
ORIGINAL RESEARCH
published: 24 February 2022

doi: 10.3389/fnrgo.2022.836518

Frontiers in Neuroergonomics | www.frontiersin.org 1 February 2022 | Volume 3 | Article 836518

Edited by:

Giovanni Vecchiato,

National Research Council of Italy, Italy

Reviewed by:

Tuomo Kujala,

University of Jyväskylä, Finland

Carryl L. Baldwin,

Wichita State University, United States

*Correspondence:

Jochem W. Rieger

jochem.rieger@uni-oldenburg.de

Specialty section:

This article was submitted to

Cognitive Neuroergonomics,

a section of the journal

Frontiers in Neuroergonomics

Received: 15 December 2021

Accepted: 01 February 2022

Published: 24 February 2022

Citation:

Unni A, Trende A, Pauley C, Weber L,

Biebl B, Kacianka S, Lüdtke A,

Bengler K, Pretschner A, Fränzle M

and Rieger JW (2022) Investigating

Differences in Behavior and Brain in

Human-Human and

Human-Autonomous Vehicle

Interactions in Time-Critical Situations.

Front. Neuroergon. 3:836518.

doi: 10.3389/fnrgo.2022.836518

Investigating Differences in Behavior
and Brain in Human-Human and
Human-Autonomous Vehicle
Interactions in Time-Critical
Situations
Anirudh Unni 1, Alexander Trende 2, Claire Pauley 1, Lars Weber 2, Bianca Biebl 3,

Severin Kacianka 4, Andreas Lüdtke 2, Klaus Bengler 3, Alexander Pretschner 4,

Martin Fränzle 2,5 and Jochem W. Rieger 1*

1Department of Psychology, University of Oldenburg, Oldenburg, Germany, 2OFFIS Institute for Information Technology,

Division of Transportation Research, Oldenburg, Germany, 3Chair of Ergonomics, Technical University of Munich, Garching,

Germany, 4Chair of Software and Systems Engineering, Technical University of Munich, Garching, Germany, 5Department of

Computer Science, University of Oldenburg, Oldenburg, Germany

Some studies provide evidence that humans could actively exploit the alleged

technological advantages of autonomous vehicles (AVs). This implies that humans may

tend to interact differently with AVs as compared to human driven vehicles (HVs) with

the knowledge that AVs are programmed to be risk-averse. Hence, it is important

to investigate how humans interact with AVs in complex traffic situations. Here, we

investigated whether participants would value interactions with AVs differently compared

to HVs, and if these differences can be characterized on the behavioral and brain-level.

We presented participants with a cover story while recording whole-head brain activity

using fNIRS that they were driving under time pressure through urban traffic in the

presence of other HVs and AVs. Moreover, the AVs were programmed defensively to

avoid collisions and had faster braking reaction times than HVs. Participants would

receive a monetary reward if they managed to finish the driving block within a given

time-limit without risky driving maneuvers. During the drive, participants were repeatedly

confronted with left-lane turning situations at unsignalized intersections. They had to stop

and find a gap to turn in front of an oncoming stream of vehicles consisting of HVs and

AVs. While the behavioral results did not show any significant difference between the

safety margin used during the turning maneuvers with respect to AVs or HVs, participants

tended to be more certain in their decision-making process while turning in front of AVs

as reflected by the smaller variance in the gap size acceptance as compared to HVs.

Importantly, using a multivariate logistic regression approach, we were able to predict

whether the participants decided to turn in front of HVs or AVs from whole-head fNIRS

in the decision-making phase for every participant (mean accuracy = 67.2%, SD = 5%).

Channel-wise univariate fNIRS analysis revealed increased brain activation differences

for turning in front of AVs compared to HVs in brain areas that represent the valuation
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of actions taken during decision-making. The insights provided here may be useful

for the development of control systems to assess interactions in future mixed traffic

environments involving AVs and HVs.

Keywords: human-autonomous vehicle interaction, whole-head fNIRS, multivariate logistic ridge regression,

valuation of actions, decision-making

INTRODUCTION

A majority of vehicle accidents are caused by human errors
(Singh, 2018). A long-held belief is that the introduction
of autonomous vehicles (AVs) in driving will reduce human
errors, leading to an overall improvement in terms of
driving performance and safety for all traffic participants.
However, until a time comes when only AVs travel on
roads, human driven vehicles (HVs) and AVs will co-exist in
traffic environments. In such mixed traffic environments, the
interaction between humans and autonomous agents remains
extremely important. This is of concern regarding not only the
humans using AVs, but also regarding the interaction between
HVs and AVs.

A key aspect for a safe and seamless interaction between
HVs and AVs is how human’s actions are influenced by AVs in
mixed traffic environments. In fact, some studies have shown that
pedestrians and human drivers could actively exploit the alleged
technological advantages of AVs. For example, the pedestrian or
the human driver knows that AVs are programmed to be risk-
averse and stop immediately if it detects an obstacle in its path.
Armed with this knowledge, drivers and pedestrians may act
with impunity while interacting with AVs. Several studies have
reported a shift in behavior when humans are interacting with
autonomous agents compared to other human agents suggesting
that humans might evaluate their own actions differently
depending on the type of traffic agent involved. For example,
Trende et al. (2019) showed that in time-critical situations,
drivers had a significantly higher gap acceptance probability for
turning in front of an AV as compared to HV.Moreover, Millard-
Ball (2018) showed that pedestrians took advantage of a mildly-
mannered AV knowing that the AV will yield at crosswalks, and
they can hence cross the road with impunity. Similar results
were reported by Liu et al. (2020) where drivers revealed greater
intentions to drive aggressively while interacting with AVs as
compared to HVs. Such actions of the driver could be constituted
as “misuse of automation,” a term coined by Parasuraman and
Riley (1997). One such type of automation misuse potentially
leading to dangerous situations when interacting with AVs is
an “overreliance” on the automation system (Parasuraman and
Manzey, 2010). Overreliance occurs when a driver tends to rely
uncritically on the automationwithout recognizing its limitations
or fails to monitor the automation system’s behavior (Saffarian
et al., 2012; Cunningham and Regan, 2015).

