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Tra�c situations like turning at intersections are destined for safety-critical

situations and accidents. Human errors are one of the main reasons for

accidents in these situations. Amodel that recognizes the driver’s turning intent

could help to reduce accidents by warning the driver or stopping the vehicle

before a dangerous turning maneuver. Most models that aim at predicting the

probability of a driver’s turning intent use only contextual information, such as

gap size or waiting time. The objective of this study is to investigate whether

the combination of context information and brain activation measurements

enhances the recognition of turning intent. We conducted a driving simulator

study while simultaneously measuring brain activation using high-density

fNIRS. A neural network model for turning intent recognition was trained

on the fNIRS and contextual data. The input variables were analyzed using

SHAP (SHapley Additive exPlanations) feature importance analysis to show

the positive e�ect of the inclusion of brain activation data. Both the model’s

evaluation and the feature importance analysis suggest that the combination

of context information and brain activation leads to an improved turning intent

recognition. The fNIRS results showed increased brain activation di�erences

during the “turn” decision-making phase before turning execution in parts of

the left motor cortices, such as the primary motor cortex (PMC; putative BA 4),

premotor area (PMA; putative BA 6), and supplementary motor area (SMA;

putative BA 8). Furthermore, we also observed increased activation di�erences

in the left prefrontal areas, potentially in the left middle frontal gyrus (putative

BA 9), which has been associated with the control of executive functions,

such as decision-making and action planning. We hypothesize that brain

activationmeasurements could be amore direct indicator with potentially high

specificity for the turning behavior and thus help to increase the recognition

model’s performance.
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Introduction

Driving is a complex and potentially dangerous task.

Especially maneuvers like merging and turning are predestined

for safety-critical situations and accidents (Yan et al., 2007).

Human errors are one of the most common reasons for vehicle

collisions (Singh, 2015). Turning through oncoming traffic at

unsignalized intersections contributes to 7.4% of all non-severe

vehicle crashes in the United States of America (Harding et al.,

2014). Human error, in particular, the incorrect estimation of

the gap size with respect to the oncoming vehicle, is one of the

main reasons for accidents in these situations (Plavsic, 2010).

Detecting the driver’s intention before such a safety-critical

maneuver could give an advanced driver assistance system

enough time to initiate a risk-mitigating action. Such intention

recognition models could potentially be used to warn the driver

before or during a dangerous maneuver, and thus reduce the risk

or criticality of such a situation. Furthermore, with the advent

of Vehicle-to-Vehicle or Vehicle-to-Infrastructure technology

(Harding et al., 2014), the intent recognition results could

be used to activate warning or intervention strategies in the

oncoming vehicle. An example could be to warn the oncoming

vehicle’s operator via a graphical or auditory interface or directly

slowing down the oncoming vehicle’s speed and thereby increase

the gap size subsequently. Introducing other sensors in addition

to vehicle sensors could help to account for variability in user-

specific factors that influence turning intention.

