
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Representation Learning for Robot
Keypoint Detection using Prior Kinematic

Knowledge

Leonard Klüpfel

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, Intelligence

Representation Learning for Robot
Keypoint Detection using Prior Kinematic

Knowledge

Lernen einer Repräsentationsdarstellung
zur Detektion von Merkmalspunkten eines
Roboters durch kinematisches Vorwissen

Author: Leonard Klüpfel
Supervisor: PD Dr. habil. Rudolph Triebel
Advisors: Lukas Meyer, Maximilian Durner
Submission Date: 15.09.2022

I confirm that this master’s thesis in robotics, cognition, intelligence is my own work
and I have documented all sources and material used.

Munich, 15.09.2022 Leonard Klüpfel

Acknowledgments

This work has been carried out in the year 2022 at the German Aerospace Center
(DLR), at the Institute of Robotics and Mechatronics. My sincerest gratitude is to
my advisors, Lukas Meyer and Maximilian Durner, who both have continuously and
patiently supported this work. Without their guidance and persistent help, this would
not have been possible. Furthermore, I am deeply grateful to Prof. Dr.-Ing. Alin
Albu-Schäffer, Head of the Institute of Robotics and Mechatronics, and PD Dr. habil.
Rudolph Triebel, Head of the Perception and Cognition department within in the
Institute of Robotics and Mechatronics, for giving me the opportunity to carry out this
work with the Perception and Cognition department.

Abstract

We introduce the Prior Knowledge Robot Keypoint Detection (PK-ROKED) approach
for 2D keypoint detection on a robot arm. Our proposed method comprises a Deep
Learning network, which learns a representation of keypoints based on prior kinematic
knowledge and monocular RGB images. This allows us to provide robust visual
feedback for state estimations on a robot arm pose, as this pose can be inaccurate
due to imprecise forward kinematics. We incorporate the prior kinematic knowledge
about potential keypoint locations into the detection network by concatenating it to
the input image. These potential keypoints are derived by forward kinematics, which
can be faulty with a bounded error. Hence, this additional information can only
indicate and steer the detection algorithm to assumed keypoint locations in image
space. Additionally, our approach approximates the uncertainty of a keypoint detection
through Monte Carlo Dropout and image moments. To this end, PK-ROKED is trained
on the respective synthetic data of a robot arm, which we conduct for two different
robot arm models. The resulting performance is evaluated on real-world datasets. We
observe our PK-ROKED approach to outperform a baseline network, which we defined
for benchmarking. Furthermore, when incorporating our prior knowledge approach
into the baseline network we can observe a performance increase compared to without
this additional information. To test the robustness of our algorithm, we qualitatively
evaluate on challenging data from a space-analogue mission, which demonstrates our
approach being potentially deployable in such an environment.

iv

Kurzfassung

Wir stellen unseren Prior Knowledge Robot Keypoint Detection (PK-ROKED) Ansatz
vor zur Detektierung von 2D Merkmalspunkten an einem Roboterarm. Unsere Meth-
ode basiert auf einem Deep Learning Netzwerk, welches eine Repräsentation von
Merkmalspunkten durch kinematisches Vorwissen und durch monokulare RGB-Bilder
lernt. Dadurch ist es uns möglich robustes visuelles Feedback bereitzustellen für die
Zustandsschätzungen der Pose eines Roboterarms. Die Pose des Roboterarms kann
aufgrund einer fehlerhaften Vorwärtskinematik ungenau sein. Wir integrieren dabei
das kinematische Vorwissen über potenzielle Positionen der Merkmalspunkte in unser
Netzwerk, indem wir es mit dem Eingangsbild verknüpfen. Diese potenziellen Merk-
malspunkte erhalten wir wiederum von der Vorwärtskinematik, welche zwar fehlerhaft
sein kann, jedoch in einem begrenzten Ausmaß. Daher kann diese zusätzliche Informa-
tion unseren Algorithmus auf potenzielle Bereiche für mögliche Merkmalspunkte im
Bild hinweisen und somit den Algorithmus lenken. Darüber hinaus approximiert unser
Algorithmus die Unsicherheit einer Merkmalspunkt-Detektion durch Monte Carlo
Dropout und durch die Berechnung von Bildmomenten. Zu diesem Zweck wird PK-
ROKED jeweils auf synthetischen Daten eines Roboterarmmodells trainiert, welches wir
für zwei unterschiedliche Roboterarme durchführen. Die daraus resultierende Leistung
wird jeweils auf realen Datensätzen evaluiert. Es kann beobachtet werden, dass unser
PK-ROKED Ansatz die Leistung eines Vergleichsnetzwerkes übertrifft, welches wir
zur Vergleichbarkeit definiert haben. Des Weiteren steigert unser Ansatz die Leistung
des Vergleichsnetzwerkes, wenn das kinematische Vorwissen mit einbezogen wird,
verglichen mit der Leistung ohne dieses zusätzliche Wissen. Um die Robustheit unseres
Algorithmus darüber hinaus zu testen, führen wir eine qualitative Evaluierung mit
anspruchsvollen Daten aus einer analogen Weltraummission durch. Dabei gelangen
wir zur Erkenntnis, dass unser Ansatz in einem solchen Umfeld potenziell eingesetzt
werden kann.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1
1.1. Motivation . 1
1.2. Research Scope and Goal . 3
1.3. Thesis Structure . 5

2. Related Work 6
2.1. Marker-based Approaches . 6
2.2. Depth-based Approaches . 7
2.3. Model- and Feature-based Approaches 8
2.4. Learning-based Approaches . 9

3. Method 14
3.1. Assumptions . 14
3.2. Base Keypoint Detection Algorithm . 15

3.2.1. Encoder . 16
3.2.2. Decoder . 17
3.2.3. Loss Function . 17
3.2.4. Keypoint Extraction . 18

3.3. Prior Kinematic Knowledge Approach . 18
3.4. Uncertainty Estimation Approach . 20

3.4.1. Approximating Model Uncertainty 20
3.5. Data Generation . 25

3.5.1. Synthetic Dataset . 25
3.5.2. Real-world Datasets . 26

4. Implementation 29
4.1. Keypoint Detection Network . 29

vi

Contents

4.2. Synthetic Data Generation . 31

5. Experiments and Results 32
5.1. Metrics . 32

5.1.1. Percentage of Correct Keypoints 32
5.1.2. Precision . 33
5.1.3. Area under Curve . 35

5.2. Evaluation . 35
5.2.1. Kinova Jaco2 Dataset . 36
5.2.2. Panda Datasets . 43

5.3. Ablation Studies . 47
5.3.1. Architecture . 48
5.3.2. Main Hyperparamters . 54
5.3.3. Evaluation on Additional Datasets 59

6. Conclusion 64

7. Outlook 66

A. Appendix 67

List of Figures 71

List of Tables 73

List of Abbreviations 74

Bibliography 76

vii

1. Introduction

1.1. Motivation

Interacting with the environment is among the key tasks for robotic systems. Appli-
cations range from executing basic manipulation objectives to complex assignments,
such as grasping objects or human-robot interactions. All these tasks have in common
that they require precise information and knowledge about the manipulator’s pose.
For perfectly rigid robot arms, the end-effector’s pose, i.e., its position and orientation
in the task space, can be derived from forward kinematics. However, this becomes a
major challenge for flexible and lightweight robot arms, which suffer from imprecise
kinematics due to design constraints, such as material and geometry restrictions. As a
result, the manipulator pose is inaccurate and erroneous. One approach to correct this
error is to incorporate visual feedback about the end-effector through Bayesian Filters
(Meyer et al., 2022). The resulting state estimations on the robot arm’s pose are obtained
by fusing pose predictions with corresponding visual measurements (Meyer et al., 2022).

Common standard methods to obtain this visual feedback are marker-based ap-
proaches. These methods detect fiducial markers, e.g., AprilTags (Olson, 2011), attached
to the robot arm. Observing tags through the robot’s camera, allows to transform the
marker’s pose between 2D image space and 3D task space using prior robot-to-marker
modeling (Nissler et al., 2018; Park & Martin, 1994). Thus, these detected keypoints
provide the required visual feedback to correct faulty poses based on imprecise forward
kinematics.

Marker-based methods are widely deployed in Computer Vision (CV) for robotics
due to their ability to generalize to various robot arms and the access to ready-to-use
implementations (Lee et al., 2020). However, there are two major disadvantages asso-
ciated with fiducial markers. First, they require a robot-to-marker modeling. Second,
the detection depends on reliable visual conditions. This means that environment
settings such as light, reflection and marker occlusion influence the method’s perfor-
mance and consequently its robustness to dynamic conditions. Figure 1.1a displays
the Lightweight Rover Unit (LRU), developed by the German Aerospace Center (DLR),

1

1. Introduction

(a) (b)

Figure 1.1.: LRU robot developed by the DLR for exploration missions in hardly
accessible environments (a). Point of view from the LRU onboard camera to the end-
effector, visualizing the offset between assumed (colored coordinates frames) and actual
marker pose (tags) (b). Credit: DLR.

equipped with a Kinova Jaco21 robot arm and multiple cameras mounted on the rover
body (Schuster et al., 2019). Currently, the LRU’s robot arm features AprilTags to
correct state estimates. Figure 1.1b shows an image captured by an onboard camera
attached to the LRU and pointing towards the end-effector. This figure highlights the
erroneous manipulator pose derived from imprecise forward kinematics. The colored
coordinate frames illustrate the predicted position and orientation of the AprilTags.
Visible to the human eye is the offset between the actual marker pose, indicated by a tag,
and the prediction. This error, between a robot arm pose derived by forward kinemat-
ics and its actual position, is also shown in Figure 1.2 for an additional robot arm model.

In robotic vision, Deep Learning (DL) approaches can replace fiducial markers to
provide visual feedback for robot arm pose estimation. Therefore, DL algorithms,
such as a Convolutional Neural Network (CNN), learn keypoints on the robot arm
solely based on visual inputs without any auxiliary tags being placed. These detected
keypoints in 2D image space can be fused with their corresponding 3D point pairs in
robot task space by applying algorithms, such as Perspective-n-Point (PnP) (Lee et al.,
2020). Consequently, this is one approach to mitigate faulty pose estimates.

One unique distinction between robotic vision to other CV domains is the avail-
ability and accessibility to prior knowledge based on forward kinematics and joint

1https://assistive.kinovarobotics.com, Accessed on: 27.08.2022

2

1. Introduction

Figure 1.2.: The blue contour shows the robot arm pose derived from forward kinematics.
The resulting error to the actual position is visible to the human eye. This illustrates
one underlying motivation to correct the robot arm pose based on forward kinematics.
Image taken from Widmaier et al. (2016).

configurations. Theoretically, this information could be applied to improve keypoint
detections. Best to our knowledge however, hardly any DL method explicitly exploits
this additional knowledge, except Labbe et al. (2021) and Byravan et al. (2018). Fur-
thermore, CNNs in CV lack uncertainty measurements about the level of confidence
of their output (Gast & Roth, 2018; Kendall & Gal, 2017). This limits their benefit for
downstream tasks such as Bayesian Filters, which require uncertainty measures to
weigh predictions with complementary measurements to update state estimates.

Motivated by the outlined limitations of current methods to provide reliable visual
feedback for state estimate corrections, this work attempts to contribute a DL approach
for keypoint detection in robotic vision. We hypothesize that incorporating prior kine-
matic knowledge improves markerless detection algorithms. Additionally, approaches
to approximate uncertainty are elaborated to compute outputs with a measure of the
corresponding confidence.

1.2. Research Scope and Goal

The scope of this work is developing a robust, markerless keypoint detection algorithm.
Figure 1.3 illustrates how the developed approach (highlighted in blue) is embedded in
a Bayesian filtering pipeline and contributes to compute the pose estimations. Based
on monocular RGB images, a DL model detects keypoints on a robot arm in 2D image
space. The algorithm exploits prior kinematic knowledge obtained by forward kinemat-
ics, which is incorporated into the detection network through belief map predictions.
Eventually, the detections are fused with corresponding 3D point pairs from forward

3

1. Introduction

Sensor infor-
mation and URDF

description

RGB image

Forward
kinematics

Pose estimate
correction

Keypoint
detection

 2D points in
image space

3D points in task
space

Data fusionBelief map
predictions

Figure 1.3.: Based on RGB input images and prior kinematic knowledge, 2D points are
detected and fused with 3D correspondences derived from forward kinematics. This
allows to obtain state estimations on the end-effector pose of a robot arm. The scope of
this work is developing a 2D keypoint detection algorithm, highlighted in blue, for the
Bayesian filtering pipeline.

kinematics to compute the state estimation on the end-effector pose. To this end, the
detection algorithm is trained on synthetic RGB images of a robot arm. The resulting
performance is evaluated on real-world data.

We define the following three research questions. The goal of this work is to provide
reasonable answers and explanations for each of them.

1. Can we improve keypoint detections through prior knowledge from forward
kinematics compared to existing approaches?

2. Can we incorporate uncertainty estimations in detection algorithms to compute
outputs with a measure of the corresponding confidence and thus enhance their
benefit for downstream tasks?

3. Can we assemble the contributions from question 1 and 2 to build one combined
keypoint detection algorithm and apply it to a real-world environment?

The success of this thesis is not limited to solely measure quantitative improvements
achieved on benchmarks. In addition to these comparable results, qualitative analysis
is taken into account to provide a holistic evaluation. The underlying rationale is that
accurate real-world evaluation datasets are difficult to obtain for the desired robot arm
models.

4

1. Introduction

1.3. Thesis Structure

In order to provide answers to the defined research questions, the following work is
structured in six main parts. First, Chapter 2 covers related work on robot arm pose
estimation. Chapter 3 builds on the previously defined foundations and outlines the
research approach pursued in this work. This means explaining the methods applied
in this work as well as the underlying rationale. Next, Chapter 4 provides details on
the exact implementation. This leads to Chapter 5, which discusses the results achieved
in comparison to other methods. Based on these findings, a conclusion is drawn in
Chapter 6 to analyze the limitations. Finally, an outlook is presented in Chapter 7 as
guidance for future research in this domain.

5

2. Related Work

This chapter provides an overview on the current state of research on pose estimation
for robot arms. The pose of a robot arm refers to its position and orientation in 3D task
space. Position estimation approaches derive only the former one, whereas 6D pose
estimations are characterized by computing both quantities. As outlined in Section 1.2,
this work focuses on one key contribution to estimate the 6D pose of a robot arm
through Bayesian Filter - detecting 2D points in image space. Nevertheless, this section
lists alternative approaches to pose estimation in order to provide a holistic overview on
possible methods. The broader domain of pose estimation for robot arms is clustered
according to the applied approach to detect visual features on a robot arm.

2.1. Marker-based Approaches

Marker-based approaches detect fiducial markers, such as ArUco (Garrido-Jurado et al.,
2014), ARTag (Fiala, 2005) or AprilTags (Olson, 2011), attached to the robot arm. The
goal is to derive the 6D camera-to-robot transformation, also called hand-eye-calibration,
by observing artificial markers through the robot’s camera. In addition to multiple
images, this method requires the forward kinematics and joint configurations as inputs.
To obtain the transform, Park and Martin (1994) introduce an algorithm that optimizes
a linear system based on known 3D-to-2D point pairs and the robot arm’s forward
kinematics with given joint angles. The 3D-to-2D point correspondences represent
detected markers at known 3D task space positions and their 2D projections in image
space. This allows Park and Martin (1994) to transform points between 2D image space
and 3D task space. In order to detect the fiducial tags, image segmentation algorithms
are applied, which process the input image until the frame, containing the tag, is
identified (Fiala, 2005; Garrido-Jurado et al., 2014; Olson, 2011). A common approach is
to compute and group the pixels’ gradient direction and magnitude (Fiala, 2005; Olson,
2011). This boils down to detecting quadratic areas in the image where white pixels
surround black inner regions (Olson, 2011).

Nissler et al. (2018) introduce another approach to derive the camera-to-robot trans-
formation based on artificial markers and on multiple RGB input images. The authors

6

2. Related Work

motivate their method by the fact that the classical hand-eye-calibration can be challeng-
ing when the forward kinematics is imprecise or an online re-calibration is required.
This approach derives the camera-to-robot transformation by building a map of rela-
tive transformations from an observed tag to a reference frame. This robot-to-marker
modeling optimizes the transformations with respect to a common frame, such as
the end-effector’s. Therefore, tags are attached around the end-effector and tracked
through multiple image frames and in various joint configurations. Based on this map,
observing a tag allows to estimate the end-effector’s pose in 2D image space. This
corresponds to a 3D-to-2D point pair and enables to derive the 6D camera-to-robot
transformation. This approach is currently deployed on the LRU’s robot arm.

The advantage of marker-based approaches is the usability on different robot arms.
The disadvantages are the required robot-to-marker modeling and the performance’s
dependence on reliable visual conditions. Our method differs to the former drawback
that it does not require a modeling step once the detection algorithm is trained on a
robot arm model. Additionally, our approach is markerless and we can detect keypoints
even with partial occlusions.

2.2. Depth-based Approaches

These approaches are characterized by depth data being an input. Klingensmith et al.
(2013) present a pose estimation algorithm for real-time robot arm tracking. To this
end, this method requires as inputs a geometric robot arm model and the forward
kinematics in addition to depth data. This approach is demonstrated on manipulation
tasks, such as opening a door. The authors frame deriving the robot arm pose as an
optimization problem, which is solved using stochastic gradient descent. Hence, the
algorithm minimizes the distance between the closest depth points on the robot arm
and their corresponding points captured by a depth sensor. To find the closest depth
points on the robot arm, the authors simulate and render a depth image as perceived
by the robot’s camera. This results in a robot arm pose estimation which best fits the
measured depth data.

