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Abstract

Satellite imagery is one of the most efficient methods to retrieve an accurate visual

representation of the landscape. From these considerations, satellite imagery has found

immense popularity in cartography, urban planning, agriculture, emergency response, and

climate change studies. However, comprehensive satellite imagery of the highest quality is

also associated with the requirement of extensive data storage capacity and upload speed

issues. One of the methods to mitigate these limitations is utilizing contemporary image

compression techniques. For instance, raw satellite imagery is generally uploaded in the

compressed format of NITF (National Imagery Transmission Format) to increase the overall

communication speed. Therefore, it is essential to continually progress the technological

advancement in this area to resolve the problem of data storage and communication. This

thesis is part of ScOSA (Scalable On-Board Computing for Space Avionics), the DLR (German

Aerospace Center) research project dealing with on-board computers as a distributed

system, which will be part of a DLR CubeSat mission. The thesis evaluates the efficiency of

various autoencoder neural networks for image compression regarding satellite imagery.

The results highlight the evaluation and implementation of autoencoder architectures and

the procedures required to deploy neural networks to reliable embedded devices. The

developed autoencoders evaluated, targeting a ZYNQ 7020 FPGA (Field Programmable Gate

Array) and a ZU7EV FPGA. The outcome appears in the successful implementation of an

autoencoder for compressing infrared and hyperspectral images, with 64 and 21

compression factors, respectively, compared to classical compression techniques. The

overall outcome showed promising results for the integration in the ScOSA project.

Keywords: satellite, imagery, compression, neural, networks, autoencoders
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1 Introduction

This research evaluates hiring neural image compression using autoencoders as software

and hardware in the loop (SIL, HIL) to the satellite imagery industry. This thesis is part of

ScOSA (Scalable On-Board Computing for Space Avionics), the DLR (German Aerospace

Center) research project dealing with on-board computers as a distributed system, which

will be part of a DLR CubeSat mission [105]. The thesis evaluates the efficiency of various

autoencoder architectures for image compression. As a result of this thesis, the

implementation, and evaluation analysis of an autoencoder will be presented. Further, this

research discusses data compression neural networks and the required procedures

towards deployment on AI-Ready on-board computing platforms.

Overcoming the trade-off between reliability and performance is a current research

concern in space engineering. Thus, the German Aerospace Center (DLR) began to

investigate a solution to this issue in 2012, then became the On-Board Computer-Next

Generation (OBC-NG) project in 2013, continuing in 2017 with the ScOSA project [104]. The

outcome of those two projects is an on-board computer architecture offering reliable and

high-performance radiation-hardened space-qualified hardware. ScOSA architecture

consists of independently interconnected nodes, which consist of either reliable

components or high-performance commercial of the self (COTS) components such as the

field programmable gate array (FPGA). Each node instantiates its own operating system,

which is abstracted to a monolithic execution platform by a middleware. The system

supports running multiple concurrent applications. The developer divides the applications

into channels and tasks using the provided interface to the execution platform. The

middleware handles the reconfigurability of the system during different mission phases, as

well as node failure. Additionally, the middleware provides standard services well known in

the research area of fault detection, isolation, and recovery (FDIR). The FDIR services

incorporate a voter service that enforces a Triple Modular Redundancy and checkpointing

service for a distributed state restoration in case of a task or node failure [141].

Furthermore, the middleware is qualified to operate on a heterogeneous cluster of

processing nodes and correspondingly encloses a heterogeneous network architecture

consisting of either Ethernet, SpaceWire, or both [142]. Also, the middleware is capable of
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supporting different operating systems. So far, Real-Time Executive for Multiprocessor

Systems (RTEMS) and Linux are supported to run on the different nodes. As a successor to

the ScOSA project, ScOSA Flight Experiment, began in January 2020. This project aims to

conduct a higher Technical Readiness Level (TRL) by preparing the in-orbit demonstration

of the developed ScOSA on-board computer.

This thesis is an execution of one objective of the ScOSA project, which is to evaluate, if

neural networks can be an alternative to the classical compression algorithm. Current

ScOSA advancements require 20W for four nodes, and the maximum neural image

compression is required to run on two nodes. The evaluation shall discuss the

implementation on the technology-experiment ScOSA as an example system. The

experiment is set to conditions of 1 Hz frame rate.

1.1 Motivation

The satellite industry is of great importance to various industries including military,

meteorology, safety, climate and environmental monitoring, and landscape mapping. The

current trends and advancements in the industries using satellites have proliferated in the

recent past, paving the way for new inventions [9,73]. With the use of satellites to capture

ground images for landscaping, meteorological or intelligence purposes has significantly

grown. Competition in the industry has also demanded unprecedented research in image

processing technologies to better retrieve information from images. Satellites mainly

capture electromagnetic radiation reflected by the earth's surface [25]. The radiation is

emitted by the sun and reflected by the sun; hence, the sensors do not require energy to

operate [11].

At present, satellite imagery is one of the most efficient methods to retrieve an accurate

visual representation of the landscape. From these considerations, satellite imagery has

found immense popularity in cartography, urban planning, agriculture, emergency

response, and the studies of climate change [92]. However, comprehensive satellite

imagery of the highest quality is also associated with the requirement of extensive data

storage capacity and issues of upload speed [94]. One of the methods to mitigate these

limitations is by utilizing contemporary techniques of image compression [84]. For instance,

raw satellite imagery is generally uploaded in the format of NITF (National Imagery
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Transmission Format) to increase the overall communication speed [64,71,74]. Therefore, it

is essential to continually progress the technological advancement in this area to resolve

the problem of data storage and communication. The thesis discusses the efficiency of

various autoencoders and image compression frameworks in regard to satellite imagery.

Autoencoders are comprised of three main parts: an encoder, a bottleneck, and the

decoder. The encoder is mainly tasked with compressing the input data, usually a satellite

image, into an output that is several times smaller than the input [34]. The bottleneck is the

most essential part of an autoencoder, as it houses the knowledge base of the compressed

versions of the[ input [56]. Its contents are usually compressed and represent whatever is

known about a particular representation, mainly, knowledge about the input data. The

decoder unzips the compressed data and converts it back to its original format. The output

is essential in that it is compared to ground truth for accuracy evaluations [46,52,56].

Hence, the encoder, bottleneck, and decoder must be effective to preserve the information

portrayed in the images.

There exist different technologies, tools, and approaches used in studying satellite images.

Images captured over different times present a clear change in natural and artificial

developments such as soil erosion, changes in levels of carbon emission, infrastructural

development, or waste build-up. Irrespective of the study approach employed, there are

some static factors that must be considered in studying satellite images [38]. They include

scale, patterns, shapes and textures, and colors. The results obtained are always compared

to prior knowledge to better understand the imagery [25]. For instance, establishing water

bodies such as lakes, rivers, or oceans are primarily dependent on their color and shapes.

True color satellite images use visible light wavelengths: red, green, and blue. This implies

that the images are similar to what a normal human eye would see from space. In

true-color images, features appear in a detailed manner and are easy to decipher and

understand. However, images that use false colors may include unanticipated colors which

might be difficult to understand from a natural perspective.

The study and interpretation of satellite images have over the years grown with the

development of new technologies to model, interpret and understand different details

presented therein. Modern sensors capture images with high resolution, translating to

large sizes which might be challenging to store or transmit [38]. As a result, image
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compression has been widely adopted to reduce the image byte size while retaining the

image quality at acceptable qualities [5]. The image size reduction allows the files to be

stored, transmitted, or processed within confined computing environments while retaining

the detailed information contained in the images [4,6].

1.2 Problem Statement

Modern satellite sensors capture high-resolution images which might be challenging to

store, process, or transmit. The high-resolution images are large in size (total number of

bytes). Such images need to be compressed for processing, storage, or transmission as

required. However, even though there exist different file compression technologies, the

aftermath quality of the image must be retained [9]. The quality of decompressed images is

a necessary factor and helps regain the detailed information presented in the images, while

also testing the efficiency of the compression tools and approaches. Satellite imagery

remains the most effective way of capturing and representing information on the

landscape. The advancement of satellite image-capturing sensors, as mentioned above,

results in large-sized files. The advantages of existing image compression technologies

must be harnessed to improve them or produce better edge-cutting technologies in the

future. On the other hand, the cons must also be mastered to avoid their impact on image

compression and decompression.

10



1.3 Objectives

The main objective of this research is to study the adaption of neural image compression

technologies in satellite imagery and the use cases of deep autoencoders. Other objectives

include

● Identify different neural image compression techniques.

● Evaluate neural image compression state-of-the-art on satellite images.

● Implement an auto-encoder for satellite image compression.

● Validate the produced neural network model on random satellite images.

● Discussion on neural model migration to embedded devices.

● Recommend scenarios of possible integration with the ScOSA project.

1.4 Structure

The thesis consists of six main chapters: introduction, background, literature review,

methodology, results and analysis, conclusion and future work. The first chapter presents

an introductory overview of image compression and the trends in the number and sizes of

satellite images in recent years. The chapter also presents the study objectives, which guide

the background, literature review, methodology, and analysis sections. The second chapter

is the background, which presents the theoretical background of the classical and neural

image compression techniques. The third chapter is the literature review and presents

previous works on image capturing, compression, storage, processing, and decompression.

The methodology chapter presents the research philosophy, approach, and the different

approaches employed therein. It also presents the data collection techniques used. The

results and analysis evaluation chapter presented the techniques used to evaluate the

performance of the autoencoders compared to different image compression technologies.

It also paves the way for the conclusion, future work and recommendations.
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2 Background

As the number of satellites capturing earth images increased, the size of datasets also

increased exponentially. The quality of satellite images has improved, corresponding to the

creation of larger file sizes. The resolution of satellite imagery has also improved from

several meters to just a few inches, indicating the images contain finer details than ever

before [13,72]. Usually, image information is represented in pixels whose number is

inversely proportional to spatial resolution. Each pixel represents a color in the RGB scale.

The more detailed an image is, the bigger the file size [14,74,76]. as a result, the computing

resources required to process such images are high and might not be available in most

computing scenarios.

Without compression, a 1024 pixel x 1024 pixel x 24-bit image would take 3 MB of storage

and 7 minutes to transmit over a high-speed, 64 Kbit/s ISDN connection. When a picture is

compressed at a 10:1 compression ratio, the storage demand is lowered to 300 KB and the

transmission time is decreased to less than 6 seconds. Seven 1 MB photos can be

compressed and transmitted on a floppy disk in less time than it takes to deliver an

uncompressed version of one of the original files over an AppleTalk network [3].

Large picture files continue to be a key bottleneck within systems in a distributed setting.

Compression is a key component of the methods available for establishing file sizes that

are manageable and transmittable. Broadening the bandwidth is also another solution, but

it is very expensive. The mobility and performance of the platform are significant

considerations when choosing a compression/decompression approach. The simplest

technique to minimize the size of the picture file is to shrink the image directly. By reducing

the image size, fewer pixels must be saved, and as a result, the file will load faster [3,6].

Image compression uses different standards and algorithms to reduce the actual size of

images without affecting their quality. Lossy and lossless compression is the main digital

compression technique [78,81]. As the name suggests, the lossless compression technique

does not result in any loss in quality. This implies that the complete imagery details can be

re-obtained after digital decompression. Although the technique may not be applicable in

all scenarios, it is essential in instances where quality and accuracy are a priority [80,83]. On

the other hand, the lossy compression technique produces an almost negligible loss in
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image quality [82]. The loss is usually minute and very hard to identify. The technique may

not have any major impact on photographs but could have dire consequences if applied in

detailed imagery such as satellite images. This is a result of the sensitivity of the detailed

information contained in satellite images.

2.1 Image Compression Techniques

An image is usually a two-dimensional signal that has been processed by the human visual

system. Images are often represented by analog impulses. However, they are changed from

analog to digital form for processing, transmission, and storage in digital computers

computer programs. A digital image is nothing more than a two-dimensional arrangement

of pixels. Images account for a large portion of data, notably in video conferencing

applications, remote sensing, healthcare. As human dependence on information and

computers intensifies, so does the need for efficient ways to store and share enormous

volumes of data.

Image compression seeks to reduce the data size necessary to represent an image on a

digital modern media such as magnetic hard disk, optical drives, or solid-state media. It is a

method that produces a solid rendering of a file, lowering image transmission and storage

needs. Compression is accomplished by removing one or all of the following redundancies:

● Inter-pixel

● Psychovisual or,

● Coding redundancy.

There are two main image compression techniques: lossless and lossy approaches. The

classification of the compression technique depends on how the compressed version of the

digital image is compared to the original file. If there is a deviation in the quality of data

representation, the technique is called lossy, otherwise, lossless.
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2.2 Lossy Compression Techniques

Lossy techniques outperform lossless approaches when it comes to compression ratios.

Lossy techniques are extensively employed because the decompressed image quality is

suitable for most scenarios. The reconstructed image is not the same as the original image,

but the difference is hard to tell or observe.