The assessment of safety-critical situations in complex traffic
requires significant cognitive resources to form a mental
representation of the situation, to identify potentially critical
interaction partners and to predict their behavior. The correct
estimation and expectation of other’s behavior plays a crucial

role for safe interaction. In situations where the HV and AV
need to interact directly, the driver may tend to underestimate
the reaction time of an AV leading to a risky maneuver. The
prediction of the AV’s behavior in complex traffic situations
is based on the driver’s mental model of the AV. Mental
models are internal representations of a system concerning its
characteristics, potentials and limitations that are mainly formed
by interacting with the system (Kurpiers et al., 2020). Suchmental
models can influence information processing, valuation of
actions and the resulting decision to act in human-autonomous
vehicle interactions. However, it is hard to evaluate such mental
models due to their implicit nature and more objective measures
are required.

Neurophysiological measurements allow for an objective
tracking of cognitive processes such as decision-making. Spatially
resolved brain activation measures can be more specific to
decision-making processes as they are recorded at the location
where these cognitive processes are manifested. This allows us
to unravel what goes on in a driver’s brain while performing
decision-making interactions with technical systems such as
AV. Until now, a solid number of neuroimaging studies have
been conducted that revealed human brain areas involved in
decision-making and characterized their responses in game
theoretic frameworks. Much progress has been made in defining
game-theoretic building blocks of human decision-making
models and implementing these blocks in executable cognitive
architectures such as ACT-R (Taatgen et al., 2005). Moreover,
neurophysiological research has revealed neural correlates for
action-based value signals for reward related decision-making
tasks. Some of these brain areas include the prefrontal cortices
such as the dorsolateral prefrontal cortex (dlPFC), ventromedial
prefrontal cortex (vmPFC), frontal cingulate, anterior orbito-
and mediofrontal cortices (Sanfey, 2007; Lee, 2008; Rangel et al.,
2008; Gläscher et al., 2009; Ruff and Fehr, 2014). However,
very few studies in this field have actually attempted to predict
human decision-making interactions from brain activation in
realistic situations. Hollmann et al. (2011) employed real-
time functional MRI to predict online decisions during social
interactions in the ultimatum game from brain activation and
to reveal brain areas that signal whether offers were subjectively
perceived as unfair. These approaches have been extended
from relatively simple operant conditioning in laboratory
environments (Schultz, 2002) to decision-making in social
context (Sanfey et al., 2003; Sanfey, 2007). However, to the best
of our knowledge, no neurophysiological study has compared
how interactions with other humans or technical systems
such as AVs are reflected in characterizing neural correlates
for decision-making in realistic scenarios such as driving
using fNIRS.
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In this study, we use turning at an intersection as a safety-
critical traffic situation, where the driver must directly interact
with other traffic participants. Previous studies have reported that
between 30 and 40% of crashes are located at or near intersections
even though these situations represent only a small percentage
of the entire road infrastructure (Tay and Rifaat, 2007; Choi,
2010; Gerstenberger, 2015). A lacking consideration for other
road users is the primary reason for accidents when turning
according to a report by the German Federal Highway Research
Institute (BASt) on intersection-related crash factors (Vollrath
et al., 2006; Biebl and Bengler, 2021). When a vehicle stops at
an intersection, the driver must observe the oncoming traffic
stream before accepting a gap and turning into the desired lane.
The gap acceptance problem is one of the main causes for stop-
controlled intersection accidents (Yan et al., 2007). Several studies
have conducted field observations or driving simulator studies
to investigate gap acceptance in these situations (Ragland et al.,
2006; Yan et al., 2007; Lord-Attivor and Jha, 2012), leading some
of them to predict gap acceptance using statistical models. Lord-
Attivor and Jha (2012) collected data from Nigerian intersections
and proposed a binary logit model to model gap acceptance
behavior. Furthermore, Ragland et al. (2006) analyzed video
recordings of five intersections to determine gap acceptance
statistics and proposed a logit model predicting gap acceptance
probability. Such models can help to design and develop driving
assistance decision support systems, which can potentially reduce
the number of traffic accidents at the intersections.