Several researchers investigated turning at intersections, to

understand the driver’s intention and decision-making process

through observation of contextual information like gap size,

waiting time, etc. Based on video recordings in the USA, Ragland

et al. (2005) identified gap acceptance statistics for turning

maneuvers at intersections. The researchers then used a logit

model to predict the gap acceptance probability based on the

given data. But gap size is not the only factor that affects

decision-making at intersections. Hamed et al. (1997) developed

a multiple regression model to predict the mean critical gap

for turning maneuvers. Based on observations of and interviews

with drivers across 15 urban intersections, the researchers found

that, in addition to the waiting time at intersections (Fricker

et al., 1991; Zohdy et al., 2010), the time of the day and the

purpose of the trip can also influence the average selected

gap for turning maneuvers. Zohdy et al. (2010) investigated

different factors, such as the critical gap size, waiting time

at the intersections, weather, and the overall travel time, as

independent variables for the decision-making process in a left-

turn scenario. The authors concluded that drivers became more

aggressive as they waited longer at the intersection, leading to

filtering through smaller gap sizes. A driving simulator study

performed by Yan et al. (2007) showed that other factors, such

as gender and age also have an impact on the gap acceptance

at unsignalized left-turns. In the last two decades, multiple

researchers investigated machine learning models to classify

or predict driver’s intent. Klingelschmitt et al. (2014) used a

Bayesian network to estimate four different intentions while

using vehicle behavior and contextual data about the current

traffic situation. The model can predict whether a vehicle will

most likely go straight, stop at the traffic light, turn, or follow

the leading vehicle. The authors found that the anticipated

velocity at the stop line is one of the best indicators for intention

prediction. Both studies use dynamic vehicle information,

like vehicle speed or position, for the intention classification.

However, these predictors only vary if the vehicle is not already

waiting at the intersection and thus cannot include waiting

time. Phillips et al. (2017) used a long short-term memory

network to predict whether a driver will turn left, turn right,

or drive straight at an intersection. The model uses different

driving dynamic information, like speed or acceleration, but also

contextual information about the layout of the intersection. The

model is able to predict the correct driver intention with an

average accuracy of 85%. Zhang and Fu (2020) used a hybrid

approach to predict turning intention at an intersection. The

researcher uses an ARIMA time-series prediction to estimate

vehicle dynamic parameters, like acceleration and speed and

afterward predict whether the vehicle will turn left, right, or go

straight with a bidirectional long short-term memory network.

The optimal recognition rate of 94.2% was achieved 1 s before

the maneuver. Trende et al. (2021) used a Bayesian network to

classify the turning intention at unsignalized intersections in a

driving simulator study. Their turning intent was classified while

the vehicle was waiting at the intersection. Besides contextual

information, such as gap size and waiting time, that study also

included user information, such as gender and age, and results of

a driving style questionnaire. Importantly, a feature importance

analysis showed that the contextual information contributed

the most to the reliable recognition of the turning intention.

Therefore, we focus here on gap size and waiting time.

In addition to contextual information, neuroimaging

techniques, such as functional near-infrared spectroscopy

(fNIRS), have the potential to provide an alternative information

channel to design and develop portable brain-based driving

assistance decision support systems capable of predicting the

driver’s intent. These techniques make it possible to investigate

processes in a driver’s brain while performing decision-making

tasks, such as turning at intersections.

In fact, previous neuroimaging studies have characterized

brain areas involved in decision-making in the context of game-

theoretic frameworks. Moreover, neurophysiological research

has revealed key neural correlates, such as the dorsolateral

prefrontal cortex (dlPFC), ventromedial prefrontal cortex

(vmPFC), frontal cingulate, anterior orbito-, and mediofrontal

cortices for action-based value signals in decision-making tasks

(Sanfey, 2007; Lee, 2008; Rangel et al., 2008; Gläscher et al.,

2009; Ruff and Fehr, 2014). However, very few studies in this
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field have attempted to predict and model human intent from

brain activation in realistic situations. Hollmann et al. (2011)

employed real-time fMRI to predict online social decisions in the

ultimatum game from brain activation and to reveal brain areas

that signal whether offers were subjectively perceived as unfair.

These approaches have been extended from relatively simple

operant conditioning in laboratory environments (Schultz,

2002) to decision-making in a social context (Sanfey et al., 2003;

Sanfey, 2007).

Zhu et al. (2019) performed a driving simulator study

with fNIRS to compare various classifiers for braking intention

prediction. The researchers compared seven different machine-

learning algorithms. The authors concluded that a combined

model featuring several classifiers achieves the best test accuracy

with around 90%. Deep learning has been shown to outperform

classic machine-learning models in several tasks. One of the

main advantages of such deep-learning models is their flexibility

that allows these models to learn important representations

and reveal relations in neuroimaging data (Plis et al., 2014).