Figure 1. Lossy Image compression technique [Source: Author]

The outline of Lossy compression algorithms is illustrated above. The steps of the

prediction – transformation – deconstruction process can be successfully reversed. The

quantization process causes minor loss of information. The entropy coding performed after

the quantization, on the other hand, does not trigger any losses. Decoding is a backward

process that reproduces the original. The compression begins by decoding the entropy on

the compression image to obtain the quantized data. The inverse transformation of the

image is preceded by dequantization in order to decompress the image. The performance

of the Lossy compression technique is influenced by the signal-to-noise ratio, compression

ratio as well as encoding and decoding speed. The different Lossy compression schemes

are discussed below.

2.2.1 Transformation coding
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Discrete Fourier Transform, also known as DFT and Discrete Cosine Transform or, DCT are

used to compress images. The schemes transform the pixels of an image to transform

coefficient, also known as frequency-domain coefficients [11,88]. These coefficients possess

several beneficial qualities, such as energy compaction property. The property ensures just

a few compression coefficients are applied in compressing the entire compression while

achieving the desired results [15, 84, 88]. This means the most important compression

coefficients are kept and used, while the rest are discarded. The coefficients are then used

in the decompression process.

2.2.2 Vector quantization

The main concept behind this method is to create a dictionary of fixed-size vectors known

as code vectors. A vector is often comprised of several pixel values. An image is usually

divided into non-overlapping vectors or blocks known as image vectors. The index of each

image vector is used to compress the original image [90]. It implies that every image is

replaced by indices that can further be encoded and compressed.

2.2.3 Fractal coding

The technique breaks down an image using a convectional processing approach such as

edge detection, texture and spectrum analysis, and color separation [94]. A fractal library

contains details of all image sections. The library also contains Iterated Function System

(IFS) codes containing compacted integers [100]. The schematic approach is employed to

determine the codes for a given image such that, with the application of the IFS codes, the

resulting image is a close approximation of the original image. The technique is best suited

for images with a high self-similarity index [99].

2.2.4 Block Truncation Coding

The technique segments an image into different pixel blocks. The reconstruction and

threshold values for each block are usually specified. The mean value for the values in each

pixel block is the threshold for that particular block. To encode the image, the values of the

block that are more than the threshold are replaced with one, while those that are less

than or equal to the threshold are replaced with a zero. The result is called a bitmap and

can be reconstructed by reversing the process.
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2.2.5 Subband coding

The image is examined in this technique to yield components comprising frequencies in

well-defined bands, known as sub-bands. Consequently, coding and quantization are done

to each of the bands. The benefit of this method is that the coding and quantization for

each of the sub-bands can be achieved independently.

2.3 Lossless Compression Techniques

The original image may be perfectly retrieved from the compressed (encoded) image using

lossless compression techniques. The techniques are also known as noiseless because they

do not introduce noise into the transmission of the image. It is also referred to as entropy

coding because it eliminates redundancy using decomposition techniques. The

compression technique is only employed in a few critical applications such as medicine and

intelligence. The techniques include

2.3.1 Run-length encoding

This is a straightforward compression technique for linear data. It comes in handy when

dealing with repetitious data. This approach uses shorter symbols to replace runs of similar

symbols (pixels). A grayscale image's run-length code is represented by the sequence Vi, Ri,

where Vi is the pixel intensity and Ri is the number of consecutive pixels associated with the

intensity Vi. The relationship is illustrated in figure 3. When both Vi and Ri are represented

by one byte, a span of 12 pixels can be coded in 8 bytes, producing a 1:5 compression ratio.

Figure 2. Run-length encoding [Source: Author]
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2.3.2 Huffman encoding

This is a method for compressing data symbols with respect to their statistical probabilities.

The image's pixels are viewed, treated, and processed as symbols. The number of bits

assigned to symbols is inversely proportional to the frequency. That is the higher the

frequency, the smaller the number of buts. The prefix code in this case is the Huffman

code. This indicates that any symbol's binary code cannot be the prefix of any other

symbol's code. Lossy compression techniques are mainly used in the early stages of image

encoding, while Huffman coding is used as the last step in most image coding standards.

2.3.3 LZW coding

Lempel-Ziv-Welch (LZW) uses dictionaries to compress image data. The use of dictionaries

for coding might be either static or dynamic. The dictionary is fixed during the encoding

and decoding stages in static dictionary coding. The dictionary is updated on the fly in

dynamic dictionary coding. LZW is a commonly used compression algorithm in the

computer industry, and it is implemented as a UNIX compress command.

2.3.4 Area coding

It is a more advanced version of run-length coding that takes into account the

two-dimensional nature of pictures. This is a big step forward from the previous lossless

approaches. It makes little sense to code a picture as a sequential stream because it is an

array of sequences that make up a two-dimensional entity. Area coding methods look for

rectangular areas with similar properties. These areas are coded descriptively as a

two-pointed element with a specific structure. This sort of coding is very efficient, but it has

the drawback of being a nonlinear approach that can't be implemented in hardware. As a

result, the compression time performance is not as aggressive as the compression ratio.
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2.4 Neural Image Compression

Figure 3. Autoencoder illustration for typical RGB Image compression [Source: Proceedings Press [108]

Compression is the process of shrinking an image's pixels, color components, or

dimensions in order to minimize its overall file size. It decreases the amount of data they

have to store and process [47, 124]. Advanced algorithms for image optimization can detect

the most relevant visual elements while ignoring the less relevant ones. Image compression

is generally administered by reducing spatial redundancy in the visual data and consequent

reconstruction of the image. In general, an autoencoder refers to a type of neural network,

which transforms the input into a code (or 'bottleneck') and, consequently, reconstructs it

into a finished product [33]. At present, this framework is utilized in various industries for

image compression, image classification, anomaly detection, and many more [1].

Figure 4. Helgoland island, North Sea, Anomaly detection autoencoder illustration. a) original, b) decoded

[Source: DLR, MACS]
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Furthermore, autoencoders can be used for both unsupervised (no classified data),

semi-supervised and supervised analysis [20]. Another advantage of the framework,

compared to traditional algorithms of image compression, is the high accuracy of the

outputs and similarity to other computer-vision models [65]. As a result, it is possible to

transform the existing networks of anomaly detection or image classification into image

compression, which makes it more convenient for satellite communication [70]. Ultimately,

compared to traditional algorithms, neural image compression is a highly effective

framework and is applicable to satellite imagery.

Figure 5. object segmentation (a), detection and decomposition (b&c) and classification (d) illustration

[Source: gov.uk, FSA, DARPA [119,129,130]]

Figure 6 illustrate the supervised, semi-supervised and unsupervised learning of the nural

networks. Figure (6a) and (6d) illustrate object segmentation and classification trained on

datasets such as Moving and Stationary Target Acquisition and Recognition (MSTAR) from

the U.S. Defense Advanced Research Projects Agency (DARPA) [129] and SpaceNet [131]. In

(6b) the Foxhound vehicle and (6c) military vehicles show object detection and

decomposition using neural networks [119,130].

2.4.1 Autoencoder Fundamentals

Autoencoder is commonly used for the superiority in dimensionality reduction, noise

removal and anomaly detection, however; autoencoders meant to be designed for data

generation. Normally, autoencoders trained in as unsupervised neural networks,

nevertheless; they can be trained in supervised and semi-supervised ways also, but less

common. Unsupervised, there are no correct labels to compare the results to. Supervised

and Semi-supervised is the ability to use correct labels during the training of the

autoencoder, but in this case, using the supervised or semi-supervised autoencoder cannot
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produce metrics such as accuracy and root-mean-square. Supervised and semi-supervised

autoencoders has optimal use case when the autoencoder branched to hire other

functionality such as classification or object detection [110, 111, 112].

Autoencoders are designed to reproduce their input at the output layer. The key difference

between an autoencoder and a typical Multi-Layer Perception (MLP) network is that the

number of input neurons is equal to the number of output neurons. Considering a simple

autoencoder with one single hidden layer that represents the code as per fig 7, in order to

produce the same output as the final layer, the internal hidden layers must learn what

features are important. We can see the design of 5 dimensions reduced to 2 dimensions,

then expanded back to the original 5 in the output.

Figure 6. Shallow Autoencoder with single hidden layer [Source: Author]

Unlike feedforward network, autoencoders can be trained with the recirculation concept to

reproduce its input at the output [104]. The hidden representation in the middle attemptsℎ

to obtain the significant input information, which is normally the unique input features.

That, before they are decoded back to the output. This concept is extremely similar to the

Principal Component Analysis (PCA) which tries to reduce the dimensionality into a few

principal components.
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Figure 7. Feedforward network illustration [Source: Author]

The autoencoder network can be described in two parts, the encoder function andℎ = 𝑓(𝑥)

the decoder that reconstructs the input features function . In case of the𝑟 = 𝑔(ℎ)

autoencoders successes to reproduce perfectly, then they are not significantly𝑔(𝑓(𝑥)) = 𝑥

useful. Instead, autoencoders are implemented to be able to learn patterns not to only

copy. Thus, they are controlled to allow them to copy only approximately, and to copy only

input that resemble the data used during the training process. Further, the model is

designed to prioritize features of as often learns useful properties of the input date.

Modern autoencoders have generalized the idea of an encoder and a decoder beyond

deterministic functions to stochastic mappings, which are encoding distributions

and decoding distributions . Any latent variable model𝑝
𝑒𝑛𝑐𝑜𝑑𝑒𝑟

(ℎ | 𝑥) 𝑝
𝑑𝑒𝑐𝑜𝑑𝑒𝑟

(𝑥 | ℎ)

defines a stochastic encoder𝑝
𝑚𝑜𝑑𝑒𝑙

(ℎ | 𝑥)

(2.1)𝑝
𝑒𝑛𝑐𝑜𝑑𝑒𝑟

 (ℎ | 𝑥) = 𝑝
𝑚𝑜𝑑𝑒𝑙

  (ℎ | 𝑥)

and stochastic decoder.

(2.2)𝑝
𝑑𝑒𝑐𝑜𝑑𝑒𝑟

 (𝑥 | ℎ) = 𝑝
𝑚𝑜𝑑𝑒𝑙

  (𝑥 | ℎ)

Generally, the encoder and the decoder distributions are not necessarily conditional

compatible with a unique joint distribution , but asymptotically compatible𝑝
𝑚𝑜𝑑𝑒𝑙

(ℎ | 𝑥)

[103].
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2.4.2 Deep autoencoders

Considering the basic autoencoder structure, stacked autoencoders are commonly used

when more hidden layers are needed to optimize and enhance the autoencoder

calculations. Stacked autoencoders are also called deep autoencoders. Hidden layers are

not only sub-selecting certain features but calculating combinations of the original features

representing the original data in a reduced dimensional space.

Figure 8. Stacked Autoencoder Illustration [Source DeepLearning AI]

The single hidden layer (Shallow) autoencoders and the stacked autoencoder have

significant impact on the model losses and accuracy. The more hidden layers the

autoencoder has, the better the output results. The following figures demonstrate the

difference between shallow and stacked autoencoders. Modified National Institute of

Standards and Technology database (MNIST) used in this demonstration [114]. MNIST

consist of grayscale color band with images of 28 x 28 pixels. MNIST is commonly one of the

best datasets to assess the performance of neural networks.

The MNIST handwritten digits dataset used to train and evaluate both shallow and stacked

autoencoders. The results are elaborated where the autoencoder trained to encode the
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input images in lower resolution latent representation. The autoencoder learns to reduce

the input vector to 4 x 8, then reconstruct the input back to its 28 x 28 original dimensions.

Figure 9. Shallow autoencoder output, from top to bottom, input, encoded and decoded

Figure 10. Autoencoder architecture

The shallow autoencoder consists of 1 hidden dense layer, In other hands, the deep

autoencoder consist of 5 dense hidden layers. There is a noticeable improvement in the

decoded output of the images, with lower losses from the training process, that as per fig 9

and fig 11. Furthermore, both autoencoder architectures are illustrated on the graph of fig

10 and fig 12. None in the input shape means that the autoencoder can be trained on

unlimited number of images as input, in MNIST case 60000 images used for training and
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10000 images used for validation. Also 784 is the resultant of 28 x 28 pixels after flattening

the image to fit in the dense layer. Samples of MNIST are selected randomly as the dataset

set to shuffle itself before each training process. Moreover, the code source developed to

produce these figures is listed in appendix A.

Figure 11. Stacked autoencoder output, from top to bottom, input, encoded and decoded

Figure 12. Autoencoder architecture

2.4.3 Autoencoder layers

Autoencoders can use various layer types when it comes to computer vision. Convolutional

layers are superior in feature extraction compared to dense layers. Thus, creating the latent

representation of an image reflect enhanced results during the decoding phase. When the

autoencoder uses convolutional layers, it requires all image dimensions. Thus, a tensor of
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shape 28 x 28 x 1 is required for the MNIST images, which is the image width and height

and the single color channel.

Convolutional kernels are the main advantage of a Convolutional Neural Network (CNN).