The objective of this study is to investigate if there is a
difference between a human driver’s valuation of actions when an
interaction involves technical systems such as AVs as compared
to similar interactions with other human beings. In a second step,
this paper aims to examine whether these potential differences
in human-human and human-autonomous vehicle interactions
can be characterized from behavior and neurophysiological
whole-head fNIRS brain activation measurements. For this
purpose, we conducted an fNIRS-driving simulator study. We
measured whole-head brain activation using high density fNIRS
throughout the entire driving time to identify neural correlates
associated with the valuation of actions during decision-
making in the turning situations in human-human and human-
autonomous vehicle interactions. We presented the participants
with a cover story that they were driving under time pressure
through urban traffic in the presence of other HVs and AVs,
that the AVs were programmed defensively to avoid collisions
and that they had faster braking reaction times than HVs.
Participants would receive a monetary reward if they managed
to finish the driving block by avoiding risky driving maneuvers
within a given time limit. The participants were repeatedly
confronted with a left-lane turning situation at unsignalized
intersections where they had to decide to turn in front of
a HV or an AV. We hypothesize that under time pressure,
there is more considerate behavior while interacting with HVs
than with AVs as for the latter, there is no safety-critical
consequence of one’s own actions due to the driver’s expectation
that AVs drive more cautiously making them more predictable
in their driving behavior as compared to HVs. This would be
reflected in reduced safety margins (e.g., gap sizes) and increased

certainty during the decision-making process while interacting
with AVs as compared to HVs. Based on previous research
(Sanfey, 2007; Rangel et al., 2008; Ruff and Fehr, 2014), we
hypothesize that human-autonomous vehicle interactions cause
increased activation modulations in the prefrontal areas such
as the dorsolateral and ventrolateral prefrontal, ventromedial
prefrontal, frontal midline brain areas and the anterior cingulate
cortex, since these brain areas are thought to represent the
consideration of values of actions taken during decision-making.

MATERIALS AND METHODS

Participants
Thirteen volunteers (7 females) aged 21–29 years (Mean ±

SD = 23.8 ± 2.61) participated in the study. The participants
had a mean driving experience of 5.8 years (SD = 2.5). All
participants possessed a valid German driving license and gave
written informed consent to participate prior to the experiment
in accordance with the Declaration of Helsinki. The Ethics
Committee of the Carl von Ossietzky University, Oldenburg
approved the experimental procedure. Participants received a
financial reimbursement of 10 e per hour.

Experimental Set-Up
The experiment was performed in a full-scale fixed-base driving
simulator, which offered a 150◦ field of view (Figure 1). The
driving simulator contained a realistic vehicle mock-up. The
driving simulator software SILAB (Krueger et al., 2005) was
used to simulate the driving scenario. The participants controlled
the mock-up car in the driving simulation via a standard
interface consisting of a throttle, brake pedal and steering wheel.
Behavioral data, such as acceleration, velocity and steering wheel
angle were recorded via SILAB.

Participants’ brain activation was measured using a high
density, whole-head fNIRS system throughout the entire driving
time. fNIRS uses the principle of neurovascular coupling where
the neuronal activity is linked to related absorption changes
in the sub-surface tissues in localized cerebral blood flow

FIGURE 1 | Virtual reality lab driving simulator at OFFIS Institute of Information

Technology, Oldenburg—photograph of experimental setup. The participant’s

brain activity is measured with whole-head fNIRS system while they are driving

in the urban traffic.
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FIGURE 2 | FNIRS probe placement. Topologic layout of the emitters (red disks), detectors (green disks) and the fNIRS channels (purple lines) on a standard 10–20

EEG system. Figure reproduced from NIRStar 15.0 data acquisition software with permission from NIRx Medical Technologies, USA.

by measuring local concentration changes of oxyhaemoglobin
(HbO) and deoxyhaemoglobin (HbR) as correlates of functional
brain activity using the modified Beer-Lambert law (Villringer
et al., 1993; Sassaroli and Fantini, 2004). We used the NIRScout
Extended system (NIRx Medical Technologies) to acquire fNIRS
data. The system uses twowavelengths of 760 nm and 850 nm and
outputs relative concentration changes of HbO and HbR. Thirty-
two optical emitters and detectors were used to obtain close to
whole-head coverage. In total, 107 channels (combinations of
emitters and receivers) were used to acquire fNIRS data at a
sampling frequency of 1.955Hz (Figure 2). The average distance
between an emitter and detector was∼3.5 cm.

Both the fNIRS and driving simulator data were trigger-
synchronized during the driving task.

Experimental Design
The driving simulation featured multiple left-turn maneuvers
with oncoming traffic in an urban environment. The oncoming
vehicles drove at a speed of 50.4 km/h (equivalent to 14 m/s), the
speed limit for most urban roads in Germany. Due to a STOP

sign, the subject vehicle had to stop at the intersection before
accepting a gap and turning into the desired lane (Figure 3). A
“gap” represents the opportunity to turn left before an oncoming
vehicle. Every gap has an associated gap size that represents
the time in seconds that passes after the first of two successive,
oncoming vehicles passes the intersection until the second vehicle
passed the intersection. The driver faces a series of gaps of
different sizes while waiting at the intersection and has the choice
to either accept or reject a given gap. Accepting a gap means that
the driver completes a left-turn maneuver.

The lane of oncoming traffic was bent slightly to the right
(Figure 3). This makes the estimation of the gap sizes between
oncoming vehicles easier. The simulated traffic consisted of
human driven vehicles (HVs) and autonomous vehicles (AVs)
(Trende et al., 2019). The AVs were always yellow cars without
a virtual human model visible inside the car. The HVs were
represented by cars of other colors (except yellow) where the
virtual human model was clearly visible. Before the experiment,
the participants were instructed how the AVs will look in
the simulation. The participants were told that the AVs are
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FIGURE 3 | Sketch of intersection. The gap size between two oncoming

vehicles defined as the time that passes after the first oncoming vehicle has

crossed the intersection until the second vehicle has crossed the intersection.

programmed to use a defensive, risk-avoiding driving style
(Millard-Ball, 2018). However, in reality, both HV and AV
followed the same driving behavior. The number of AVs in the
simulation was lower than the number of HVs since automated
driving is a novel technique and only a few AVs are available on
the market. AVs represented 15% of the simulated cars. While
waiting at the intersection in front of the STOP sign, between
eight and 10 cars approached the intersection.

