Zanger, David and Lenz, Barbara and Maldonado Quinto, Daniel and Pitz-Paal, Robert (2022) Sample-Efficient Hyperparameter Optimization of an Aim Point Controller for Solar Tower Power Plants by Bayesian Optimization. SolarPACES 2022, 27.-30. Sep. 2022, Albuquerque. (Submitted)
![]() |
PDF
- Only accessible within DLR
353kB |
Abstract
This work introduces a sample-efficient algorithm to optimize the control parameters of an aim point controller for solar power tower plants. Optimizing the control parameters increases the performance of the aim point controller, and thus the efficiency of the plant. However, optimiz-ing the parameters in simulation will not yield the true optimal parameters at the real plant due to mismatches between simulation and reality. Thus, optimization must be done at the real tower to find a true optimum. As this can be time consuming and costly, the optimizer should require a minimum number of steps. Hence, a sample-efficient optimization strategy is need-ed. This work introduces a new algorithm based on Bayesian Optimization (BO), which lever-ages multiple sets of simulation data to accelerate the optimization. The algorithm is tested on a six-dimensional test function representing an arbitrary aim point controller. The proposed algorithm outperformed standard Bayesian Optimization by reaching near optimal parameter configurations of 95% accuracy within 33% less optimization steps. In a second test, the pro-posed algorithm is used to optimize a simulated Vant-Hull aim point controller with two hy-perparameters. Here, the algorithm also needs 33% less optimization iterations than the standard BO.
Item URL in elib: | https://elib.dlr.de/189026/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Sample-Efficient Hyperparameter Optimization of an Aim Point Controller for Solar Tower Power Plants by Bayesian Optimization | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Submitted | ||||||||||||||||||||
Keywords: | Aim Point Control, Solar Tower, Bayesian Optimization | ||||||||||||||||||||
Event Title: | SolarPACES 2022 | ||||||||||||||||||||
Event Location: | Albuquerque | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Dates: | 27.-30. Sep. 2022 | ||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||
HGF - Program: | Materials and Technologies for the Energy Transition | ||||||||||||||||||||
HGF - Program Themes: | High-Temperature Thermal Technologies | ||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||
DLR - Program: | E SW - Solar and Wind Energy | ||||||||||||||||||||
DLR - Research theme (Project): | E - Smart Operation | ||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||
Institutes and Institutions: | Institute of Solar Research > Solar Power Plant Technology | ||||||||||||||||||||
Deposited By: | Zanger, David | ||||||||||||||||||||
Deposited On: | 28 Oct 2022 10:04 | ||||||||||||||||||||
Last Modified: | 28 Oct 2022 10:04 |
Repository Staff Only: item control page