They filter through the images to extract feature maps [115]. The spatial extents of the

kernels are 3x3. The subsequent two figures show the difference between the Dense

Neural Network (CNN) and CNN for building autoencoders.

Figure 13. Autoencoder using DNN, from top to bottom, input, encoded and decoded

Figure 14. Autoencoder using CNN, from top to bottom, input, encoded and decoded
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2.4.4 Denoising Autoencoder

The autoencoders, known also by its ability to reduce noise from its data, is tested. The

fashion MNIST with same 28 x 28 grayscale images used, but with random noise applied to

the training dataset. The denoising demonstration showed a superior ability of denoising

the images as illustrated on the figure below. Further, the code developed to produce this

demonstration is listed in appendix A. This denosing autoencoder is based on CNN not a

DNN as the previous examples.

Figure 15. Denoting deep autoencoder, from top to bottom, input, encoded and decoded

2.4.5 Classical and Variational Encoders

Classical and variational autoencoders are the two prominent frameworks that are utilized

for neural image compression. An instance of the former type is MLP and refers to the

standard autoencoder architecture depicted in Fig. 6 [27]. Variational autoencoders utilize

an additional layer of encoding, which is specifically prepared, depending on the objectives

[37]. As a result, variational autoencoders demonstrate positive results on both image

compression and change detection [47,53,57]. For instance, the improved variational

autoencoder shows better accuracy than most traditional algorithms and standard

convolutional autoencoders for desertification detection based on satellite imagery [65,67].

Therefore, the implementation of variational autoencoders might be highly beneficial for
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various uses in the industry. The encoded latent variable z for 1-D case can be presented

using as probability equals to the normal distribution of the input mean and standard

deviation, such that , first a sampling of done, than z is

produced by . For a multidimensional vector, the calculation follows ,

The decoding process can be described as sampling process from the latent space. Further

illustration about latent calculation represented by the pseudo matrix operation as shown

on equation (2.3), where Z has fewer dimensions than the right-hand side. For example,

with weights matrix W in shape of (2, 5) multiplied with flattened input vector X with shape

(5, 1) then subtract the bias vector which in shape of (2, 1), the resultant Z come in shape of

(2, 1). That explain the dimensionality reduction mathematically.

(2.3)

2.4.6 Activation functions

Activation functions are supporting in increasing the neural network learnability and ability

to solve nonlinear problems. One of the main advantages of the Rectified Linear Unit

(ReLU) function is increasing the sparsity of the model, that by increasing the number of

zeros during the multiplications. Thus, ReLU is used commonly as an activation function in

deep learning. Further, the Sigmoid mathematical function is also used to add non-linearity

to the model values. The ReLU and Sigmoid mathematical representation are shown in

equation (2.4) and (2.5) respectively. The ReLU function mainly map the negative input

values to 0. Furthermore, the Sigmoid can be used to map the input values be between 0

and 1, or to -1 and 1. One of the most used Sigmoid functions in deep learning is the logistic

function, which maps any real input value to the range between 0 and 1. The characteristics

of Sigmoid graph looks as a S-shape, which reflect the name from the Greek letter sigma.

Both ReLU and Sigmoid used to map real input values to one that can be interpreted as a

probability [144].

(2.4)

(2.5)
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2.4.7 Multi-Layer Perceptrons

Multi-layer perceptrons have two main layers: the input and output neurons. There is,

however, a hidden layer between the two (input and output). Theoretically, the more

hidden layers, the more effective the algorithm in dimension reduction and data

compression [15,18]. MLP modifies the spatial data unitarily. In 1988, the first MLP

algorithm for image compression was released. The novel algorithm comprised the

conventional techniques including binary coding, spatial domain transformation, and

quantization, all operating as one single file compression tool [28,35]. The approach

employed neural networks to establish the most suitable combination of binary codes, but

could not adjust the parameters to adjustable compression ratio [61,75]. The program has

been advanced by introducing predictive algorithms to predict all pixel values with respect

to their neighbors. The program also includes backpropagation to minimize the mean

square error between original and projected pixel values [18, 68].

2.4.8 Specific Models

Most contemporary neural networks are based on the classical and variational models of

autoencoders. Consequently, a derivative from these types - a recurrent neural network

(RNN) - is the basis for numerous frameworks [87]. The experts primarily adjust the

quantization and entropy coding of neural image compression to achieve the best possible

accuracy of reconstruction and storage efficiency [97]. Furthermore, while such

autoencoders generally perform adequately based on specialized hardware, some models

demonstrate positive results even on resource-constrained edge systems [17]. As a result,

regardless of the conditions, it is possible to adjust the frameworks according to the

objectives. The technological advancement in this area would allow closing the research

gaps in the satellite industry. For instance, comprehensive image compression methods

might be used to improve the global agricultural monitoring systems. From these

considerations, the industry might significantly benefit from the innovative framework of

satellite imagery compression.
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3 Literature Review

3.1 Introduction

The proliferate growth in the number and size of satellite images captured in recent years

has spurred the need to develop new, better, and more efficient compression techniques.

The increase in size is a result of the improvement in the satellite sensor capabilities, which

capture electromagnetic radiation reflected by the surface of the earth with higher

precision than older generations. This research explores different image compression and

decompression techniques employed in the storage and processing of satellite images. As

of date, satellite images are by far the most effective way of representing landscape. The

information captured by satellites is essentially used by urban planners, weather and

climate change analysis, soil science, Internet of Things (IoT), military, and intelligence

agencies to track different progressive activities on the surface of the Earth [10]. This

chapter presents a review of existing literature from articles published in the last five years

(since 2018) with respect to the capture, storage, compression and decompression, and

processing of satellite images. The chapter begins by exploring the need, history,

advancement in quality and storage, as well as the different techniques used to compress

images. The chapter also explores the advantages and disadvantages of different image

compression techniques when applied to satellite images.

3.2 History of Satellite Images

The history of satellite imagery dates back to the advent and proliferation of the space race

between the Soviet Union and the United States of America [20]. Back then, all images were

recorded in black and white, and the quality was extremely low. Since detailed imagery was

not a major concern, the space rivalry was more concerned about conquering space before

one another. As a result, the nations spent huge amounts of resources to develop

spacecraft which could reach further than their rivals. However, the success of the missions

would not be recognized until there was proof of success: that is, images captured from or

about spatial objects [22]. Back in the day, satellite images devices were solely owned by

government organizations such as the National Aeronautics and Space Administration

(NASA) of the US and the Russian Space Agency, Roscosmos.
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As the space race heightened, NASA and Roscosmos developed better, more effective, and

more sophisticated imaging tools which were used to image the earth, moon, and other

terrestrial bodies [24]. The US was the first to records satellite images of the earth from

space in 1959 while the Soviet Union captures a satellite image of the moon later that year

[19,26]. The most popular satellite image of the earth was captured in 1972 by the Voyagers

and remains the most outspoken image of the earth to date [28]. The space race ended

when NASA landed the first man on the moon in 1969 onboard the Apollo 17 [30]. The

groundbreaking achievement was followed by the development of earth imaging programs

that used satellites to capture and record the earth's surface. The Landsat program,

launched by the US in 1972 was meant to captured satellite imagery of the earth [32,33,34].

The information is stored in the NASA Earth Observatory database which is accessible to

the public for free [38]. To date, Landsat remains the largest earth imagery acquisition

program ever launched by a government or private entity

3.3 Advancement in Satellite Imagery

The application of satellite imagery technologies gained popularity among and are now

used in agriculture, meteorology, agriculture, oceanography, cartography, regional

planning, education, intelligence, and warfare. The applications also extend to biodiversity

conservation, geology, landscape, and agriculture. Although some satellite imagery

enthusiasts use the images for minor applications such as hunting or other unexplained

applications, their essence remains unparalleled as time goes by. The application of

satellite images depends on the clarity, quality, and geographical data presented on the

images such as forestry, landscape, soil types, infrastructure, and natural features.

As governments and private entities launched earth imagery programs, the amount of

earth information contained in satellite images grew. The quality and number of sensors

installed on earth-orbiting satellites also improved, resulting in clearer and more accurate

images. The data transmission rates of satellite images also increased, allowing systems to

capture and transmit more images per unit time. Satellite signals travel at the speed of light

(300,000 kilometers per second) [40]. The current data storage media, mainly magnetic

disks and solid-state disks dwarf the floppy disks used to store satellite images in the early

stages of the earth imagery programs [42,43]. Computer processing speed has literally
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doubled every two years as predicted by Moore [41,44]. In other words, the development of

computer microprocessors has always obeyed Moore's law, and modern computing power

has grown billions of times. During the launch of the Landsat, the overall capturing,

transmission, storage, and processing of satellite images were low, a factor that has greatly

changed over the years. The low and high earth orbit is comprised of satellite systems

launched by governments and the private sector as explained below.

3.4 Public satellite imagery system

The earth's orbit is open to public and private investors to launch satellites for whatever

reason. However, launching satellites in space should be done in a manner that one's

satellites do not endanger other satellites in space. The earth imaging satellites have

captured a lot of data that has been freely available to the public for scientific use. Below is

a detailed list of earth imaging programs owned and managed by different governments or

unions around the globe.

3.4.1 CORONA.

The CORONA program was launched by the US central intelligence Agency with the help of

the US Air force. The Directorate of Science and Technology within the CIA spearheaded the

program and used the wet film panoramic technology [48]. The satellites used two cameras

for capturing earth images.

3.4.2 Landsat

Landsat stands as the oldest earth imagery program ever launched by humanity. The

satellites recorded images with 30 meters accuracy and resolution from the early 1980s

[50]. The program has been updated over the years and renamed according to the

generation of satellites launched in orbit. As from Landsat 5, the system began capturing

earth images using thermal infrared instead optical sensors to capture data. The current

generation of satellites in orbit for this program are Landstats 7 to 9.

3.4.3 MODIS
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The program was launched in 2000 and used 36 spectral bands to capture earth imagery

on an almost daily basis. The sensors are installed on Aqua and NASA Terra satellites of the

US.

3.4.4 Sentinel

The Sentinel is a constellation of satellites planned by the European Space Agency which

will be launched in seven missions. Each mission is designed to perform a specific function

ranging from land surface imaging using decametre optical imaging, to land and water

imaging using thermal and hectometer optical imaging sensors. Currently, three missions,

Sentinel 1 to 3 have been launched and are already in use.

3.4.5 ASTER

The program was launched in 1999 by NASA as an Earth-observing System. The Japan

Space Systems, as well as the Ministry of Economy, Trade and Industry, were also involved.

The system is designed to capture detailed images and maps on eland surface elevation,

reflectance, and temperature [52]. The program contributes immensely to NASA's division

of Science Missions and Earth Science. It has contributed immensely to understanding and

forecasting volcanoes, surface climatology, hazard motioning, hydrology, land cover, and

change as well as surface and ecosystem change [45, 53, 55]

3.4.6 Meteosat

It is a weather monitoring Earth-imaging system in operation since 1981. The sensors are

designed to detect weather factors such as water vapor, water bodies, clouds, and other

weather-related elements. Since 1987, the Meteosat is operated by Eumetstat. Different

generations of Meterostat are in operation including the Metesostat Visible and Infrared

Imager which is a three-channel system using the first generation Meteosat [56]. The

Spinning Enhances Visible and Infrared Imager has provided continuous data on climate

change for the past decades [54, 57,58]. The next generation Meteosat, the Flexible

Combined Imager will encompass the technologies used in the first and second

generations.
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3.5 Private satellite imagery systems

They are owned and operated by private corporations. Although most of the systems have

not been launched, they are in development phases and will capture and provide essential

data for the scientific and industrial communities. The systems are listed and described

below:

3.5.1 GeoEye

The satellite has been in operation since 2008 and captures earth images in high

resolutions. Black and white images have a resolution of 16 inches while colored images

have a resolution of 64 inches [36, 60]. It is owned and operated by the GeoEye Company.

3.5.2 Maxar

Maxar owns the WorldView-2 commercial satellite which captures high-resolution images

with 0.46 meters. The satellite-only uses panchromatic mode only and can distinguish

objects that are at least 46 centimeters apart. The company also owns the QuickBird

satellite with a spatial resolution of 60 centimeters. The WorldView-3 satellite has the

highest spatial resolutions at 31 centimeters. The satellite includes both atmospheric and

infrared sensors on board.

3.5.3 Airbus Intelligence

The Airbus Intelligence owns the Pleiades constellation that comprises two sets of

high-resolution earth imaging satellites (105 and 201 meters). The two satellites are

Pleiades-HR 1A and 1B. The satellites image the surface of the earth and operate as civil

and military satellites. They are designed with the European defense standards in mind

[62]. The Pleiades Neo constellation comprises four satellites with 0.3m spatial resolution.