We followed Ragland et al. (2006) to design realistic traffic
situations. The authors used video data from five intersections
in the USA to find the distributions of gaps smaller than 12 s
between subsequent cars at intersections. They found that most
gaps were 4 s or shorter with the most frequent gap being
2 s. Overall, the gap size distribution could be modeled as a
lognormal distribution. We designed the distribution of gaps in
our study according to these findings. We decided to present gap
sizes between 1 and 6 s during the experiment. As suggested in
Yan et al. (2007), we designed the traffic in such a way that the
first oncoming vehicles have lower gap sizes. This helps to find
minimal gap size acceptances for participants and assures that a
suitable gap size for each participant’s preferences was presented.
We split the oncoming traffic in two groups: The first 4–6 cars
have a gap size from a range of 1–3 s. A larger gap in the range
of 3.5–6 s was placed after fifth to tenth car, respectively. No
vehicles appeared after the tenth car. The sequence of the type
of involved traffic agent (i.e., HV or AV) among the stream of
oncoming traffic encountered at the intersection varied during
one experiment but remained the same for all participants. We
performed a training session before the experiment in which the
participants drove a short scenario consisting of rural roads and
11 intersections, which took around 10min. The purpose of the
training scenario was to get accustomed to the virtual reality
environment and simulator dynamics.

In the experimental session, participants drove 100
intersections consisting of 10 driving blocks with 10 intersections
per block. The whole session lasted around 70min. The
participants were asked to stop after 10 intersections and had a
break of 1–1.5min. Time pressure was applied during each block
of the experiment. If the participants managed to reach the end
of the 10th intersection in a block within 5:30min, they received
a bonus of 1e per block. The timer and intersection counter were
displayed as a Heads-up-Display (HUD) in the simulation. To
reach the end of the scenario within the block in the given time
limit, the participants had to take at least some of the gaps while
waiting at intersections. In principle, participants could have
waited until the end of the oncoming stream of vehicles before
deciding to turn. However, the time constraints introduced by
the bonus discouraged participants to employ such a strategy.
Across all participants, only 2 out of the 1,200 turning maneuvers
were performed after the last car when the oncoming traffic had
already passed.

After the experimental session, the participants were asked to
fill out a questionnaire with 4 qualitative questions about trust
in AV. The participants choose a score between 1 and 6 for the
quantitative items. They rated 4 items related to trust in AV: “I
accept AVs on the roads”; “AVs are safer than HVs”; “I trust AVs
more than HVs” and “I behaved differently in my interactions
with AVs compared to HVs.”

Data Analysis
The data analysis section consists of three parts: analysis of the
driving behavior, analysis of the neurophysiological data and
analysis of the questionnaire.

Behavior Parameters
As presented in other studies (Fitzpatrick, 1991; Ragland et al.,
2006), we calculate the gap acceptance probability for each
gap size over all participants. The gap acceptance data was
extracted based on the positional data of the subject vehicle
and oncoming vehicles. We fitted a logistic model to the gap
acceptance probability of the participants. The gap acceptance
probability was calculated for gap sizes in 0.35 s steps. The logistic
model had the following form and two regression parameters
to fit.

P (X, m, w) =
1

(

1 + exp
(

−2 log
(

1
0.05 − 1

)

X − m
w

)) (1)

Here, “X” represents the gap size, “m” is the threshold indicating a
50% gap acceptance and “w” is the width describing the difference
between 5 and 95% point of the model. MATLAB 2020 and the
psignifit 4 toolbox (Schütt et al., 2015) were used for fitting the
logistic model to the data.

fNIRS Data Pre-processing
The raw fNIRS data are influenced not only by cortical brain
activity but also by other systemic physiological artifacts (cardiac
artifacts, respiration rate, and Mayer waves) and movement
artifacts causing the signal to be noisy. We pre-processed the
raw fNIRS data using the nirsLAB analysis package to reduce the
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influence of these artifacts (Xu et al., 2014). First, a “coefficient
of variation” (CV) was computed which is a measure for the
signal-to-noise ratio (SNR) from the unfiltered raw data. The
CV was calculated as the ratio between the standard deviation
and the mean of each NIRS channel over the entire duration of
the experiment (Schmitz et al., 2005; Schneider et al., 2011). All
channels with a CV >20% were excluded from further analysis.
Moreover, we performed band pass filtering of the raw fNIRS data
with a high cut-off frequency at 0.1Hz to attenuate the effects
of the above-mentioned physiological artifacts and instrument
noise and a low cut-off frequency of 0.01Hz to reduce the
effects of very low frequency and gradual drift in the fNIRS
data. Additionally, we visually inspected all channels and deleted
those, which were excessively noisy with various spikes. Using
these methods, on average, 99 fNIRS channels per participant
were included in the subsequent analysis (SD = 8.7). Further,
the modified Beer-Lambert’s law was applied to convert the raw
data from voltage (µV) to relative concentration change (mmol/l)
(Sassaroli and Fantini, 2004).

