 the energy of the full-power beams 
(Dubayah et al., 2020a), resulting in reduced capability to receive 
ground returns under dense canopies (Hancock et al., 2019). To improve 
spatial coverage, the four beams are dithered on alternative shots, 
producing eight parallel ground tracks (Dubayah et al., 2020a). The 
tracks are separated by around 600 m across-track and 60 m along-track. 
GEDI is a full-waveform LiDAR with a footprint size of around 25 m. 
After the nominal two-year mission by the end of April 2021, GEDI had 
generated more than 10 billion cloud-free observations (Dubayah et al., 
2020a). Fortunately, the GEDI mission is extended until September 
2023, allowing collection of many more observations. 

In this study, we assessed the accuracy and precision of terrain 
elevation estimates from these two new spaceborne LiDAR missions, 
since terrain elevation errors are the primary drivers of other product 
errors (e.g., vegetation height, plant area index, aboveground biomass) 
(Duncanson et al., 2020; Hancock et al., 2019). For this, we examined 
the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 
(Neuenschwander and Pitts 2019; Neuenschwander et al., 2021) and the 
“GEDI Level 2A Footprint Elevation and Height Metrics”, version 2 
(Dubayah et al., 2020b). Uncertainties in spaceborne LiDAR-based 
terrain estimates can be related to atmospheric conditions (haze), 
ranging precision of the instrument, horizontal geolocation accuracy, 
terrain relief, seasonal effects (e.g., leaf-on/-off canopy conditions, 
inundation), and algorithms applied to determine ground return. The 
accuracy of the ground detection is primarily a function of the amplitude 
of the ground return above noise, which is driven by canopy cover. 

We compared the performance of terrain elevation estimates from 
the spaceborne LiDAR data in different biomes, using high-resolution 
airborne measurements as reference data. We performed our analysis 
over six regions spanning a range of different land cover classes, vege
tation types, canopy heights, tree densities, and levels of anthropogenic 
disturbance. Instead of assessing terrain elevation estimates in different 
geographical sites, we analyzed the accuracy of spaceborne LiDAR 
terrain estimates across land cover and forest types. For this, we merged 
the data from different sites and assigned them to a certain land cover 
and forest type. Finally, we investigated the impact of different envi
ronmental conditions (terrain slope, canopy height, and canopy cover), 
and sensor parameters (e.g., beam sensitivity (for GEDI) and number of 
terrain photons (for ICESat-2)) on the accuracy of spaceborne LiDAR 
products. The objective of the study is, however, not to compare per
formance between the spaceborne sensors (due to different footprint 
size), rather to provide statistics of current available versions under 
different conditions (land cover, canopy cover, terrain slope). 

2. Materials and methods 

2.1. Study areas 

We investigated the accuracy of both sensors in four different land 
cover classes and six forest types located in Brazil, Germany, South Af
rica and the USA (Fig. 1). The first two sites are located in temperate 
broad-leaved and needle-leaved forests in central Germany (50–51◦N). 
The third study site includes mixed land cover types in Sonoma County, 
California, USA (38–39◦N). The fourth and fifth sites are located in the 
Brazilian Amazon (2.5–10◦S): one site is spatially distributed over six 
areas of pasturelands and secondary forests, and one is located within 
intact tropical rainforest in the mid-Juruá region. The sixth study site is 
situated in a southern African savanna ecosystem in Kruger National 
Park, South Africa (23–25◦S). 
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2.2. Land cover and forest types 

Since the accuracy of terrain elevation estimates relates to land cover 
and forest types, we merged data from different sites and assessed their 
accuracy at two levels. At the highest level we analyzed the accuracy of 
spaceborne LiDAR data for four land cover classes, which cover the 
major part of our study sites: bare soil, herbaceous vegetation, savannas 
and forests. We masked out urban areas in Sonoma (USA), Hainich and 
Roda (Germany), as well as tidal wetlands in Sonoma and open water for 
Amazon sites. Furthermore, we did not assess the accuracy of space
borne LiDAR terrain estimates for agricultural areas, since this class 
includes vineyards in Sonoma and orchards in Hainich and Roda sites, 
and represents a mixture of herbaceous and woody vegetation. 

Land cover information was derived from high-resolution land cover 
maps for Sonoma (SonomaVegMap 2019, 2020), Hainich and Roda 
(TLBG 2020a). These land cover maps are based on aerial imagery, 
partly on machine learning techniques (for the Sonoma site) and 
fine-scale manual editing (SonomaVegMap 2019; TLBG 2020a). In our 
analysis, bare soil areas are natural non-water, barren or sparsely 
vegetated areas. The herbaceous vegetation class consists of non-woody 
vegetation in Sonoma, Hainich and Roda, as well as areas with canopy 
height (derived from airborne laser scanning (ALS) data) lower than 2 m 
in the Amazon sites. All ICESat-2 and GEDI samples collected over 
Kruger National Park were assigned to the savanna land cover class. 
Forested areas include pixels classified as forest in Sonoma (Sonoma
VegMap 2019, 2020), Hainich and Roda (TLBG 2020a) and areas with 
an ALS canopy height greater than 5 m in the Amazon sites. 

At the lower level we subdivided the forest land cover class into 

forest types occurring in our study areas: temperate broad-leaved, 
temperate needle-leaved, temperate mixed, tropical secondary, trop
ical floodplain, and tropical upland forests. A detailed description of 
forest types is given in the next subsection. 

2.2.1. Temperate forests 
Temperate forests were classified into specific forest types based on 

high-resolution land cover maps for Sonoma (SonomaVegMap 2019, 
2020), Hainich and Roda (TLBG 2020a). Areas with temperate 
broad-leaved forests include the following tree species: beech (Fagus 
sylvatica), ash (Fraxinus excelsior), alder (Aldus glutinosa) and birch 
(Betula pendula) located in Hainich and Roda. From the Sonoma site 
several oak species (Quercus spp.), California bay (Umbellularia cal
ifornica), and tanoak (Notholithocarpus densiflorus) tree species were 
included as temperate broad-leaved forests. 

Temperate needle-leaved forests are represented by Scots pine (Pinus 
sylvestris), Norway spruce (Picea abies) and rarely occurring European 
larch (Larix decidua) from Hainich and Roda, and coast redwood 
(Sequoia sempervirens) and Douglas fir (Pseudotsuga menziesii) from the 
Sonoma site. 

Mixed forest stands with the abovementioned tree species are 
assigned to the temperate mixed forests class. 

Based on ALS data, the temperate needle-leaved forest class possesses 
the tallest trees (mean canopy height 21.1 m) and densest tree canopies 
(mean canopy cover 78.9%) among the temperate forest classes (Fig. 2). 
Canopy cover (CC) is defined as the percentage of all ALS point clouds 
from heights greater than 5 m. In contrast, temperate broad-leaved 
forests feature smaller mean canopy height (14.5 m) and lower 

Fig. 1. Geographical locations of the study areas and spaceborne LiDAR transects. Upper figures show the German test sites Hainich (a) and Roda (b), and the USA 
test site Sonoma (c). Lower figures show the test sites in the mid-Juruá, Brazilian Amazon (d), and in Kruger National Park, South Africa (e), as well as overview maps 
of Germany, California USA, Brazil, and South Africa. Geographical locations of INPE airborne LiDAR transects over pastureland and tropical secondary forests are 
shown in the overview map of Brazil in cyan. 
Service Layer Credits: Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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canopy cover (64.3%) compared to other temperate forest classes 
(Fig. 2). 