3.5.4 Spot Image

SPOT Image has three high-resolution satellites orbiting the earth. The satellites provide a

1.5 panchromatic channel and 6-meter multi-spectral resolutions. The satellites were

launched in 2011 and 2012 and are also used by the Taiwanese Formostrat-2 and South

Korean Kompstat-2
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3.5.5 Planet’s RapidEye

The RapidEye Constellation was launched in 2008 by BlackBridge, which was later acquired

by Planet in 2015. The constellation contains identical, calibrated sensors, ensuring all

images collected by all satellites are equal in size. The feature enables the constellation to

capture up to four million square kilometers in a day. The imagery captured by the

constellation is applied in agriculture, disaster management, cartography, and

environmental management [63,67]. The constellation was, however, retired in 2020.

3.5.6 ImageSat International

The network is comprised of the smallest high-resolution earth mapping satellites orbiting

at low altitudes. The satellites are designed to move fast between the target objects. The

network is also called Earth resource Observation Satellites, or at times, EROS. The satellites

operate near the poles in a circular sun-synchronous manner, orbiting at 210 meters.

Although the satellites are mainly used for military and intelligence purposes [64], they are

also used in infrastructure planning, border control, land mapping, and disaster response.

3.5.7 China Siwei

China Survey and Mapping technology company owns and operates four satellites called

the Superview. The satellites orbit the earth at 530km and operate in the same orbit

[66,69]. The satellites are of high resolution, up to 2m and 0.5 m multispectral and

panchromatic resolutions respectively [16,71,73]. The satellites are also called Gaojing-1

with the labels 1,2,3 and 4.

3.6 Pros And Cons of Satellite Image Compression

For a variety of reasons, many of the images available on the Internet today have been

compressed. Users can benefit from image compression since images load quicker and

take up less space on a storage device. Image compression does not lower the actual size

of an image; rather, it reduces the actual data components of the image. One of the most

significant advantages of satellite imagery is the capacity to examine huge areas of the

Earth fast. At the same time, the present satellite data's coverage restrictions are visible

[98]. Many natural phenomena with higher spatial and temporal heterogeneity are not
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adequately caught by polar-orbiting imagers in Low Earth Orbit (LEO), which attain global

coverage in a minimum of one day (but usually two or more days). This constraint is

addressed by high-orbit geostationary observations (GEO), which provide many daily views

of the same target. There is, however, a trade-off between satellite picture resolution and

spatial coverage (typically, larger coverage results in lower resolution). For many

applications, obtaining observations with both large geographic-temporal coverage and

high spatial resolution is required, but it is also quite difficult. As a result, new inventions,

supplemental data, and synergies of complementary observations may be called for in the

design of satellite sensors to tackle specific objects or issues. In the following part, we'll go

over this in more detail.

Although satellite observations have demonstrated their excellent capabilities, the data

currently delivered by our satellite equipment has low information richness for many

applications. As a result, it is time to deploy new sensors with expanded capabilities. For

example, it is well known that Multi-Angular Polarimeters (MAPs) provide the best data for

characterizing detailed columnar properties of atmospheric aerosol and cloud [97].

Several advanced parametric missions, including Hyper-Angular Rainbow Polarimeter

(HARP), Multi-View Multi-Channel Multi-Polarization Imaging mission (3MI) on MetOp-SG

satellite [95], Spectropolarimeter for Planetary Exploration (Spex), and Multi-Angle Imager

for Aerosols (MAIA) instrument [96] as part of NASA PACE mission. More so, the China

National Space Administration (CNSA) has invested heavily in polarimetric sensors [94]. The

MAI/TG-2, CAPI/TanSat, DPC/GF-5, and SMAC/GFDM are among the polarimetric remote

sensing instruments that CNSA has recently released, with the POSP, PCF, and DPC-Lidar to

follow in the future years [89]. The principles of these sensors, their technological designs,

and algorithm development have all been extensively explored and tested using aerial

prototypes [91]. Below are some major impacts of image compression and how they relate

to satellite imagery.
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3.7 Reduction in Size

The most important benefit of picture compression is the reduction in file size. You can

keep compressing the image until it is the size you want it to be, depending on the file type

you're dealing with. Unless you adjust the image's physical size with an image editor, this

implies the image occupies less space on the storage media while maintaining the same

physical size. This file size decrease is ideal for the Internet, since it allows webmasters to

produce image-rich sites without consuming a lot of storage space or bandwidth.

3.8 Slow Devices

Large, uncompressed images may take a long time to load on most electronic devices, for

example, digital cameras and computers. Compact disks drives, for instance, only read data

at a certain rate and cannot show huge graphics in real-time. Compressed pictures are also

required for a fully working website on some web hosts that send data slowly.

Uncompressed data will also take a long time to load on other storage devices, such as

hard disks. Image compression helps data to load more quickly on slower devices.

3.9 Degradation

When compressing images, one may see image deterioration, which means the image's

quality has deteriorated. In most image formats such as GIF or PNG, the image data is

preserved even though the image quality has deteriorated. A slight degradation in satellite

images could have devastating consequences in analyzing the images [87]. If you need to

show someone a high-resolution image, whether large or little, image compression will be a

disadvantage.
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3.10 Data loss

Compressing some image formats reduces the file size which means a part of the file is

permanently deleted. As a result, it is important to keep backup copies of the

uncompressed images which nullifies the importance of compressing the images in the first

place [85, 93]. Instead of saving storage space, keeping a backup copy occupies more

storage space.

3.11 Problems with satellite images

Satellite databases are big and image processing (generating meaningful pictures from raw

data) is time-consuming since the total amount of land on Earth is so large and resolution is

so high [82.87] Image de-striping, for example, is frequently necessary as part of the

preprocessing process. Weather conditions might impact image quality depending on the

sensor used: for instance, it is difficult to get photographs for regions with regular cloud

cover, such as mountaintops. Third companies usually process satellite image datasets that

are publicly available for visual or scientific commercial usage for these reasons [96].

Commercial satellite businesses do not release their images to the public or sell it; instead,

a license is required to utilize such imagery. As a result, the ability to use commercial

satellite images to create derivative works is limited. Some people have expressed worries

about their privacy since they do not want their property to be visible from above. In its

Frequently Asked Questions (FAQ) section, Google Maps answers to similar issues with the

disclaimer: "We recognize your privacy concerns... The visuals displayed by Google Maps

are identical to those viewed by anyone flying over or driving by a given geographic place.
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3.13 Development of the State-of-Art Data Processing
Approaches of the Next Generation Satellite Images

An important factor that influences the final product's quality is the quality of a

remote-sensing capturing method used. In reality, the quality of the generated remote data

cannot be significantly enhanced once the equipment has been installed, although retrieval

techniques are constantly improved. The eventual remote sensing output may change

significantly, not just as a result of ingesting data from many types of equipment, but also

as a result of improved retrieval ideas. In this context, in the last decade, a new generation

of satellite image processing algorithms has made substantial progress. New techniques,

for example, are capable of extracting a huge number of parameters and rely on rapid and

precise atmospheric modeling (rather than precomputed Look-Up-Tables, or LUT).

Furthermore, simultaneous retrieval of aerosol characteristics is possible. In addition,

retrieval of aerosol characteristics in conjunction with land surface and/or cloud properties

has been introduced [79, 86]. Finally, the combined retrieval of CO2 and aerosol

characteristics, as stated above in the context of the CO2M EU/Copernicus project, is a

potential technique for lowering the influence of aerosol pollution on the resultant CO2

product.

For reliable cloud remote sensing from space, certain computational hurdles remain. It is

necessary to have an efficient and accurate radiative transfer model. While independent

column approximation is commonly used to retrieve optical depth and cloud droplet size,

cloud top roughness causes 3-D radiative transfer (RT) effects which can cause retrieval

biases [79, 81]. Starting with linking their retrieval into a joint framework, the 3-D character

of clouds becomes more of a concern for exploring the interlinkage between aerosols and

clouds, for example, near cloud boundaries. In this context, a pressing need exists for the

development of an inversion-targeted quick but accurate 3D RT model for optically and

geometrically multiplex media, with the inclusion of the spectral signature of gas

absorption and correct adoption of the cloud particle scattering model. For proper

interpretation of all satellite pictures, the development of credible 3D radiative models is

also required to account for horizontal variability of the land surface [77]. Another

important unsolved problem is generating 3D cloud fields to represent 3D radiation fields,

which might be solved by combining active and passive sensors [23].
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Cirrus clouds have an important role in weather and climate processes, according to

several observational and modeling studies [73,75]. Cirrus clouds, despite their visual

thinness [51], have a worldwide presence, control Earth's radiation, and play a vital role in

the study of climatic systems. Cirrus particles have very irregular forms, and their

single-scattering characteristics, such as single scattering albedo and scattering phase

functions, differ dramatically from spherical particles [59.73]. These irregular forms can

produce significant biases in the cloud and aerosol retrievals if an algorithm does not

recognize them [55,59]. As a result, identifying a realistic cirrus particle model and

incorporating it into aerosol retrievals is a viable path to pursue. Furthermore,

advancement in the global chemical and climate transport models is highly linked to the

utilization of satellite data (CTM). When observations are unavailable, for example,

trustworthy aerosol retrievals can be included in Chemical Transport Models (CTMs) to give

precise aerosol loadings [50]. On the same hand, spectral and polarimetric data have a lot

of sensitivity when it comes to constraining aerosol type [43,47,49,51], and satellite data

can help improve the study of transport models emitting atmospheric components [33]. As

a result, combining the processing of satellite data with existing modeled data is another

interesting study area for satellite remote sensing advancement.

Finally, machine learning techniques are now being employed more often to identify

patterns and insights from geospatial and remote sensing data [27, 39]. Because it presents

techniques that can "learn" from data, find patterns, and make judgments with minimum

human interaction, this area of artificial intelligence is particularly suited and appealing for

the study and exposition of Earth observation data. Deep neural networks, in particular,

have lately been employed in remote sensing investigations, particularly for the processing

and interpretation of large volumes of data. Such methods demonstrate the possibility for

automatically extracting Spatio-temporal linkages and gaining additional knowledge useful

for enhancing predictions and modeling of observable physical processes over various

timeframes. These approaches are particularly promising for satellite data interpretation,

especially when data-driven machine learning is combined with physical process models

[83].
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3.14 Deep Learning Models for Image Compression

AI-Ready microchips have evolved during the last decade, creating multiple divisions of

Canonical architecture based on various use cases. Canonical Artificial Intelligence (AI)

architecture consists of sensors, data conditioning, algorithms, modern computing, robust

AI, human-machine teaming, and users (missions) [101]. Each technology evolution step is

critical in developing end-to-end AI applications and systems, as illustrated below.

Nowadays, Modern AI-Ready chips such as Xilinx Zynq Ultrascale, Phytech, and Google

Coral Edge TPU (Tensor Processing Unit) employ the use of the modern AI-optimised

development frameworks. Frameworks such as Vitis AI, HLS4ML on the Python productivity

for boards (PYNQ), the Open Visual Inference and Neural Network Optimization

(OpenVINO), and the Open Neural Network Exchange (ONNX). These frameworks are used

to accelerate the AI application life-cycle from development to prototyping and deployment

to production, cross-platform deployment in particular use cases. Although, some of these

frameworks works optimally in association with their commercial boards only, they have

common application life-cycle. Furthermore, they are utilized to develop deep neural

networks and machine learning models, which applied in image compression [77].

Canonical AI architecture illustrated on figure 17 from the Lincoln Laboratory

Supercomputing Center of Massachusetts Institute of Technology (MIT).
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Figure 17. Canonical AI architecture [Source: MIT, LLSC [101]]
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4 Methodology

The methodology plays an important role in exhibiting the validity of the research. Usually,

research methodology defines data collection and processing tools, data sources and

sample sizes, as well as research requirements [90]. The methodology can be compared to

a formula in mathematical expressions. In this case, it defines how the research will be

carried out, the variables needed and how the projected outcome will be presented. Since

the research relies on secondary data, it is more qualitative than quantitative one. As a

result, the research was approached as a qualitative study seeking to evaluate the best

autoencoder architecture for satellite image compression. That with considering new space

trends such CubeSats and constrained resources.

In this research, autoencoders selected as the main compression method discussed.

Further, the implementation and evaluation of different autoencoder neural networks are

discussed in the analysis and results chapter.

4.1 Technical objectives

This thesis is an execution of one objective of the ScOSA project, which is to evaluate, if

neural networks can be an alternative to classical compression algorithm. Thus, the main

objective of this research is to study the adaption of neural image compression

technologies in satellite imagery and the use cases of deep autoencoders. The following

table list the main technical objectives of the thesis.

Table 1. Technical objectives

OBJ-ID Technical Objective

OBJ-01 Evaluate, if neural networks can be an alternative to classical compression algorithm.

OBJ-02 Identify different neural image compression techniques.

OBJ-03 Evaluate neural image compression state-of-the-art on satellite images.

OBJ-04 Implement an auto-encoder for satellite image compression.

OBJ-05 Validate the produced neural network model on random satellite images
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4.2 Requirements

Current ScOSA advancements requires 20W for 4 nodes, the neural image compression

required to run on 2 nodes maximum. The evaluation and implementation processes shall

comply with the following system requirements.