The following fNIRS analysis was based on HbR signal, as
HbR signals are considered to be less influenced by systemic
physiological artifacts like cardiac pulsation, respiration, or
Mayer wave fluctuations than HbO (Obrig et al., 2000; Zhang
et al., 2005, 2009; Huppert et al., 2009; Suzuki, 2017). Moreover,
other studies reported that HbR tends to correlate stronger with
the blood oxygenated level dependent (BOLD) response than
HbO (MacIntosh et al., 2003; Huppert et al., 2006; Schroeter et al.,
2006; Foy et al., 2016).

We performed two types of analyses in order to better
understand the neurophysiological activation differences as an
index for differences in decision-making while turning in front
of HV or AV and to characterize the contribution of these
differences on a functional brain-level. The first type was a
multivariate decoding modeling framework where our goal was
to decode from the whole-head fNIRS activity whether the
participant currently decided to turn in front of an HV or AV.
The decision-making phase was defined as the decision to turn
either in front of a HV or an AV along with the action to execute
the decision. This phase corresponded to the timing 2 s before
pressing the accelerator and initiating the decision to turn up
to 2 s after beginning the turning maneuver for each trial. We
selected this 4 s interval for the decision-making phase to account
for the hemodynamic delay in the BOLD response measured
by fNIRS. In the second type of analysis, we investigated the
contribution of the brain activation features to such a decoding
model that predicts human-human (turning in front of HVs) or
human-autonomous (turning in front of AVs) interactions in the
decision-making phase in a group-level by reporting the effect
sizes for each fNIRS channel. The following sections provide
further details about the methods to implement these analyses.

Multivariate Cross-Validated Prediction of
Turning in Front of HV or AV
The goal of this analysis was to predict whether the participant
decided to turn in front of a HV or AV from the pre-processed
z-score normalized fNIRS data. First, since there were always

more HV trials than AV trials, we balanced the trials by randomly
selecting a sample of HV trials matching the number of AV
trials available for each participant. Each timepoint (sampling
frequency 1.955Hz) in the 4 s time window during the decision-
making phase while turning in front of a HV or an AV was
considered as a single sample for the following classification.

The normalized fNIRS data was separated into train and
test data. We calculated a multivariate binary logistic ridge
regression model implemented in the Glmnet toolbox (Qian
et al., 2013) within a 5-fold nested cross-validation on the
samples to predict whether a particular timepoint in the fNIRS
test data corresponded to human-human or human-autonomous
interaction. The optimization of the hyperparameters (number
of principal components (PCs) and regularization parameter λ)
of the model was carried out in the training phase of the inner
cross-validation loop. The outer cross-validation loop tested
the generalization the logistic ridge regression model with the
optimized hyperparameters to new data. This approach avoids
overfitting of the model to the data and provides an estimate of
how well the chosen decoding model would predict data that has
not been seen previously by the model; for instance, in an online
analysis (Hastie et al., 2009; Reichert et al., 2014).

The λ parameter, which determines the overall intensity
of regularization of the logistic ridge regression model, was
optimized by Glmnet using the training data within the cross-
validation (Qian et al., 2013). We first performed a principal
component analysis (PCA) on the training set. In this way,
the fNIRS training data was transformed into a set of linearly
uncorrelated variables called principal components (PCs). By this
method, the first PC accounted for the largest variance in the data,
and each successive component had the largest possible variance
while maintaining orthogonality to the preceding components.
The first PC has been shown to be linked to motion artifacts
(Brigadoi et al., 2014), and was removed from further analysis.
To increase the signal-to-noise ratio (SNR) and limit further
analyses to the data explaining the most possible variance, all
PCs with eigen values <0.7 were removed as recommended by
Jolliffe (1972) on the Kaiser’s rule (Kaiser, 1958). This resulted in
an average of 13 PCs (SD = 2.4) per participant. The PCA eigen
vectors of the training set was used to transform the test dataset
in PC space.

Since the output of logistic regression can be interpreted as a
class probability, all samples with a model output of p≥ 0.5 were
assigned to the class “AV.” This allowed us to calculate the rates
at which the model correctly classified the two conditions. In this
study, we report model accuracy, which indicates the proportion
of correctly classified samples as either turning in front of an AV
or a HV. The model accuracy was calculated as follows:

Accuracy (%) =
TPAV + TPHV

TPAV + TPHV + FPAV + FPHV
∗100 (2)

Here, TP refers to the number of true positives (number of
samples correctly classified) and FP refers to the false positives
(number of samples incorrectly classified) for the two conditions
AV and HV. Further, we also calculated the F1-score, which is a
combined harmonic average of the precision and recall measures
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of the model. The F1-score for AV condition was calculated
as follows:

F1-score =
2∗TPAV

2∗TPAV + FPAV + FPHV
(3)

The F1-score for HV condition was also calculated accordingly.
We report the final mean model accuracy and F1-score for
all participants.