2.2.2. Tropical forests 
Classification into tropical intact and tropical secondary forests was 

accomplished using geographical locations of the ALS tracks and “The 
Intact Forest Landscapes” (IFL) map for the year 2016 (Potapov et al., 

2017), and confirmed by observation of historical optical satellite im
agery. Twelve ALS tracks in the Juruá study region (Amazonas State) 
and within the binary IFL map were assigned to the class intact tropical 
forests. Six airborne LiDAR transects, which were acquired across the 
states of Acre, Pará and Roraima, are located outside the binary IFL map, 
and with ALS canopy height higher than 5 m were classified as tropical 
secondary forests. These six ALS tracks were collected over a mixture of 

Fig. 2. Terrain slope for four land cover 
classes (a) and forest types (b); canopy 
height (c) and canopy cover (d) for six 
forest types. The parameters are calcu
lated from ALS point cloud data or (for 
Kruger National Park) Digital Mapping 
Camera (DMC) stereoscopic data at a 
pixel size of 25 m. Canopy Height 
(RH95) is defined as the 95th percentile 
height of point cloud data. Canopy 
cover (CC) is defined as the percentage 
of all returns from heights greater than 
5 m. TemBF - temperate broad-leaved 
forests; TemMF - temperate mixed for
ests; TemNF - temperate needle-leaved 
forests; TroBFF - tropical broad-leaved 
floodplain forests; TroBUF - tropical 
broad-leaved upland forests; TroSF - 
tropical broad-leaved secondary forests.   

Fig. 3. A) Example of a CHM from an ALS track collected by INPE at the Juruá forest site with GEDI (red circles) and ICESat-2 (red rectangles) samples. B) Vertical 
distribution of ALS points over an ICESat-2 sample (ICESat-2 segment IDs: 1028494–1028,498) with estimated ALS terrain elevation and corresponding ICESat-2 
terrain estimate. C) GEDI waveform (GEDI shot ID: 52401103100297764) with terrain estimates based on six algorithms. D) Vertical distribution of ALS points 
over the same GEDI sample with ALS terrain estimate. E) Main processing and analysis steps. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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pasture and forest regrowth of various ages. 
We further separated tropical intact forests of the mid-Juruá region 

into upland (“terra-firme”) and floodplain forests using a Synthetic 
Aperture Radar (SAR)-based Amazon-wide wetland map (Hess et al., 
2015); upland/floodplain boundaries were refined using recent 
high-resolution Landsat and PALSAR-2 imagery. Uplands and flood
plains of the mid-Juruá region support largely undisturbed, biodiverse 
forests (Albernaz et al., 2012; Cardoso et al., 2017; Wittmann et al., 
2006). Floodplain forests include those of the Juruá River (a 
high-sediment, "whitewater" tributary of the Amazon River), as well as 
smaller floodplains of local tributaries with lower sediment loads. About 
half of the Juruá floodplain forest occupies flats and depressions inun
dated from 3 to 10 months per year with seasonal water depths up to 
several meters, and half is situated on higher ground (levees, scroll bar 
ridges) with flooding depths of less than 2 m. Hawes et al. (2012) re
ported stand densities of 633 and 639 stems per hectare for floodplain 
and terra-firme forest respectively, for the mid-Juruá region. Based on 
12 ALS tracks, mid-Juruá terra-firme forests are taller and have greater 
canopy cover than floodplain forests (Fig. 2). 

2.2.3. Savanna 
The Kruger National Park (KNP) represents the savanna study site. 

KNP is the largest national conservation area in South Africa with an 
extent of almost 19,500 km2. Vegetation is characterized by a mixture of 
growth forms, primarily grasses, shrubs, and trees. In large parts of the 
area trees are deciduous and shed their leaves during the dry season 
(May–September), while both grass and woody vegetation are green 
during the wet season (October–April). The dominant tree species are 
Mopane (Colophospermum mopane) in the dry northern part (mean 
annual precipitation (MAP) below 500 mm/year), Red bushwillow 
(Combretum apiculatum) and Knob Thorn (Acacia Nigrescens) in the more 
humid southern part of the park with MAP above 500 mm/year (Eck
hardt et al., 2000; Venter et al., 2003). According to a woody cover map 
based on C-band SAR data (Urban et al., 2020), mean woody cover of the 
KNP is 23%. Thus, the KNP site can be considered as an open savanna 
with high woody cover (up to 80%) along the riparian areas (Venter 
et al., 2003). Since the KNP is a conservation area, the changes in woody 
cover are induced primarily by large herbivores such as elephants (Asner 
and Levick 2012) or by fires. Based on terrain height estimates derived 
from aerial imagery, the elevation in the park varies between 105 and 

Fig. 4. Absolute terrain height difference (GEDI terrain height (default parameter “elevation lowestmode” varies among six algorithms depending on plant functional 
type) minus reference terrain height) plotted as a function of GEDI degrade flag (a), absolute deviation between GEDI terrain and TanDEM-X DEM heights (b), GEDI 
time of acquisition (c), GEDI number of modes (d), GEDI beams (e), GEDI beam sensitivity (f). 
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832 m with a mean elevation of 333 m and a mean slope of 3.4◦ (Heckel 
et al., 2021). Mean vegetation height from a high-resolution canopy 
height model is around 5 m with the tallest (95th percentile) canopies 
reaching 12 m. 

2.3. Reference data 

As reference data we used high resolution airborne data. For Hainich, 
Roda, Sonoma, and the Brazilian Amazon the data were collected with 
LiDAR sensors providing detailed three-dimensional information. In the 
Kruger National Park reference information on ground topography was 
derived from aerial stereoscopy using an optical sensor (color-infrared 
channels). Terrain slope, canopy height and canopy cover estimates 
grouped by land cover and forest types based on the reference data are 
shown in Fig. 2. A detailed description of each reference data set is given 
in the next subsections. 

2.3.1. Hainich and Roda ALS 
Small-footprint discrete-return airborne LiDAR data in Hainich were 

collected wall-to-wall by the Thuringian land surveying office (TLBG) 
between December 2016 and March 2017. The mean point density is 
around 20 returns per m2. ALS data at the Roda site were collected for 
the entire area by the TLBG during two flight campaigns: about 80% of 
the data were acquired in February 2014, and the remaining 20% were 
recorded in November 2014 and March 2015. The mean point density of 
this ALS data is ca. 10 returns per m2. The original data are freely 
available at (TLBG 2020b) in three formats: gridded digital terrain 
model (DTM) (bare ground) and digital surface model (DSM) (including 
object heights, e.g., trees and buildings) at 1 m pixel spacing as well as 
point clouds in.laz format. All data possess a horizontal coordinate 
reference system (CRS) ETRS89, UTM Zone 32 N and GRS80 ellipsoid, 
and a vertical reference system DHHN2016 with heights above a 
German Combined QuasiGeoid 2016 (GCG2016). The reported hori
zontal accuracy of the ALS data is 15 cm and vertical accuracy is 9 cm. 
We converted the horizontal datum to Latitude/Longitude in the WGS84 
horizontal reference system (EPSG: 4326). We further transformed 
vertical datum to the EGM2008 geoid using the GCG2016 geoid (i.e., 
first, from GCG2016 orthometric heights to ellipsoidal heights; then 
from ellipsoidal heights to EGM2008 orthometric heights). 