Schmidt et al. (2015) introduce an arm-tracking algorithm which computes the 6D
robot arm pose, relative to the camera. In addition to depth data, this method relies on
a kinematic robot arm description as well as a geometric model as inputs. To derive the
transform, the authors iteratively optimize rigid body transformations. The respective
rigid bodies form the robot arm and are chained together through a kinematic tree. The
authors demonstrated the application by integrating the tracker in an object grasping

7

2. Related Work

task, executed by two humanoid robotic hands. The optimization approach to derive
the pose estimation, as introduced in Schmidt et al. (2014), is similar to an Extended
Kalman Filter. The key difference is the pose estimation update. This update step is
computed by directly minimizing the negative log-likelihood of the detected depth
data. In their follow-up work, the algorithm incorporates physical properties to prevent
the intersection of rigid bodies and facilitate grasping objects (Schmidt et al., 2015). In
their setting, tracking objects becomes real-time capable, i.e., at 30 frames per second,
through implicitly expressing rigid bodies as groups of signed distance functions and
by optimizing computations on a Graphics Processing Unit (GPU).

Garcia Cifuentes et al. (2017) apply a probabilistic framework to derive the 6D robot
arm pose in relation to the camera frame. This approach relies on depth data and
joint measurements, as well as a kinematic description and geometry of the robot arm.
The arm tracking algorithm is real-time capable as demonstrated on pick and place
challenges. This method combines a Kalman Filter for joint measurements with a
Coordinate Particle Filter for depth-based update steps. The two filters operate on a
varying frequency and reinitialize each other. The authors’ algorithm explicitly accounts
for robot arm occlusions and noisy sensor measurements, both for depth data and joint
values.

The disadvantage of depth-based approaches is the required depth-capable sensor.
This distinguishes our method which relies on monocular RGB images as an input.

2.3. Model- and Feature-based Approaches

Model- and feature-based approaches rely on geometric robot arm models for pose
estimation. For instance, Labbe et al. (2021) require a Computer Aided Design (CAD)
model of the robot arm and a corresponding RGB image to derive joint angles and the
6D camera-to-robot transformation. Additionally, the robot arm’s forward kinematics
is assumed to be given. In their work, the authors iteratively render and refine an
image based on the CAD model to compare it with the real input image. To this end, a
refiner network, based on a CNN, computes the joint angles and the camera-to-robot
transformation upon which the next rendering is generated. This refiner network,
trained on synthetic data, takes a cropped version of the original input image, a seg-
mentation mask of one robot arm part and the rendered robot arm image as an input.
In this manner, the rendered robot image is improved for l iterations to match the
real RGB image of the robot arm in a certain configuration. Thereby, the computed
camera-to-robot transformation and joint angles correspond to the real ones.

8

2. Related Work

The authors demonstrate that incorporating joint values as an additional input or
knowledge to the model improves the performance. They argue that joint values can be
derived from sensors, but also show that their method works without this additional
information. This approach achieves superior performance on real-world datasets when
benchmarked against learning-based approaches from Lee et al. (2020) and Zuo et al.
(2019). The key difference to our approach is the iterative rendering of the CAD model.

2.4. Learning-based Approaches

This section presents approaches which learn representations of the robot arm to es-
timate its 6D pose. The outlined methods differ in whether the 6D pose is directly
derived or rather intermediary results are obtained, which are required for pose esti-
mation.

Bohg et al. (2014) propose to approach robot arm position estimation as a classifica-
tion task. Thus, the authors train a Random Decision Forest classifier on depth images
as inputs. The algorithm segments image pixels to a robot arm part or rather to the
background. To obtain the actual joint positions, votes from pixels, which end up in the
leaf nodes of the classifier, are clustered by relative joint offsets. Figure 1.2, taken from
their follow-up work, visualizes the forward kinematics based on faulty joint encoder
measurements (blue contour) and the resulting error to the actual position, which the
authors attempt to mitigate. In this follow-up research, a Random Regression Forest
directly regresses joint positions based on depth images (Widmaier et al., 2016). Hence,
the prior segmentation becomes obsolete. Both approaches are trained only on synthetic
data. The transfer of the learned representation to real-world data is demonstrated.

Byravan et al. (2018) propose a 6D pose estimation algorithm, which relies on
depth images of the robot arm as an input. This approach consists of training an
encoder-decoder network on synthetic point clouds to predict the segmentation mask
of individual robot arm parts and their corresponding pose. Thus, the network implic-
itly learns a latent representation of the observed scene. The pose and segmentation
mask are both forwarded to compute a pose update given a certain action. The authors
observe performance improvements through incorporating joint angles into the network
as an additional input.

Zuo et al. (2019) introduce a semi-supervised DL model to learn joint angles of a
robot arm and the 6D camera pose. The approach relies on RGB images as an input

9

2. Related Work

in addition to the geometric description of the robot arm. The obtained joint angles
are further fed into a controller, allowing for visual servoing. To this end, an encoder-
decoder model is trained on synthetic data to compute 2D keypoints on the robot arm.
This model is iteratively fine-tuned on unlabeled data from a real robot arm to bridge
the real-world data gap. The joint angles and the 6D camera pose are derived in this
fine-tuning step by solving linear equations, which incorporate the known lengths
of the robot arm’s links. Invoking these geometric constraints is an implicit form of
domain adaption. The authors demonstrate the effectiveness of their domain adaption
approach by benchmarking their method against CycleGAN (Zhu et al., 2017), ADDA
(Tzeng et al., 2017) and CyCADA (Hoffman et al., 2018).

Another approach for visual servoing is introduced by Puang et al. (2020), which
directly computes the target pose of the robot arm’s end-effector. This form of position
estimation relies on a compact keypoint representation. Based on grayscaled stereo
images as an input, an encoder-decoder network learns to represent keypoints in latent
space by reconstructing both the depth map and segmentation mask. The authors
derive the 3D target pose of the end-effector by feeding the representation of encoded
keypoints from two stereo cameras into a feed-forward network. The two respective
modules are trained end-to-end on synthetic data. Additionally, the authors apply
domain randomization and data augmentation techniques as well as training with
adversarial examples (Xie et al., 2020). Puang et al. (2020) demonstrate that their
approach is able to operate on a real-world robot arm.

Wang et al. (2022) present a reinforcement learning approach for manipulation
tasks, which also relies on robust keypoint representations as an input. To this end,
a self-supervised autoencoder is trained to reconstruct both the segmentation mask
and the depth map based on grayscaled images as an input. The authors further
enforce keypoint detections through constraining the representation by incorporating
geometric knowledge about the robot arm. This means an additional loss penalizes
keypoint predictions outside the segmentation mask and keypoints predicted close to
each other. The algorithm is trained on synthetic data with domain randomization
techniques as well as adversarial examples (Xie et al., 2020). Thus, the approach is able
to bridge the sim-to-real gap as demonstrated through real-world grasping experiments.

Mišeikis et al. (2018a) introduce a multi-objective CNN method for position estima-
tion. In addition to 3D joint and base positions of the robot arm, in relation to the
camera, the approach learns to segment the robot arm and to identify the robot arm
type. This approach is jointly trained on real-world RGB images as an input. In their
follow-up research, the authors further propose transfer learning to apply a pre-trained

10

2. Related Work

estimation model to unseen robot arm models (Mišeikis et al., 2018b; Mišeikis et al.,
2019). Given limited data of a new robot arm, one and two staged learning procedures
are introduced, corresponding to the number of further trained layers of the baseline
algorithm.

To estimate the 6D robot arm pose, Lambrecht (2019) and Lambrecht and Kästner
(2019) propose to learn the camera-to-robot transformation. The authors train two
CNNs to detect the robot arm and 2D keypoints on this robot arm based on RGB
images. This allows to formulate 3D-to-2D point correspondences which are fed into a
PnP algorithm together with the camera intrinsics as an additional input. To obtain
2D keypoint detections, the first CNN identifies the robot arm in the input image and
forwards the cropped version of this image, with the robot arm at its center, to another
box detection algorithm. Based on the cropped monocular image, the second CNN
detects boxes around the joints of the robot arm, which are defined to be the keypoints.
The authors train on a dataset comprising real-world and synthetic RGB images. In their
follow-up research, this pipeline is further extended by infusing geometric information
from shape segmentation into keypoint predictions (Lambrecht et al., 2021). Initial
keypoint suggestions are adjusted according to six weighted scores rating whether
predictions and the segmented robot arm mask align. This optimization improves 2D
keypoints to be more robust against noise compared to the initial framework.

The approach of Lee et al. (2020) serves as a reference baseline for our work and
thus we explain the method in more detail. Their goal is to derive the 6D camera-to-
robot transformation. To this end, the authors train a CNN model on synthetic RGB
images of a rendered robot arm to learn 2D keypoint representations of this robot arm.
Based on these intermediary representations, 2D keypoint coordinates are extracted
and forwarded to a PnP algorithm with the forward kinematics, camera intrinsics and
joint configurations, similarly to Lambrecht (2019). Figure 2.1 illustrates their Deep
Robot-to-camera Extrinsics for Articulated Manipulators (DREAM) approach. To detect
the 2D keypoints, the feature extractor of a VGG19 network (Simonyan & Zisserman,
2015), pre-trained on ImageNet (Russakovsky et al., 2015), encodes single RGB images
of the robot arm. The decoder upsamples these encodings to produce one heatmap per
keypoint. Heatmaps indicate keypoint locations through their pixel values. Lee et al.
(2020) define keypoints as the robot arm’s joints. The authors report quantitative results
of their approach on synthetic and real-world data for one robot arm, in addition to
qualitative findings for two further robot arm models.

Valassakis et al. (2021) compare three different approaches to obtain the 6D camera-
to-end-effector transformation for an eye-in-hand-calibration setting based on RGB

11

2. Related Work

Figure 2.1.: DREAM framework as introduced by Lee et al. (2020). This model takes RGB
images of the robot arm as an input and outputs belief heatmaps about the keypoint
locations. The actual keypoint coordinates are extracted based on those heatmaps and
are forwarded to a PnP algorithm to derive the camera-to-robot transformation. Image
taken from Lee et al. (2020).

images. The authors find the best performing model to directly regress the transform.
This method is benchmarked against an encoder-decoder approach, which feeds 2D
keypoint predictions into a PnP algorithm, similarly to Lee et al. (2020) and Lambrecht
(2019). Additionally, the authors compare against an Iterative Closest Point algorithm,
which consists of a prior robot arm segmentation and a depth map estimation. All
methods are trained on synthetic data and bridge the sim-to-real gap through domain
randomization.

The work of Lu et al. (2022) also focuses on 2D keypoint detection for downstream
tasks, such as hand-eye-calibration. To this end, the proposed algorithm optimizes a
group of potential keypoints to find the optimal subset. The actual keypoint detection
consists of an encoder-decoder network, DeebLabCut (Mathis et al., 2018), which takes
RGB images of the robot arm as an input. The evaluation of a keypoint set is based on
the respective 2D and 3D localization accuracy. Lu et al. (2022) obtain the 2D prediction
as the output of the detection model. The 3D location is derived by forwarding the
keypoints into a PnP algorithm, which prerequisites forward kinematics and joint
configurations as additional inputs. This method is trained on synthetic data and
bridges the sim-to-real gap through domain randomization techniques, similarly to
Lee et al. (2020). The authors demonstrate that optimized keypoints can account for
self-occlusion and perform superior to the approach of Lee et al. (2020).

Learning-based approaches are advantageous in their ability to train on synthetic
data and bridge these learnings to the real-world. This is beneficial, as for the latter case
accurate ground truth annotations can be difficult to obtain. Whereas it is a comparable

12

2. Related Work

low effort task for synthetic data. Additionally, most of these methods only rely on
RGB images as an input. This kind of sensor output is available to most robot systems
and thus allows to transfer a developed approach to new robot arm models.

One key distinction between the presented learning-based approaches to our method
is the use of additional knowledge, such as joint encoder readings or initial estimations
based on forward kinematics. Even if this information is theoretically given, because
it is invoked further down the pose estimation pipeline, only Byravan et al. (2018)
integrate it into the learning process. Our approach to incorporate prior knowledge
differs to Byravan et al. (2018) that we exploit information from forward kinematics as
an initial guess on possible keypoint locations. Moreover, to the best of our knowledge,
there is no approach that computes uncertainties for keypoint predictions, which we
intend to perform.

13

3. Method

This chapter explains the concepts and underlying rationale to achieve our contributions,
as outlined in Section 1.2. First, assumptions for the proposed approach are addressed
to build a common understanding of the setting we are working in. Next, we describe
the keypoint detection algorithm, which we break down in:

• Base Keypoint Detection Algorithm, which we extend with our contributions.

• Prior Kinematic Knowledge Approach, modifying the base network.

• Uncertainty Estimation Approach, further extending the base network.

Figure 3.1 displays the overall approach, which we refer to as Prior Knowledge Robot
Keypoint Detection (PK-ROKED). An hourglass network processes a monocular RGB
image, concatenated with prior kinematic knowledge. Next, the network outputs
belief maps about keypoints from which 2D coordinates are extracted. We compute
uncertainties for the network’s output based on multiple stochastic forward passes of
the same input through the network. This chapter ends by outlining the synthetic and
real-world datasets that are applied to train and evaluate our methods.

3.1. Assumptions

For our proposed approach to work, we assume the following assumptions to hold.
First, the robotic system, on which our method is applied on, is equipped with a
camera, capturing monocular RGB images with the end-effector in the camera’s field
of view. These images serve as the first input component to our detection algorithm.
Additionally, the forward kinematics of the robot arm and the camera intrinsics are
available to compute initial estimations of possible keypoint locations in 2D image space
based on an approximate hand-eye-calibration. This prior kinematic knowledge is the
second component of our network input. Third, in order to generate the required data
to train our detection network on synthetic images, we assume a geometric description
of the robot arm to be provided, which allows to simulate and render training data.
For instance, this model can be an Unified Robot Description Format (URDF) with the
corresponding 3D meshes of the robot arm.

14

3. Method

f1 up
4concat

ResNet layer

Dropout layer

Upsampling layer

Output head

concat Concatination

Encoder Decoder

t stochastic forward passes

x1, y1
...

xk, yk

ou
tp

ut
 h

ea
d

f2
dr

op
ou

t

f3
dr

op
ou

t

f4
dr

op
ou

t

up
1

dr
op

ou
t

up
2

dr
op

ou
t

up
3

dr
op

ou
t

Figure 3.1.: Overview on our PK-ROKED approach. The network receives a monocular
RGB image and prior kinematic belief maps as an input. The detection network
comprises an hourglass architecture which learns to output belief maps with keypoint
detections, from which 2D coordinates are extracted. To compute uncertainties for those
detections, the same input is processed for t stochastic forward passes. For visualization
purpose, the input maps as well as the output are displayed in one image instead of
one image for each keypoint.

Additionally, we establish the following notation to explain our approach:

• Aggregated input data X = {x1, ..., xN}, which is seen during network training
and with N being the dataset size.

• Aggregated training output Ŷ = {ŷ1, ..., ŷN}, which is learned during the training.

• Aggregated ground truth data Y = {y1, ..., yN}, in order to learn Ŷ.

• Single inference input x∗, which is unseen during network training and only
observed during inference.

• Single inference output y∗, which is generated during inference.

3.2. Base Keypoint Detection Algorithm

The keypoint detection algorithm we propose learns a representation of the robot
arm and its k keypoints by processing monocular RGB images through a DL network.

15

3. Method

This means the input dimension of the base network is 640× 480× 3. The output
of this detection model is one belief map per keypoint, i.e., the output dimension is
640× 480× k, from which the keypoint coordinates are extracted. This results in 2D
keypoint detections in the image space, which are defined as ppred,i ∈ R2, i = 1, ..., k.
The keypoints for a given image of a robot arm can lay inside or outside the camera’s
field of view, which we define as visible and invisible. In the following, a keypoint
refers to the geometric origins of the joint coordinate frames of a robot arm as it is
declared in the geometric robot arm model - in our case the URDF. The key advantage
of this design choice is simplicity as joint coordinate frames are clearly defined in the
geometric description. However, our approach is not limited to this keypoint definition
and can be extended to another setting that fulfills the correct mapping of keypoints
and corresponding prior knowledge, which we explain in Section 3.3. This overall
approach based on monocular images uses a similar concept as Lee et al. (2020).

The network architecture to learn the keypoint representation is an hourglass. This
type of network consists of an encoder and a decoder part, as depicted in Figure 3.1.
The former downsamples the input image into a lower spatial dimensional latent
representation. The latter reconstructs the input based on the latent representation to
match the ground truth target maps. The underlying rationale for the network choice
is that hourglass models as an architecture are proven to work in similar settings to
ours, e.g., see Lee et al. (2020) and Lu et al. (2022).

3.2.1. Encoder

The purpose of the encoder is to learn a representation of the input in a lower spatial
dimensional space and thus extracting key features. We base our encoder on the first
four layers of a ResNet50 (He et al., 2016) network, pre-trained on ImageNet. Pre-
trained encoder models are a common design choice, as these networks have already
“optimal” weights to extract basic image features such as corners, e.g., by Lee et al.
(2020) or Lu et al. (2022). To find the optimal network weights for our task - detecting
keypoints - we retrain the encoder on our dataset with the pre-trained weights as an
initialization. The encoder receives RGB images of a robot arm with the dimension of
640× 480× 3 as a standard input and represents them in a lower spatial dimensional
space of 40× 30× 2048. We explain in Section 3.3 the second input component to the
encoder, as displayed in Figure 3.1.

16

3. Method

3.2.2. Decoder

The decoder reverses the downsampling operations of the encoder and upsamples the
output to a dimension of 640× 480× k. Therefore, we apply four upsampling blocks,
each comprising: An upsampling operation with a scale factor of 2, a 3× 3 convolutional
layer (stride = 1, padding = 1), a ReLU activation layer and another convolutional layer
with the same specifications plus a ReLU layer (in the last two blocks). Convolutional
layers can be thought of as a set of multiple sliding filter computations over the input,
whose respective filter weights are learned to detect important patterns. In our case the
number of filters per block varies, the dimensions of each filter are 3× 3 pixels, applied
at every pixel (stride = 1) and each input to a convolutional layer is padded with one
row or column of zeros on all four input sides (padding = 1). ReLU as a non-linear
activation function is defined as: f (x) = max(0, x) and is a standard choice in CNNs,
e.g., in Lee et al. (2020), Kendall et al. (2016) or in Krizhevsky et al. (2012). The final
decoder stage, the output head, generating the belief maps consists of another set of
three 3× 3 convolutional layers (stride = 1, padding = 1), with an additional ReLU
activation layer after the first and second convolutional layer.