Characterization of Brain Areas Predictive
to Decision-Making Phase in
Human-Human and Human-Autonomous
Interactions
We aimed to characterize the separability of human-human or
human-autonomous vehicle interactions from the channel-wise
brain activation features used in the above described multivariate
logistic ridge regressionmodel. For this, we performed a channel-
wise paired t-test from the preprocessed fNIRS data for the two
conditions AV and HV on a single-subject level. To generalize
the individual t-statistics brain maps to our test sample, the
channel-wise single-subject t-statistics (t) were weighted with
the participant’s average model accuracy from the multivariate
logistic ridge regression (Accuracymvr) to compute a weighted
average t-statistics (tavg) across the test sample (Unni et al., 2017)
as shown below.

tavg (i) =

∑i, n
i, n = 1 t (i) ∗ Accuracymvr (n)

∑n
1 Accuracymvr (n)

(4)

Here, i refers to the total number of fNIRS channels and n
indicates the total number of participants. We calculated Cohen’s
d for each channel from tavg to indicate the effect sizes in
sensor space.

Cohen′s d (i) =
(tavg (i))2

√

df
(5)

Here, df refers to the degrees of freedom.We report these Cohen’s
d brain maps for the group-level analyses.

RESULTS

Data from one participant was excluded due to simulator sickness
during the experiment. Thus, data from 12 participants are
reported in the following sections.

Questionnaire Results
The results of the trust-related items from the questionnaire are
shown in Table 1. The mean score for the overall trust-related
items in the questionnaire was 3.8 (out of 6) indicating a high
trust in AVs. The Cronbach alpha for the trust-related items was
0.78, indicating that these items have an acceptable reliability
or internal consistency. Furthermore, 7 out of 12 participants

TABLE 1 | Results from the trust-related items of the post-experiment

questionnaire.

Item Mean score ±

SD

I accept AVs on the roads. 4.2 ± 1.3

AVs are safer than HVs. 4.0 ± 1.5

I trust AVs more than HVs. 3.9 ± 1.4

I behaved differently in my interactions

with AVs compared to HVs.

3.2 ± 1.2

Overall 3.8 ± 0.9

FIGURE 4 | Gap acceptance vs. gap size over all participants for HV (blue)

and AV (red). The marker size represents the total number of events for the

corresponding gap size. A logistic model was fit to each condition.

stated that they turned in front of an AV preferably, when
asked about a specific strategy for AVs. It is possible that these
participants may feel that the interaction with a programmed
vehicle is more controllable than with a human driver due to the
AVs’ perceived predictability. Another possible explanation could
be that the participants potentially tried to exploit the defensive
programming behavior and driving performance of AVs solely
based on the cover story to gain a temporal advantage during the
drive and achieve the bonus.

Behavioral Results
Figure 4 shows the gap acceptance probability in relation to the
gap sizes by fitting the logistic model for HVs and AVs. Gap
sizes were grouped in 0.35 second steps. The gap acceptance
events were pooled over all participants. The models’ widths (w)
describing the difference between the 5 and 95% point of the
model for AVs and HVs were wAV = 0.65 s (0.59–1.25 s) and wHV

= 4.17 s (2.87–5.04 s), respectively. This is indicated by a steeper
slope for AV as compared to HV in Figure 4.

The models’ threshold values indicating the 50% gap
acceptance for AVs and HVs were mAV = 3.09 s (2.96–3.20 s) and
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mHV = 3.08 s (2.75–3.30 s), respectively. The difference in the
threshold values is 0.04m. Themodels’ threshold values and their
corresponding confidence intervals show an overlap, suggesting
that these distributions do not differ significantly.

Prediction of Human-Human or
Human-Autonomous Interaction From the
Decoding Model
Using the multivariate logistic ridge regression model, we were
able to predict the type of traffic agent (AV or HV) in the
decision-making phase from whole-head fNIRS brain activation
measurements with an average prediction accuracy and F1-score
of 67.2% (SD = 3%) and 0.67 (SD = 0.05) respectively, across
all participants. Prediction accuracies obtained in line with the
measured dataset exceeded the 95% confidence interval (CI)
for guessing for all participants. Table 2 reports the individual
prediction results for all participants along with the CI for
the empirical chance level. All multivariate predictions reported
in Table 2 were determined on a 5-fold cross-validation to
evaluate the model’s generalization to new data to approximate
an online analysis.

This is to our knowledge the first evidence that brain
processes may differ in the interactions between human driven
and autonomous cars. Together with the behavioral results, this
suggests that human driver may assess the interactions with AV
differently from interactions with HV.

Effect Sizes Discriminating Turning in Front
of AV vs. HV From fNIRS Brain Activation
Figure 5 shows the Cohen’s d brain maps for the group-level
analysis. We visualized the averaged brain map on the MNI 152
brain in Neurosynth1 and used MRIcron2 to determine MNI
coordinates and the corresponding Brodmann areas (BA) for the
brain areas with increased activation differences during the left-
lane turning decision-making phases for AVs as compared to
HVs.

Table 3 lists the brain areas, the MNI-coordinates of the
difference maxima and the Cohen’s d values as indicators of the
effect sizes from the group-level analyses (n= 12).

The results showed the largest effect sizes of brain activation
in the prefrontal cortex (PFC), reflecting activation changes in
the left and right dorsolateral areas (dlPFC; putative BA 46) and
the left ventrolateral prefrontal (vlPFC; putative BA 45) areas
(Cohen’s d ∼ 0.9–1.2). Additionally, the ventromedial prefrontal
areas (vmPFC; putative BA 10) also indicate increased activation
differences while turning in front of AV as compared to HV
(Cohen’s d ∼ 0.9). These prefrontal areas have been previously
implicated in the valuation of actions during decision-making
(Sanfey, 2007; Lee, 2008; Rangel et al., 2008; Hollmann et al.,
2011; Ruff and Fehr, 2014). Furthermore, the superior frontal
gyrus (SFG) and parts of the motor cortices (putative BA 6) also
show increased activation differences between the turning phases
of AV and HV.Moreover, some informative channels can be seen
in the left superior parietal areas (putative BA 7). Overall, our

1http://neurosynth.org
2https://www.nitrc.org/projects/mricron T
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FIGURE 5 | Cohen’s d brain maps representing effect sizes computed from channel-wise weighted averaged t-statistics (tavg) for the group-level analysis. Moderate to

high Cohen’s d values (0.8–1.2) show medium to large effect sizes indicating increased activation differences for the decision-making phase during turning in front of

AV as compared to HV.