Table 2. Requirements

REQ-ID Requirements

REQ-01 The autoencoder architecture shall fit on a space-qualified FPGA.

REQ-02 The autoencoder architecture should fit on two Zynq-7020 maximum.

REQ-03 The autoencoder implementation should fulfill a real-time condition of 1 Hz frame rate.

REQ-04 The autoencoder architecture should be distributed on two heterogeneous nodes.

REQ-05 The overall power budget for image compression shall not exceed 10W.

REQ-06 The autoencoder hyperparameters shall be dynamically reconfigurable.

REQ-07 The autoencoder trained model shall be split in encoder and decoder.

4.3 Mission scenarios

This project aims to conduct a higher Technical Readiness Level (TRL) by preparing the

in-orbit demonstration of the developed ScOSA on-board computer. The implemented

autoencoder performance shall be demonstrated on future DLR-CubeSat mission.

4.4 Concept trade-offs

In addition to the trade-off between reliability and performance, which is the DLR mainly

investigating in the ScOSA project, there is also a trade-off between image quality and

compression factor. Image quality, measured based on image similarity structure indices

and the mean square error between raw and reconstructed image.
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4.5 Development tools

A few development frameworks required to implement and evaluate the autoencoders, as

well as to analyze the results. The deep learning framework for this research is TensorFlow.

The fast machine learning HLS4ML based on Python PYNQ overlays and Vitis Ai

development platforms selected for implementation and analysis on Xilinx FPGAs. The

following figure shows the abstraction of the PYNQ framework and the workflow.

Figure 18. PYNQ Python based FPGA development framework diagram from Xilinx [102]

The TensorFlow Keras Functional API shall be used instead of the classical sequential

method for building neural networks [162]. The Functional API will give the architecture

implementation process more high resilience to adapt to the design needs, such as model

breakdown. For example, with functional API the autoencoder can be split in 3 parts, that

will open doors to deploy the compressor (encoder) only to production platform like

satellites with constrained computing resources as CubeSats. Further, keep the

decompressor (decoder) part of the autoencoder on the ground segment to be used for

image reconstruction.
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Figure 19. Illustration of branched model using Functional API [Source:  MachineLearningMastery [143]]

4.6 Data collections

Once the aircraft lands, the data collected during airborne remote sensing and missions

may be downloaded. After then, it may be processed and transmitted to the intended

recipient. However, because the satellite remains in orbit throughout its lifetime, data

collected from satellite platforms must be electronically sent to Earth. If the data is

immediately needed on the ground, the technology developed to do this can also be

utilized by an airborne platform.

For transferring data from satellites to ground stations, there are three basic ways. The

choice of transmission depends on the position of the satellite and the ground station.

First, if the ground station is visible to the satellite, the data is sent directly. In the second

option, the satellite can store the data and wait until the ground station appears in its line

of sight. The third option is applicable for urgent purposes. If the satellite capturing data is

not in the line of sight with the ground station, the data can be shared with another satellite

that forwards the signal to the ground station [31].

Several earth imaging programs, mostly owned by governments, are available to the public

for scientific, academic, and exploratory use. The datasets exist in large sizes and are best

accessed through cloud computing services such as Amazon, Azure, Google Colab, and
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Kaggle. The services provide high computing and storage services that cannot be accessed

on personal computers. There are several ground pickup stations around the world to

facilitate the collection and processing of satellite signals. Usually, satellites send raw digital

data which must be processed to the appropriate geometric, atmospheric, and systematic

distortions. The data is also converted into the right format for storage in the various

satellite imagery datasets. The transformed data is stored in conventional storage devices

such as magnetic hard disks, compact Disks, or solid-state media such as thumb drives [21].

Visible Satellite Images (VIS) are captured by reflecting the sun's light rays. The images

represent what is visible to the human eye in all colors as they appear. However, the

images are presented in 2D and are hence static. Most water bodies appear in blue while

forest covers appear in green. VIS images are easier to analyze from a human point of view

[4]. The images are also easier to compress using both lossy and lossless techniques.

4.6.1 Satellite and instrument datasets (IR and VIS images)

Infrared satellite imagery acts as a temperature map in that weather satellites detect heat

energy in the infrared spectrum [62]. Object visible to the human eye such as water, land

surfaces, and clouds are displayed on the satellite image depending on their temperature.

Dark colors represent warm temperatures while light colors represent low temperatures

[52, 94]. A temperature scale usually accompanies the satellite image for clarification and

interpretation purposes. The public IR satellite image dataset can be found on the Sentinel

Open Access Hub. In addition to the public data, data collected from DLR such as the

Bispectral InfraRed Optical System (BIROS) satellite, which is the second satellite from the

FireBird mission [113]. Further data collected from the DLR Earth Sensing Imaging

Spectrometer (DESIS) which is a hyperspectral Earth observation instrument on the

Multiple User System for Earth Sensing (MUSES) platform on the International Space Station

(ISS). Further, data collected from the DLR Modular Aerial Camera System (MACS).

4.7 Data Preprocessing

As a typical deep learning process, datasets require preprocessing before using them in the

training or inference cycles. Typical preprocessing for training is splitting the dataset into

training and test datasets. Training and test may follow the ratio of 80 / 20, respectively.

The test dataset must not be used during the training; otherwise, the training validation
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fails logically. Further preprocessing is reshaping the data input to a single dimension

vector, or in other words, called data flattening. Furthermore, data shall be mapped to

values between 0 and 1 to validate with the matrix multiplication and neural network

calculations. In this research case, using an autoencoder, most of the preprocessing shall

be reversed after the decoding phase to reach the optimal reconstructed data.

The data processing shall also include a patching method for high-resolution images. The

data patching method is slicing the data into small patches to fit and accelerate the training

and inference processes, then rearranging the sliced patches during the reconstruction

phase. This research will use the data patching method to fit BIROS images to constrained

dimension autoencoder and infer on an embedded system like the Zynq-7000 FPGA.

Further, data patching also will be applied to DESIS data during the hyperspectral

compression experiment. The following figure shows an example of patched images from,

the GeoEye satellite.

Figure 20. Example of the patch preprocessing [Source: GeoEye, IKONOS]
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4.8 Analysis Technique(s)

Based on the collected data, autoencoder implementation trained and evaluated on VIS, IR,

and Hyperspectral Images (HSI). Analysis shall consider the different compression ratios,

resolution of reconstructed images, Mean Square Error (MSE) of the images, the Structural

Similarity Index (SSIM) and the Multiscale Structural Similarity Index (MS-SSIM) between

original and reconstructed images. Further, analysis shall discuss the procedures to deploy

autoencoders on AI-Ready boards. Finally, the analysis should conclude with a comparison

between the different autoencoder types used for data and image compression. The MSE

described in equation (4.1), where N is the width and M is the height of the compared

images. High MSE value refer to high losses between the original g and compared ĝ image.

(4.1)

The Structural Similarity Index described in equation (4.2), where x and y are the two in;put

images for the comparison. The SSIM is based on three comparison measurements,

luminance , contrast and structure . 𝛂, 𝜷 and 𝛄 are the comparison weights. The(𝑙) (𝑐) (𝑠)

SSIM measure the symmetry properties, which make it more accurate than the MSE.

(4.2)

Furthermore, the Multi-Scale Structure Similarity Index described in equation (4.3), where it

is an extension of the SSIM to include multiple channels of the image. MS-SSIM offers better

accuracy than the SSIM, but at the higher computing cost.

(4.3)

Moreover, the MSE and Binary Cross Entropy (BCE) loss functions will be used to measure

the errors during the training and validation processes of an autoencoder. The MSE loss

function described in equation (4.4), where y and ŷ are the ground truth and model

prediction respectively and N is the mean of the total dataset samples.
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(4.4)

The BCE described in equation (4.5), where y is the prediction limits based on the color

scale, for grayscale, 1 for white points and 0 for black points. Further, p(y) is the predicted

probability of the point being white for all N points. The formula shows, that for each white

point (y=1), it adds log(p(y)) to the loss, where that is, the logarithmic probability of the

point being white. Conversely, the equation adds log(1-p(y)), such is, the log probability of

the point being black, for each black point (y=0).

(4.5)
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5 Results and analysis

Experiments 5.1, 5.2, 5.3 and 5.4 focus on implementing and evaluating the autoencoders

as software in the loop (SIL). Further, experiment 5.5 elaborate on the implementation and

evaluation of autoencoders SIL and the hardware in the loop (HIL) for reliable embedded

systems.

5.1 Experiment SIMPA: Simple but Powerful Autoencoder

Regarding image compression, dimensionality reduction is one of the main advantages of

autoencoders. Dimensionality reduction is demonstrated using a random sample of data

points as per fig 21. The autoencoder is also called a shallow autoencoder when there is

only one hidden layer for the encoder and the decoder. Simple autoencoder implemented

for visualization purposes of the 3D to 2D dimensionality reduction. Further, the

reconstruction of original 3D data from the latent representation is visualized, in this case,

the 2D compressed data.

Latent representation elaborated as minimal high-priority features from the original data.

For example, if there are two datasets, one is random but consists of only five figures and

another dataset that is double in size compared to the first dataset but follows a pattern of

squares. The larger dataset is easier to memorize as it follows a defined pattern than the

random dataset. By that, the latent space concept is visualized.

Figure 21. Dimensionality reduction and reconstruction illustration [Source Author]

From this experiment, autoencoders demonstrated significant improvements to be used in

lossy compression. From the reconstructed dataset shown on the output image on the
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right in fig 21, it is clear that the autoencoder has eliminated the noise from the original

data input on the left side of fig 21. Thus, in practice, an autoencoder can be used to reduce

noise from the dataset and compress the data size.

The autoencoder architecture for this experiment consists of only one hidden layer, with

two neurons representing the latent space. The training processes are based on

unsupervised learning where the neural network model compiles and fits, trying to

reproduce the three neurons' input data back on the output layer. The training and

evaluation of the model hired the MSE to assess the accuracy and losses. Further,

stochastic gradient descent (SGD) with a learning rate of 1.5 was used to optimize the

model weights during the training. The neural network was trained for 200 epochs. Figure

23 shows the detailed architecture of the model, and table 3 shows the parameters.

Table 3. Training parameters

Layer (type)                Output Shape              Param #

=================================================================

InputLayer                  (None, 3) 0

Dense                       (None, 2) 8

Dense                       (None, 3) 9

=================================================================

Total params: 17

Trainable params: 17

Non-trainable params: 0

_________________________________________________________________

Example of a sample point encoding and decoding

=================================================================

input point: [-1.31534471 -0.54193058 -0.42882558]

encoded point: [ 1.3342378 -0.86177164]

decoded point: [-1.2095104 -0.57990324 -0.30846006]

In the shape column, the term None appears, which mean the neural network can be

trained on variable batches of data. In this experiment, the data input are 3 columns of

data with 100 rows each. The columns here represent the 3 dimensions and the 100 rows

are the date batches which represented by the term None. Further, None here refers that

the model architecture still valid if the data batches increased, for example 300 instead of

100.  Figure 22 shows the plotted training and validation losses.
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Figure 22. Losses during the training and validation of the simple autoencoder

Figure 23. Simple autoencoder architecture

This experiment’s results led to an evaluation of a simple but powerful autoencoder. That is

because this autoencoder can quickly decode data points, which could represent

telecommunication signals as an example. With such power, generic random encryption

shall be reached to the data, mitigating the spoofing and Man in The Middle (MITM) issues

[109].

52



5.2 Experiment BIRIA: BIROS images autoencoder

This experiment discusses two high-resolution BIROS compression autoencoders. The first

autoencoder reaches a compression factor of 16:1, and the second reaches a 64:1

compression ratio. Both autoencoders hire the patching pre-processing and

post-processed to accelerate the compression and decompressing. Patches samples and

decompressed images are illustrated in the following figure.

Figure 24. Visual results from BIROS image, location is Greece, a) sample of patches during the

preprocessing, b) image with binary mask, c) reconstructed image. [Source: DLR, BIROS]

The figure above showed images a and c, which are infrared images, a red-heat color

mapping used to highlight the visual illustration. The experiment focused on using Medium

Wave InfraRed (MWIR) images obtained from the L1B level of processing of the BIROS

satellite sensors. Typical DLR sensor data processing levels are illustrated in the following

figure.
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Figure 25. Illustration of typical sensor processing levels [122]. [Source: DLR, IMF-ATP]

Both BIRIA experiments use max-pooling and up-sampling layers among the convolutional

layers to achieve the results. Both max-pooling and up-sampling layers are layers with no

weights. Max-pooling is an input drive operation that learns to half the input dimensions

[154]. Thus, the output from the max-pooling layers is smaller than the input. The

max-pooling layer moves over the input, similar to the convolutional layer, with a

predefined stride [155]. The following figure shows an illustration of the max-pooling and

up-sampling processes.