3.2.3. Loss Function

The keypoint detection network is trained with a pixel-wise Mean Squared Error (MSE)
loss. This cost function is commonly applied in CV regression tasks, e.g., Lee et al.
(2020) and Loquercio et al. (2020). MSE measures the Euclidean distance between the
ground truth target map yi and the network’s output belief map ŷi. It is derived as:

LMSE =
1
N

N

∑
i=1
||yi − ŷi||2, (3.1)

with N being the dataset size. The ground truth maps yi are designed to have
pixel values of one at the actual keypoint location. This means that at most one pixel
per ground truth map has the value one. On the other hand, ground truth maps for
invisible keypoints are zero everywhere. To smoothen the transfer to the surrounding
pixels, a Gaussian distribution is applied, with the keypoints being the mean and a
standard deviation σgt = 2 pixels. Thus, few pixels around the ground truth keypoint
become non-zero. Based on this loss function, our network learns the respective pixel
values. Higher pixel values in a belief map indicate a potential keypoint location,
whereas lower ones imply their absence.

17

3. Method

3.2.4. Keypoint Extraction

The keypoint coordinates are extracted from the detection network’s output. This
pipeline builds up on the work of Lee et al. (2020). To filter out noise, the belief maps
are smoothened with a Gaussian Filter. Next, remaining peaks which are pixels above a
threshold tpeak = 0.01 are identified in each map. The exact coordinates are computed
by weighting the surrounding pixel values in a 5× 5 pixel window around such a
peak. In case more than one peak per belief map is detected, we sort the keypoints by
their value and define the peak with the highest value as our keypoint detection. The
advantage of this keypoint extraction method is that it allows detections on a subpixel
precision scale.

3.3. Prior Kinematic Knowledge Approach

This section explains the first extension to our previously outlined base network -
incorporating prior kinematic knowledge. We argue that one unique distinction be-
tween robotic vision to other CV domains is the availability and accessibility to prior
knowledge, as outlined in the motivation and addressed in research question 1. The
hypothesis is that infusing prior knowledge based on forward kinematics into the detec-
tion network improves the detection performance with respect to existing algorithms.
Intuitively, we steer the detection algorithm to potential image areas where we assume
a keypoint to be located based on the forward kinematics. The underlying rationale is
that keypoints derived by forward kinematics could be imprecise and thus can indicate
an initial guess of potential keypoint locations but with a bounded error.

Our proposed approach infuses prior kinematic knowledge to our established base
network through the input. Therefore, we generate one belief map per assumed
keypoint location, similar to the ground truth belief maps and concatenate the re-
sulting k belief maps to the input image. This leads to the new input dimensions:
640× 480× (3 + k). The approach to concatenate the assumed belief maps to the input
image is convincing in its simplicity. Furthermore, we incorporate the prior knowledge
at almost no computational cost, as just the weight matrix of our first convolutional
layer has to be increased according to k keypoints of the robot arm. The belief map per
assumed keypoint is created based on the keypoint coordinates in image space, derived
by forward kinematics. These keypoint coordinates are potentially subjected to an error
due to elastics in the kinematics or a camera de-calibration. Thus, the exact coordinates
can be erroneous, but still indicate potential keypoint locations to steer our network.

18

3. Method

(a) (b) (c)

Figure 3.2.: A monocular RGB image as a first input component to our network (a).
Ground truth map with the actual keypoint locations (b). Prior kinematic knowledge as
perceived by the network as a second input component (c). For visualization purpose,
all keypoints in (b) and (c) are displayed in one map instead of one map per keypoint.

For training our detection network, we perturb the ground truth keypoint locations
with Gaussian noise, such that: ppk ∼ N (pgt, σ2

pk, train), with ppk denoting the 2D prior
knowledge coordinates, pgt the corresponding ground truth locations as mean and
σ2

pk, train as the variance. Based on experience with the forward kinematics of a robot
arm model, the respective standard deviation has to be chosen. In our use case, the
standard deviation from the ground truth location to the coordinates derived from
forward kinematics is assumed to be σpk, train = 10 pixels. This corresponds to an
averaged 0.035m error at 1σpk, train over our whole training dataset. Analogously to
the ground truth maps, a Gaussian smoothening is applied around the perturbed
coordinates, which completes the assumed prior kinematic knowledge process for
network training. These maps are eventually concatenated to the corresponding RGB
image.

Figure 3.2 displays the different inputs to the network and a ground truth target map.
In Figure 3.2a the first network input component, the monocular RGB image of a robot
arm, can be seen. Next, Figure 3.2b shows the ground truth keypoint locations, which
are perturbed in Figure 3.2c to serve as the second input component to the network.
For inference, we receive the assumed keypoint coordinates in 2D image space as an
additional network input based on the forward kinematics. This allows to directly
create the prior kinematic belief maps, without perturbation, attach them to the RGB
image and infuse them jointly into the detection algorithm.

19

3. Method

3.4. Uncertainty Estimation Approach

This section examines the second contribution to our base network - computing uncer-
tainty estimations. As outlined in the motivation and addressed in research question
2, CNNs in CV lack a measure of confidence about their outputs (Gast & Roth, 2018;
Kendall & Gal, 2017). Hence, we do not know how certain our network is about its
keypoint detections. This is a challenge for downstream tasks, such as Bayesian Filters,
which require a quantity of confidence or for safety critical applications, which should
only act if a network is certain about its outputs. Therefore, there are attempts to model
this uncertainty in a CNN for CV tasks as by Kendall and Gal (2017), Gast and Roth
(2018) and Loquercio et al. (2020).

Kendall and Gal (2017) introduce two categories of uncertainties existing in a CNN
based model: Epistemic and aleatoric uncertainty. The former means uncertainty with
respect to the network parameters, also referred to as model uncertainty (Kendall &
Gal, 2017). This uncertainty can be reduced by increasing the dataset size during
the network’s training phase (Kendall & Gal, 2017). Aleatoric uncertainty, on the
other hand, refers to data uncertainty, e.g., due to noisy sensor measurements. This
uncertainty can be further grouped into homoscedastic uncertainty and heteroscedastic
uncertainty (Kendall & Gal, 2017). Homoscedastic uncertainty means it is constant
for all input data, while heteroscedastic uncertainty can vary for each network input
(Kendall & Gal, 2017). Computing the uncertainties results in the distribution over
a keypoint detection in addition to the actual keypoint coordinates. Hence, this is a
measure to tell how certain the network is about a respective detection.

3.4.1. Approximating Model Uncertainty

The goal in modeling epistemic or model uncertainty is to compute the posterior distri-
bution over the network parameters p(W|X, Y). This distribution describes the optimal
set of weight parameters W, best explained by X and Y (Mukhoti & Gal, 2019). To this
end, a prior distribution is placed on the network weights which, for instance, can
be a Bernoulli distribution: W ∼ Bernoulli(p), with p being the Bernoulli probability
(Mukhoti & Gal, 2019). The Bernoulli distribution can model a binary event, which
either occurs or does not. A neural network with a prior distribution placed upon its
parameters is referred to as Bayesian Neural Network (BNN) (Kendall & Gal, 2017).
The minimization objective of a BNN is to optimize the posterior distribution, which is
in contrast to a standard neural network, minimizing to find the optimal deterministic
weights (Kendall & Gal, 2017).

20

3. Method

Computing the posterior is however intractable and thus one approach is to approxi-
mate p(W|X, Y) using variational inference with a proxy distribution qθ(W), parame-
terized by θ (Kendall & Gal, 2017). This distribution qθ(W) is learned by minimizing
the Kullback-Leibler (KL) divergence of the proxy distribution and the actual posterior
distribution:

KL(qθ(W)||p(W|X, Y)), (3.2)

(Gal & Ghahramani, 2016; Kendall & Gal, 2017). The KL divergence quantifies the
similarity between the proxy and actual posterior distribution, which becomes zero if
the distributions are identical (Bishop, 2006, p. ∼57).

Monte Carlo Dropout

In our approach, we incorporate model uncertainty through Monte Carlo Dropout (MC
Dropout) (Gal & Ghahramani, 2016). The underlying rationale is the pragmatic imple-
mentation of this approach and that it is a proven choice for uncertainty estimations in
DL methods for CV (Kendall et al., 2016; Mukhoti & Gal, 2019). We demonstrate in
Chapter 5 how this approach also allows to incorporate aleatoric uncertainty.

MC Dropout approximates the proxy distribution over the network weights with a
Bernoulli distribution (Mukhoti & Gal, 2019). In Gal and Ghahramani (2016), the authors
derive that this is equivalent to applying a Dropout layer to the weight parameters of a
neural network. Dropout layers are a common regularization method to prevent the
network from overfitting on its training data by setting individual weights randomly
to zero during the training phase based on a Bernoulli distribution p (Srivastava et al.,
2014). Gal and Ghahramani (2016) further demonstrate that Dropout layers applied
in a neural network approximate deep Gaussian processes and thus optimizing such
a network with Dropout layers minimizes the KL divergence in Equation 3.2. This
assumes the following loss function is applied to the BNN:

L =
1
N

N

∑
i=1

E(yi, ŷi) + λ||W||22, (3.3)

with the latter term being a L2 regularization and ŷi = f Ŵi(xi) denoting the stochastic
network output of a BNN based on the distribution over the weights (Gal & Ghahra-
mani, 2016; Kendall & Gal, 2017). The first term in Equation 3.3 represents a loss
function such as the MSE, which we apply.

This Bayesian approximation however requires the Dropout layers to be active during
the network inference (Kendall & Gal, 2017). Thus, forwarding the same input for

21

3. Method

multiple stochastic passes t through the network can yield varying results, because for
each run new sample weights Ŵt ∼ qθ(W) are drawn. Each stochastic forward pass
can be interpreted as a Monte Carlo sample from the posterior distribution (Mukhoti &
Gal, 2019). For more details on the exact proof and derivations, we refer the reader to
Gal and Ghahramani (2016).

To apply MC Dropout in our detection algorithm, we modify our base network
and extend the architecture with Dropout layers. We place Dropout layers at the
mid-layers of the encoder and decoder, as empirically suggested by Kendall et al. (2016).
This building block complements our architecture, which is displayed in Figure 3.1.
Furthermore, in this work we approximate the epistemic uncertainty based on MC
Dropout with two approaches: Explicit uncertainty estimation through MC Dropout
and approximation based on image moments on MC Dropout belief maps. We present
and compare the findings in Chapter 5. Based on these results, we establish our
standard approach to compute a detection’s covariance matrix by image moments from
multiple stochastic forward passes.

Explicit Uncertainty Estimation through Monte Carlo Dropout

Our approach to estimate the uncertainty explicitly by MC Dropout, computes the
mean and variance of extracted keypoint coordinates from multiple stochastic forward
passes. For t such Monte Carlo samples, obtained by forwarding an unseen data point
x∗ through a network with active Dropout during inference, Gal and Ghahramani (2016)
derive the predictive mean Eq(y∗|x∗)(y∗), based on the proxy distribution, as:

Eq(y∗|x∗)(y
∗) ≈ 1

t

t

∑
i=1

f Ŵi(x∗). (3.4)

Analogously, the predictive variance is approximated by:

Varq(y∗|x∗)(y
∗) ≈ τ−1ID +

1
t

t

∑
i=1

f Ŵi(x∗)T f Ŵi(x∗) +

−Eq(y∗|x∗)(y
∗)TEq(y∗|x∗)(y

∗),

(3.5)

with τ denoting the model precision and ID being the identity matrix with the
corresponding dimensionality D (Gal & Ghahramani, 2016). We apply Equation 3.4
and 3.5 on the extracted keypoint coordinates, which allows us to reason on the model
uncertainty. Additionally, we argue to compute the variance of a potential keypoint if
it is detected more than once out of the t stochastic forward passes, because a single
keypoint detection do not possess a variance.

22

3. Method

Image Moments on Monte Carlo Dropout Belief Maps

Another approach to compute the predictive variance and to capture the epistemic
uncertainty from our BNN detection network about keypoints on the robot arm, is
through image moments. Image moments statistically express the distribution of
pixel values in an image (Khan et al., 2014; Prokop & Reeves, 1992). As outlined in
Subsection 3.2.3, the detection algorithm learns to output pixel values indicating a
keypoint detection (higher pixel values) or a keypoint’s absence (lower pixel values) in
a belief map. Hence, image regions with higher pixel values are related with potential
keypoint locations. Image moments allow to express the size and orientation of these
regions (Khan et al., 2014). We associate a wider region with higher uncertainty and the
orientation of these spots, approximated to be ellipses, provide information along which
principal axes the uncertainty occurs. This interpretation aligns with our approach
to extract keypoint coordinates based on the pixel values around a peak in a belief
map. The underlying rationale to compute the model uncertainty based on image
moments is to measure the uncertainty directly in the belief maps of multiple stochastic
forward passes. This differs from the approach explained before, which first extracts the
keypoint coordinates for each stochastic forward pass and then applies Equation 3.5.

t

Stacked output belief maps for
one keypoint of t forward passes
(before acummulation)

Processed belief map after
acummulation, Sigmoid function
and binarization

Zoom in on resulting
image moments

Zoom in on image
moments incl.
uncertainty ellipse

Figure 3.3.: Pipeline to compute the image moments based on t stochastic forward
passes. First, belief maps per keypoint are stacked and accumulated. Next, the
aggregated belief map is squeezed through a Sigmoid function and binarized at a
threshold of 0.6. The resulting bright spot is a potential keypoint location, which we
associate with the corresponding uncertainty of this detection. We capture the size and
orientation of such regions by computing the image moments, which we can arrange
in covariance matrices. The zoom in shows a visualization of the potential keypoint
location and additionally with the resulting uncertainty ellipse computed based on the
image moments.

23

3. Method

In order to compute the image moments, we aggregate belief maps of several forward
passes through active Dropout layers during the inference phase. The results are several,
varying belief maps, which we stack per respective keypoint. The accumulated belief
maps capture the image regions where the detection network believes keypoints to
be. Ideally, this results again in one, concentrated region with higher pixel intensities,
indicating the keypoint location, surrounded by lower pixel values. To strengthen
the difference between assumed keypoint areas and the remaining pixels, the stacked
belief maps are binarized at a threshold of 0.6 after being squeezed into the range [0, 1]
through a Sigmoid function. We derive this threshold empirically. Figure 3.3 displays
this pipeline to process belief maps from which the associated uncertainty per keypoint
detection is derived.

As previously, we express the model uncertainty through the predictive mean and
variance. While the predictive mean computation remains unchanged, we compute the
variance based on the second-order central image moments, which are defined as:

µij =
W

∑
u

H

∑
v
(u− ū)i(v− v̄)j I(u, v), (3.6)

with I(u, v) denoting the image, i and j taking the values {0, 1, 2} according to the
respective moment and W, H being the image’s dimensions (Prokop & Reeves, 1992).
The first-order moments are computed as:

Mij =
W

∑
u

H

∑
v

uivj I(u, v), (3.7)

which leads to the image’s centroids ū = M10
M00

and analogously v̄ (Prokop & Reeves,
1992). We argue to utilize the centroids in the computation of the predictive variance
instead of the predictive mean as these two can vary due to the binarization process
step. Based on the second-order central moments, given in Equation 3.6, we construct a
covariance matrix for each keypoint detection in image space:

cov =

[
µ
′
20 µ

′
11

µ
′
11 µ

′
02

]
, (3.8)

with µ
′
ij =

µij
µ00

(Khan et al., 2014). The covariance matrix represents the associated
model uncertainty with the respective keypoint coordinates in width and height di-
mension. Analogously to the variance approximated based on the extracted keypoint
coordinates, we compute the image moments for a potential keypoint detection if the
respective keypoint is detected more than once out of the t stochastic forward passes.

24

3. Method

3.5. Data Generation

In order to train and test the base model and our contributions regarding prior knowl-
edge and uncertainty computations, we establish two datasets, respectively for each
robot arm model. A synthetic dataset to train our network on and a real-world dataset
to test our concepts in a “deployment” environment. The underlying rationale to utilize
synthetic and real-world data, instead of real-world data only, is the time-consuming
and error-prone process to obtain a large real-world dataset. For instance, sources
of errors can be faulty sensors encodings, imprecise forward kinematics and a "de-
calibrated" hand-eye-calibration. Large amounts of data are however required as DL
networks tend to perform better when trained on larger datasets (Alzubaidi et al., 2021).
Synthetic data overcomes these shortcomings as it is a scalable solution. It allows
to simulate a given robot arm model, render RGB images and extract ground truth
coordinates for the keypoints - and repeat this process until the desired dataset size is
generated.

In this work, we train and test our detection algorithm primarily on the Kinova Jaco2
robot arm, for which we generate the real-world and the synthetic dataset. As an
additional robot arm model, we evaluate on the Panda2 robot arm. For this robot arm
model, Lee et al. (2020) collected both real-world and synthetic data, which we utilize.
Their approach to generate synthetic data is similar to our concept. Hence, we refer
the reader to Lee et al. (2020) for specific details, as we only describe their real-world
datasets in depth.

3.5.1. Synthetic Dataset

The synthetic RGB images of the Kinova Jaco2 are generated by rendering the robot
arm model in a simulation. To overcome the differences to the real-world data, we
apply various domain randomization techniques (Tobin et al., 2017). These differences
are a major challenge in robotic vision when a network is trained on simulated data,
as we cannot assume the synthetic and real-world data to share the same underlying
distribution. Therefore, to be capable to generalize the learnings from simulated
robot arm images to real ones, we attempt to bridge this sim-to-real gap through
randomization. Hence, we apply the following techniques:

• Choose a random simulation environment, which we draw from the 3D-FRONT
(Fu et al., 2021) dataset, consisting of ∼ 6800 differently furnished houses.