Several researchers have used neural networks and deep learning

for classification tasks based on fNIRS brain activation data

(Hennrich et al., 2015; Naseer et al., 2015; Evgin et al., 2019; Huve

et al., 2019; Tanveer et al., 2019). Lin et al. (2018) used a Linear

Discriminant Analysis to offline classify turning maneuvers

(left, right, and braking) based on an electroencephalograph.

The researchers compared different time window lengths. The

optimal model achieved an average single trial classification

accuracy of 70.25%. However, to the best of our knowledge, no

study combined contextual information and neuroimaging data

into an integrated model to predict behavior.

The objective of this study is to investigate whether the

integration of whole-head fNIRS brain activation measurements

and context information is beneficial for a turning intention

model, and which brain areas are predictive of turning intent.

Contextual data refers to data about the driver’s vehicle, other

vehicles, and the overall traffic situation during this turning

maneuver. We conducted a driving simulator study while

simultaneously measuring brain activation using high-density

fNIRS. The participants drove multiple left-turn maneuvers

at unsignalized intersections during the study. We focus on

the situation where the driver has halted at an intersection

and waits to perform a left turn through oncoming traffic. A

neural network model for turning intention recognition was

trained on the experimental data and afterward evaluated in

a quantitative and qualitative way. The input variables were

analyzed using SHAP feature importance analysis (Lundberg

and Lee, 2017) to demonstrate how both context and brain-

imaging data contribute and improve the model’s performance.

Materials and methods

The experimental setup and study have been described in

greater detail in Unni et al. (2022) andwill be briefly summarized

in the following sections. It should be noted that Unni et al.

(2022) however focused on different aspects of the dataset.

Participants

Thirteen participants (seven women, aged 21–29 years

(Mean± SD= 23.8± 2.61), driving experience: 5.8± 2.5 years)

took part in the driving simulator study. All participants held

a German driving license and received financial reimbursement

of 10 e per hour for their participation. The Ethics Committee

of Carl von Ossietzky University, Oldenburg approved the

experimental procedure.

Experimental set-up

The full-scale fixed-based driving simulator used for the

experiment has a 150◦ field of view contained a vehicle mockup

and the participants used a standard interface consisting of

throttle, brake pedal, and steering wheel (Figure 1).

We used a high-density, whole-head fNIRS system

(NIRScout Extended system from NIRx Medical Technologies)

to measure the participant’s brain activation during the

experiment. The system uses near-infrared emitters with 760

and 850 nm wavelengths and outputs relative concentration

changes of oxyhemoglobin (HbO) and deoxyhemoglobin

(HbR). Thirty-two emitters and detectors to obtain close to

whole-head coverage were used. Overall, 107 fNIRS channels

(emitter-detector combinations) were used to acquire fNIRS

data at a sampling frequency of close to 2Hz. Both the fNIRS

data and the driving simulator data were trigger-synchronized

during the driving task. A detailed explanation of the fNIRS

setup can be found in Unni et al. (2022).

Experimental design

The driving scenario consisted of multiple left-turn

maneuvers in an urban environment with oncoming vehicles.

The oncoming traffic drove at a speed of close to 50 km/h, which

is the most common speed limit in urban areas in Germany. The

participants had to stop at the intersection due to a stop sign and

then had to wait for an appropriate gap in the oncoming traffic.

A positive turning intention means that the participant accepts

a gap and initiates the turning maneuver. As shown in Figure 2,

the lanes following the intersection were bent, which made the

estimation of the gap size easier for the participants.

The traffic situations were designed according to the findings

of Ragland et al. (2006). We presented gap sizes between 1

and 6 s (14–84m) during the experiment, whereas the first

oncoming cars have smaller gap sizes. This allows finding

the minimal acceptable gap size for each participant (Yan

et al., 2007). Approximately, 8–10 cars appeared while the
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FIGURE 1

Virtual reality lab driving simulator with the whole-head fNIRS system during the experiment.