As a reference for bare-earth elevation we used gridded DTM at 1 m 
pixel spacing, and the canopy height model (CHM) was derived by 
subtracting DTM from DSM. ALS data were collected during the winter 
season under leaf-off conditions. 

2.3.2. Sonoma ALS 
Wall-to-wall airborne LiDAR data over Sonoma County, California 

were collected between September and November 2013. Reported mean 
pulse density of the data is 11 pulses per m2 (WSI 2016). The Sonoma 
ALS data are publicly available in the form of point clouds (.las format), 
gridded terrain height, canopy height, and canopy cover layers at 1 m 
pixel spacing (SonomaVegMap 2020). Based on 9348 ground check 
points, maximum deviation of the ALS elevation is 16 cm, with an RMSE 
of 3 cm (WSI 2016). 

The horizontal datum of the data is NAD 1983 StatePlane California 
II FIPS 0402. The vertical datum of ALS data is North American Vertical 
Datum of 1988 (NAVD88) based on GEOID12A. The units of original 
data are in US survey feet. We converted the horizontal datum to Lati
tude/Longitude in the WGS84 horizontal reference system (EPSG: 
4326), and the vertical datum to the EGM2008 geoid. Further, US survey 
feet were recalculated in meters. 

2.3.3. Amazon pasture and Juruá forest ALS 
Small-footprint discrete-return airborne LiDAR data for the two 

Amazonian sites were acquired by Brazil’s National Institute for Space 
Research (INPE) from April to July in 2016 as part of its Amazon 
Biomass Estimation (EBA) project (Dalagnol et al., 2021; Tejada et al., 

2019). In total, 18 of the 610 EBA transects were analyzed covering an 
area of ca. 6,900 ha. The mean point density in the ALS tracks is around 
4 returns per m2. The pulse footprint was set to be below 30 cm, with 
horizontal accuracy within 100 cm and vertical accuracy within 50 cm. 
The original data are available as point clouds in.las format. All data use 
the SIRGAS2000 horizontal coordinate reference system and GRS80 
ellipsoid. The vertical reference system is the Imbituba tide gauge sta
tion. The mean difference between the Imbituba tide gauge station and 
the EGM2008 geoid is around − 0.5 m (Gruber et al., 2012). Our results 
for non-forested areas (i.e., for the samples with canopy height smaller 
than 5 m derived from ALS data) indicate a mean difference between the 
Imbituba tide gauge station and the EGM2008 geoid to be around − 0.79 
m, 0.15 m and 0.11 m for GEDI footprints, ICESat-2 100 m segments and 
ICESat-2 20 m segments, respectively (Fig. S7). 

We pre-processed point clouds with LAStools software (version 
200,304) to generate bare-ground elevation and vegetation metrics. On 
the point clouds we first applied the noise removal function “lasnoise” 
implemented in LAStools. We then classified points into ground and 
non-ground returns using the LAStools function “lasground”. Classified 
ground returns were then triangulated and rasterized using the LAStools 
function “las2dem”. The final ALS-based bare-ground elevation has a 
pixel spacing of 1 m. To generate vegetation metrics (canopy height 
(RH95) and canopy cover), we used the LAStools function “lascanopy”. 

2.3.4. KNP Digital Mapping Camera 
To create very high-resolution elevation models for the entire Kruger 

National Park (KNP), Digital Mapping Camera (DMC) aerial imagery 
from the National Geo-spatial Information (NGI) programme of South 
Africa’s Department of Rural Development and Land Reform (DRDLR) 
was utilized. Data sets were acquired from an altitude of approximately 
5,500 to 6,000 m at a nominal pixel resolution of 25 cm in the time 
period between September and October 2018 (dry season). Aerial ste
reoscopic algorithms to derive height information (surface and terrain 
height) were carried out using the Enterprise software package from 
CATALYST (formerly known as PCI Geomatics), setting the vertical 
datum as the EGM2008 geoid. Major processing steps included meta 
data preparation, bundle adjustments and tie point collection, semi- 
global matching (SGM)-based height extraction as well as several 
filtering steps as described in (Heckel et al., 2021). Validation of the 
DMC-based DTM with GNSS point samples yielded an LE90 (Equation 
(4), Section 2.5) of 1.02 m (Heckel et al., 2021). A canopy height model 
was produced by subtracting the DTM from the DSM. The retrieved DTM 
and CHM have a pixel spacing of 5 m. 

2.4. Spaceborne LiDAR data 

A short description of the spaceborne LiDAR data as well as product 
levels and versions used in this study is given in the following sub
sections. The total number of samples per land cover and forest type of 
the examined spaceborne LiDAR data is given in boxplots (Figs. 5, 7 and 
8). 

2.4.1. GEDI data 
All available GEDI L2A version 2 data (Dubayah et al., 2020b) ac

quired over study regions between April 2019 and August 2021 were 
used for the accuracy assessment of terrain elevation estimates. GEDI 
L2A samples provide latitude, longitude, ground elevation, relative 
height metrics above the ground (as a proxy for canopy height) and 
surface energy metrics at footprint level (25 m), as well as TanDEM-X 
DEM height. The terrain elevation estimates of the L2A products are 
based on six different algorithms. These algorithms define thresholds for 
signal start and end, as well as smoothing width for noise and signal (for 
more details see Table 5 in Hofton et al. (2019)). In contrast to the GEDI 
version 1 data, where default terrain elevation estimates are based on 
algorithm 1, in version 2 the default terrain elevation estimates vary 
among these six algorithms depending on plant functional type (Beck 
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et al., 2021). For instance, in areas with dense undergrowth, algorithms 
with a lower signal end threshold might be preferred. 

In addition to the GEDI L2A data, we extracted EGM2008 geoid 
heights for each footprint from the L1B product (Dubayah et al., 2020c), 
in order to convert GEDI terrain elevation, which is referenced to the 
WGS84 ellipsoid, to orthometric height (relative to the EGM2008 
geoid). Furthermore, estimated canopy cover and beam sensitivity pa
rameters for each GEDI sample were retrieved from the L2B product 
(Dubayah et al., 2020d). Beam sensitivity is defined as the maximum 
canopy cover through which the GEDI can detect the ground with 90% 
probability (Hancock et al., 2019). Before the accuracy assessment, we 
applied the following filters on the L2A data: 1) we selected GEDI 
samples with a quality flag of 1 (valid waveform) in all six algorithms; 2) 
we removed GEDI samples for which the absolute difference between 

estimated terrain elevation and TanDEM-X DEM was greater than 50 m 
for all six algorithms; 3) we removed samples for which estimated 
canopy cover provided in the GEDI product is greater than the corre
sponding beam sensitivity; 4) we selected non-degraded GEDI samples 
(i.e., GEDI degrade flag parameter equal to 0). Degraded conditions in 
GEDI L2A data represent, e.g., degraded attitude and degraded trajec
tory (Beck et al., 2021). Applying the GEDI degrade flag reduces the 
number of GEDI observations by 23%, from 1.78 million to 1.37 million 
(Fig. 4a). As our GEDI terrain elevation estimate we used the parameter 
“elev_lowestmode”, which represents the elevation of the center of the 
lowest mode relative to the WGS84 ellipsoid. We used only those GEDI 
samples that were located completely within the reference data. 