• Sample a new room in each house to place the robot arm in.

2https://www.franka.de, Accessed on: 27.08.2022

25

3. Method

• Randomize the joint values of the simulated robot arm within a range of values.

• Place the robot arm in this environment such that distractor objects like a table,
chair, bed or a colorful wall are visible in the background.

• Set a random camera position in a sphere around the robot arm, which approxi-
mates a potential point of view on a physical robot arm.

• Place between one and five light sources in the simulation with varying intensities.

• Randomize the meshes of the robot arm model with textures from the CCTextures3

dataset.

In order to generate a synthetic image with these randomization techniques, our
generation pipeline starts by placing the robot arm in the random room of the sampled
house from the 3D-FRONT dataset. Next, collision checking is performed after the
robot arm model is moved within a range of joint values. Therefore, we discretize a
cube of two meters around the robot arm’s base location and list all objects within
this box. For each derived object, we perform intersection checks with the object’s
mesh and our robot arm model. This collision checking cycle can be repeated up to
200 times before a room is skipped. In case a non-intersecting robot arm position
is found, a camera position is sampled from a sphere around the robot arm. The
camera position is valid if the last joint of the robot arm is visible and a score of
interesting and distracting objects in the potential image is reached. We render up
to five images, each from a different camera position, while the robot arm position
remains unchanged. Additionally, 2D keypoint coordinates in image space are saved for
each image corresponding to the 3D joint positions in the robot arm’s task space. The
process is repeated twice for the same 3D-FRONT house before a new house is sampled.

Figure 3.4 shows two images of the Kinova Jaco2 robot arm, one synthetically rendered
and one captured from the LRU’s onboard camera to visualize the contrast. For training
our network, we furthermore apply data augmentation techniques, which we outline in
Chapter 4. We hypothesize that the combination of these techniques allows the network
to become invariant to environment changes and thus enables the knowledge transfer
from synthetic to real-world data.

3.5.2. Real-world Datasets

The real-world datasets comprise images and prior knowledge as the network would
perceive when deployed on a physical robot arm. This allows us to measure the perfor-

3https://ambientcg.com, Accessed on: 26.06.2022

26

3. Method

(a) (b)

Figure 3.4.: Contrast of synthetically generated (a) and real-world captured (b) image
of the Kinova Jaco2 to highlight the sim-to-real gap.

mance of our concepts and compare the effectiveness to other methods and networks.
However, generating the data is prone to errors as stated. Therefore, the accuracy can
only be evaluated up to a certain degree, depending on the data collection process.

The Kinova Jaco2 dataset contains ∼ 2000 images captured by the LRU’s onboard
camera. For this dataset, the ground truth coordinates are derived with the techniques
explained in Meyer et al. (2022). Additionally, we collect assumed keypoints in the
image space based on the forward kinematics, which we infuse as prior knowledge
into our detection network. As previously outlined, the ground truth coordinates of
real-world data are prone to inaccuracies. However, an evaluation showed that the
ground truth keypoint locations in the Kinova Jaco2 dataset are correct for the last
three joints, counting from the robot arm’s base. Given that assumption, we evaluate
only on those joints to have meaningful findings. Figure 3.5a displays an image from
the real-world Kinova Jaco2 dataset, captured in the lab at the DLR. Highlighted with
blue crosses are the last three joints. Attached to the end-effector is a checkerboard
to calibrate the robot arm with the camera. The robot arm’s pose is tracked with a
VICON4 system allowing to collect the position of the corresponding tracking markers,
visible as small circular objects along the checkerboard’s edges.

In addition to the Kinova Jaco2 dataset, we also benchmark our performance on
two Panda datasets, introduced by Lee et al. (2020). Figure 3.5b displays an image
from the Panda-3Cam-RS dataset, originally comprising ∼ 6000 real-world images. We

4https://www.vicon.com, Accessed on: 27.08.2022

27

3. Method

(a) (b)

Figure 3.5.: Image of a Kinova Jaco2 robot arm with a checkerboard attached to the
end-effector (a). Sample image from the Panda-3Cam-RS dataset (b). Blue crosses
indicate the ground truth location of keypoints.

removed around 800 static images, meaning no joint movement is visible for consecutive
images. The second Panda dataset, Panda-Orb, consists of ∼ 30000 images from 27
different camera positions. Whereas on the Kinova Jaco2 we evaluate on the last three
joints only, on the Panda datasets all keypoints and hence joints are considered for
evaluation. However, the recorded ground truth keypoint coordinates are erroneous, as
the authors demonstrate. An experiment, comparing the measured robot arm position
with its actual commanded position, reveals a mean error of 21.4mm (Lee et al., 2020).
Projecting this error into the image space results in approximately 5 pixels. Thus, the
actual ground truth coordinates of the measured and seemingly ground truth can be
faulty up to 5 pixels. For this dataset, we perturb the ground truth keypoint coordinates
during inference analogously to the training phase, as a proxy for prior knowledge
derived from forward kinematics.

28

4. Implementation

This chapter provides details on the exact implementation of the outlined approach to
detect 2D keypoints. We present all relevant information to recreate the approach and
reproduce our findings. To this end, all hyperparameters and configurations to train
our detection network are included. Eventually, we outline implementation details to
generate synthetic data.

(a) (b)

Figure 4.1.: Synthetic image of the Kinova Jaco2 without data augmentation (a). Same
input image with data augmentation as seen during the network training (b). Gaussian
noise, coarse dropout and a random brightness contrast are applied as augmentations.

4.1. Keypoint Detection Network

The detection network is implemented in PyTorch5 with PyTorch Lightning6 in order
to have a simple and flexible project structure. We train the network for 50 epochs with
AdamW (Loshchilov & Hutter, 2019) as an optimizer, a learning rate lr = 1.5e-4 and

5https://pytorch.org, Accessed on: 26.06.2022
6https://www.pytorchlightning.ai, Accessed on: 26.06.2022

29

4. Implementation

weight decay of 1e-2. Additionally, a StepLR learning rate scheduler is applied, which
reduces lr every 30 steps by a factor of 0.1. Dropout probability is fixed for all layers
to p = 0.1 for the Kinova Jaco2 and to p = 0.2 on the Panda data. The effective batch
size is 32 and the input images are normalized after the additional augmentation step
according to the schema displayed in Table 4.1.

Augmentation Description Probability

Gaussian noise Applies Gaussian noise to the
input image

p = 1.0

One of RGB channel shuffle Re-orders the image’s color
channels

p = 0.6

Random brightness con-
trast

Changes the brightness con-
trast of the image

p = 0.8

RGB shift Shifts the channel values of
the image

p = 0.7

Hue, saturation and
value

Changes the hue, saturation
and value of the input image

p = 0.5

One of Horizontal flip Mirrors the image along the
y-axis

p = 0.5

Vertical flip Mirrors the image along the
x-axis

p = 0.5

Coarse dropout Cuts out pixel patches, which
are filled with white or black
pixels

p = 0.8

Table 4.1.: Data augmentations for input images. Gaussian noise is applied to each
input image. Additionally, one augmentation from each "One of" block is chosen,
according to the probability values.

Our augmentation schema corrupts each image with Gaussian noise in addition to
one technique from each "One of" block. The values given in the column "Probability"
indicate the likelihood of each method to be applied. The ground truth keypoint
coordinates in image space are transformed accordingly if the augmentation affects
the keypoint location. Figure 4.1 displays a training image with and without data
augmentations. Our Kinova Jaco2 training data consists of ∼ 13500 synthetic images
divided in training and validation sets (0.8/0.2). In addition to real-world data, we test
on ∼ 1400 synthetic images. Training takes roughly one day on four Nvidia 3090 RTX
GPUs in this setting. Inference time on one such GPU is 1.25 seconds with t = 20 MC
Dropout forward passes, including computing the keypoint uncertainties.

30

4. Implementation

4.2. Synthetic Data Generation

The synthetic training images of the Kinova Jaco2 robot arm are generated using Blender-
Proc (Denninger et al., 2019). This tool allows to simulate and render images according
to the described pipeline in Subsection 3.5.1. The basic Kinova Jaco2 model, which is
derived from the URDF and the corresponding 3D meshes, is slightly modified with a
custom docking adapter (Lehner et al., 2018). The robot arm model and the docking
station are linked with a fixed joint. As outlined in Subsection 3.5.1, we bridge the
sim-to-real gap through randomization techniques, for which Table 4.2 shows the exact
implementation parameters.

Variable Description Value

Image resolution Image width and height
(in pixel)

width = 640, height = 480

Joint values Rang of minimum and
maximum joint values to
move a robot arm joint (in
degrees)

qi ∈ [45, 180]

Camera intrinsics Camera specific parame-
ters as deployed on LRU

C =

2377.05 −0.06 1033.32
0.0 2375.68 809.03
0.0 0.0 1.0

Adjusted to image resolu-
tion

C
′
=

736.13 0.0 320.0
0.0 704.75 240.0
0.0 0.0 1.0

Camera inplane
rotation

Rotation around the opti-
cal axis (in radians)

φ ∈ [−1, 1]

Camera position Sphere center in x, y, z co-
ordinates (in meters)

x = Robot arm’s position
y = Robot arm’s position
z ∈ [0.75, 1.5]

Sphere radius (in meters) rmin = 0.5, rmax = 1.5

Elevation angle (in de-
grees)

emin = −70, emax = 70

Table 4.2.: Implementation details to generate synthetic data of the Kinova Jaco2.

31

5. Experiments and Results

This chapter presents the findings of our PK-ROKED approach to detect 2D keypoints
on a robot arm and compute the associated uncertainties. Therefore, we measure the
performance on two metrics and benchmark our approach on these key performance
indicators with the DREAM approach from Lee et al. (2020). The underlying rationale
to compare against DREAM as a baseline is the performance standard it sets based
on monocular images and a DL network - a setting similar to ours. As a first step,
we explain the metrics. Next, we demonstrate our results in comparison to DREAM.
Finally, we conduct several ablation studies to test and verify our approach.

5.1. Metrics

The two key performance indicators we evaluate our approach on are Percentage
of Correct Keypoints (PCK) and Precision. The former measures the accuracy of the
network’s keypoint detections by comparing them with the ground truth coordinates
(Yang & Ramanan, 2013). The latter is a measure of the uncertainty by computing
whether a ground truth keypoint is within a keypoint prediction’s uncertainty ellipse.
Additionally, we report the Area Under Curve (AUC) for both metrics as an indication of
the respective overall performance. The metrics are applied to the 2D results in image
space.

5.1.1. Percentage of Correct Keypoints

The accuracy is measured by computing the L2-distance of the network’s detections
with the actual ground truth locations. The resulting error is evaluated on varying
thresholds over all, potentially visible keypoints. A higher ratio means more precise
keypoint detections of our network. We derive the formula as:

PCK@c =
1

kvis

kvis

∑
i=1

1(derr,i ≤ c), (5.1)

with c denoting the respective pixel threshold evaluated at, kvis the number of all
visible keypoints and 1 being the indicator function. The indicator function is only

32

5. Experiments and Results

0 1 2 3 4 5
width [px]

0

1

2

3

4

5

he
ig

ht
 [p

x]

pgt

ppred

c1
c2

Figure 5.1.: Toy problem explaining our accuracy evaluation. The keypoint detection
ppred is valid at PCK@c2 pixels and invalid for PCK@c1 pixels. The reason is that the
error between the ground truth pgt and ppred is greater than the pixel threshold c1.
Consequently, all potential network predictions within the c1-circle would be valid.

evaluated if the ground truth keypoint is visible in an image. In those cases, it equals to
one if the error derr = ||pgt − ppred||22 between the ground truth and network detection
is smaller than c and zero otherwise. Figure 5.1 visualizes this concept with ppred being
the keypoint detection of a toy network and pgt the underlying ground truth keypoint.
The toy prediction is a valid detection for the PCK@c2 pixels, whereas evaluated at
PCK@c1 pixels the prediction becomes invalid as the error to the ground truth is greater
than the pixel threshold c1. This means predictions at a certain pixel threshold are valid
if the error derr is smaller than the given pixel threshold.

As outlined in Subsection 3.5.2, we are certain about the ground truth measurements
of the last three joints of the real-world Kinova Jaco2 data. Thus, we compute the
accuracy on this dataset at: 1, 2, 2.5, 3, 4, 5, 10, 20 and 50 pixels as thresholds. However,
we deem the accuracy in the range 5 to 20 pixels as especially important for a potential
integration of our approach in a Bayesian Filter, as outlined in Section 1.2. For the
Panda dataset, the ground truth keypoint coordinates are erroneous, as described in
Subsection 3.5.2. Therefore, on these datasets 5 pixels are the smallest threshold we are
evaluating at, considering all joints.

5.1.2. Precision

The network’s uncertainty is evaluated by checking whether a ground truth keypoint
lies within a detection’s uncertainty ellipse at varying ellipse scales. We derive the

33

5. Experiments and Results

uncertainty ellipse from the corresponding covariance matrix of a detection, as ex-
plained in Subsection 3.4.1. Whether a ground truth keypoint is within this ellipse is,
respectively, defined as a True Positive (TP) and False Positive (FP) uncertainty detection.
The Precision measures the ratio of TP detections in relation to all detections. Thus, it
follows:

Precision@s =
TP

TP + FP
, (5.2)

with s denoting the scale multiplier of the uncertainty ellipse. The higher this ratio
at a given scale multiplier, the more we can "trust" the network’s prediction, as the
uncertainty ellipse covers the area where the actual ground truth keypoint lies. Similar
to the PCK computation, we consider all visible ground truth keypoints for this metric.

15 10 5 0 5 10 15 20
width [px]

0.0

2.5

5.0

7.5

10.0

he
ig

ht
 [p

x]

ppred

pgt

1
2
3

(a)

15 10 5 0 5 10 15
major [px]

5.0

2.5

0.0

2.5

5.0

m
in

o
r

[p
x]

ppred

pgt, transf

1
2
3

(b)

Figure 5.2.: Visualization of the Precision evaluation on a toy problem with keypoint
prediction ppred, corresponding uncertainty ellipse at various scale multipliers and
ground truth pgt. The prediction evaluates to TP only for s = 3σ, because pgt lies within
the uncertainty ellipse for this scale multiplier (a). An isolated Precision evaluation
along the major and minor axis of the uncertainty ellipse reveals a TP uncertainty
detection for all scales on the major axis, whereas only at s = 3σ on the minor axis (b).

Figure 5.2 displays a toy problem with the uncertainty ellipse computed based on
the corresponding covariance matrix. Figure 5.2a shows a keypoint prediction ppred
and the ground truth pgt. For s = 3σ, we can see that ppred is a TP uncertainty
detection, whereas it is a FP uncertainty detection for s = σ and s = 2σ. We verify these
observations by calculating:

r2 =
p2

gt, transf-x

(0.5w)2 +
p2

gt, transf-y

(0.5h)2 (5.3)

1(r2) =

{
1, if r2 ≤ 1

0, otherwise
(5.4)

34

5. Experiments and Results

with pgt, transf denoting the ground truth keypoint relative to the ellipse center ppred
and transformed into this coordinate system. We perform the transformation with
θtransf = arctan(vmax-y

vmax-x
), which expresses the uncertainty ellipse’s orientation through

vmax, the corresponding eigenvector of the eigenvalue λeig, max of the detection’s co-
variance matrix. The indicator function 1, in Equation 5.4, allows to count TP and FP
uncertainty detections at a certain scale multiplier. Furthermore, w = 2s

√
λeig, max is

the ellipse’s width along the major axis, h = 2s
√

λeig, min the height of the ellipse along
the minor axis and λeig, max, λeig, min are the eigenvalues of the covariance matrix.

To further investigate the quality of the computed uncertainty, we evaluate the Preci-
sion along the major and minor axis of the uncertainty ellipse, as shown in Figure 5.2b.
This isolated evaluation allows to analyze the uncertainty prediction separately along
the major and minor axis. In Figure 5.2b, this analysis reveals that the prediction is
already a TP uncertainty detection at s = σ, when only evaluated along the major axis.
However, Figure 5.2b also visualizes, that the uncertainty along the minor axis remains
a FP uncertainty detection, except for s = 3σ. Thus, this analysis allows us to better
understand the underlying factors of the overall Precision, which in the example is
driven by the uncertainty performance along the minor axis.

5.1.3. Area under Curve

The AUC measures the area under a curve, in our case under the PCK and Precision
curve. This metric equals to one when the curve achieves perfect scores on every
threshold. Hence, higher values are better. We report this metric for all experiments
in parentheses as a simple indicator of the overall performance and trajectory on a
respective evaluation.

5.2. Evaluation

This section presents the findings of our PK-ROKED approach on the outlined accuracy
and uncertainty metric. Therefore, we benchmark our network against DREAM. We
compare four different results:

• Our approach.

• Our approach without prior knowledge ("w/ o PK")

• DREAM with prior knowledge ("w/ PK").

• DREAM.

35

5. Experiments and Results

These four networks are trained on synthetic data of the respective robot arm with
a learning rate of 1.5e-4 and batch size of 32. Our "standard" approach includes the
prior knowledge and uncertainty estimations based on images moments, if not stated
otherwise. Furthermore, special focus is on the influence of prior knowledge on the PCK
and Precision performance. First, we report the findings on synthetic and real-world
data of the Kinova Jaco2. Second, we present results achieved on the Panda datasets.

5.2.1. Kinova Jaco2 Dataset

On the Kinova Jaco2 dataset, we present results which are evaluated on the last three
joints. The respective prior knowledge is derived based on calibrated forward kine-
matics and both assumptions hold if not stated otherwise. Additionally, we report
the average results of several runs per each experiment for our standard approach.
We discuss the accuracy findings first. Second, we compare the Precision performance
based on the variance of extracted keypoints with the results based on image moments.
Third, we examine anomalies of our network, deviating from its expected behavior.