TABLE 3 | Brain areas showing increased activation differences in the decision-making phase during turning in front of AVs compared to HVs.

Brain areas Putative Brodmann area (BA) X Y Z Cohen’s d

Left dorsolateral prefrontal 46 −26 62 26 1.20

Right dorsolateral prefrontal 46 24 60 32 0.81

Ventromedial prefrontal 10 4 58 28 0.93

Left ventrolateral prefrontal 45 −48 42 28 1.10

Left superior frontal gyrus 6 −34 10 60 0.87

Right superior frontal gyrus 6 16 4 76 0.93

Left superior parietal 7 −28 −62 68 0.86

The approximate MNI coordinates of activation differences along with the putative Brodmann areas and their Cohen’s d values are shown.

results demonstrate a consistent difference in activation at the
brain-level and these activation differences occur in brain areas
that have been previously related to decision-making.

DISCUSSION

The main promise of autonomous driving is that AVs will
reduce traffic accidents caused by human errors and hence be
safer than HVs. The aim of this study was to investigate if
there is a difference between the valuation of actions when an
interaction involves technical systems such as AVs as compared
to similar interactions with other HVs. Moreover, we wanted to
investigate if these potential differences in human-human and
human-autonomous vehicle interactions can be characterized
from behavior and neurophysiological whole-head fNIRS brain
activation measurements. We believe that this research goal is
extremely relevant in the present situation since some studies
have shown that humans could actively exploit the predictable
and safe behavior of AVs. With the knowledge that AVs are
programmed to be risk-averse, humans tend to act with impunity
while interacting with AVs (Millard-Ball, 2018; Trende et al.,
2019; Liu et al., 2020). Our results provide evidence that humans
show a difference in the valuation of actions in the decisions they
make in such situations depending on whether they interact with
an AV or a HV and this is expressed in fNIRS brain activation
and partly in the behavioral tendencies.

We investigated differences in human-human and human-
autonomous interactions using a full-scale fixed base driving. In
our cover story, we mentioned that the AVs were defensively

programmed in an interaction and drove conservatively to avoid
collisions and had faster braking reaction times than HVs as
this is the expected programming of AVs (Zhan et al., 2016; Li
and Sun, 2018). However, both, AVs and HVs were simulated
according to the same driving behavior.

Results of our gap acceptance model showed that the
confidence intervals of the threshold parameter (m) of the
gap acceptance models overlapped, indicating that there is no
significant difference between the safety margin used during the
turning maneuvers with respect to AVs or HVs. Furthermore,
we observed differences in the model widths, which describes
the 5–95% point of the AV and HV models. The models’ width
parameters indicated that the AV distribution is steeper than the
HV distribution. The steeper slope for AV could be interpreted as
participants tended to be more certain in their decision-making
process while turning in front of AV as reflected by the smaller
variance in gap size acceptance as compared to HV. Similarly,
the shallower slope for HV could indicate that participants
have larger uncertainty in their decision-making process while
interacting with HV during the lane-turning maneuver. We
assume that the participants may have felt more certain while
interacting with AVs due to their perceived predictability and
potentially tried to exploit the defensive strategy of AVs. The
participants may have overestimated the AVs’ alleged defensive
behavior despite the fact that AVs showed the same driving
behavior as HVs in order to gain a temporal advantage in the
experiment. This assumption is further supported by the results
of a trust questionnaire. The mean score for the item “I trust
AVs more than HVs” was 3.9 (on a scale of 1–6) supporting
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the claim that the participants may have overestimated the AVs’
alleged driving behavior and underestimated the technological
limitations of AVs. This automation complacency regarding the
AVs’ safe functioning in the simulation could potentially lead to
dangerous situations (Parasuraman and Riley, 1997).

The neurophysiological results indicate that our approach of
using whole-head fNIRS in combination with a cross-validated
multivariate logistic ridge regression is suitable to predict the type
of involved traffic agent (AV or HV) while making a decision to
turn. This approach allowed us to exploit the spatial specificity of
whole-head fNIRS, in order to predict the traffic agent involved
at the crossing with an average accuracy of approximately 67%
(SD = 3%) across all participants and up to a maximum of
almost 76% on a single-subject level. It is important to note that
these cross-validated predictions are obtained from just 4 s of
fNIRS data in the decision-making phase demonstrating that our
approach of combining multivariate logistic ridge regression and
cross-validation and exploiting the spatial specificity of whole-
head fNIRS has the potential to predict the interaction partner in
time-critical situations. While the predictions might not be very
high, we have previously shown that even imperfect predictions
regarding the driver’s intent can be useful to develop driver
models which can lead to increased safety during interactions
between AVs and HVs in mixed traffic environments (Damm
et al., 2019).