Fig. 5. Absolute terrain height difference 
(GEDI terrain height (default parameter 
“elevation lowestmode”) minus reference 
terrain height) plotted as a function of land 
cover (a), forest types (b), ALS terrain slope 
(c), ALS terrain slope for non-forested areas 
(ALS CHM <5 m) (d), ALS canopy height (e), 
ALS canopy height for flat terrain (with ALS 
slope <5◦) (f), ALS canopy cover (g), ALS 
canopy cover for flat terrain (with ALS slope 
<5◦) (h). Note: there are a lower number of 
samples on impact of ALS canopy cover, 
since this information is not available for the 
savanna site. The boxes show the inter
quartile range (25th and 75th percentile), 
the bold bar the median and the vertical bars 
are 1.5 times the interquartile range; outliers 
are excluded for improved visualization. 
Number for each slope group gives corre
sponding number of samples. TemBF - 
temperate broad-leaved forests; TemMF - 
temperate mixed forests; TemNF - temperate 
needle-leaved forests; TroBFF - tropical 
broad-leaved floodplain forests; TroBUF - 
tropical broad-leaved upland forests; TroSF - 
tropical broad-leaved secondary forests.   
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2.4.2. ICESat-2 data 
For the accuracy assessment of ICESat-2 data we used the ATL08 

product (ATLAS/ICESat-2 L3A Land and Vegetation Height) version 5 
(Neuenschwander et al., 2021) collected between October 2018 and 
September 2021. The first step of the ATL08 algorithm is the classifi
cation of raw photons into noise and signal photons. The ATL08 product 
is based on geolocated photons from the ATL03 product (Neumann 
et al., 2020), which contains a signal flag indicating a likelihood that a 
photon is classified as a signal. As reported in Neuenschwander and Pitts 
(2019), however, this default algorithm for the ATL03 product works 
over smooth surfaces such as ice sheets, but sometimes classifies photons 
from the top of canopy as noise. To improve the detection of signal 
photons for the vegetated surfaces, an additional signal finding algo
rithm DRAGANN (Differential, Regressive, and Gaussian Adaptive 
Nearest Neighbor) is applied (Neuenschwander and Pitts 2019). A more 
detailed description of the ATL08 product and corresponding photon 
classification from the ATLAS sensor can be found in (Neuenschwander 
and Pitts 2019; Neuenschwander et al., 2021). 

It is expected to receive up to four photons per single strong beam 
footprint over vegetated surfaces, which is a much lower number than 

over highly reflective ice and snow surfaces (ca. 10 signal photons) 
(Neuenschwander and Pitts 2019). In order to have enough ground and 
canopy photons, and thus, provide more robust estimates, ATL08 can
opy and terrain elevations are estimated for transects of 100 m length, i. 
e., 140 sequential footprints with a diameter of ca. 14 m are combined. 
Furthermore, ATL08 product version 5 provides estimates on ground 
elevation and canopy height for 20 m segments (i.e., ~28 sequential 
footprints are combined). We examined ATL08 product at both spatial 
resolutions (100 m and 20 m, hereafter ATL08_100 and ATL08_20). 

For our ICESat-2 terrain elevation estimate, we used the parameter 
“h_te_best”, which provides the best fit terrain elevation at the mid-point 
location of each 100 m and 20 m segments. We applied the following 
filters on the ATL08_100: we removed samples for which the absolute 
difference between estimated terrain elevation (“h_te_best”) and the 
MERIT-DEM (Multi-Error-Removed Improved-Terrain DEM (Yamazaki 
et al., 2017)), provided in ATL08 data for each ICESat-2 transect, was 
greater than 30 m. The same absolute height difference threshold was 
applied by Neuenschwander et al., (2022). Further, we removed those 
ATL08_100 samples with estimated terrain uncertainty higher than 20 
m. Determinations of both thresholds are based on comparison with 

Fig. 6. Absolute terrain height difference (ICESat-2 terrain height (parameter “h_te_best”) minus reference terrain height) plotted as a function of ICESat-2 beam 
mode (a), ICESat-2 time of acquisition (b), ICESat-2 terrain uncertainty (c) absolute deviation between ICESat-2 terrain and Global Multi-Resolution Terrain 
Elevation (GMTED) DEM heights (d), number of ICESat-2 terrain photons (e), number of ICESat-2 canopy photons (f). 
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reference data (Fig. 6). Finally, we selected only those ATL08_100 
samples with maximum elevation height of 2,000 m and with maximum 
canopy height (“h_canopy”) of 100 m. For the ATL08_20 product we 
applied a threshold of 50 m for an absolute height difference between 
estimated terrain elevation (“h_te_best”) and the CopernicusDEM 
(Airbus 2020), since for 20 m segments neither MERIT DEM nor terrain 
uncertainty estimates are provided. This threshold is higher than that 
used for MERIT-DEM, since CopernicusDEM provides the elevation of 
the scattering height of the X-band signal. We used only those ICESat-2 
samples that were located completely within the reference data. 

2.5. Data extraction and calculation of statistics 

To compare spaceborne-based terrain elevation estimates with 
reference data we performed the following steps. First, since the eleva
tions in the reference data are orthometric heights referenced to the 
EGM2008 geoid (Sections 2.3.1–2.3.4), a conversion from the WGS84 

ellipsoid to the EGM2008 geoid as vertical reference for GEDI and 
ICESat-2 data was applied. The EGM2008 geoid heights (Pavlis et al., 
2012) are provided in the GEDI L1B product as auxiliary information. 
For ICESat-2 segments we extracted the EGM2008 geoid heights from 
the National Geospatial-Intelligence Agency 2.5’ grid (Pavlis et al., 
2012), since the geoid heights are not provided for the 20 m ATL08 
product. Additionally, we masked out urban areas in Hainich, Roda and 
Sonoma, as well as tidal wetlands in Sonoma and open water for Amazon 
sites. Fig. 3 illustrates an example of an ALS-based CHM collected over 
tropical upland forests (a), vertical distribution of ALS point clouds over 
an ICESat-2 transect (b) and over a GEDI sample (d) together with 
corresponding GEDI waveform (c), as well as the main processing and 
analysis steps (e). 

For terrain elevation comparison, we calculated a median value from 
reference data over GEDI and ICESat-2 footprints. For statistical 
assessment of terrain height estimates, the following metrics between 
spaceborne and reference data were calculated: 

Fig. 7. Absolute terrain height difference (ICESat-2 
terrain height (parameter “h_te_best”) at 100 m 
(ATL08_100) minus reference terrain height) plotted 
as a function of land cover (a), forest types (b), ALS 
terrain slope (c), ALS terrain slope for non-forested 
areas (ALS CHM <5 m) (d), ALS canopy height (e), 
ALS canopy height for flat terrain (ALS slope <5◦) (f), 
ALS canopy cover (g), ALS canopy cover for flat 
terrain (ALS slope <5◦) (h). Note: there are a lower 
number of samples for estimating impact of ALS 
canopy cover, since this information is not available 
for the savanna site. There are no ICESat-2 samples 
available for a canopy cover range of 90–95%.   
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Linear ​ error ​ 90% LE90= quantile90(|Δhi|) (4)  

where hi is a height estimate for a footprint from spaceborne data and href 
is the estimated median height within the corresponding footprint from 
reference data. These metrics have previously been used for accuracy 
assessments of global DEMs (Baade and Schmullius 2016; Höhle and 
Höhle 2009; Wessel et al., 2018). We did not report coefficient of 
determination (R2), since this metric is dependent on local topographic 
variability and not the measurement accuracy. For instance, for a site 

with topography varying by 1,000 m, an uncertainty of tens of meters 
can still have an R2 higher than 0.9, while a flat site will have a very low 
R2, even with sub meter accuracy. 