Accuracy

The accuracy achieved by our PK-ROKED approach on synthetic and real-world data
of the Kinova Jaco2 robot arm is displayed in Figure 5.3. We report the accuracy results
based on the average keypoint coordinates of t = 20 forward passes, corresponding to
Equation 3.4. It is observable that our approach with prior knowledge outperforms the
baseline approach with and without prior knowledge on both datasets and at every
measured PCK threshold. The influence of prior knowledge on the performance is
highlighted when incorporating our prior knowledge concept into DREAM, yielding
an accuracy boost. Given that all networks are trained with the same domain ran-
domization techniques to bridge the sim-to-real gap, it furthermore appears that prior
knowledge helps to cope with this challenge, as demonstrated by the relatively high
accuracy of the baseline on synthetic data and the low performance on the real-world
dataset. However, we notice that a network with prior knowledge can be misled by this
information, which can decrease the accuracy, demonstrated by the low PCK@1 pixel
score of "DREAM w/ PK" on the synthetic dataset. We hypothesize that by building our
detection network with Dropout layers, which also serve as a regularization method,
we prevent this kind of overfitting with our approach. Furthermore, we observe in
Figure 5.3 that both our approaches, with and without prior knowledge, outperform
the respective DREAM network. We attribute this to better generalizability due to the
Dropout layers in our approach as well as to the different decoder architectures applied
in the networks (ResNet50 vs. VGG19).

36

5. Experiments and Results

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Our approach (0.946)
Our approach w/ o PK (0.904)
DREAM w/ PK (0.904)
DREAM (0.876)

(a)

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Our approach (0.801)
Our approach w/ o PK (0.492)
DREAM w/ PK (0.65)
DREAM (0.154)

(b)

Figure 5.3.: Accuracy evaluation as measured by PCK on Kinova Jaco2 data, AUC given
in brackets. Our approach achieves the highest performance at PCK@1 and PCK@50
pixels on synthetic data (a). Networks evaluated on real-world data, considering the
last three joints, with superior accuracy of our approach and improved performance of
the DREAM model with prior knowledge compared to without (b).

As outlined in Subsection 3.4.1 we perform multiple stochastic forward passes at
inference, which can lead to varying results of the same input. Therefore, we conduct
multiple runs of experiments with our approach being applied. We report the average
and standard deviation of the achieved accuracy in Table 5.1 for 5 evaluation runs. The
findings deviate only marginally from the mean, which we interpret as striking the
right balance of enabling stochastic forward passes through active Dropout at testing
and "dropping" too many weights. The latter could in return prevent learning and
recognizing crucial features and consequently deteriorate the performance.

PCK (@px) @1 @2 @2.5 @3 @4 @5 @10 @20 @50

Mean 0.022 0.084 0.127 0.177 0.315 0.425 0.768 0.903 0.958
Standard
deviation

0.0 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.0

Table 5.1.: Statistics of 5 stochastic accuracy evaluations on real-world Kinova Jaco2
data with calibrated prior knowledge from the last three joints. The values represent
averaged scores and the corresponding standard deviations.

37

5. Experiments and Results

On the synthetic dataset, our approach achieves a PCK@50 pixels of 0.991. The PCK
at this threshold is interpreted as a detection rate, meaning which ratio of all possible
visible keypoints does a network detect at all. On real-world data, we detect 0.958 of
all visible keypoints, a rate around 0.13, 0.29 and 0.73 above the baseline with prior
knowledge, our approach without prior knowledge and the baseline only. However,
we also want our network to learn when a keypoint is not visible and thus detect no
keypoint. This ability is measured with the True Negative (TN) rate, which computes
how many keypoints that are actually invisible are classified as such. Hence, higher
ratio values are better. As Table 5.2 shows, our network achieves the best score out of
all tested networks on this performance indicator. This metric is measured considering
all possible joints, not only the last three, because for this ratio the exact accuracy of
the ground truth is not as important as for the PCK measurement.

Approach TN Rate

Our approach 0.908
Our approach w/ o PK 0.389
DREAM w/ PK 0.798
DREAM 0.627

Table 5.2.: Evaluation of TN detections, measuring how many actually invisible key-
points are correctly identified by a network as such. The higher the rate, the better a
network correctly learns to differ between visible and invisible keypoints. This metric
is evaluated on all joints of the Kinova Jaco2 robot arm, instead of only the last three
joints, as the actual accuracy is of lower interest in this experiment.

In Figure 5.4a, we report accuracy findings of our PK-ROKED approach with a
more perturbed prior knowledge. This perturbed prior knowledge represents prior
information as derived from forward kinematics in case the Kinova Jaco2’s robotic
system, the LRU, is "de-calibrated". The main performance difference between the
calibrated and the perturbed prior knowledge is observable at the mid PCK levels. We
interpret the findings that the detection network is trained to trust the prior knowledge
to the extent that it indicates the rough keypoint location. In case of "de-calibrated" prior
knowledge, these indications are apparently not as precise as our detection network
is used to. Hence, the still high detection rate (defined as PCK@50 pixels), but the
lower accuracy on the consecutive thresholds. We deduce from the results that below
a PCK level of around 5 pixels the importance of the “quality” of prior knowledge
becomes less relevant and the network does not only rely on this prior information for
its detections. We derive this statement by observing this accuracy level to be roughly

38

5. Experiments and Results

the point of intersection of both performance trajectories. In Figure 5.4b, a test image is
displayed with its ground truth keypoints, the network’s detections and the associated
uncertainties for all visible joints. Blue crosses represent the ground truth keypoint
locations, red ones the network’s detections and yellow the uncertainty ellipses.

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Calibrated PK (0.801)
Perturbed PK (0.761)

(a) (b)

Figure 5.4.: Accuracy evaluation of our approach on real-world Kinova Jaco2 data with
calibrated (more precise) and "de-calibrated" (less precise) prior knowledge as an input.
Performance measured on calibrated real-world data outperforms the "de-calibrated"
evaluation, both considering the last three joints only (a). Qualitative evaluation of our
approach on real-world data, showing keypoint detections for all visible joints (b).

Uncertainty

We conduct two sets of experiments to evaluate the Precision performance. First, we com-
pute the predictive variance of a respective detection based on the extracted keypoint
coordinates, as outlined in Section 3.4.1 and Equation 3.5. Second, we approximate
the uncertainty based on image moments, described in Section 3.4.1 and Equation 3.8.
We compute the variance, independent of the method and throughout this work, for
a potential keypoint if the keypoint is detected more than once out of the t stochastic
forward passes, as we argue a single detected keypoint does not possess a variance.

Figure 5.5 presents the results of the first experiment, meaning the uncertainty is
computed based on the extracted keypoint coordinates. We experiment with different
values for τ, which is also referred to as precision of the noise (not to be confused with
our Precision metric), to measure its impact (Bishop, 2006, p. ∼306). This hyperpa-

39

5. Experiments and Results

rameter describes the inverse uncertainty of inherent observation noise in our data -
homoscedastic aleatoric uncertainty σ2 (Bishop, 2006, p. ∼24; Kendall & Gal, 2017).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

= 1 (real-world data) (0.612)
= 1 (synthetic data) (0.801)
= 20 (real-world data) (0.468)
= 0.2 (real-world data) (0.65)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

= 1 major axis (real-world data) (0.849)
= 1 minor axis (real-world data) (0.656)
= 1 major axis (synthetic data) (0.943)
= 1 minor axis (synthetic data) (0.812)

(b)

Figure 5.5.: Precision evaluation on synthetic and real-world Kinova Jaco2 data, computed
based on extracted keypoints with Equation 3.5 (real-world data evaluation considers
the last three joints only) (a). Analysis of the Precision along the major and minor axis
reveals that the Precision along the minor axis is overconfident and the limiting factor
of the overall Precision performance (b).

Figure 5.5a shows the performance evaluated on synthetic and real-world Kinova
Jaco2 data. We notice that at a scale multiplier of s = 20 the Precision is not 1.0, meaning
not every ground truth is within the associated uncertainty ellipse - on neither dataset.
We attribute the Precision decrease from synthetic to real-world data to some extent
to the decline in accuracy, as less precise keypoint detections require larger scale
multipliers such that a ground truth is entailed by an uncertainty ellipse. Furthermore,
we observe a performance gap between the trajectories of τ = 1 and τ = 20 due to
the different τ values. Hence, we deduce the computed variance over the extracted
keypoint coordinates to be overconfident, as τ is a hyperparameter which can be chosen
arbitrarily and added to the variance, see Equation 3.5. Overconfidence in this setting
means our predictive variance is overstating its ability to capture the actual keypoint
and thus requires large scale multipliers. In Figure 5.5b we further analyze the Precision
to evaluate the uncertainty isolated along the major and minor axis. This analysis
reveals that on both datasets, the uncertainty along the major axis is not overconfident.
However, it appears that the limiting uncertainty is along the minor axis.

40

5. Experiments and Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

Real-world data (0.851)
Synthetic data (0.951)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

Major axis (real-world data) (0.895)
Minor axis (real-world data) (0.876)
Major axis (synthetic data) (0.959)
Minor axis (synthetic data) (0.957)

(b)

Figure 5.6.: Precision evaluation based on image moments on synthetic and real-world
data (real-world data evaluation considers the last three joints only) (a). Analysis of
the Precision along the major and minor axis of the uncertainty ellipses with equal
performance on both dimensions (b).

We compare this experiment with the predictive variance computed through image
moments. Figure 5.6 presents the Precision results achieved with this method. The
Precision trajectory differs significantly from Figure 5.5. Computing the predictive
variance directly from the belief maps yields more precise uncertainty detections. This
can be deduced from the high Precision values reached at comparably low scale mul-
tipliers. However, we also observe a performance decrease when evaluating on the
real-world data. This spread between the Precision performance evaluated on synthetic
and real-world data is however smaller when the variance is computed through image
moments, compared to the previous experiment. We derive similar findings on the
isolated Precision analysis along the major and minor axis. It is observed that the
Precision evaluation along the minor axis on real-world data performs slightly inferior
to the major axis. However, this difference vanishes on the synthetic data. One reason
might be that our approach to perturb the ground truth keypoints as prior knowledge
during the network training does not perfectly match the actual uncertainty in the
forward kinematics. Hence, the learned uncertainty pattern works almost perfectly on
synthetic data, but cannot yield the same Precision on real-world data.

As for the accuracy, we are also interested in the ability of our network to learn to
distinguish between visible keypoints and invisible ones. In case a keypoint is actually
invisible and our network has no detection in neither of its t forward passes, no uncer-

41

5. Experiments and Results

tainty is computed. We have previously implicitly evaluated this scenario by checking
the TN rate. For our approach, this ratio is found to be 0.908, which we interpret as in
almost all cases, when no uncertainty is computed, the ground truth is indeed invisible.
The ability to distinguish - to some extent - between visible and invisible keypoints is
further supported by checking the False Negative (FN) rate of computed uncertainties.
This ratio measures all the cases when no uncertainty is computed but the keypoint is
visible and thus lower values are better than higher scores - considering all joints, not
only the last three. The FN rate for our uncertainty approach based on image moments
is 0.061, underlining the fit and ability of this method to compute uncertainties.

(a) (b)

Figure 5.7.: Qualitative Precision evaluation of our approach on real-world Kinova Jaco2
data with an over proportional large uncertainty ellipse at the fourth joint (a). The
processed belief map of joint No. 4 reveals the underlying reason for the large ellipse:
The additionally detected artifact, illustrated as the left bright spot, which causes
the covariance matrix to cover the whole area (b). The color coding of the keypoint
detections is extended by the green cross, indicating a prediction in 2.5 pixels distance
to the ground truth.

Anomalies

Figure 5.7 shows a qualitative evaluation of the computed uncertainties, based on image
moments, for all visible keypoints. We observe the over proportional large uncertainty
ellipse of the fourth keypoint, counting from the end-effector. An analysis of the
underlying belief map, processed to compute the image moments, helps to explain

42

5. Experiments and Results

this behavior. In Figure 5.7b, we observe an artifact, illustrated by the second bright
spot, which is located roughly in the area of joint No. 3. Apparently, the network
assumes this is also a potential keypoint location. Thus, the uncertainty spans the whole
potential keypoint area, resulting in the over proportional large uncertainty ellipse. We
categorize this behavior as underconfident uncertainty, as the uncertainty ellipse under-
states the uncertainty through this large ellipse. However, we deem underconfidence as
less critical for our application than overconfidence. One possible approach to prevent
these underconfident ellipses are anomaly detections, recognizing ellipses spanning
areas with a significant offset from the coordinates based on forward kinematics.

As the uncertainty computed through image moments overall performs superior to
the first experiment, when the predicted variance is computed based on the extracted
coordinates, we choose image moments as the final method for our approach. Hence,
the following uncertainty computations refer only to this method if not stated otherwise.

5.2.2. Panda Datasets

In order to verify that our approach can be generalized to different robot arms, we
train the PK-ROKED network on the Panda robot arm and evaluate it on two real-world
datasets, Panda-3Cam-RS and Panda-Orb, collected by Lee et al. (2020). For this robot
arm, we train our detection network with Dropout probability p = 0.2, which we
derived empirically. The prior knowledge perturbation for training and inference is
σpk, train = σpk, infer = 10 pixels. Figure 5.8 shows the PCK performance measured at
5, 10, 20, and 50 pixels for the reason outlined in Subsection 3.5.2.

Accuracy

As Figure 5.8 shows, our approach with t = 20 stochastic forward passes performs
superior to DREAM on all measured PCK levels on both datasets. This superior
performance illustrates that our approach is transferable to different robot arm models.
The potential performance increase by adding prior kinematic knowledge is also
observable when incorporated into DREAM, which outperforms the standard DREAM
network. However, the performance gain on the Panda-3Cam-RS dataset is not as
great as on the Kinova Jaco2 or the Panda-Orb dataset. We attribute this to the already
high accuracy achieved of the standard DREAM network on the Panda-3Cam-RS
dataset, which consequently leaves less space for further improvements. For the
DREAM network, we are able to reproduce the results on the Panda-3Cam-RS dataset
as reported in the paper by Lee et al. (2020). On the Panda-Orb dataset, we achieve a
slightly lower PCK@10 pixels, 0.77 vs. 0.83, than stated by the authors.

43

5. Experiments and Results

10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Our approach (Panda-3Cam-RS) (0.89)
Our approach w/ o PK (Panda-3Cam-RS) (0.775)
DREAM w/ PK (Panda-3Cam-RS) (0.876)
DREAM (Panda-3Cam-RS) (0.861)
Our approach (Panda-Orb) (0.874)
Our approach w/ o PK (Panda-Orb) (0.746)
DREAM w/ PK (Panda-Orb) (0.778)
DREAM (Panda-Orb) (0.697)

Figure 5.8.: Accuracy evaluation on two real-world Panda datasets. Our approach per-
forms superior on both datasets at all measured PCK levels. Additionally, performance
gains are observable when our prior knowledge approach is incorporated into the
standard DREAM approach.

In Table 5.3, we report the TN rates of the different approaches. We observe that
our approach is slightly outperformed on both datasets, which is in contrast to the
performance on the Kinova Jaco2 dataset. We hypothesize that the combination of prior
knowledge and multiple stochastic forward passes causes the network to detect some
FP keypoints. This assumption is supported by a TN rate of 0.959 of our approach
evaluated on the Panda-Orb dataset with only one, non-stochastic forward pass, i.e.,
inactive Dropout layers. The deterministic setting leading to this marginal inferior
TN performance prevents us however to approximate uncertainties. We deem this
minor performance decrease, observed on the Panda datasets only, as outweighed by
the benefit of obtaining uncertainties.

Figure 5.9 qualitatively visualizes the impact of prior knowledge on occluded key-
points on a synthetic test example of the Panda robot arm. Red crosses indicate a
network’s predicted keypoint, blue ones are the ground truth, green crosses are pre-
dictions in 2.5 pixel range to the ground truth and yellow ellipses are the uncertainty
ellipses. In this test image, inferred with DREAM and thus without prior knowledge as
in Figure 5.9a, only one of the two occluded keypoints is detected. In Figure 5.9b, which
displays the keypoints as detected by our PK-ROKED approach with prior knowledge,
both occluded keypoints are detected and additionally a corresponding uncertainty
per each keypoint detection is computed. This sample illustrates the importance of
prior knowledge for keypoint detections. Our network receives the information that

44

5. Experiments and Results

Approach Dataset TN Rate

Our approach Panda-3Cam-RS 0.972
Our approach w/ o PK Panda-3Cam-RS 1.0
DREAM w/ PK Panda-3Cam-RS 1.0
DREAM Panda-3Cam-RS 1.0
Our approach Panda-Orb 0.863
Our approach w/ o PK Panda-Orb 0.934
DREAM w/ PK Panda-Orb 0.979
DREAM Panda-Orb 0.975

Table 5.3.: Evaluation of TN detections, measuring how many actually invisible key-
points are correctly identified by a network as such. Our approach is slightly outper-
formed on this evaluation and datasets.

the first two keypoints from the robot arm’s base should be visible, even though they
appear to be invisible - information the network without prior knowledge does not
possess. Hence, this indicates that our initial motivation to incorporate prior knowledge,
steering the detection network to potential keypoint locations, is confirmed.

(a) (b)

Figure 5.9.: Qualitative evaluation on synthetic Panda data with occluded keypoints, the
robot arm’s joints. The DREAM baseline network, without prior knowledge, can only
predict one occluded keypoint (a). Our PK-ROKED network with prior knowledge
detects both occluded keypoints in addition to computing corresponding uncertainties
(b).