FIGURE 2

Sketch of intersection. The gap size between two oncoming vehicles is defined as the time that passes after the first oncoming vehicle has
crossed the intersection until the second vehicle has crossed the intersection.

participants waited at the intersection and no cars appeared

afterward. Each participant drove a training session before

the experiment, which took around 10min. This allowed the

participants to get used to the driving simulator and the virtual

reality environment. Overall, the participants drove through 100

intersections distributed over 10 blocks with 10 intersections. In
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FIGURE 3

Schema of the data separation procedure. The “turn” time
interval was extracted 2 s before the actual initiation of the
turning maneuver and thus the depressing of the acceleration
pedal. The “no turn” phase was extracted 0.5 s before the “turn”
phase to minimize the overlap between the two phases.

total the experimental session took around 70min to complete.

By presenting a time limit to each block, the participants were

encouraged to take one of the gaps between the first 10 cars

instead of waiting for all of them to pass. The participants

received a monetary reward for each block they finished within

the time limit. Only 0.16% of all turning maneuvers across all

participants were performed after all cars have passed. For each

turning decision, the waiting time in a number of cars passed

and the chosen gap size were extracted. These two variables are

referred to as contextual information in the following sections of

the article.

The data were labeled based on the two phases: “turn” and

“no turn.” Both phases consist of a time window of a 4-s interval

(Figure 3). We defined the “turn” phase as the interval focusing

on the decision to turn in front of an oncoming vehicle along

with the planning to execute the decision. For the fNIRS analysis,

we chose the interval 2 s before pressing the accelerator and

2 s after the beginning of the turning maneuver to account

for the hemodynamic delay in the BOLD response. This 4 s

delay excludes brain activation changes related to motor control

during the execution of the turning maneuver. The “no turn”

phase is defined as the 4 s time interval before the “turn” phase,

in which the participant is waiting for a sufficient gap size at

the intersection. A gap between the end of “no turn” and the

beginning of “turn” of 0.5 s was chosen to reduce the overlap

between the two phases.

fNIRS data pre-processing

To reduce the influence of systemic physiological artifacts

on the fNIRS data, such as cardiac artifacts, respiration rate,

or Mayer waves caused by blood pressure oscillations, we pre-

processed the fNIRS data using the nirsLAB analysis package

(Xu et al., 2014). A detailed explanation of the fNIRS data

pre-processing can be found in Unni et al. (2022).

After band-pass filtering [0.01–0.1Hz] of the raw fNIRS data

to reduce the effects of the physiological artifacts along with

the very low-frequency drift in the fNIRS data, we performed

a visual inspection and all channels that were excessively noisy

with various spikes were removed from the analysis. On average,

99 fNIRS channels per participant (SD = 8.7) were included.

Then, we applied the modified Beer-Lambert’s law to convert

the raw data from voltage (µV) to relative concentration change

(mmol/l) (Sassaroli and Fantini, 2004).

In this article, the fNIRS analyses were based only on HbR

signals, as these are considered to be less susceptible to systemic

physiological artifacts like cardiac pulsation, respiration, or

Mayer wave fluctuations than HbO (Obrig et al., 2000; Zhang

et al., 2005, 2009; Huppert et al., 2009; Suzuki, 2017). Moreover,

other studies reported that HbR tends to correlate stronger with

the blood oxygenated level dependent (BOLD) response than

HbO (MacIntosh et al., 2003; Huppert et al., 2006; Schroeter

et al., 2006; Foy et al., 2016).

The normalized fNIRS data were separated into train and

test data. We first performed a principal component analysis

(PCA) on the training set. In this way, the fNIRS training data

was transformed into a set of linearly uncorrelated variables

called principal components (PCs). By this method, the first

PC accounted for the largest variance in the data, and each

successive component had the largest possible variance while

maintaining orthogonality to the preceding components. To

increase the signal-to-noise ratio (SNR) and limit further

analyses to the data explaining the most possible variance, all

PCs with eigenvalues <0.7 were removed as recommended by

Jolliffe (1972) on Kaiser’s rule (Kaiser, 1958). This resulted in

an average of 13 PCs (SD = 2.4) per participant. The PCA

eigenvectors of the training set were used to transform the test

dataset into PC space (Unni et al., 2022). We removed the

first PC as it tends to capture movement artifacts in the fNIRS

time series.