3. Results 

A summary of goodness-of-fit statistics of the GEDI and ICESat-2 
terrain elevation estimates for different land cover and forest types is 
shown in Tables 1 and 2. Corresponding scatterplots are shown in the 
Section “Supplementary materials”. In the following subsections results 
on impact of environmental conditions and sensor parameters on ac
curacy and precision of GEDI and ICESat-2 terrain estimates are 
described. 

3.1. Data screening using GEDI auxiliary metrics 

Auxiliary information available for every GEDI sample can help to 

Fig. 8. Absolute terrain height difference (ICESat-2 
terrain height (parameter “h_te_best”) at 20 m 
(ATL08_20) minus reference terrain height) plotted as 
a function of land cover (a), forest type (b), ALS 
terrain slope (c), ALS terrain slope for non-forested 
areas (ALS CHM <5 m) (d), ALS canopy height (e), 
ALS canopy height for flat terrain (ALS slope <5◦) (f), 
ALS canopy cover (g), ALS canopy cover for flat 
terrain (ALS slope <5◦) (h). Note: there are a lower 
number of samples for estimating the impact of ALS 
canopy cover, since this information is not available 
for the savanna site.   
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select confident terrain estimates, i.e., those with a high probability of 
being true ground elevation. Outliers in GEDI terrain estimates can be 
caused by degraded pointing and positioning information, and reflection 
from clouds. Furthermore, vertical complexity, acquisition times and 
beam mode (power or coverage) can affect accuracy of terrain height 
estimates (e.g., Duncanson et al., 2020). 

Applying the GEDI parameter “degrade_flag” helps to increase pre
cision of elevation estimates by filtering out more than 20% of GEDI 
observations (Fig. 4a). Considering all land cover classes, the LE90 (as an 
indicator for precision) (Equation (4)) for non-degraded samples was 
4.1 m, versus 12.9 m for degraded samples and 5.6 m for all samples (i. 
e., degraded and non-degraded). In the next steps, we investigated non- 
degraded GEDI samples only. Elevation height from global DEMs can 
further improve accuracy and precision of GEDI estimates (Fig. 4b). 
Here, however, using a low absolute difference threshold (e.g., 10–20 m 
or 20–30 m) can lead to removing samples that were collected over 
forested areas, bearing in mind that TanDEM-X DEM provides scattering 
height of the X-band signal. Global DEMs and this absolute difference 
threshold can be used to screen GEDI samples acquired over clouds (e.g., 
by using a threshold of 50 m). 

Although the proportion of degraded samples was lower for night- 
time acquisitions (18%) than for day-time acquisitions (28%), we did 
not observe a higher accuracy and precision for night-time GEDI samples 
than for those collected during the day (Fig. 4c). Mean error was 0.59 m 
for night-time and 0.54 m for day-time samples. One reason for this 
might be that degraded day-time GEDI data had already been filtered 
out in previous steps. About 20% more GEDI samples were collected 
during the night than during the day. The GEDI parameter “number of 

modes” provides an estimated number of peaks in a waveform and re
flects the vertical complexity of a GEDI sample. As expected, an 
increasing “number of modes” leads to a higher deviation between GEDI 
and reference data (Fig. 4d). GEDI beams 0 to 3 are so-called “coverage” 
beams with a reduced capability to receive ground returns under dense 
canopies (Hancock et al., 2019). In our study regions, lower precision for 
beams 0 to 3 was found only for degraded samples; for non-degraded 
samples, beams 0 to 3 show similar correlation to reference data as 
the “power” beams (beams 5 to 11), though with a smaller number of 
samples (Fig. 4e). Since the GEDI “sensitivity” parameter provides an 
estimation of maximum canopy cover through which GEDI can detect 
the ground with 90% probability, this parameter should support selec
tion of samples over dense forest, i.e., with higher sensitivity parameters 
denser canopy covers can be penetrated. However, in our study regions, 
a higher GEDI sensitivity parameter led to greater GEDI residual errors, 
which conflicts with the definition of this parameter (Fig. 4f). 

3.2. Impact of environmental conditions on GEDI terrain elevation 
estimates 

Accuracy of GEDI terrain elevation estimates varies between land 
cover and forest types (Fig. 5a and b) and is a function of environmental 
conditions such as terrain slope, vegetation structure and canopy cover 
(Fig. 5c–h). Mean error of GEDI terrain elevation estimates across our 
land cover classes is below 1 m (Table 1). Thus, we can conclude that the 
GEDI default algorithm for estimation of terrain elevation works in most 
cases. The most precise GEDI terrain estimates (in terms of LE90) are 
found for land cover classes bare soil and savanna (Table 1, Fig. 5a). 

Table 1 
Goodness-of-fit statistics between spaceborne-based terrain elevation estimates and reference data sorted by land cover; “n” provides corresponding number of samples 
for each category.  

Landcover Spaceborne LiDAR metric ME (m) RMSE (m) MAD (m) LE90 (m) n 

Bare soil GEDI elev_lowestmode v2 − 0.18 3.45 0.48 2.98 2,509 
ICESat-2 h_te_best v5 100 m − 1.27 3.8 0.86 6.08 479 
ICESat-2 h_te_best v5 20 m − 1.07 4.61 0.6 4.94 1,709 

Herbaceous GEDI elev_lowestmode v2 − 0.38 3.63 1.05 5.39 100,876 
ICESat-2 h_te_best v5 100 m − 0.97 3.71 1.16 5.65 19,519 
ICESat-2 h_te_best v5 20 m − 0.76 2.91 1.01 4.37 80,061 

Savanna GEDI elev_lowestmode v2 0.79 1.52 0.7 2.47 967,661 
ICESat-2 h_te_best v5 100 m 0.64 1.48 0.74 2.41 260,507 
ICESat-2 h_te_best v5 20 m 0.68 1.47 0.75 2.4 1,070,978 

Forest GEDI elev_lowestmode v2 0.05 6.6 2.7 10.87 220,945 
ICESat-2 h_te_best v5 100 m − 0.7 5.34 1.98 8.76 17,220 
ICESat-2 h_te_best v5 20 m − 0.2 4.71 1.7 7.49 76,672  

Table 2 
Goodness-of-fit statistics between spaceborne-based terrain elevation estimates and reference data sorted by forest types; “n” provides corresponding number of 
samples for each category.  