45

5. Experiments and Results

Uncertainty

We evaluate the Precision qualitatively due to the imprecise ground truth data, as
explained in Subsection 3.5.2. Figure 5.10 displays evaluation images from the Panda-
Orb dataset. Red crosses indicate our network’s predicted keypoints, whereas blue ones
are the imprecise ground truth. The computed uncertainty ellipses visually capture the
keypoint areas, which we interpret as neither under- nor overconfident. This verifies
that incorporating prior kinematic knowledge as well as uncertainty computations with
our methods is applicable on different robot arms and is not limited to the Kinova Jaco2.
Appendix A contains the Precision evaluation nevertheless for completeness.

Figure 5.10.: Qualitative evaluation of our approach on real-world Panda images from
the Panda-Orb dataset shows neither under- nor overconfident uncertainty ellipses.

Hand-Eye-Calibration

Additionally, we compare our methods on the hand-eye-calibration task, which is
the initial motivation of the DREAM approach. Therefore, we measure the Average
Distance (ADD), which computes the Euclidean distance in 3D space of a keypoint
to its transformed version (Xiang et al., 2018). To this end, a 3D keypoint x3D is
transformed once with the ground truth rotation and translation, R and T, in addition
to a transformation based on the derived camera-to-robot matrices R̃ and T̃. We obtain
the rotation and translation matrices by forwarding 2D keypoint detections, 3D point
correspondences and the camera intrinsics to a PnP algorithm. A transformation is
considered with more than 4 keypoints being detected and the estimated pose becomes
valid if the resulting error between the two transformed versions of x3D is smaller than

46

5. Experiments and Results

a certain threshold. It follows:

ADD =
1
m ∑

x3D∈M
||(Rx3D + T)− (R̃x3D + T̃)||, (5.5)

withM denoting the set of 3D keypoints and m its cardinality (Xiang et al., 2018). We
evaluate on the thresholds: 40, 60 and 80mm and report the percentage of errors below
the respective threshold, which we refer to as Percentage of correct ADD (PADD).

Approach Dataset
PADD (@mm)

@40 @60 @80

Our approach Panda-3Cam-RS 0.955 0.963 0.965
Our approach w/ o PK Panda-3Cam-RS 0.443 0.443 0.443
DREAM w/ PK Panda-3Cam-RS 0.832 0.871 0.876
DREAM Panda-3Cam-RS 0.82 0.823 0.824
Our approach Panda-Orb 0.849 0.889 0.902
Our approach w/ o PK Panda-Orb 0.421 0.432 0.435
DREAM w/ PK Panda-Orb 0.425 0.46 0.475
DREAM Panda-Orb 0.358 0.374 0.376

Table 5.4.: Evaluation of hand-eye-calibration on real-world Panda data. Our approach
achieves superior performance on all PADD thresholds compared to DREAM.

Table 5.4 shows the performance on the Panda-3Cam-RS and Panda-Orb dataset. For
the former dataset, we achieve with the DREAM network almost the same performance
as reported by Lee et al. (2020) at PADD@40mm (0.82 vs 0.83). For the latter dataset
however, we obtain a lower performance with the DREAM approach. The root causes
for the resulting discrepancy are beyond the scope of this work. Overall, we observe our
approach with prior knowledge outperforming the DREAM on the hand-eye-calibration
task, which further showcases the benefit of incorporating prior kinematic knowledge.
This shows our approach is versatile and potentially deployable in other use cases, such
as hand-eye-re-calibration to correct a "de-calibrated" camera setting.

5.3. Ablation Studies

In this section, we analyze different design variations of our PK-ROKED network.
First, we explore the impact of additional functional layers to the network. Next,
we investigate the influence of the main hyperparameters. Finally, we evaluate our

47

5. Experiments and Results

detection network on various datasets. All experiments are conducted on the Kinova
Jaco2 real-world dataset. We run these studies several times and report the average
performance in comparison to the mean performance of our standard approach.

5.3.1. Architecture

We explore the impact of additional layers to improve the performance of our standard
PK-ROKED network. To this end, we first extend the network to learn aleatoric uncer-
tainty through an additional output head. Second, we investigate the impact of Dropout
variations on the performance. Third, we experiment with architectural adaptions and
functional layers in order to enhance the accuracy and Precision performance.

Learning Aleatoric Uncertainty

As we observed in Figure 5.5, varying the homoscedastic aleatoric uncertainty τ can
influence the predictive variance computed based on the extracted keypoint coordinates
and thus impact the Precision performance. Therefore, we evaluate an approach to
learn the heteroscedastic aleatoric uncertainty, as introduced by Kendall and Gal
(2017). The learned heteroscedastic aleatoric uncertainty is potentially different for
each input image. This is in contrast to τ, homoscedastic aleatoric uncertainty, which
remains constant over different inputs once it is set (Kendall & Gal, 2017). We learn
the heteroscedastic aleatoric uncertainty through unsupervised learning during the
network training. To this end, we modify our standard network with an additional
output head, which predicts the aleatoric uncertainty σ̂2

i per pixel as described by
Kendall and Gal (2017). This additional output head follows architecturally our belief
map head, for details we refer to Subsection 3.2.2. Furthermore, this extension requires
adjusting our optimization objective, Equation 3.1, to:

LAlea =
1
D

D

∑
i=1

1
2

exp(−si)||yi − ŷi||2 +
1
2

si, (5.6)

for one input image and D denoting the number of output pixels. In practice, Kendall
and Gal (2017) suggest learning si = log(σ̂2

i) as the log of the aleatoric uncertainty
σ̂2

i , which is inherent to an input pixel. Additionally, we clamp si ∈ [−7, 7] in order
to prevent the values to become infinite. For this experiment, we compute the pre-
dictive variance based on the extracted keypoint coordinates (Equation 3.5) and add
the learned aleatoric uncertainty, σ̂2

i , as an average of both the pixel values from the
t stochastic forward passes and the window around a keypoint. This average of the
learned aleatoric uncertainty replaces τ, which we used to add to the variance before.

48

5. Experiments and Results

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

= 1 (real-world data) (0.801)
= 1 (synthetic data) (0.946)
 learned (real-world data) (0.74)
 learned (synthetic data) (0.936)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

= 1 (real-world data) (0.612)
= 1 (synthetic data) (0.801)
= 20 (real-world data) (0.468)
 learned (real-world data) (0.413)
 learned (synthetic data) (0.556)

(b)

Figure 5.11.: Performance evaluation of our approach with learned aleatoric uncertainty
on synthetic and real-world data (real-world data evaluation considers the last three
joints only). Superior accuracy performance of our standard approach (τ = 1) on both
datasets compared to the network, which learns aleatoric uncertainty (a). Precision of
the network with homoscedastic aleatoric uncertainty outperforms the approach with
learned heteroscedastic aleatoric uncertainty (b).

Figure 5.11 displays the evaluation results achieved with the learned aleatoric uncer-
tainty. We notice the accuracy gap between the network with learned heteroscedastic
and constant homoscedastic aleatoric uncertainty on both datasets in Figure 5.11a. The
Precision spread in Figure 5.11b can be caused due to the lower accuracy and also
because the learned aleatoric uncertainty being smaller than 1. We deduce this as more
accurate keypoint detections require smaller scale multipliers to capture the actual
ground truth keypoint in comparison to less accurate detections. However, comparing
the performance differences of the accuracy with learned aleatoric uncertainty and of
our standard approach with the Precision performance differences of τ = 1 and of the
learned aleatoric uncertainty, both on real-world data, we observe a wider performance
gap on the uncertainty evaluation. Hence, we argue not the entire Precision performance
decrease can be explained by less accurate detections. Additionally, the Precision trajec-
tory of the network with learned aleatoric uncertainty is closer to the Precision of τ = 20
and thus we deduce the learned aleatoric uncertainty can be smaller than 1 because τ

is the inverse of the homoscedastic aleatoric uncertainty (Bishop, 2006, p. ∼24; Kendall
& Gal, 2017; Gal & Ghahramani, 2016). This further showcases and underlines our
hypothesis that uncertainty estimations based on the variance of extracted keypoint
coordinates are overconfident. The aleatoric uncertainty being smaller than 1 can be

49

5. Experiments and Results

interpreted as the data inherent noise in our input images is relatively small. The
complementary evaluation analyzing the Precision along the ellipse’s axis reveals again
a limiting performance on the minor axis and can be found in Appendix A.

Dropout and Concrete Dropout

The next set of experiments tests two modifications of our Dropout layers. We run
these ablation studies in order to investigate the impact of the Dropout probability on
our results and thus compare the respective experiments with our standard approach,
which applies Dropout with p = 0.1 . First, we evaluate our detection network trained
with a Dropout probability of p = 0.2. Second, we substitute the standard Dropout
with a concept called Concrete Dropout, which learns the Dropout probability during
the training phase (Gal et al., 2017).

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Dropout p=0.1 (standard) (0.801)
Dropout p=0.2 (0.783)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

Dropout p=0.1 (standard) (0.851)
Dropout p=0.2 (0.873)

(b)

Figure 5.12.: Performance evaluation of Dropout p = 0.2 on real-world data, considering
the last three joints. Dropout p = 0.2 with similar accuracy to p = 0.1, but marginally
outperformed on relevant pixel thresholds (5 to 20 pixels) by our standard network (a).
On the Precision metric, Dropout p = 0.2 slightly outperforms the standard network (b).

For the first of these two experiments, only the Dropout probability is set to p = 0.2,
while all other hyperparameters and settings are hold constant. Figure 5.12 shows
the averaged accuracy result for 5 evaluation runs and the mean Precision based on 3
runs in comparison to the average performance of our standard approach. We observe
similar accuracy trajectories with a marginal superior performance of our standard
Dropout p = 0.1 network, as indicated by the higher AUC. The standard network

50

5. Experiments and Results

achieves slightly better PCK results on important thresholds at 5 to 20 pixels. The
accuracy at these thresholds is especially relevant for a potential integration of our
approach into a Bayesian filtering pipeline, as outlined in Section 1.2. Furthermore, the
standard network is marginally superior at distinguishing between actually visible and
invisible keypoints, based on the standard TN rate of 0.908 vs. 0.877, which results in
fewer FP keypoint detections.

The Precision evaluation, on the other hand, reveals a slightly superior performance
with p = 0.2, as shown in 5.12b. These results are reasonable as we assume with a
higher spread in the respective keypoint predictions also a greater uncertainty area in
the belief maps. Hence, the covariance matrices computed based on image moments
become larger, which results in a higher Precision performance. Eventually, the overall
performance differences between the two networks are marginal. Nevertheless, we
deem the slightly higher accuracy on the relevant PCK levels and the better TN rate as
outweighing the minor Precision performance gain realized through p = 0.2.

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Dropout p=0.1 (standard) (0.801)
Concrete Dropout (0.718)
Dropout p=0.2 (0.783)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

Dropout p=0.1 (standard) (0.851)
Concrete Dropout (0.828)
Dropout p=0.2 (0.873)

(b)

Figure 5.13.: Performance evaluation of Concrete Dropout on real-world data, consider-
ing the last three joints. Concrete Dropout allows to learn the respective probability per
layer (Gal et al., 2017). Our standard approach outperforms the accuracy of the network
with Concrete Dropout (a). Marginally lower Precision performance with Concrete
Dropout (b). For reference, the performance with Dropout p = 0.2 is also included.

In the second experiment, we apply Concrete Dropout layers instead of standard
Dropout (Gal et al., 2017). This variation replaces the discrete Bernoulli distribution
applied in standard Dropout layers and upon which weights are set to zero with a

51

5. Experiments and Results

Concrete distribution (Gal et al., 2017; Maddison et al., 2016). The Concrete distribution
is a continuous relaxation of discrete random variables (Maddison et al., 2016). Thereby,
the Dropout probability becomes learnable during the training phase of the detection
algorithm (Gal et al., 2017). Gal et al. (2017) argue to adjust the loss function, Equa-
tion 3.1, to incorporate a Dropout regularization term RCD, leading to the minimization
objective:

LCD =
1
N

N

∑
i=1
||yi − ŷi||2 + λRCD. (5.7)

We run this experiment with lr = 1e-4, λ = 0.01 and hyperparameters for dropout
and weight regulariser as suggested by Mukhoti and Gal (2019). The Dropout layers re-
spectively learn a probability of 0.212, 0.226, 0.353, 0.289, 0.239 and 0.187. These learned
probabilities are similar to the experiment conducted with constant p = 0.2. However,
the accuracy achieved with Concrete Dropout is inferior to p = 0.2 and our standard
p = 0.1. In Figure 5.13b, we observe a similar pattern, a slightly inferior performance
on the Precision metric. We hypothesize that the additional regularization term drives
the network to end in another local loss minimum, leading to the lower performance.
It could be thus a strategy to apply Concrete Dropout to new datasets in order to find
a good "starting" Dropout probability, which can then be tuned.

Skip-Connections and Coordinate Convolution

This ablation study experiments with two additional architectural building blocks in
our standard PK-ROKED network: Skip connections (Ronneberger et al., 2015) and a
Coordinate Convolution (CoordConv) layer (Liu et al., 2018). Both adaptions are meant
to enhance the performance of our standard approach as measured by our two key
performance indicators. To this end, skip connections add the output of each layer
in the encoder to the respective counterpart in the decoder (Drozdzal et al., 2016).
This operation shall restore information otherwise lost in the network and support
to reconstruct a detailed version of the input (Drozdzal et al., 2016). A CoordConv
layer, on the other hand, provides a standard convolutional layer with the ability to
receive information on where a convolution is applied in the image (Liu et al., 2018).
Therefore, the input to a convolutional layer in a network is adjusted and extended with
two hard-coded coordinate channels. These channels contain the image coordinates,
respectively, channel- and row-wise of a pixel (Liu et al., 2018).

Figure 5.14 displays the performance of the networks with skip connections and a
CoordConv layer, which we insert at the first convolutional stage in the encoder. Those
are the only variations to our, other than that, standard detection network. While both

52

5. Experiments and Results

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

Standard (0.801)
Skip connections (0.728)
CoordConv (0.724)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

Standard (0.851)
Skip connections (0.833)
CoordConv (0.847)

(b)

Figure 5.14.: Performance evaluation of CoordConv layer and skip connections on
real-world data, considering the last three joints. Accuracy with a CoordConv layer or
skip connections is outperformed by our standard approach (a). Similar pattern on the
Precision metric, with the standard network slightly superior to the two networks with
additional layers (b).

adjustments do not surpass the standard accuracy, the CoordConv layer achieves a
slightly higher accuracy on lower PCK levels than skip connections. However, the latter
has a higher detection rate (defined as PCK@50 pixels), as shown in Figure 5.14a.

The Precision evaluation follows a similar pattern. Our standard PK-ROKED network,
without additional building blocks, marginally outperforms skip connections and a
network trained with a CoordConv layer. The CoordConv network’s performance, once
again, is closer to our standard approach as one can deduce from the higher Precision
performance at lower scale multipliers, displayed in Figure 5.14b. We deem these
results as reasonable, because the concept of CoordConvs is to provide information
where pixels are in image space, valuable details for our detection network. However,
we hypothesize that the additional coordinate channels might conflict with our prior
knowledge belief maps in such that it becomes harder for the network to deem the prior
knowledge just as a focus area of potential keypoints. One potential explanation for the
inferior performance of skip connections could be that our use case and target output
is not the ideal scope of application to benefit from the strengths of skip connections.
Such networks with skip connections are commonly applied in instance segmentation
to reconstruct a detailed segmentation mask (Drozdzal et al., 2016; Ronneberger et al.,
2015).

53

5. Experiments and Results

5.3.2. Main Hyperparamters

This section tests three different hyperparameters and their impact on our PK-ROKED
performance. First, we explore the influence of various magnitudes of perturbation
strength on prior knowledge. Second, we evaluate the performance based on a varying
number of forward passes. Third, we conduct experiments with different Gaussian
smoothening of the prior knowledge belief and ground truth target maps.

Prior Knowledge Perturbation Strength

The perturbation strength of the prior knowledge, perceived during the model training,
is a crucial hyperparameter in our detection network. In case the perturbation is too
strong, we might bar our network access to this beneficial information. On the other
hand, in case the perturbation is too weak, our network might learn to trust and rely
too much on the prior knowledge and could fail on real-world data when the prior
knowledge is perturbed differently.

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

pk, train = 10 (standard) (0.946)
pk, train = 1 (0.973)
pk, train = 20 (0.913)
pk, train = 50 (0.903)

w/ o PK (0.904)

(a)

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

pk, train = 10 (standard) (0.801)
pk, train = 1 (0.762)
pk, train = 20 (0.715)
pk, train = 50 (0.311)

w/ o PK (0.492)

(b)

Figure 5.15.: Accuracy evaluation with varying degree of prior knowledge perturbation
during training on synthetic and real-world data. Similar accuracy of all training
perturbations on synthetic data with inference perturbation following the training
routine (a). Accuracy on real-world data with standard, calibrated prior knowledge for
the last three joints shows the training routine of σpk, train = 10 pixels best performing
and σpk, train = 1 pixel with the lowest performance on smaller pixel thresholds (b).

Figure 5.15 shows the accuracy with variously perturbed prior knowledge during
training and with no prior knowledge at all as a contrast. For the evaluation on synthetic

54

5. Experiments and Results

data, as in Figure 5.15a, the networks receive the prior knowledge as perturbed during
the training phase and thus achieve high accuracy values indirect proportional to the
perturbation strength - as expected. However, when tested on real-world data and
receiving "deployment"-like prior knowledge, accuracy gaps gape, as displayed in
Figure 5.15b. We observe the outlined assumption as demonstrated by the trajectory of
σpk, train = 1 pixel on real-world data. This network achieves a detection rate of 1.0 up to
a pixel threshold of 20. For the following PCK levels, the accuracy falls as the network
is used to rely on prior knowledge that is marginally perturbed. On the other hand,
we notice the inferior performance of the network with a perturbation of σpk, train = 50
pixels. We hypothesize this is also due to the different conditions the network is trained
on, meaning it is used to receive more severely perturbed prior knowledge. Eventually,
we deduce based on the best overall performance that the perturbation of 10 pixels
standard deviation best simulates the prior knowledge as received in a "deployment"
setting. This confirms our choice based on experience with the robot arm.