Figure 26. Illustration of the convolution, up-sampling and max-pooling. [Source: ResearchGate  [153]]
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Further, max-pooling is meant to select the maximum values within the stride and collect it

to the output. The up-sampling layer does the opposite of the max-pooling layer; it works

on sampling from the convolutional output and decomposes the values to a larger shape as

an output from its stride [156]. The up-sampling layer doubles the input dimensions and is

followed by a convolutional layer. Furthermore, the up-sampling layer combined with the

convolutional layer is commonly known as deconvolution, inverse convolution, or

transpose convolution [157, 159]. The transpose convolutional layer does both up-sampling

the input and learning how to fill in details during the model training process [158]. Further

illustrations about the max-pooling and the up-sampling are listed with code examples in

appendix B.

5.2.1 Autoencoder for BIROS image compression

This part of the BIRIA experiment focused on implementing an autoencoder based on 10

hidden layers. The autoencoder succeeded in compressing the BIROS images with a 16:1

compression ratio factor. Further, the architecture of this autoencoder is built as a

convolutional autoencoder. The encoder consists of 3 convolutional layers and 3

max-pooling layers, leading to a bottleneck that is 16 times smaller than the input size. The

decoder consists of 3 convolutional transpose layers and 2 up-sampling layers. The

10-layers-autoencoder is trained to accept an unlimited number of inputs. Moreover, 97

images were pre-processed and prepared as a dataset for this model. The dataset is split

into 80% for training and 20% for testing and evaluation. This model accepts input shapes

of 500 × 500 pixels; thus, the full BIROS images are patched to fit the required input shape.

The following figure shows the training versus validation losses, where the curve

exponentially converges and saturates under 5e-4.
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Figure 27. Losses during the training and validation of the 10-layers-autoencoder.  [Source: Author]

The following figure demonstrates the encoding and decoding processes using 10 samples

of the test dataset. The encoded latent space visualization is demonstrated in the shape of

125 × 125, then reconstructed to the 500 × 500 original shape.

Figure 28. The 10-layers-autoencoder results, from top to bottom, input, encoded, decoded. [Source:

Author]

Further, the adaptive moment estimation (Adam) optimizer algorithm was hired to

dynamically optimize and tune the model weights during the training process [151]. The
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autoencoder trained for 500 epochs based on the newly prepared BIROS dataset. Figure 29

shows the detailed architecture of the model, and table 4 shows the parameters. The None

term in the parameter table indicates that the autoencoder architecture can be trained and

tested on an indefinite batch of input images as long as the input images are in the

accepted input shape in the first layer. Furthermore, the ReLU activation function is used in

the hidden layers, and the Sigmoid function is used before the decoder output.

Table 4. Parameters of the 10-layers-autoencoder

Model: "biros_10_layers_500_500_cnn"

_________________________________________________________________

Layer (type)                Output Shape              Param #

=================================================================

input_1                     (None, 500, 500, 1) 0

conv2d                      (None, 500, 500, 64) 640

max_pooling2d               (None, 250, 250, 64) 0

conv2d_1                    (None, 250, 250, 128) 73856

max_pooling2d_1             (None, 125, 125, 128) 0

Conv2d_2   (Bottleneck)     (None, 125, 125, 256) 295168

conv2d_4                    (None, 125, 125, 128) 295040

up_sampling2d               (None, 250, 250, 128) 0

conv2d_5                    (None, 250, 250, 64) 73792

up_sampling2d_1             (None, 500, 500, 64) 0

conv2d_6                    (None, 500, 500, 1) 577

=================================================================

Total params: 739,073

Trainable params: 739,073

Non-trainable params: 0

_________________________________________________________________
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Figure 29. The 10-layers-autoencoder architecture. [Source: Author]

58



Table 5 describes the pseudocode used to build the convolutional autoencoder. All

convolutional kernels are set to 3 × 3 shape, and the padding stays the same through the

whole input. The max-pooling process is applied to half the size for each layer during

encoding after each convolutional layer. The up-sampling layer is set to double the previous

input size, then passes the output to the convolutional transpose layer.

Table 5. Pseudocode of the 10-layers-autoencoder

Encoder function (inputs){

conv_1 = Conv2D(filters=64, kernel_size=(3,3), activation='relu',

padding='same')(inputs)

max_pool_1 = MaxPooling2D(pool_size=(2,2))(conv_1)

conv_2 = Conv2D(filters=128, kernel_size=(3,3), activation='relu',

padding='same')(max_pool_1)

max_pool_2 = MaxPooling2D(pool_size=(2,2))(conv_2)

return max_pool_2

}

Bottleneck function(inputs){

encoder_output = encoder(inputs)

bottleneck = Conv2D(filters=256, kernel_size=(3,3), activation='relu',

padding='same')(encoder_output)

return bottleneck

}

Decoder function (inputs){

conv_1 = Conv2D(filters=128, kernel_size=(3,3),

activation='relu', padding='same')(inputs)

up_sample_1 = UpSampling2D(size=(2,2))(conv_1)

conv_2 = Conv2D(filters=64, kernel_size=(3,3),

activation='relu', padding='same')(up_sample_1)

up_sample_2 = UpSampling2D(size=(2,2))(conv_2)

conv_3 = Conv2D(filters=1, kernel_size=(3,3), activation='sigmoid',

padding='same')(up_sample_2)

return conv_3

}

Autoencoder function {

inputs = Input(shape=(500, 500, 1,))

bottleneck_output = bottleneck(inputs)

decoder_output = decoder(bottleneck)

model = Model(inputs =inputs, outputs=decoder_output)

encoder_model = Model(inputs=inputs, outputs=bottleneck_output)

decoder_model = Model(inputs=bottleneck_output, outputs=decoder_output)

return model, encoder_model, decoder_model

}
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5.2.2 Deep Autoencoder for BIROS extreme image compression

The second part of the BIRIA experiment focused on implementing an autoencoder based

on 14 hidden layers. The autoencoder succeeded in compressing the BIROS images with a

64:1 compression ratio. Further, the architecture of this autoencoder is built as a

convolutional autoencoder as well. The encoder consists of 4 convolutional layers and 3

max-pooling layers, leading to a bottleneck that is 64 times smaller than the input size, with

MS-SSIM higher than 91%. The decoder consists of 4 convolutional transpose layers and 3

up-sampling layers. The 14-layers-autoencoder is trained to accept an unlimited number of

inputs.

Moreover, 396 images were pre-processed and prepared as a dataset for this model. The

dataset is split into 80% for training and 20% for testing and evaluation. This model accepts

input shapes of 256 × 256 pixels; thus, the full BIROS images are patched to fit the required

input shape. The following figure shows the training versus validation losses, where the

curve exponentially converges and saturates under 7e-5.

Figure 30. Losses during the training and validation of the 14-layers-autoencoder  [Source: Author]

The spikes in the losses graph reflect limitations from the dataset images; this can be

smoothed by increasing the dataset size with various images and increasing the training
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epochs. The following figure demonstrates the encoding and decoding processes using 10

samples of the test dataset. The encoded latent space visualization is demonstrated in the

shape of 32 × 32, then reconstructed to the 256 × 256 original shape.

Figure 31. The 14-layers-autoencoder results, from top to bottom, input, encoded, decoded  [Source:

Author]

Further, the Adam optimizer was used to dynamically optimize and tune the model weights

during the training process. The autoencoder trained for 500 epochs based on the newly

prepared BIROS dataset. The None term in the parameter table indicates that the

autoencoder architecture can be trained and tested on an indefinite batch of input images

as long as the input images are in the accepted input shape in the first layer. Furthermore,

the ReLU activation function is used in the hidden layers, and the Sigmoid function is used

before the decoder output.
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Table 6. Parameters of the 14-layers-autoencoder

Model: "biros_14_layers_256_256_cnn"

_________________________________________________________________

Layer (type)                Output Shape              Param #

=================================================================

input_1                     (None, 256, 256, 1) 0

conv2d                      (None, 256, 256, 32) 320

max_pooling2d               (None, 128, 128, 32) 0

conv2d_1                    (None, 128, 128, 64) 18496

max_pooling2d_1             (None, 64, 64, 64) 0

conv2d_2                    (None, 64, 64, 128) 73856

max_pooling2d_2             (None, 32, 32, 128) 0

conv2d_3   (Bottleneck)     (None, 32, 32, 256) 295168

conv2d_5                    (None, 32, 32, 128) 295040

up_sampling2d               (None, 64, 64, 128) 0

conv2d_6                    (None, 64, 64, 64) 73792

up_sampling2d_1             (None, 128, 128, 64) 0

conv2d_7                    (None, 128, 128, 32) 18464

up_sampling2d_2             (None, 256, 256, 32) 0

conv2d_8                    (None, 256, 256, 1) 289

=================================================================

Total params: 775,425

Trainable params: 775,425

Non-trainable params: 0

_________________________________________________________________

Table 7 describes the pseudocode used to build the convolutional autoencoder. All

convolutional kernels are set to 3 × 3 shape, and the padding stays the same through the

whole input. The max-pooling process is applied to half the size for each layer during

encoding after each convolutional layer. The up-sampling layer is set to double the previous

input size, then passes the output to the convolutional transpose layer.

62



Table 7. Pseudocode of the 14-layers-autoencoder

Encoder function (inputs){

conv_0 = Conv2D(filters=32, kernel_size=(3,3), activation='relu', padding='same')(inputs)

max_pool_0 = MaxPooling2D(pool_size=(2,2))(conv_0)

conv_1 = Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same')(max_pool_0)

max_pool_1 = MaxPooling2D(pool_size=(2,2))(conv_1)

conv_2 = Conv2D(filters=128, kernel_size=(3,3), activation='relu', padding='same')(max_pool_1)

max_pool_2 = MaxPooling2D(pool_size=(2,2))(conv_2)

return max_pool_2

}

Bottleneck function(inputs){

encoder_output = encoder(inputs)

bottleneck = Conv2D(filters=256, kernel_size=(3,3), activation='relu',

padding='same')(encoder_output)

return bottleneck

}

Decoder function (inputs){

conv = Conv2D(filters=128, kernel_size=(3,3), activation='relu',

padding='same')(inputs)

up_sample = UpSampling2D(size=(2,2))(conv)

conv_0 = Conv2D(filters=64, kernel_size=(3,3), activation='relu',

padding='same')(up_sample)

up_sample_0 = UpSampling2D(size=(2,2))(conv_0)

conv_1 = Conv2D(filters=32, kernel_size=(3,3), activation='relu',

padding='same')(up_sample_0)

up_sample_1 = UpSampling2D(size=(2,2))(conv_1)

conv_3 = Conv2D(filters=1, kernel_size=(3,3), activation='sigmoid',

padding='same')(up_sample_1)

return conv_3

}

Autoencoder function {

inputs = Input(shape=(256, 256, 1,))

bottleneck_output = bottleneck(inputs)

decoder_output = decoder(bottleneck)

model = Model(inputs =inputs, outputs=decoder_output)

encoder_model = Model(inputs=inputs, outputs=bottleneck_output)

decoder_model = Model(inputs=bottleneck_output, outputs=decoder_output)

return model, encoder_model, decoder_model

}
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The BIROS dataset preparation process is described in figure 32. After collecting BIROS

images, they passed to the patch maker module to slice them into 256 × 256 patches and

store them in a dataset stack of images for training or testing. The dataset must be split

into training and testing datasets before the autoencoder training. The implemented patch

maker module is a module class using native and open-source code. The open-source code

used is optimized to generically adapt to any shape of the raw input images from BIROS

[162].

Figure 32. A Block diagram about BIROS dataset preparation process. [Source: Author]
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Figure 33. The 14-layers-autoencoder modular encoder architecture. [Source: Author]

The autoencoder is designed such that it can be decomposed and used in a modular form.

So, the encoder and the decoder can be used separately.
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Figure 34 shows the compression processes using the 14-layers-autoencoder. The input

image with its original shape is passed to the patch maker module to be sliced into equally

produced 256 × 256 image patches. Suppose the input image does not fit into equally sliced

patches. In that case, the patch maker is designed to repeat a few patches dynamically to

ensure the reconstruction succeeds by applying equation (5.1) to predict the minimal

number of patches. In equation (5.1) is the input image width, is the patch width andϕ β θ

is the stride’s step size. After producing the patches out of the input image, they get passed

to the encoder or multiple encoders in case of heterogeneous programming. Following the

encoder, each encoded patch in the latent space is stored in an N-dimensional stack of the

compressed images. The stack of compressed images stores the latent representation of all

images in the exact position of their location in the N-dimensional stack before encoding

them. The N-dimensional stack size is dynamically defined based on the input image size

and the patching processes in the patch maker module.

(5.1)(ϕ − β) % (θ) =  0

Figure 34. A block diagram illustrates the compression phase. [Source: Author]
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Figure 35. The 14-layers-autoencoder modular decoder architecture. [Source: Author]

Figure 35. shows the decoder architecture separated based on the 14-layers-autoencoder.