Forest type Spaceborne LiDAR metric ME (m) RMSE (m) MAD (m) LE90 (m) n 

Temperate 
Broad-leaved Forest 

GEDI elev_lowestmode v2 − 0.55 6.31 2.71 10.47 98,918 
ICESat-2 h_te_best v5 100 m − 0.96 5.14 2.04 8.44 10,576 
ICESat-2 h_te_best v5 20 m − 0.38 4.53 1.8 7.27 46,280 

Temperate 
Mixed Forest 

GEDI elev_lowestmode v2 0.2 6.79 3.13 11.36 48,933 
ICESat-2 h_te_best v5 100 m − 0.45 5.6 1.9 9.5 2,864 
ICESat-2 h_te_best v5 20 m 0.22 5 1.61 8.16 13,773 

Temperate 
Needle-leaved Forest 

GEDI elev_lowestmode v2 0.73 6.84 2.42 11.08 71,839 
ICESat-2 h_te_best v5 100 m − 0.17 5.75 1.87 9.55 3,682 
ICESat-2 h_te_best v5 20 m − 0.05 4.98 1.48 7.73 16,294 

Tropical Broad-leaved 
Floodplain 
Forest 

GEDI elev_lowestmode v2 2.53 4.87 1.2 6.82 230 
ICESat-2 h_te_best v5 100 m 0.18 1.58 0.7 2.67 36 
ICESat-2 h_te_best v5 20 m 0.68 1.51 0.97 2.63 150 

Tropical Broad-leaved 
Upland Forest 

GEDI elev_lowestmode v2 5.56 8.01 3.11 14.8 678 
ICESat-2 h_te_best v5 100 m − 1.74 2.48 1.75 3.97 9 
ICESat-2 h_te_best v5 20 m 1.85 6.01 1.14 11.52 25 

Tropical Broad-leaved 
Secondary 
Forest 

GEDI elev_lowestmode v2 1.75 3.9 1.76 6.35 347 
ICESat-2 h_te_best v5 100 m 0.19 1.72 0.77 2.37 53 
ICESat-2 h_te_best v5 20 m 0.31 1.58 0.67 1.95 150  
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Most parts of the savanna landscape are characterized by scattered trees, 
so that in most cases GEDI has a strong ground return. Furthermore, 
because Kruger National Park is rather a flat area with a mean slope of 
3.4◦ (Fig. 2a), the impact of terrain slope is low for this site. Finally, due 
to a large number of samples, the statistics for this site are less affected 
by outliers. Terrain elevation estimates for herbaceous vegetation have a 
similar strong correlation with reference data as for bare soil and 
savanna. However, the precision metric (LE90) here is around twice that 
over bare soil and savanna (Table 1), meaning that the precision itself is 
lower. The lowest precision across land cover classes was found for 
forested areas (Table 1, Fig. 5a). This land cover class features the 
highest mean slope (Fig. 2a) and possesses a more complex vertical 
structure compared to other land cover types. 

Across the forest types, GEDI terrain estimates over temperate broad- 
leaved, mixed and needle-leaved forests possess similar statistics with 
reference data (Table 1, Fig. 5b) with slightly lower RMSE and LE90 in 
temperate broad-leaved forests (Table 1). One reason for this can be 
caused by lower canopy cover and slightly flatter terrain compared to 
other temperate forest types (Fig. 2b and d). Moreover, partly leaf-off 
conditions (winter 2019–2020 and winter 2020–2021) in temperate 
broad-leaved forests might improve detection of ground return. 

In contrast to temperate forests and savanna, the agreement in 
terrain estimates from GEDI and ALS in the tropical broad-leaved forest 
was found to be much poorer, with an overestimation of terrain eleva
tion for GEDI’s default algorithm (Table 1, Fig. 5b). Dense canopies with 
multiple vegetation layers cause a weak return from the ground (e.g., 
Fig. 3c), which complicates an accurate classification of the terrain. In 
this environment a lower signal end threshold (e.g., GEDI algorithm 5) 

can improve correlation with reference data (Fig. 9b and e). 
Considering all land cover and forest types together, increasing 

slopes lead to an increasing negative deviation between GEDI and 
reference terrain estimates (Fig. 5c). Furthermore, this increased devi
ation is also observed over non-forested areas (i.e., areas with a canopy 
height of lower or equal than 5 m) (Fig. 5d). The reason for this, is partly 
owing to horizontal geolocation error of the current GEDI version 2 data. 
The mean geolocation accuracy of this data is 10 m (1 σ offset) (Beck 
et al., 2021). A horizontal offset of the footprint center of 10 m would 
translate to a 10 m*tan(slope) vertical offset. For instance, for a 30◦

slope a mean vertical error of about 6 m would be expected. Growing 
residual errors of GEDI terrain estimates are also noted for canopy 
heights greater than 10 m for all terrain types (Fig. 5e). However, no 
correlation between the residual error and canopy height over flat ter
rains (slope <5◦) was found (Fig. 5f). That is, canopy height itself did not 
impact the accuracy of ground detection. Similarly, denser canopies lead 
to a higher deviation of GEDI terrain estimates for all terrain types 
(Fig. 5g). Over flat terrains (slope <5◦), only very dense canopies 
(>90%) cause high residual errors of GEDI terrain estimates (Fig. 5h). 

3.3. Data screening using ICESat-2 auxiliary metrics 

ICESat-2 samples contain auxiliary information that can help to 
screen outliers. We did not note differences between ICESat-2 beam 
modes (strong vs. weak) for terrain estimation (Fig. 6a). However, as 
there are more than twice as many samples collected by strong beam 
than those collected by weak beam, samples collected by weak beam 
could have been filtered out in the first pre-processing steps (Section 

Fig. 9. GEDI terrain elevation estimates based on default algorithm (upper panel) and alternative algorithm 5 (lower panel) for three tropical broad-leaved forest 
types: floodplain (left), upland (center), and secondary (right) forests. 
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2.4.2). Although elevation accuracy for ICESat-2 is expected to be lower 
during the day than at night owing to solar noise, we found slightly 
higher errors for night samples (Fig. 6b). A possible explanation is the 
filtering of lower-confidence day-time samples from the ATL03 product 
(which is a basis for the ATL08 product). As for GEDI’s terrain residual 
error, an absolute deviation between ICESat-2 terrain and reference 
height estimates can be used to remove the outliers. Furthermore, 
ICESat-2 parameters “number of classified terrain photons” and “esti
mated terrain uncertainty” can further aid in refining ICESat-2 terrain 
estimates (Fig. 6c–f). Obviously, the more classified terrain photons 
there are, the more robust terrain estimation should be. Terrain uncer
tainty parameters comprise systematic uncertainties (e.g., pointing, 
geolocation) and errors from photon classification (e.g., noise, terrain, 
canopy) normalized by the number of terrain photons (Neuenschwander 
and Pitts 2021). Depending on how many ICESat-2 samples remain and 
what accuracy is needed, one can set a specific threshold using this 
auxiliary information. 

3.4. Impact of environmental conditions on ICESat-2 terrain elevation 
estimates 

In contrast to GEDI estimates, the highest mean error (ME) of ICESat- 
2 terrain estimates were found for bare soil and herbaceous vegetation 
with negative offsets of − 1.27 m and − 0.97 m, respectively (Table 1). 