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

pk, infer = 0 (standard) (0.801)
pk, infer = 10 (0.773)
pk, infer = 20 (0.651)
pk, infer = 50 (0.537)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

pk, infer = 0 (standard) (0.851)
pk, infer = 10 (0.863)
pk, infer = 20 (0.808)
pk, infer = 50 (0.673)

(b)

Figure 5.16.: Performance evaluation with varying degree of prior knowledge pertur-
bation during inference on real-world data, considering the last three joints. Minor
accuracy difference between no inference perturbation of prior knowledge coordinates
and σpk, infer = 10 pixels. However, exceeding this threshold, the performance deterio-
rates (a). The Precision evaluation following a similar pattern with inferior performance
in accordance to the perturbation strength (b).

Furthermore, we are interested in measuring the impact of perturbing the prior knowl-
edge during inference. To this end, the calibrated prior knowledge coordinates from for-
ward kinematics are further perturbed with σpk, infer, such that: ppk ∼ N (pgt, σ2

pk, infer).

55

5. Experiments and Results

Figure 5.16 displays the results, which showcase even with an additional perturbation of
σpk, infer = 10 pixels, we are able to achieve precise detections. The accuracy is however
decreasing with increasing perturbation, as we expected. In Figure 5.16b, we observe
similar results. The Precision performance with additional noise of 10 pixels standard
deviation can compete with the pure calibrated prior knowledge. This highlights that
our approach is not blindly dependent or reliant on perfect prior knowledge. Our
approach appears to interpret the prior knowledge as what it is - an initial guess of
potential keypoint locations with bounded error.

Multiple Stochastic Forward Passes

In this experiment, we explore the impact of varying number of t forward passes on
the performance. Therefore, we evaluate the same model just with a varying number of
stochastic passes during the inference, as displayed in Figure 5.17. Figure 5.17a reveals
slightly improving scores, observable at PCK@20 pixels, in accordance with a higher t.
However, the accuracy below a threshold of around 5 pixels seems to be constant. We
interpret these findings as with a greater t, our network has more attempts to predict
hard-to-detect keypoints, which are potentially not very accurate. Thus, the higher PCK
values at greater thresholds. On the other hand, this shows that keypoint predictions
below a 5 pixel accuracy are only marginally affected by varying t.

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

t=20 (standard) (0.801)
t=1 (0.766)
t=2 (0.78)
t=5 (0.792)
t=10 (0.798)
t=40 (0.804)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

t=20 (standard) (0.851)
t=1 (nan)
t=2 (0.783)
t=5 (0.837)
t=10 (0.861)
t=40 (0.888)

(b)

Figure 5.17.: Performance evaluation with varying number of t stochastic forward
passes on real-world data, considering the last three joints. Only minor PCK differences
due to varying t (a). More forward passes t however might lead to strengthen potential
keypoint areas in the output maps and thus to a better Precision performance (b).

56

5. Experiments and Results

Forward Passes t FN Rate Mean Time/ Sample
(in sec)

1 N/ A 0.10
2 0.236 0.22
5 0.126 0.38
10 0.091 0.64
20 0.061 1.25
40 0.041 2.27

Table 5.5.: FN uncertainty detection rate for multiple stochastic forward passes, con-
sidering all visible joints. The more passes are performed, the lower and thus better
this ratio becomes. Lower values are associated with more detected uncertainties. As
we argue a detection requires more than one detection out of t forward passes, we do
not report a FN rate for t = 1. The inference time is measured as the average over the
whole Kinova Jaco2 dataset and run on a single Nvidia 3090 RTX GPU.

Figure 5.17b shows our standard t = 20 only being outperformed by t = 40 on the
lower scale multipliers. We hypothesize that with more forward passes t, the actual
keypoint regions in the stacked belief maps are strengthened and the uncertainty areas
become more precise due to this focus. Additionally, we observe in Table 5.5, a strong
correlation between the FN uncertainty rate and the number of forward passes. With
increasing t, this rate continues to decrease, which further underlines our hypothesis
about the focused uncertainty areas. Believed keypoint regions can get lost in the
binarization pre-process to compute the image moments if detected only a couple of
times, which is associated with a low focus. This risk is however mitigated with a higher
number of forward passes, causing a lower rate of falsely undetected uncertainties. As
we declared that keypoints require more than one detection out of t forward passes,
the Precision evaluation for t = 1 is not available in Figure 5.17b and Table 5.5.

Smoothening of Prior Belief and Ground Truth Maps

This experiment examines the impact of the Gaussian smoothening applied to the prior
kinematic belief and ground truth target maps. The greater this σgt is, the more pixel
values around the one-valued coordinate are non-zero. This can be interpreted as a
wider uncertainty radius around the prior knowledge and ground truth, respectively.

In Figure 5.18, we notice a higher accuracy on both evaluation datasets on the lower
and relevant PCK levels for σgt = 2 pixels, whereas the detection rate (defined as

57

5. Experiments and Results

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

gt=2 (standard) (0.946)
gt=10 (0.944)

(a)

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

gt=2 (standard) (0.801)
gt=10 (0.813)

(b)

Figure 5.18.: Accuracy evaluation with varying smoothening of ground truth and prior
knowledge maps on synthetic and real-world data (on real-world data considering the
last three joints only). Slightly superior performance of our standard approach with
σgt = 2 pixels on synthetic data (a) and on real-world data (b) at lower PCK thresholds.

PCK@50 pixels) is greater for σgt = 10 pixels on the real-world dataset. This intu-
itively makes sense, as due to the larger smoothening, the error between the predicted
belief map and the ground truth might become less stringent and thus the network
is not as precise. For instance, in case of σgt = 2 pixels a predicted pixel, which
is in 5 pixel distance to the ground truth, is learned to be zero, as the correspond-
ing ground truth pixel in the target map. The loss LMSE,i,1 of this pixel i would be:
LMSE,i,1 = ||0− ŷi||2. In case of σgt = 10 pixels, the same pixel is learned to be non-zero,
as in the ground truth map - even if it is not the actual keypoint. This loss LMSE,i,2
would be: LMSE,i,2 = ||yi − ŷi||2 and LMSE,i,1 ≥ LMSE,i,2 for the same pixel value ŷi
and under the assumption: yi, ŷi ∈ [0, 1]. We deduce from this toy example that for
a greater σgt the network is not as penalized for an incorrect prediction as it is for a
smaller one and hence it might become less precise.

The Precision evaluation in Figure 5.19 shows σgt = 10 pixels outperforming σgt = 2
pixels on both datasets. These results are not surprising, as we outlined a greater
smoothening can be interpreted as a greater uncertainty around the keypoints during
the training. Thus, the network learns for each keypoint a greater uncertainty area,
which is accordingly captured by the image moments. Consequently, the uncertainty
matrices become larger as well as the uncertainty ellipse of a keypoint leading to the
higher performance. Hence, a higher smoothening might be a choice for robot arms

58

5. Experiments and Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

gt=2 (standard) (0.951)
gt=10 (0.967)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

gt=2 (standard) (0.851)
gt=10 (0.95)

(b)

Figure 5.19.: Precision evaluation with varying smoothening of ground truth and prior
knowledge maps on synthetic and real-world data (real-world data considering the
last three joints only). Minor Precision difference on synthetic data (a). Evaluation on
real-world data shows modest superior performance of σgt = 10 pixels (b).

with imprecise training ground truth data or an even higher associated inaccuracies in
their forward kinematics. However, for the Kinova Jaco2 we deem σgt = 2 pixels as the
slightly superior setting based on the better accuracy at the relevant PCK thresholds.

5.3.3. Evaluation on Additional Datasets

In this section, we evaluate our PK-ROKED network on two additional datasets. This
allows to assess whether our detection network is limited to a specific data format and
applicable to data from different environments. First, we experiment with grayscaled
data as an input. Second, we explore the performance of our algorithm in a space-
analogue environment through data from the ARCHES mission (Schuster et al., 2020).

Grayscaled Data

This experiment tests the ability of our PK-ROKED network based on mono-channel
grayscaled images as an input. The LRU, the robotic system that is defined as our main
use case for a potential deployment, is equipped with two stereo cameras in addition
to a RGB capable camera. Applying the detection network with incoming data streams
from one of these two stereo cameras is advantageous as the images are generated at a

59

5. Experiments and Results

0 10 20 30 40 50
Threshold distance [px]

0.0

0.2

0.4

0.6

0.8

1.0

PC
K

[-]

RGB (standard) (0.801)
Grayscaled (0.792)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n
[-]

RGB (standard) (0.851)
Grayscaled (0.854)

(b)

Figure 5.20.: Performance evaluation on grayscaled real-world Kinova Jaco2 data, con-
sidering the last three joints. Minor accuracy difference between RGB and grayscaled
data (a). Precision evaluation follows a similar pattern (b).

higher frequency. To reuse the identical network, trained on RGB images, we stack each
grayscaled image three times to match the dimensionality. The grayscaled dataset is
recorded from the left stereo camera for identical robot arm movements as our standard,
RGB real-world dataset. Hence, we can directly compare the respective performances.

Figure 5.20 displays the evaluation in comparison to the performance on RGB images.
We notice only minor differences between the two datasets on both metrics. On standard
RGB images, as trained on, our detection network slightly outperforms the grayscaled
data in terms of accuracy. This result is however expected and we hypothesize this gap
to be closed if either the whole detection network is trained end-to-end or fine-tuned
on grayscaled data. The Precision evaluation follows a similar pattern. As the network
is trained on different data, not all uncertainty detections are made (FN rate of 0.093)
and the uncertainty estimations are not as precise as on the standard data, which we
deduce from the slightly inferior Precision on lower multipliers. Appendix A contains
qualitative evaluation images of this dataset.

ARCHES Data

To verify that our PK-ROKED approach works outside the lab and in a potential
planetary mission, we qualitatively evaluate on a dataset collected during the ARCHES
mission, which was successfully completed in June/ July 2022, see Schuster et al. (2020)

60

5. Experiments and Results

Figure 5.21.: Evaluation of our approach with data from the ARCHES mission, which
simulates a potential planetary mission. Qualitatively, our keypoint predictions are
detected in the area of the robot arm’s joint, which we defined as the keypoints.

for a mission overview. This mission re-creates a moon analogue mission on Mt. Etna.
Thus, we can expect - to some extent - similar inputs and performance on a potential
deployment of our approach on such a mission.

The dataset collected on this mission comprises ∼ 1800 images with commanded
robot arm poses similar to the real-world dataset. However, this setting is challenging
due to dynamic visual conditions, varying from input image to input image. For
instance, images captured in this setting can contain stronger reflections from the robot
arm surface and the overall light conditions can change quickly, e.g., through clouds in
front of the sun. Hence, operating in such an environment and nevertheless detecting
robust keypoints is exactly one of the underlying motivation, as outlined in Chapter 1.
As no tracking is available to collect the ground truth, we rely on qualitative analysis
only. Figure 5.21 shows results of our PK-ROKED approach on monocular RGB images
captured on Mt. Etna. The detected keypoints qualitatively appear to be in the area of
the actual joints, which our approach learned to detect as keypoints.

In Figure 5.22, we observe two keypoints predicted for invisible keypoints, FP key-
point detections. Our network has an approximated 0.063 FP rate over the whole
dataset. We derive this rate by counting FP detections of the first three keypoints (two
robot arm joints and one for the robot arm base, counting from the robot arm’s base)
and assuming the last four joints are visible in every image. For a potential deployment,
we argue to prevent such faulty keypoint detections through anomaly detections. We
discuss in Chapter 7 how we suggest tackling this challenge for future work.

61

5. Experiments and Results

However, we can already deduce from our current approach that those detections
are likely to be FP detections, assuming we are not visually inspecting them. For the
FP detection in the top row of Figure 5.22 and visualized in magenta, our network did
not compute an uncertainty as the keypoint is only once detected out of the t = 20
forward passes. Hence, we can deduce this is likely to be a FP detection, which it is
indeed after visually inspecting it. For the second FP detection, highlighted in cyan in
the bottom row of Figure 5.22, our network also provides a level of uncertainty about
the prediction. As the covariance is zero, we can deduce that no keypoint detection
is in the processed belief map for this keypoint. This means the keypoint is likely to
be detected only a few times with low pixel values, leading to an aggregated belief
map with values below the threshold of our binarization process to compute the image
moments - which represent our uncertainty. Hence, the zero variance can be interpreted
as a keypoint detection, which our network is very uncertain about - to the extent that
the pixel values are too low to be captured by the image moments. In contrast, if the
network would be certain about this detection, there would be higher pixel values in the
respective belief maps, which would not be below our threshold for the image moments.

For comparison, we include the same qualitative evaluation images of our approach
without prior knowledge in the Appendix A, which we judge as performing inferior
to our approach. To conclude, we deem our PK-ROKED approach to detect keypoints
based on prior knowledge and uncertainty computations as successful in such a
challenging setting, which could thus be a potential use case for our algorithm.

62

5. Experiments and Results

Figure 5.22.: Qualitative evaluation of our approach on ARCHES data with two falsely
detected keypoints, which are actually invisible. However, our network already pro-
vides additional information about these detections, allowing to reason about them. For
the FP keypoint in the top row, highlighted in magenta, no uncertainty is computed as
it is only once detected out of t = 20 forward passes. For the cyan FP detection in the
bottom row, the uncertainty is zero, as the pixel values in the belief maps, aggregated
over the stochastic forward passes, are below the threshold of the binarization process
to compute the image moments - which we interpret as a very uncertain detection.

63

6. Conclusion

This chapter draws a conclusion on the findings of this work. To this end, we summa-
rize the main results and answers to the three research questions, which we defined in
the motivation.

To address research question 1, whether prior knowledge from forward kinematics
can improve keypoint detections, we introduced a new architecture serving as a base
keypoint detection network. Based upon this, we developed a novel approach to
incorporate prior kinematic knowledge into CNNs through concatenating the input.
The intuition is to steer the network to potential keypoint areas based on measurements
from forward kinematics with a bounded error. Applying this approach, our own
detection algorithm outperformed the baseline network by Lee et al. (2020) on two
robot arm models and respective real-world datasets. We further demonstrated the
potential performance gain of incorporating prior knowledge by infusing it into the
baseline network and observing accuracy improvements. Thus, we proved this concept
being applicable to existing algorithms and to various robot arm models. The benefit
of prior kinematic knowledge is additionally highlighted by detecting occluded key-
points. Limiting in this regard are FP keypoint detections of actually invisible keypoints.
However, we demonstrated that our current approach already provides a measure of
uncertainty for those detections, based on our uncertainty estimations. Additionally,
we suggest further anomaly detections to suppress FP keypoints and outline an alter-
native training regime in Chapter 7 that we hypothesize to prevent such detections at all.

We approached research question 2, whether uncertainty estimations can be incorpo-
rated into keypoint detection algorithms, by approximating a keypoint’s uncertainty
through Monte Carlo Dropout and image moments. This allowed us to capture the
uncertainty per keypoint detection directly from the network’s output. The method
achieved high Precision scores and introduced a measure to reason about the confidence
of a respective detection. We argue that this improves the benefit of our approach
for downstream tasks such as Bayesian Filters. The drawback of this approach is
that multiple forward passes through the network of the same input are required. In
practice, we attempt to mitigate this impact as much as possible by forwarding the
input for multiple passes only through those parts of our network which are followed

64

6. Conclusion

by a Dropout layer, as only those layers produce stochastic outcomes. This is even
further optimized by repeating the same input image twice and forwarding this new
batch of same inputs at once through the network, still with an individual Dropout
operation applied to each image in this batch. Hence, we require only 10 forward
passes through the network for t = 20 stochastic passes, which improves the runtime
additionally about 0.12 to 1.10 seconds, as measured on one Nvidia 3090 RTX GPU.

We combined incorporating prior kinematic knowledge and computing uncertainties
into one keypoint detection algorithm - PK-ROKED. The approach is successfully
verified to be potentially deployable by evaluating it on two real-world datasets of
different robot arm models, after training on synthetic data of the respective robot arm
models. To this end, we developed a synthetic training data pipeline, which allows
to generate synthetic datasets by providing a geometric description of the robot arm
model. Thus, research question 3, whether the contributions from question 1 and 2 can
be combined in one algorithm and applied in a real-world environment, is answered.

To conclude, we developed and introduced PK-ROKED, a keypoint detection al-
gorithm, which leverages prior knowledge derived from forward kinematics about
potential keypoint locations in image space and computes uncertainties for these key-
point detections. We demonstrated the keypoint detection ability of our approach on
real-world datasets, including a challenging space-analogue dataset collected on the
ARCHES mission, proving the robustness of our PK-ROKED algorithm.

65

7. Outlook

This chapter provides an outlook on potential future research in representation learning
and detecting of keypoints on a robot arm using prior kinematic knowledge. These
suggestions either build upon our established approach and pipeline or address the
limitations previously outlined.

First, we recommend extending our PK-ROKED approach by an anomaly detection
to capture outlier keypoints and uncertainty ellipses, both discussed in Chapter 5. For
instance, a simple approach to this could be defining an outlier keypoint as z pixels
off from the prior knowledge coordinates and rejecting a detection if this threshold is
exceeded. Consequently, this can prevent FP detections of invisible keypoints. Analo-
gously, underconfident uncertainty detections could be defined if exceeding a certain
threshold and then clamping the values.

Second, we hypothesize that by modifying the training regime, FP keypoint detec-
tions can be prevented. To this end, we suggest learning the segmentation mask of the
robot arm as an auxiliary task and adjusting the objective to bound keypoints to be
within this mask, similarly as Lambrecht et al. (2021) proposed.