To characterize the neural correlates for the decision-making
phase in human-human and human-autonomous interactions,
we computed the channel-wise Cohen’s d measures as effect sizes
for the fNIRS brain activation over the AV and HV turning
conditions in a group-level analysis. Our initial hypothesis was
that human-autonomous vehicle interaction would result in
increased modulations in the prefrontal areas such as the dorsal
and ventral frontal areas, frontal midline brain areas such as the
ventromedial prefrontal areas and the anterior cingulate cortex,
since these brain areas are thought to represent the values of
actions taken (Sanfey, 2007; Rangel et al., 2008; Ruff and Fehr,
2014). Due to the limited spatial depth of fNIRS, we could not
observe the activity in the anterior cingulate cortex. However,
the group-level analysis revealed increased fNIRS activation in
the prefrontal areas such as the dorsolateral (putative BA 46),
left ventrolateral (putative BA 45), ventromedial prefrontal areas
(putative BA 10), the superior frontal gyrus and parts of the
motor cortices (putative BA 6) when participants turned in front
of the AV as compared to HV. The activation in these brain
areas could potentially reflect the differences in valuation of
actions when turning in front of an AV as compared to HV. The
prefrontal cortex is an important brain area that subserves higher
order executive functions necessary for the cognitive control
of behavior and decision-making. The dorsolateral prefrontal
areas (putative BA 46) show increased activation during risky
decision-making where costs and benefits are weighed (Duncan
et al., 1996). BA 45 has been associated with reasoning and goal-
intensive processing (Goel et al., 1998; Fincham et al., 2002).
The ventromedial prefrontal cortex (putative BA 10) has been
shown to be a part of the reward-processing mechanism elicited
by emotional processes, which plays a vital role in determining
value-based decision-making (Sanfey, 2007). Moreover, some

studies have shown the role of the dorsolateral and ventromedial
prefrontal areas to be involved in uncertainty during the
decision-making processes (Schienle et al., 2010; Stern et al.,
2010; Wever et al., 2015; Tomov et al., 2020). This can be linked
to our interpretation of our behavioral results which show a
difference in the certainty of the driver during the planning and
execution of the turning maneuver in the decision-making phase
while interacting with AVs or HVs.

Previous studies have shown the role of the superior
frontal gyrus in processing emotions and self-reflections in
decision-making (Deppe et al., 2005; Goldberg et al., 2006).
Additionally, the involvement of the BA 6 in motor functioning
such as planning and execution of motor activities is well-
known (Catalan et al., 1998; Hanakawa et al., 2008) suggesting
differences in the underlying brain processes during interactions
with AVs and HVs.

In our study, some participants (7 out of 12) mentioned
that they deliberately took the gap in front of the AVs
because they assumed it would brake due to the alleged
defensive behavior. This is a dangerous assumption since
all the vehicles in the simulation including HVs and AVs
were simulated according to the same driving behavior. The
participants overestimated the behavior and driving performance
of the vehicles solely based on the cover story about the
defensive programming of the vehicles and ignored the visual
evidence based on the similar driving behavior of AVs and
HVs. This is a classic example of “misuse of automation” as
defined by Parasuraman and Riley (1997) as an overreliance
of automation. This automation complacency may lead to
dangerous traffic situations or even accidents in case of
excessive overestimation of the reaction time of the AV or
sensor failure (Parasuraman and Manzey, 2010). Most of the
participants in this study believed that AVs are safer. The
findings of this study may be important in mixed traffic
environments where both HVs and AVs are participating in
the traffic. The software controlling AVs should be able to
account for the fact that humans may behave riskier during
interactions. Furthermore, it would be interesting to investigate
how human drivers would behave if the AVs were able to retaliate
uncooperative or risky driving behavior by providing clearly
visible cues. Future studies could investigate if the behavior
of the human driver changes and if this is reflected in a
change of the action valuation signals in the brain activation
becomingmore similar to the activations observed in interactions
with HVs.

The current study has a few limitations. The experimental
design of the gap sizes did not feature sufficient samples with gap
sizes in the range of 3–6 s. This leads to fewer events within this
range. Furthermore, it should be mentioned that the experiment
was conducted with a rather homogenous participant pool. The
participants were mainly between 21 and 29 years and from an
academic background. This group is generally associated to have
high trust in technology (Kennedy et al., 2008) whichmay have an
impact on the results from the subjective questionnaire regarding
high trust in AV. We suspect that participants with low trust in
technology in general and less trust in the safe functioning of
AVs in particular will behave differently in such an experiment
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leading to a shallower slope in gap acceptance function for AVs.
In this study, the only relevant factors for the gap acceptance
model were the gap size and traffic agent involved, i.e., HVs or
AVs. Several studies argue that the gap acceptance also depends
on personal characteristics such as age, gender, or intersection
characteristics (Darzentas et al., 1980; Bottom and Ashworth,
2007; Yan et al., 2007) which have not been considered in
this study.

The brain areas characterized in this study have been
shown to be involved in determining the valuation of actions
during social interactions in lab-based settings. These neural
correlates could be used to develop control systems for
interactions with AVs at intersections based on the behavioral
tendencies of the driver. Moreover, neurophysiological measures
could be used as an indicator to predict the intent of the
driver in such human-autonomous interactions. Furthermore,
integrating such neurophysiological sensors in control systems
could potentially optimize the performance of the AVs
under safety constraints in mixed traffic environments in
the future.
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