Similar to the GEDI assessment, ICESat-2 bare-ground elevation es
timates showed the highest precision (in term of LE90) in the savanna 
site (Table 1, Fig. 7a). A likely explanation for the better ICESat-2 per
formance over savanna vs. bare ground is the approximately 500-fold 
greater sample sizes for savanna; because of the small numbers of 
samples for bare ground, a relatively small number of outliers (partly 
located on slopes) had a significant impact on accuracy and precision. 
The statistical metrics between ICESat-2 and ALS data across temperate 
forest types were similar (Table 1, Fig. 7b). The correlation between 
ICESat-2 and reference data was the lowest for the tropical broad-leaved 
upland forest compared to other forest types (Fig. 7b), but this is based 
on a very small number of samples (e.g., Fig. S4e). 

Similar to the GEDI terrain height residual errors, we observed an 
increasing negative error of ICESat-2 terrain elevation estimates with 
increasing terrain slope for all samples (Fig. 7c) as well as for the sam
ples over non-forested areas (Fig. 7d). Tall trees on flat terrain did not 
impact the accuracy of the ICESat-2 terrain elevation (Fig. 7f), similar to 
the negligible effect on GEDI terrain estimates. Over our study sites only 
dense canopies (>95%) impact ICESat-2 terrain elevation estimates 
(Fig. 7h). 

In general, accuracy assessment of the ATL08_20 product showed 
similar trends as for the ATL08_100 product, though with a higher 
number of samples (Tables 1 and 2, Figs. 7 and 8). Accuracy of the 
ATL08_20 product for land cover classes and forest types followed a 
similar pattern the accuracy of the ALT08_100 product, i.e., it depends 
on vertical complexity of illuminated areas (e.g., multiple vegetation 
layers). 

We observed an increasing error in the ATL08_20 product with an 
increasing slope for both forested and non-forested areas (Fig. 8c and d). 
Over flat terrain (with slope lower than 5◦) tree height did not impact 
the accuracy of the ALT08_20 data (Fig. 8f). Only dense canopies (larger 
than 95%) influence the accuracy of the ALT08_20 product, when 
considering samples on flat terrain (Fig. 8h). 

4. Discussion 

4.1. Accuracy of GEDI terrain height estimates 

Environmental conditions (land cover, terrain slope, canopy cover) 
impact the accuracy and precision of GEDI terrain elevation estimates. 
However, the vertical errors caused by terrain slope observed here are of 
the same magnitude as would be expected due to horizontal geolocation 

error, i.e., vertical error = horizontal error*tan(slope). Due to the 
absence of complex vertical structure, the most accurate and precise 
GEDI terrain height estimates were found for non-forested areas 
(Table 1, Fig. 5a). While the mean error of GEDI terrain height for 
different temperate forest types is below 1 m, LE90 (as an indicator for 
precision) is much higher than that of non-forested land cover classes 
(Table 1). As expected, tropical forests represent the most challenging 
environment to estimate terrain elevation. In this environment GEDI 
mean error has a positive offset (i.e., overestimation of GEDI terrain 
elevation) with the highest mean error for tropical upland forests (>5 
m). Canopies with dense cover (multiple vegetation layers or dense 
understory) cause a weak return from the ground. In this case, alterna
tive algorithms with a lower signal end threshold (e.g., algorithm 5) may 
provide more accurate estimates than the default algorithm (Fig. 9b and 
e). However, in our tropical floodplain and tropical secondary forests, 
GEDI’s default algorithm outperforms alternative algorithms in terms of 
statistical metrics (Fig. 9a and d; Fig. 9c and f). Furthermore, over 
floodplain forests we would recommend using only those GEDI samples 
that have been collected during the low flood season, since seasonal 
flood depths can be up to several meters. For LiDAR bathymetry, a 
wavelength of 1064 nm is typically used to derive water surface eleva
tion, since at that wavelength the signal does not penetrate into the 
water column. A wavelength of 532 nm is used for measuring water 
depth from an aerial platform (Mandlburger et al., 2013), but use of this 
wavelength is not feasible from space (Abdallah et al., 2012). First re
sults on the impact of flooding on terrain elevation estimation on the 
Juruá floodplain indicate an overestimation of elevation by around 
5–10 m, when comparing GEDI elevation estimates acquired during high 
water to those acquired during low water stage. This seasonal variability 
offsets the higher accuracy expected for floodplain environments based 
on the flatness of the terrain. The choice of alternative algorithm settings 
is dependent on the vertical complexity of the study site. Nevertheless, 
the GEDI default algorithm works in most conditions (Table 1, Fig. 5a 
and b). 

Our results showed that terrain slope impacts the accuracy of GEDI 
terrain elevation estimates for forested and non-forested areas (Fig. 5c 
and d). These errors can be partly explained by the geolocation uncer
tainty of GEDI at footprint level. Therefore, gridded GEDI products at 1 
km are probably less affected by terrain slope. GEDI terrain deviations 
increase negatively, i.e., GEDI underestimates terrain elevation with 
larger slope probably due to multi-modal ground returns (Hancock et al., 
2012). An increasing residual error of GEDI terrain estimates on steep 
slopes is partly caused by geolocation error of GEDI samples of around 
10 m for version 2 (Beck et al., 2021). Similar trends in increased GEDI 
residual errors with an increasing slope were observed in temperate 
forests of central Germany (Adam et al., 2020), in Mediterranean 
temperate forests of Southwest Spain (Quirós et al., 2021), in an alpine 
forest region of northern Italy (Kutchartt et al., 2022), in different eco
zones across the United States (Liu et al., 2021) and across Eucalyptus 
plantations in Brazil (Fayad et al., 2021). Kutchartt et al. (2022) re
ported that terrain slope is the most important factor influencing GEDI 
terrain height accuracy among other environmental (forest type, canopy 
cover) and sensor (beam sensitivity) parameters. 

In contrast to Liu et al. (2021), we did not observe an impact of tall 
trees on GEDI terrain elevation estimates, when considering samples 
over flat terrain. Considering all terrain slopes, GEDI residual errors are 
higher for larger trees, but this is most likely driven by the slope, as the 
residual error did not increase with increasing vegetation height on flat 
terrains (Fig. 5e and f). In contrast to canopy height, dense canopies 
affected GEDI terrain accuracies with the highest errors for canopies 
denser than 95% over flat areas. Dense canopies (both horizontally and 
vertically) hinder photons from reaching the ground, so that the ground 
signal can be weak and thus misclassified. However, canopy cover might 
have higher impact on residual errors depending on the definition of 
canopy cover, e.g., if canopy cover is defined as percentage of returns 
above 2 m rather than 5 m. 
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4.2. Accuracy of ICESat-2 terrain height estimates 

We observed similar trends for ICESat-2 ATL08_100 and ATL08_20 
terrain height estimates as for GEDI-based estimates. For instance, in 
forested areas ICESat-2 terrain estimates are less precise than in non- 
forested sites, with tropical upland forests being the most challenging 
environment among the forest types analyzed here. Furthermore, 
increasing slope leads to a negative offset of ICESat-2 terrain heights. An 
increase of residual errors of ICESat-2 terrain estimates was observed for 
both 100 m and 20 m transects. That is, the spatial size of a transect 
might affect the accuracy of the elevation estimate, but is probably not 
the main driver for this. 

Canopy height itself (on flat terrain) did not impact the accuracy and 
precision of ICESat-2. Similarly as for GEDI-based elevation estimates, 
the precision of ICESat-2 terrain elevation over areas with very dense 
canopies (>95%) was the lowest among the canopy cover classes. 