Figure 36 shows the decoding and reconstruction process of the image, which is a reverse

process compared to figure 34.
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Figure 36. A block diagram for the decoding and reconstruction phases. [Source: Author]

The BIRIA experiment showed significant results for the autoencoders. Results can be

improved by extending the autoencoder training with larger datasets. Further, the

autoencoder architecture can be extended and generalized for 2D and 3D images. The

standard three-color channels and hyperspectral color channels as explained in the

following experiments.
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5.3 Experiment MPSIA: MACS and public satellite images
Autoencoders

MPSIA experiment on MACS images and public satellite images. Further, instead of

implementing an autoencoder from scratch, pre-trained models will be adapted to the

satellite and remote image compression without fully retraining the autoencoders. In

addition to the advancement from the previous experiment, two autoencoder architectures

evaluated in this experiment, the first is based on RNN and Long Short-Term Memory (RNN)

and the second is based on Generative Adversarial Network (GAN). The LSTM model is

based on the residual Gated Recurrent Unit (GRU), which use RNN-based autoencoder to

compress and reconstruct the images with different compression rates using the same

model [116]. The GAN model is about combining Generative Adversarial Networks with

learned compression to obtain a generative compression system [117].

5.3.1 Transfer learning: Modern deep learning paradigm

Considering the modern deep learning paradigm, training neural networks from scratch is

not the optimal solutions for complex applications. Instead, transfer learning is the solution

[123]. Transfer learning and fine-tuning pre-trained models is optimal to accelerate

application customization, especially when the pre-trained models are significantly efficient

and trained on large datasets. The neural networks can rely on pre-trained models, with

small modification applied on their architecture. For example, Residual Neural Network is

one of the advanced and commonly used neural networks, retraining such a neural

network would require long time and hyper computing power. Otherwise, developing new

neural network on top of it is the optimal solution, that by retraining only partial part of it,

like unfreezing the trained model and retrain only one or a couple of layers from. The

partial training approach accelerates the processes of producing new effective neural

networks.
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5.3.2 LSTM: Long Short-Term Memory based Compression Autoencoder

The RNN architecture permits controlling the amount of information learned from the data:

it increases at every shot, and a well-observed trade-off is found between the more

substantial compression and a better reconstruction, tuning the reconstruction bit rate.

The model was initially evaluated on Kodak uncompressed dataset images [118]. The

residual GRU is a one-shot additive reconstruction network. BCE loss function was used to

assess the model accuracy. The model trained on 1 million training steps.

Figure 37. Single shot iteration of the RNN Autoencoder [Source: ResearchGate [116]]

Figure 37 illustrates that the encoder (E) and the decoder (D) are RNNs optimized with

residual error. The single-shot strategy of the autoencoder, including the binarizer (B),

which is Entropy coding binary, can be described by equation (5.2). The encoder is followed

by the binarizer, which is similar to the BCE function (equation 4.5), to do Entropy coding on

the pixels, thus, storing the input data with a minimal number of bits in latent

representation. Later, the decoder can reconstruct the original image from the binarized

probabilistic latent representation.

(5.2)

This is a progressive reconstruction of the original image 𝒙. Each iteration populates more

bits generated from the encoder and leads to a significant improvement during the

reconstruction. Thus, each successful iteration adds to the previous estimation of the

original image. The following equation can describe the additive reconstruction.
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(5.3)

Table 8 shows a snapshot of the RNN-LSTM-based model comparison with JPEG

compression on compression based on the image SSIM. Comprehensive qualitative

comparison between LSTM- and GAN-based compression autoencoder and the

Consultative Committee for Space Data Systems (CCSDS) standards elaborated by the end

of this experiment.

Table 8. Comparison be LSTM image compression and JPEG

Compression method SSIM

LSTM 0.8091

JPEG 0.7748

Table 9 compares the BPP, the compression ratio, and its evolution over the additive

reconstruction.

Table 9. Adaptive reconstruction iteration samples

Iteration Bits Per Pixel (BPP) Compression Ratio

0 0.125 192:1

5 0.750 32:1

15 2.000 12:1

The evaluation of the adaptive reconstruction learning on satellite and aerial images is

shown in figure 38.
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Figure 38. Visual illustration of the iterative reconstruction. a) Jogjakarta, Indonesia [Source: Airbus,

Pleiades ], b) Helgoland island, North Sea.

5.3.3 GAN: High-Fidelity Generative Image Compression Autoencoder

The High-Fidelity Generative Image Compression (HiFiC) combines GAN and learned image

compression. The HIFIC model arguments conditional GAN with learned lossy compression.

In figure 39 HiFiC is the model trained using the MSE loss function and the Learned

Perceptual Image Patch Similarity (LPIPS) combined with GAN [117, 146]. The M&S is the

deep-learning-based Mean and Scale Hyperprior optimized for mean squared error [149].

The Better Portable Graphics (BPG) is a non-learned codec based on H.265 the

High-Efficiency Video Coding that commonly reaches significant PSNR [147, 148]. No GAN is

a benchmark, using the same architecture as the HiFiC model, but with combining with the

GAN. The following graph shows the average bits per pixel (bpp) and the learned

components, which done on the images of the evaluation study.
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Figure 39. Comparison between the HIFIC and some state-of-the-are compression models. [Source: HIFIC

[117]]

The compression performance comparison above shows that training the model with GAN

improves the image decoding reconstruction. The trained GAN model significantly

outperforms other compression methods with an intensive bit per rate compression.

Further, the HIFIC model utilized Leaky ReLU (LReLU) and ReLU activation functions. The

advantage of using the LReLU is to tune the saturation losses of the signal to either zero or

the dominance of random noise from digital rounding, which reflects a significant

optimization of the training process [150]. Figure 40 shows the GAN-based autoencoder

architecture.

Figure 40. HIFIC autoencoder architecture [Source: HIFIC [117]].

Considering the transfer learning paradigm, the HIFIC model was retrained to combine 2D

satellite images with 3-color-channels. Due to the high computational cost of the HIFIC

model, the model has been optimized and retrained twice up to 50,000 epochs. The first

time model was trained using MSE and LPIPS only as loss functions up to 50,000 epochs,

then saved a training checkpoint. The second time the model used the trained model

weights using the MSE and LPIPS checkpoint 50,000 but applied the GAN loss on it for

another 50,000 epochs. The training outcome is saved as a checkpoint, which can be

directly evaluated or extended until the 1 million epochs per the original model. The model
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checkpoint was evaluated on, 7006 random images mixed between images from the COCO

dataset and satellite images. There are noticed 20% increase in losses and drops in the

PSNR than the model trained for 1 million epochs. Further, the pre-trained version and the

two trained checkpoints of the model are included in the source code base as listed in

appendix A.

The reconstructed results using the HIFIC trained on 1 million COCO images are

significantly impressive; thus, a difference image is calculated to check the losses between

the original and reconstructed images. Figure 41 shows that the losses are mainly the noise

eliminated from the encoded image, which highlights the advantage of the autoencoder's

ability to denoise the data.

Figure 41. Difference image calculated between original and reconstructed image. a) and b) original, c and

d) reconstructed.

Table 10 shows that the HIFIC-GAN model outperforms the LSTM-RNN-based compression

autoencoder. Since LSTM-RNN already outperforms the JPEG compression method, then no

further comparison with HIFIC-GAN is required.
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Table 10. Comparison on the quality of the reconstructed images suing LSTM and GAN models

LSTM-RNN HIFIC-GAN

MSE 116.1020 54.3756

SSIM 0.9083 0.9049

MS-SSIM 0.9625 0.9544

Compression ratio 12:1 26:1

Bits Per Pixel 2.0000 0.3590

The HIFIC results show dramatic improvement in the MSE than the LSTM-RNN model. A

significant difference in the compression ratio and BPP between the two models, where the

HIFIC-GAN model wins over. The LSTM-RNN model showed a slightly better SSIM and

MS-SSIM index than the HIFIC-GAN model; however, the slight difference can be ignored

considering the advanced compression ratio. Finally, with the near-to-1 MS-SSIM index

results, the autoencoder compression using the selected architectures can be described as

near-lossless compression, contrary to JPEG compression.
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5.4 Experiment DEHIA: DESIS and Hyperspectral images
Autoencoder

The DESIS and HSI images Autoencoder (DEHIA) experiment show the results of developing

an autoencoder to compress and reconstruct Hyperspectral images. Reducing the

spectrum channels dimensionality of HSIs is crucial during the decision-making process on

the raw data and the analysis. By utilizing the advantages of autoencoder, quick analysis

can be reached and eliminate the dead-weight data on the host satellites. The DESIS

instrument has 235 spectral bands with a wavelength range from VIS (400 nm) to

near-infrared (1000 nm), reflecting a 2.5 nm spectral sampling and a ground sampling of 30

m from ~430 km orbit of the ISS [120]. Figure 42 shows a visualization of the spectral

channels of the DESIS instrument (a), referenced with an HSI from the PaviaU dataset [126].

Figure 42. Compression visualization on a) 235 bands HSI [Source: DLR, DESIS], b) 103 bands HSI [Source:

Pavia University].

During the preprocessing phase of the DESIS HSI, spectral stacking was required to prepare

the training and evaluation data for the autoencoder. The visualization in figure 43 shows

different wavelength channels of the HSI, a) and b) VIS mixed with NIR, b) and c) are VIS,

and e) is the gray ground truth of the HSI.
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Figure 43. Different spectral visualization on DESIS HSI, from Paparoa, New Zealand.

Two hyperspectral autoencoder architectures were implemented in this experiment. The

first is a linear MLP autoencoder, and the second is a CNN autoencoder. Since the PaviaU

dataset provides latent classification labels, the autoencoders extended to classify the

extracted features from the latent space [127]. The cosine spectral angle (CSA) loss function

is primarily used to train and optimize the spectral autoencoders [128]. The cosine spectral

loss function is described in equation (5.3). Where is the original hyperspectral𝐾

dimensions, is the output layer index, is an element of the input data , is the𝐿 𝑦𝑘 𝑦 𝑓

sigmoid activation function, is an element of the reconstructed input .𝑓(𝑧
𝑘
(𝐿)) 𝑓(𝑧(𝐿))

(5.4)

The result of feature extraction classification on the latent space representation of the

PaviaU dataset using the linear MLP autoencoder is shown in figure 44.
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Figure 44. Latent space classes with MLP autoencoder. [Source: DeepHype [127]]

The feature extraction classification results in the same dataset's latent space using the

CNN autoencoder shown in figure 45. It is clear from figure 45 that convolutional

autoencoders are more advanced than the dense MLP in feature extraction.
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Figure 45. latent space with CNN autoencoder. [Source: DeepHype [127]]

A latent representation of the total spectral of DESIS HSI visualized on an iterative 3D scale

using OpenGL and the code used to produce the latent plots above is listed on the code

source as per Appendix A. Finally, DEHIA showed successful compression ratio of 21:1,

which evaluated on DESIS and PaviaU dataset. The results of HSI compression using

autoencoders surpass JPEG 2000 by ~1.5 dB at rates under 0.15 bps and outperform the

CCSDS)-122.1-B-1 by up to 5 dB overall rates [135, 136].
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5.5 Experiment PEMDE: Procedures for Embedded
Deployment

This experiment aims to apply the required procedures to deploy a neural network to an

embedded system. Quantization and compilation are required to convert the trained

model to be compatible with the limited resources of the embedded host. Xilinx FPGA

Ultrascale system on chip (SoC) Zynq-7020 and Ultrascale+ multiprocessor system on a chip

(MPSoC) Zynq ZU7EV were used to evaluate the PEMDE experiment. Both FPGAs are

evaluated using the PYNQ-Z2 for the Zynq-7020 SoC and ZCU104 containing the ZU7EV

MPSoC.

Figure 46. On the left side the ZCU104 evaluation board, and on the right top, the PYNQ-Z2 evaluation

board. [Source: Author]
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5.5.1 Quantization and pruning

Quantization processes also include pruning, which compresses the model weights to fit

the fixed point architecture of the embedded device. There are two types of quantization,

post-training quantization (PTQ) and quantization-aware training (QAT). After a thoroughly

trained and validated model, the post-training quantization considers quantization and

pruning. Quantization-Aware training considers building the neural network layers with

quantized Fixed Point Layers from the beginning instead of the Float Point Layers. PTQ is

faster than the QAT, which is commonly used. 5.5.2 experiment applies QAT, 5.5.3

experiment applies PTQ.

Figure 47. Illustration about the pruning process, (a) before pruning,  (b) after pruning.

5.5.2 Deployment of simple neural network to the FPGA

HLS4ML is the primary framework for this part of the experiment. Combined with Vivado

software and the sophistication of Python, developing neural networks on FPGA is

significantly faster than using Hardware Description Language (HDL). Further, HLS4ML
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synthesis of the TensorFlow Python implementation into the required HDL to build the

Vivado project generates the Bit Stream overlay to accelerate on the FPGA [160].

