Bourne, Emily and Leleux, Philippe and Kormann, Katharina and Kruse, Carola and Grandgirard, Virginie and Güclü, Yaman and Kühn, Martin Joachim and Rüde, Ulrich and Sonnendrücker, Eric and Zoni, Edoardo (2022) Solver comparison for Poisson-like equations on tokamak geometries. Journal of Computational Physics. Elsevier. ISSN 0021-9991. (Submitted)
![]() |
PDF
- Preprint version (submitted draft)
3MB |
Abstract
The solution of Poisson-like equations defined on complex geometry is required for gyrokinetic simulations, which are important for the modelling of plasma turbulence in nuclear fusion devices such as the ITER tokamak. In this paper, we compare three solvers capable of solving this problem, in terms of the accuracy of the solution, and their computational efficiency. The first, the Spline FEM solver, uses C1 polar splines to construct a finite elements method which solves the equation on curvilinear coordinates. The resulting linear system is solved using a conjugate gradient method. The second, the GmgPolar solver, uses a symmetric finite differences method to discretise the differential equation. The resulting linear system is solved using a tailored geometric multigrid scheme, with a combination of zebra circle and radial line smoothers, together with an implicit extrapolation scheme. The third, the Embedded Boundary solver, uses a finite volumes method on Cartesian coordinates with an embedded boundary scheme. The resulting linear system is solved using a multigrid scheme. The Spline FEM solver is shown to be the most accurate. The GmgPolar solver is shown to use the least memory. The Embedded Boundary solver is shown to be the fastest in most cases. All three solvers are shown to be capable of solving the equation on a realistic non-analytical geometry. The Embedded Boundary solver is additionally used to attempt to solve an X-point geometry, highlighting the problems with concave boundaries.
Item URL in elib: | https://elib.dlr.de/189054/ | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | |||||||||||||||||||||||||||||||||
Title: | Solver comparison for Poisson-like equations on tokamak geometries | |||||||||||||||||||||||||||||||||
Authors: |
| |||||||||||||||||||||||||||||||||
Date: | 2022 | |||||||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Computational Physics | |||||||||||||||||||||||||||||||||
Refereed publication: | No | |||||||||||||||||||||||||||||||||
Open Access: | Yes | |||||||||||||||||||||||||||||||||
Gold Open Access: | No | |||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | |||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | |||||||||||||||||||||||||||||||||
Publisher: | Elsevier | |||||||||||||||||||||||||||||||||
ISSN: | 0021-9991 | |||||||||||||||||||||||||||||||||
Status: | Submitted | |||||||||||||||||||||||||||||||||
Keywords: | plasma simulation, Poisson equation, tokamak, finite elements, finite differences, finite volumes, multigrid scheme, conjugate gradient | |||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||||||||||||||||||||||||||
HGF - Program: | Space | |||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | |||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | |||||||||||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | |||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Tasks SISTEC | |||||||||||||||||||||||||||||||||
Location: | Köln-Porz | |||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute for Software Technology Institute for Software Technology > High-Performance Computing | |||||||||||||||||||||||||||||||||
Deposited By: | Kühn, Dr. Martin Joachim | |||||||||||||||||||||||||||||||||
Deposited On: | 03 Nov 2022 09:40 | |||||||||||||||||||||||||||||||||
Last Modified: | 03 Nov 2022 09:40 |
Repository Staff Only: item control page