By comparing ATL08_100 and ATL08_20 products, most statistical 
metrics of the ATL08_20 product were more accurate across the land 
cover classes and forest types (Tables 1 and 2). A spatially smaller 
segment (e.g., 20 m) covers more homogeneous areas than a bigger 
segment (e.g., 100 m) leading to a reduced spatial heterogeneity and 
more accurate estimates. Furthermore, a higher number of samples of 
the ATL08_20 product reduces the impact of outliers on global statistics. 
Conversely, over a 100 m segment there are potentially five times more 
terrain photons than over a 20 m segment. However, as we can see, the 
ATL08_20 product provides slightly more accurate elevation estimates 
than the 100 m version, indicating that there are sufficient terrain 
photons over a 20 m transect. Unfortunately, in the current ATL08 
version (v5) the number of classified terrain photons for a 20 m segment 
is not provided. 

A first assessment of ATL08 terrain estimates version 1 in a boreal 
forest of Finland showed an RMSE of 0.85 m (Neuenschwander and 
Magruder 2019) compared to the national ALS data. Similar accuracies 
with RMSE of 0.73 m and ME of − 0.07 m for ATL08 terrain estimates 
version 3 were reported in southern Finland in Neuenschwander et al. 
(2020). Across the six major US ecozones Malambo and Popescu (2021) 
estimated an ME of ATL08 terrain height product version 2 to be 0.18 m. 
In five of six forest types (except the tropical upland forest) we obtained 
ME below 1 m. Malambo and Popescu (2021) reported an optimal 
canopy cover for terrain height retrieval below the forest being between 
40 and 70% independent of beam strength and acquisition time. In this 
study, however, we did not observe a difference in ICESat-2 terrain re
sidual error for canopy densities between 0 and 80% (Figs. 7h and 8h). 
The reason for this is partly due to different canopy cover/density def
initions, as Malambo and Popescu (2021) defined canopy cover as a 
percentage of returns above 2 m rather than 5 m. 

4.3. Data screening and inter-comparison of sensor performance 

The accuracy of ICESat-2 and GEDI terrain height estimates can be 
further improved by applying additional information available in the 
datasets (e.g., number of modes in GEDI, number of terrain photons and 
estimated terrain uncertainty in ICESat-2), setting maximum deviation 
between estimated terrain elevation and global DEMs (e.g., 30 or 50 m), 
although the number of samples is thereby reduced. Furthermore, to 
increase precision of GEDI terrain estimates further filters can be 
applied, e.g., removing samples where the elevation difference among 
the six algorithm setting groups is higher than a certain threshold. For 
instance, Potapov et al. (2021) applied a threshold of 2 m among the six 
algorithms. However, this can bias the samples to the areas of lower 
canopy cover, and thus, bias average properties of an area. Data 
screening based on beam strength (strong-power/weak-coverage) and 
time of acquisitions (day/night) are important for canopy height 
retrieval (Liu et al., 2021; Malambo and Popescu 2021), and thus, for 
aboveground biomass estimation (e.g., Duncanson et al., 2020), but 
impacts to a lower extent the estimation of terrain elevation (Liu et al., 

2021; Tian and Shan 2021). Local environmental conditions should be 
considered when using spaceborne LiDAR-based terrain estimates, e.g., 
selecting data acquired during low-water season over floodplain forest 
areas. Furthermore, the impact of leaf-on/-off conditions can be inves
tigated for both terrain and canopy height estimates. Finally, current 
versions of both ICESat-2 and GEDI terrain elevation estimates are 
impacted by terrain slope and to a lower extent by canopy cover. Thus, 
ICESat-2 and GEDI samples collected over flat terrain are more reliable. 

The objective of the study is not to compare performance between 
the spaceborne sensors, but rather to provide statistics of current 
available versions under different conditions (land cover, canopy cover, 
terrain slope). The goodness-of-fit statistics are not directly comparable 
between the sensors, since they possess a different footprint size. The 
difference in scale might be a strong driver for statistics. For instance, 
variability of topography and of canopy height and density are likely to 
be greater over a 100 × 14 m segment than over a 25 m circle. 
Furthermore, an estimate for an area of 1400 m2 will naturally differ 
from an estimate for an area of 280 m2 (20 × 14 m) or ~491 m2 (GEDI 
footprint). One can assess the effects of scale by e.g., averaging three 
GEDI footprints (sampled areã1473 m2), which are comparable to the 
area of 1400 m2 sampled by ICESat-2. 

One important point in assessing spaceborne-based terrain elevation 
estimates is the quality of the reference data. In the temperate forests 
and in savannas the accuracy of reference DTMs is presumably high, 
owing to high point cloud density, rather homogeneous even-aged forest 
stands with few tree species, or single scattered trees in savanna. In the 
tropical forest, where the ALS point density was lower and the forests are 
more complex with denser canopies and multiple vegetation layers, the 
accuracy of the ground return might be lower than in temperate forests. 
Both spaceborne LiDAR products are still in their early versions and it is 
expected that they will be continuously improved in terms of terrain 
elevation estimates. 

5. Conclusions 

ICESat-2 and GEDI data provide freely available near-global three- 
dimensional data of the Earth’s surface. Here, we examined the accuracy 
of the terrain elevation estimates of the earlier versions of both LiDAR 
datasets across four land cover and six forest types using high-resolution 
airborne data as a reference. Specifically, we analyzed the accuracy of 
GEDI L2A version 2 and the ICESat-2 ATL08 version 5 product for 100 m 
and 20 m segments in different ecosystems and assessed the impacts of 
environmental conditions such as terrain slope, canopy height and 
canopy cover, on their accuracies. Our results indicated that both LiDAR 
missions provided accurate terrain elevation estimates across different 
land cover classes and forest types with ME lower than 1 m, except for 
tropical forests. Here, however, using GEDI alternative algorithms could 
improve accuracy of terrain elevation estimates. Specific environmental 
(e.g., terrain slope, phenological state, canopy cover) and sensor (e.g., 
GEDI terrain estimation algorithm, GEDI beam sensitivity, ICESat-2 
number of terrain photons) parameters can be analyzed to identify 
more confident ICESat-2 and GEDI-based terrain estimates. 

Our results showed that terrain slope negatively impacts the accu
racy of both ICESat-2 and GEDI terrain elevation estimates for forested 
and non-forested areas. In case of GEDI the impact of slope is, however, 
partly attributed to the current horizontal geolocation accuracy (10 m). 
The vertical errors caused by terrain slope observed here are of the same 
magnitude as would be expected due to horizontal geolocation error (i.e. 
vertical error = horizontal error*tan(slope)). Further, dense canopies 
affected the accuracy of spaceborne LiDAR terrain estimates, while 
canopy height itself did not. In future versions of the dataset the hori
zontal geolocation accuracy will be improved, so that accuracy of terrain 
estimates will presumably be enhanced. Overall, both datasets provide 
new direct measurements of vertical vegetation structure in under
sampled regions such as tropical forests and Siberian boreal forests. 
These datasets can be further fused with optical (Healey et al., 2020; 
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Narine et al., 2019; Potapov et al., 2021) and radar (Qi et al., 2019) 
imagery to provide wall-to-wall estimates of forest height and above
ground biomass and to produce regional bare-earth DTMs. 
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