Third, another modification is to adjust the backbone architecture of our PK-ROKED
algorithm to a vision transformer. For this network design, we could infuse the prior
kinematic knowledge through the positional encoding part of the transformer. Hence,
this would allow to test another approach to incorporate prior kinematic knowledge
into a keypoint detection network.

66

A. Appendix

Figure A.1.: Qualitative evaluation on real-world Kinova Jaco2 data. Red crosses indicate
our network’s predicted keypoints, green ones are predictions within a 2.5 pixel range
to the ground truth, blue ones are the ground truth and yellow are the uncertainty
ellipses.

67

A. Appendix

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 [-
]

Our approach (Panda-3Cam-RS) (0.925)
Our approach (Panda-Orb) (0.92)
Our approach (synthetic data) (0.957)

Figure A.2.: Precision evaluation on synthetic and real-world Panda data. The ground
truth keypoint coordinates of the real-world data are erroneous and thus the explanatory
power is limited. However, our network shows promising results, as indicated by high
scores on low scale multipliers on the two real-world datasets. This observation is
confirmed on synthetic data, on which our approach achieves high Precision values.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Scale multiplier [-]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

 [-
]

 learned major axis (real-world data) (0.678)
 learned minor axis (real-world data) (0.511)
 learned major axis (synthetic data) (0.812)
 learned minor axis (synthetic data) (0.62)

Figure A.3.: Precision evaluation with learned aleatoric uncertainty along major and
minor axis on synthetic and real-world Kinova Jaco2 data (real-world data considering
the last three joints). The evaluation reveals the performance along the minor axis being
the limiting factor on both datasets.

68

A. Appendix

Figure A.4.: Qualitative evaluation on grayscaled Kinova Jaco2 data. Red crosses indicate
our network’s predicted keypoints, blue ones are the ground truth and yellow are the
uncertainty ellipses.

69

A. Appendix

Figure A.5.: Qualitative evaluation of our approach without prior knowledge on
ARCHES data. Inferior qualitative performance with over proportional large uncer-
tainty ellipses and FP keypoint detections. Red crosses indicate the network’s predicted
keypoints, magenta ones are only detected once out of t = 20 forward passes, cyan
crosses are predictions with a zero covariance and yellow are the uncertainty ellipses.

70

List of Figures

1.1. LRU and marker offset . 2
1.2. Erroneous robot arm pose . 3
1.3. Thesis scope . 4

2.1. DREAM framework . 12

3.1. PK-ROKED architecture overview . 15
3.2. Prior kinematic knowledge example . 19
3.3. Image moments pipeline . 23
3.4. Sim-to-real gap visualization . 27
3.5. Real-world evaluation sample images . 28

4.1. Synthetic input sample with and without data augmentation 29

5.1. Accuracy evaluation of toy problem . 33
5.2. Precision evaluation of toy problem . 34
5.3. Accuracy evaluation on Kinova Jaco2 data 37
5.4. "De-calibrated" accuracy and qualitative evaluation on real-world Kinova

Jaco2 data . 39
5.5. Precision evaluation based on extracted keypoints on Kinova Jaco2 data . 40
5.6. Precision evaluation based on image moments on Kinova Jaco2 data . . . 41
5.7. Qualitative Precision evaluation on real-world Kinova Jaco2 data 42
5.8. Accuracy evaluation on real-world Panda data 44
5.9. Qualitative evaluation of prior knowledge on synthetic Panda data . . . 45
5.10. Qualitative Precision evaluation on real-world Panda data 46
5.11. Performance evaluation with learned aleatoric uncertainty on Kinova

Jaco2 data . 49
5.12. Performance evaluation of Dropout p = 0.2 on real-world Kinova Jaco2 data 50
5.13. Performance evaluation of Concrete Dropout on real-world Kinova Jaco2

data . 51
5.14. Performance evaluation of CoordConv layer and skip connections on

real-world Kinova Jaco2 data . 53

71

List of Figures

5.15. Accuracy evaluation with varying degree of prior knowledge perturba-
tion during training on Kinova Jaco2 data 54

5.16. Performance evaluation with varying degree of prior knowledge pertur-
bation during inference on real-world Kinova Jaco2 data 55

5.17. Performance evaluation with varying number of stochastic forward
passes on real-world Kinova Jaco2 data . 56

5.18. Accuracy evaluation with varying smoothening of prior belief and
ground truth maps on Kinova Jaco2 data 58

5.19. Precision evaluation with varying smoothening of prior belief and ground
truth maps on Kinova Jaco2 data . 59

5.20. Performance evaluation on grayscaled real-world Kinova Jaco2 data . . . 60
5.21. Qualitative evaluation on ARCHES data 61
5.22. Qualitative evaluation on ARCHES data with FP detections 63

A.1. Qualitative evaluation on real-world Kinova Jaco2 data 67
A.2. Precision evaluation on Panda data . 68
A.3. Precision evaluation with learned aleatoric uncertainty along major and

minor axis on Kinova Jaco2 data . 68
A.4. Qualitative evaluation on grayscaled real-world Kinova Jaco2 data 69
A.5. Qualitative evaluation on ARCHES data without prior knowledge . . . 70

72

List of Tables

4.1. Data augmentations for training . 30
4.2. Synthetic data generation details . 31

5.1. Statistics of accuracy evaluation on real-world Kinova Jaco2 data 37
5.2. TN evaluation on real-world Kinova Jaco2 data 38
5.3. TN evaluation on real-world Panda data 45
5.4. Hand-eye-calibration evaluation on real-world Panda data 47
5.5. FN uncertainty evaluation for multiple stochastic forward passes on

real-world Kinova Jaco2 data . 57

73

List of Abbreviations

ADD Average Distance.

AUC Area Under Curve.

BNN Bayesian Neural Network.

CAD Computer Aided Design.

CNN Convolutional Neural Network.

CoordConv Coordinate Convolution.

CV Computer Vision.

DL Deep Learning.

DLR German Aerospace Center.

DREAM Deep Robot-to-camera Extrinsics for Articulated Manipulators.

FN False Negative.

FP False Positive.

GPU Graphics Processing Unit.

KL Kullback-Leibler.

LRU Lightweight Rover Unit.

MC Dropout Monte Carlo Dropout.

MSE Mean Squared Error.

PADD Percentage of correct ADD.

74

List of Abbreviations

PCK Percentage of Correct Keypoints.

PK-ROKED Prior Knowledge Robot Keypoint Detection.

PnP Perspective-n-Point.

TN True Negative.

TP True Positive.

URDF Unified Robot Description Format.

75

Bibliography

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,
Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of
deep learning: Concepts, CNN architectures, challenges, applications, future
directions. Journal of Big Data, 8(1), 53.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Bohg, J., Romero, J., Herzog, A., & Schaal, S. (2014). Robot arm pose estimation

through pixel-wise part classification. IEEE International Conference on Robotics
and Automation, 3143–3150.

Byravan, A., Leeb, F., Meier, F., & Fox, D. (2018). SE3-Pose-Nets: Structured Deep
Dynamics Models for Visuomotor Control. IEEE International Conference on
Robotics and Automation, 3339–3346.

Denninger, M., Sundermeyer, M., Winkelbauer, D., Zidan, Y., Olefir, D., Elbadrawy, M.,
Lodhi, A., & Katam, H. (2019). BlenderProc. arXiv.

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The Importance
of Skip Connections in Biomedical Image Segmentation. Deep Learning and Data
Labeling for Medical Applications, 179–187.

Fiala, M. (2005). ARTag, a fiducial marker system using digital techniques. IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, 2, 590–596.

Fu, H., Cai, B., Gao, L., Zhang, L., Li, J. W. C., Xun, Z., Sun, C., Jia, R., Zhao, B., & Zhang,
H. (2021). 3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics. arXiv.

Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Represent-
ing Model Uncertainty in Deep Learning. International Conference on Machine
Learning, 1050–1059.

Gal, Y., Hron, J., & Kendall, A. (2017). Concrete Dropout. Advances in Neural Information
Processing Systems, 30.

Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., & Bohg, J. (2017). Probabilistic
Articulated Real-Time Tracking for Robot Manipulation. IEEE Robotics and
Automation Letters, 2, 577–584.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Marín-Jiménez, M. J.
(2014). Automatic generation and detection of highly reliable fiducial markers
under occlusion. Pattern Recognition, 47(6), 2280–2292.

76

Bibliography

Gast, J., & Roth, S. (2018). Lightweight Probabilistic Deep Networks. IEEE Conference on
Computer Vision and Pattern Recognition, 3369–3378.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recogni-
tion. IEEE Conference on Computer Vision and Pattern Recognition, 770–778.

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., & Darrell, T.
(2018). CyCADA: Cycle-Consistent Adversarial Domain Adaptation. Interna-
tional Conference on Machine Learning, 1989–1998.

Kendall, A., Badrinarayanan, V., & Cipolla, R. (2016). Bayesian SegNet: Model Uncer-
tainty in Deep Convolutional Encoder-Decoder Architectures for Scene Under-
standing. British Machine Vision Conference, 57, 1–12.

Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? Advances in Neural Information Processing Systems,
30.

Khan, Y. D., Ahmed, F., & Khan, S. A. (2014). Situation recognition using image moments
and recurrent neural networks. Neural Computing and Applications, 24(7-8), 1519–
1529.

Klingensmith, M., Galluzzo, T., Dellin, C. M., Kazemi, M., Bagnell, J., & Pollard, N.
(2013). Closed-loop Servoing using Real-time Markerless Arm Tracking. IEEE
International Conference on Robotics and Automation.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information Processing
Systems, 25.

Labbe, Y., Carpentier, J., Aubry, M., & Sivic, J. (2021). Single-View Robot Pose and Joint
Angle Estimation via Render & Compare. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 1654–1663.

Lambrecht, J. (2019). Robust Few-Shot Pose Estimation of Articulated Robots using
Monocular Cameras and Deep-Learning-based Keypoint Detection. International
Conference on Robot Intelligence Technology and Applications, 136–141.

Lambrecht, J., Grosenick, P., & Meusel, M. (2021). Optimizing Keypoint-based Single-
Shot Camera-to-Robot Pose Estimation through Shape Segmentation. IEEE
International Conference on Robotics and Automation, 13843–13849.

Lambrecht, J., & Kästner, L. (2019). Towards the Usage of Synthetic Data for Marker-Less
Pose Estimation of Articulated Robots in RGB Images. International Conference
on Advanced Robotics, 240–247.

Lee, T. E., Tremblay, J., To, T., Cheng, J., Mosier, T., Kroemer, O., Fox, D., & Birchfield, S.
(2020). Camera-to-Robot Pose Estimation from a Single Image. IEEE International
Conference on Robotics and Automation, 9426–9432.

77

Bibliography

Lehner, P., Brunner, S., Domel, A., Gmeiner, H., Riedel, S., Vodermayer, B., & Wedler, A.
(2018). Mobile manipulation for planetary exploration. IEEE Aerospace Conference,
1–11.

Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E., Sergeev, A., & Yosinski, J. (2018).
An Intriguing Failing of Convolutional Neural Networks and the CoordConv
Solution. Advances in Neural Information Processing Systems, 31.

Loquercio, A., Segù, M., & Scaramuzza, D. (2020). A General Framework for Uncertainty
Estimation in Deep Learning. IEEE Robotics and Automation Letters, 5(2), 3153–
3160.

Loshchilov, I., & Hutter, F. (2019). Decoupled Weight Decay Regularization. International
Conference on Learning Representations.

Lu, J., Richter, F., & Yip, M. C. (2022). Pose Estimation for Robot Manipulators via
Keypoint Optimization and Sim-to-Real Transfer. IEEE Robotics and Automation
Letters, 7, 4622–4629.

Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. Neural Information Processing Systems,
17.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge,
M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts
with deep learning. Nature Neuroscience, 21(9), 1281–1289.

Meyer, L., Strobl, K. H., & Triebel, R. (2022). The Probabilistic Robot Kinematics Model
and its Application to Sensor Fusion. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems.

Mišeikis, J., Brijacak, I., Yahyanejad, S., Glette, K., Elle, O. J., & Torresen, J. (2018a).
Multi-Objective Convolutional Neural Networks for Robot Localisation and 3D
Position Estimation in 2D Camera Images. International Conference on Ubiquitous
Robots, 597–603.

Mišeikis, J., Brijacak, I., Yahyanejad, S., Glette, K., Elle, O. J., & Torresen, J. (2018b).
Transfer Learning for Unseen Robot Detection and Joint Estimation on a Multi-
Objective Convolutional Neural Network. IEEE International Conference on Intelli-
gence and Safety for Robotics, 337–342.

Mišeikis, J., Brijačak, I., Yahyanejad, S., Glette, K., Elle, O. J., & Torresen, J. (2019).
Two-Stage Transfer Learning for Heterogeneous Robot Detection and 3D Joint
Position Estimation in a 2D Camera Image Using CNN. IEEE International
Conference on Robotics and Automation, 8883–8889.

Mukhoti, J., & Gal, Y. (2019). Evaluating Bayesian Deep Learning Methods for Semantic
Segmentation. arXiv.

Nissler, C., Durner, M., Marton, Z.-C., & Triebel, R. (2018). Simultaneous Calibration
and Mapping. International Symposium on Experimental Robotics.

78

Bibliography

Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. IEEE International
Conference on Robotics and Automation, 3400–3407.

Park, F., & Martin, B. (1994). Robot sensor calibration: Solving AX=XB on the Euclidean
group. IEEE Transactions on Robotics and Automation, 10(5), 717–721.

Prokop, R. J., & Reeves, A. P. (1992). A survey of moment-based techniques for unoc-
cluded object representation and recognition. CVGIP: Graphical Models and Image
Processing, 54(5), 438–460.

Puang, E. Y., Tee, K., & Jing, W. (2020). KOVIS: Keypoint-based Visual Servoing with
Zero-Shot Sim-to-Real Transfer for Robotics Manipulation. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 7527–7533.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted
Intervention, 234–241.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3), 211–252.

Schmidt, T., Hertkorn, K., Newcombe, R., Marton, Z., Suppa, M., & Fox, D. (2015).
Depth-based tracking with physical constraints for robot manipulation. IEEE
International Conference on Robotics and Automation, 119–126.

Schmidt, T., Newcombe, R., & Fox, D. (2014). DART: Dense Articulated Real-Time
Tracking. Robotics: Science and Systems, 2, 1–9.

Schuster, M. J., Brunner, S. G., Bussmann, K., Büttner, S., Dömel, A., Hellerer, M., Lehner,
H., Lehner, P., Porges, O., Reill, J., Riedel, S., Vayugundla, M., Vodermayer, B.,
Bodenmüller, T., Brand, C., Friedl, W., Grixa, I., Hirschmüller, H., Kaßecker, M.,
. . . Wedler, A. (2019). Towards Autonomous Planetary Exploration. Journal of
Intelligent & Robotic Systems, 93(3), 461–494.

Schuster, M. J., Müller, M. G., Brunner, S. G., Lehner, H., Lehner, P., Sakagami, R.,
Dömel, A., Meyer, L., Vodermayer, B., Giubilato, R., Vayugundla, M., Reill, J.,
Steidle, F., von Bargen, I., Bussmann, K., Belder, R., Lutz, P., Stürzl, W., Smíšek,
M., . . . Wedler, A. (2020). The ARCHES Space-Analogue Demonstration Mission:
Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scien-
tific Sampling in Planetary Exploration. IEEE Robotics and Automation Letters,
5(4), 5315–5322.

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-
Scale Image Recognition. International Conference on Learning.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15(56), 1929–1958.

79

Bibliography

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain
randomization for transferring deep neural networks from simulation to the
real world. IEEE/RSJ International Conference on Intelligent Robots and Systems,
23–30.

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial Discriminative
Domain Adaptation. IEEE Conference on Computer Vision and Pattern Recognition,
2962–2971.

Valassakis, E., Dreczkowski, K., & Johns, E. (2021). Learning Eye-in-Hand Camera
Calibration from a Single Image. Conference on Robot Learning.

Wang, T., Puang, E. Y., Lee, M., Wu, Y., & Jing, W. (2022). End-to-end Reinforcement
Learning of Robotic Manipulation with Robust Keypoints Representation. arXiv.

Widmaier, F., Kappler, D., Schaal, S., & Bohg, J. (2016). Robot arm pose estimation by
pixel-wise regression of joint angles. IEEE International Conference on Robotics and
Automation, 616–623.

Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2018). PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes. Robotics:
Science and Systems, 14.

Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., & Le, Q. V. (2020). Adversarial Examples
Improve Image Recognition. IEEE/CVF Computer Vision and Pattern Recognition
Conference.

Yang, Y., & Ramanan, D. (2013). Articulated Human Detection with Flexible Mixtures
of Parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12),
2878–2890.

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired Image-to-Image Translation
Using Cycle-Consistent Adversarial Networks. IEEE International Conference on
Computer Vision, 2242–2251.

Zuo, Y., Qiu, W., Xie, L., Zhong, F., Wang, Y., & Yuille, A. L. (2019). CRAVES: Controlling
Robotic Arm With a Vision-Based Economic System. IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 4214–4223.

80

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Research Scope and Goal
	Thesis Structure

	Related Work
	Marker-based Approaches
	Depth-based Approaches
	Model- and Feature-based Approaches
	Learning-based Approaches

	Method
	Assumptions
	Base Keypoint Detection Algorithm
	Encoder
	Decoder
	Loss Function
	Keypoint Extraction

	Prior Kinematic Knowledge Approach
	Uncertainty Estimation Approach
	Approximating Model Uncertainty

	Data Generation
	Synthetic Dataset
	Real-world Datasets

	Implementation
	Keypoint Detection Network
	Synthetic Data Generation

	Experiments and Results
	Metrics
	Percentage of Correct Keypoints
	Precision
	Area under Curve

	Evaluation
	Kinova Jaco2 Dataset
	Panda Datasets

	Ablation Studies
	Architecture
	Main Hyperparamters
	Evaluation on Additional Datasets

	Conclusion
	Outlook
	Appendix
	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