Figure 48. Typical workflow with HLS4ML [Source: Fast Machine Learning Lab [145]]

Since the autoencoders can be used for classification, a classification neural network is

considered for this part of the experiment. Based on the MNIST handwritten digits, dataset

is used to train an autoencoder for this experiment. This experiment aimed to evaluate the

deployment procedures to an embedded system, in this case, Zynq-7020, on a PYNQ-Z2

board. Figure 49 shows the PYNQ-Z2 board.

Figure 49. PYNQ-Z2 Zynq Ultrascale SoC [Source: Technology Unlimited]
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Figure 50. (a) Hardware implementation of the neural network, (b) results accelerated on the SoC [Source:

Author, Xilinx]

Figure 50. (a) shows the hardware implementation of the neural network on Zynq-7020 SoC

(System on Chip), where the yellow color represents the neural network. The other color

highlights the Advanced Microcontroller Bus Architecture (AMBA) interconnections (AXI)

intellectual property (IP) core from Advanced Reduced instruction set computer Machine

(ARM) on the Programmable logic. The AXIs connect the programmable logic to the soft

processor, the ARM core on this board. Although a reuse factor of the input/output stream

was defined during the compilation, the Zynq-7020 could not hold a full autoencoder but

separately an encoder or decoder.
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Figure 51. Autoencoder Hardware Architecture with Zynq-7020 [Source: Vivado, Xilinx]

After producing the neural network IP core and the dynamic memory allocator core from

the Vivado accelerator program, The system implementation block diagram is built

manually, as described in figure 51. Further, figure 52 and 53 shows the plots of the

resources allocated from the SoC and the power budget on-chip.
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Figure 52. a)  Power budget, b) resources allocation. [Source: Vivado, Xilinx]

Figure 53. On-Chip power budget [Source: Author, Vivado, Xilinx]

Although the total power on-chip results in 1.451W, considering the losses and heat

dissipation of the chip temperature on 41°C, the overall power of the chip results in ~3.5W.

The optimal throughput is 103 images/s on a 100 MHz clock. The 103 images/s throughputs

of the neural network can be extrapolated from 28 x 28 x 1 to 256 x 256 x 1 as per

experiment 5.2.2. Thus, the throughput will be 1.232 images/s on a single node.

Considering the ScOSA requirements of using maximum 2 nodes for image compression,

using Zynq-7020 SoC nodes will 2 encoders can reach a maximum of 2.464 images/s on

based on the encoder from 5.2.2.
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5.5.3 Deployment of the autoencoder to the FPGA

The Xilinx Deep Processing Unit (DPU) can accelerate the execution of different types of

neural network layers; nevertheless, the need to execute models that have fully custom

layers is required for complex models. Such a layer is the sampling function of a variational

autoencoder (VAE). The DPU fits to accelerate the convolutional encoder and decoder, but

not the statistical sampling layer. The statistical sampling layer executed on the soft

processor in the ZU7EV is the ARM Core CPU. This experiment uses a CNN-based denoising

VAE. The VAE maps the input to a latent space which is a normal distribution. The mean and

standard deviation of the learned distribution are passed to the decoder. Vitis AI platform

was used for the development and inference of this experiment [161]. The MNIST 28 × 28

figures dataset is used to evaluate the deployment on the ZCU104 board. Figure 54 shows

the ZCU104 board.

Figure 54. ZCU104 Zynq Ultrascale+ MPSoC [Source: Xilinx]
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Figure 55. VAE architecture using the DPU and the CPU [Source: Vitis Ai, Xilinx [161]]

Figure 55. shows the VAE abstraction and configuration on the FPGA, where the encoder,

decoder, and sigmoid functions are running on the DPU. Further, the standard deviation,

mean, and random sampler run on the soft processor (ARM CPU) as a custom layer. The

complete autoencoder block diagram of the VAE inference on the ZU7EV MPSoC is listed in

appendix C.

Figure 56. Input and decoded output visualization. [Source: Author, Xilinx, Vitis Ai [161]]

Figure 56. shows the encoded and decoded samples of the VAE. During the pre-processing

phase, random gaussian noise was added to all the training and testing MNIST datasets.

Figure 57. shows the DPU block diagram, where APU is the Application Processing Unit, PE

is the Processing Engine, DPU is the Deep Learning Processing Unit, and RAM is the

Random Access Memory.
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Figure 57. DPU Top-Level Block Diagram [Source: Zynq DPU Product Guide [132]]

Figure 58. shows the Vitis AI stack, where the Vitis AI development platform consists of AI

Compiler, AI Quantizer, AI Optimizer, AI Profiler, AI Library, and Xilinx Runtime Library (XRT).

The Vitis AI environment is used for AI application inference on Xilinx hardware. Further,

Vitis AI consists of optimized IP cores and tools that optimize the targeted hardware's

quantization and compilation processes. Furthermore, a detailed block diagram of the zynq

architecture is listed in appendix C.
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Figure 58. Vitis AI Stack [Source: Zynq DPU Product Guide [132]]

The overall profile power budget is 8.5W, and the clock frequency of 300MHz. The stats

outcome measured 2000 frames/s for preprocessing throughput and 1346 images/s for the

encoding throughput. The ZCU104 is configured to use both DPUs available; thus, two

encoders are running heterogeneously. The results can be extrapolated to 256 x 256 x 1

images based on the BIROS experiment 5.2.2 to yield a throughput of 16.102 images/s.

Further, the throughput can reach 1.0063 images/s when a high-resolution camera input of

1K resolution is fed as input to the encoder. The throughput of ~1 image/second is

considered in the real-time processing range.
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The experiments in chapter 5 are concluded with the evaluation analysis in table 11, which

provides the cross-comparison of some of the most prominent frameworks utilized in aerial

and satellite imagery compression.

Table 11. Performance comparison of different image compression techniques

Method Performance
Features Advantages

RNN-based Approach [6]

Innovative approach via
analysis and synthesis block,
based on Generalized
Divisive Normalization
(GDN)

Outperforms traditional algorithms,
such as BPG and JPEG, on most
parameters according to the Kodak
benchmark.

Supervised Image
Compression for Split
Computing [7]

Utilizes split computing and
knowledge distillation to
create a lightweight feature
extractor for consequent
reconstruction

Can be effectively used for
resource-constrained edge
computing systems; demonstrates
positive results on input and feature
compression

Slimmable Compressive
Autoencoders [8]

Utilizes only non-parametric
operations in compressive
autoencoders

Effective for resource-constrained
edge computing systems; adjustable
to various purposes and settings;
low memory footprint, costs, and
latency

Generative Adversarial
Networks [9]

Utilize contemporary
quantization-aware training
for GAN architectures

Reveal the efficiency of GAN
quantization, which can be used in
consequent RNNs and VAEs

Rate-Distortion
Optimization-based
Network(RDONet) [10]

Implements dynamic block
portioning and additional
hierarchical levels to
maximally optimize
rate-distortion component

Outperforms traditional algorithms
while saving up to 20% of RD
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6 Conclusion and future work

6.1 Summary

The autoencoder neural network and the differences between autoencoder types are

studied in this thesis. After learning about the features and advancements of autoencoders,

five experiments are conducted. The five experiments are SIMPA, BIRIA, MPSIA, DEHIA, and

PEMDE. SIMPA is the very first autoencoder implemented to visualize and evaluate the

neural network's performance. SIMPA also showed a promising approach to data encoding

and decoding, which can be used in cybersecurity matters like signal encryption and

anti-spoofing mitigation [109]. BIRIA experiment focused mainly on the DLR data, where

BIROS satellite image compression was discussed. BIRIA showed significant results in

compressing satellite sensor data that led to a high compression factor of 64:1. BIRIA also

included the development of a new satellite image compression pipeline based on neural

networks.

MPSIA experiment discussed the evaluation of the transfer learning paradigm; thus, two

state-of-the-art autoencoders used in web and game dev industries are optimized and

evaluated on satellite images. Further, MPSIA showed promising results based on the

transfer learning approach. DEHIA experiment mainly discussed hyperspectral satellite

image compression based on the reduction of spectrum channels. Further, DEHIA

discussed that the convolutional autoencoders outperform the classical CCSDS

compression algorithms. DEHIA concluded with a success of 21:1 compression factor.

The PEMDE experiment discussed the procedures for neural network deployment to

embedded devices. PEMDE targeted two AI-Ready hardware platforms, Zynq-7020 and

ZU7EV. Further, the throughput of the encoder evaluated on the Zynq-7020 can be

extrapolated to reach 2.464 images/s with 3.5W power on-chip by using two parallel

zynq-7020 nodes. The ZU7EV can hire 2 encoders in parallel on the same chip by using the

dual DPU available on the MPSoC. PEMDE concluded that the ZU7EV MPSoC could reach

real-time processing when the encoder extrapolated to infer satellite sensor radiance with

~1K resolution.
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Autoencoders showed significant results compared to different compression algorithms,

which shall be recognized as lossy and near-lossless compression as per the BIRIA and

MPSIA experiments.

6.2 Future work

Quantization dramatically impacts neural network accuracy when it comes to embedded

deployment. The 14-layers-autoencoder developed in the BIRIA experiment shall need an

enlargement of its dataset and experimenting with the QAT and PTQ approaches. Future

advancements in autoencoder usage adapted with the Consultative Committee for Space

Data Systems (CCSDS) compression algorithms are recommended to be studied as per

[121, 133, 134]. Further, satellite hyperspectral image compression and in-depth analysis

using convolutional autoencoders gain future research interest as per [135, 137]. As an

extension to the DEHIA experiment, an autoencoder shall be developed to compress the

hyperspectral images based on the image resolution and the spectrum channel, leading to

a significant increase in the compression ratio.

Recommendation for integration with ScOSA project focus on the hardware

implementation. Considering the distributed on-board computing of ScOSA, which hires

multi-nodes of Zynq-7020, an autoencoder neural network would significantly improve the

data storage rates and maintain higher quality. Further, future advancement of ScOSA,

including nodes of the Zynq ZU7EV or ZU9EV MPSoCs, would increase the throughput to

real-time compression using the autoencoder approach. Futhermore, studing the new

canonical hardware architecture for compression, such as Neuromorphic Spiking

autoencoders and Quantum autoencoders, is highly recommended as per [137, 138, 139].

In conclusion, the autoencoders approach showed promising results to adapt with modern

space applications, such as constrained CubeSats and deep space missions.
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Appendix

A Source code base

Please consider that some code modules may be listed publicly, and others may require

access permission. For access permissions, contact office@mse.tu-berlin.de using the

designator MSE-22-004. The source code base for this thesis is listed on the following links:

GitLab: https://git.tu-berlin.de/master-thesis/DLR-ScOSA-Autoencoder

Any open-source code which require citation when used among the natively developed

code is referenced in the code repository.

B Is there a Devil in the autoencoder?

When it comes to generative neural networks like autoencoders, a human might think that

there is a devil in the details of the autoencoder, especially when the results are too good

when visualized by eyes. Thus, engineers justified the performance of the autoencoder with

symbolic mathematical representations, such as probabilistic formulas and difference

images.

In 2019 Google engineers and researchers from University College London published a

paper titled “The Devil is in the Decoder” to discuss the autoencoder functionality in-depth,

focusing on the decoder to solve the scientific community doubts [159]. The following

figures elaborate on the up-sampling process in the convolutional autoencoders.
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Figure 59. Compression evolution through the autoencoder. [Source: Google, UCL  [159]]
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Figure 60. Illustration of the Transposed convolution with kernel size 3 and stride 2. [Source: Google, UCL

[159]]

Figure 61. Decomposed illustration of the transposed convolution [Source: Google, UCL [159]]
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Figure 62. The requirements of kernel size for up-sampling on FPGA-Based systolic architecture. [Source:

PeerJ [158]]

Source code from the author Joseph Raj, Alex Noel (2022), for Vivado implementation of the

up-sampling layers on FPGA-BAsed Systolic architecture is listed on the following link:

https://doi.org/10.6084/m9.figshare.13668644.v2

Source code from the author Joseph Raj, Alex Noel (2022), for MATLAB code

demonstrations is listed on the following link:

https://doi.org/10.6084/m9.figshare.19387118.v2
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C Embedded deployment

Figure 63. Typical Ultrascale Zynq-7020 SoC [Source: Vivado, Xilinx [160]]
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Figure 64. System with Integrated DPU [Source: Zynq DPU Product Guide [132]]

Figure 65. DPU Hardware Architecture [Source: Zynq DPU Product Guide [132]]
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Figure 66. Quantized VAE Autoencoder architecture, part 1. [Source: Author]

119



Figure 67. Quantized VAE Autoencoder architecture, part 2. [Source: Author]
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Figure 68. Quantized VAE Autoencoder architecture, part 3. [Source: Author]
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Figure 69. Quantized VAE Autoencoder architecture, part 4. [Source: Author]
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Figure 70. Quantized VAE Autoencoder architecture, part 5. [Source: Author]
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Figure 71. Quantized VAE Autoencoder architecture, part 6. [Source: Author]
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