Modeling approach

For each participant, three different deep neural networks

(DNNs) were trained and validated. The DNNs differed by the

amount and type of input features used. The DNNs contained

two hidden layers with 25 neurons each. All hidden layers

used the ReLu activation function (Hahnloser et al., 2000)

and 10% dropout (Srivastava et al., 2014). One model was

trained using only contextual features, namely the gap size

and waiting time at the intersection. The second model was

trained on the second to eight principal components of the

fNIRS brain activation recordings. The third model used both,

contextual and neurophysiological input features, which lead to

nine features in total. The output layer of the network classifies

the turning intention with a sigmoid function into the two

classes “turn” and “no turn.” The networks were trained with

the ADAM optimizer (Kingma and Ba, 2014) for 500 epochs

each. Binary cross-entropy was used as a loss function. Five-

fold cross-validation was used for model validation. A total of

1,600 instances of input were available per subject. This leads to a
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training data set the size of 1,280 for each subject given the 80/20

split of the cross-validation. All input variables, except for the

discrete “cars waited” input variable, were standardized to have

a mean of zero and a standard deviation of one. Standardization

of the brain activity data was performed in 4-s intervals. The

models were evaluated based on their accuracy. The accuracy is

defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN are true positives, true negatives,

false positives, and false negatives, respectively. Accuracies were

calculated for each participant, fold of the cross-validation,

and model. Furthermore, a feature importance analysis was

performed on the combined model to evaluate which variables

contributed most to the model output. SHAP (Lundberg and

Lee, 2017) was used for this purpose. SHAP values can show the

impact of a feature and its corresponding value on the model’s

output for a given sample of the data set. SHAP is based on

Shapley values used in coalitional game theory. The Shapley

value for a feature j can be calculated via the following equation

(Štrumbelj and Kononenko, 2014):

φ̂j =
1

M

M
∑

m=1

(f̂
(

x+j
)

− f̂
(

x−j
)

)

Here the average difference between the model’s prediction

f̂
(

x+j
)

is compared to the model’s prediction f̂
(

x−j
)

.

x+j corresponds to the model’s input with random feature

values for all features except feature j. In x−j the feature value

of feature j is also random. This difference is computed M

times and average afterward. Often the global importance Ij of a

feature j will be calculated:

Ij =
1

n

n
∑

i=1

|φ
(i)
j |

where, |φ(i)
j | the Shapley value for feature j and sample i of the

dataset of size n is.

For each fold and participant, the mean SHAP values for all

input variables were calculated. Furthermore, the loadings of the

principal components from the pre-processed fNIRS data were

also analyzed to characterize brain areas that contribute most to

the model’s output.

Characterization of brain areas predictive
of turning maneuver from fNIRS data

We aimed to characterize the brain areas involved in the

decision-making phase of the turn maneuver compared to the

no-turn maneuver at the intersection. For this, we performed

a channel-wise paired t-test from the preprocessed fNIRS data

FIGURE 4

Accuracies for the three models. The figure shows boxplots for
all three models, cross-validation folds, and participants.

for the two conditions “turn” and “no turn” on a single-subject

level. From the t-values, we calculated the channel-wise Cohen’s

d values to indicate effect sizes in sensor space.

Results

Results from 12 participants are reported in the following

sections since one participant was excluded due to simulator

sickness during the experiment.

Model evaluation

The first step of the model evaluation was to calculate

the accuracy for all three. The metric was calculated for each

participant and fold of the cross-validation. The results are

presented as boxplots in Figure 4. The fNIRS-alone model

achieves a median accuracy of 83.1%. The context-alone model

has a median accuracy of 83.8% and the accuracy of the

combined model is 91.9%. The corresponding median train

accuracy for the three models are 88.7% (fNIRS), 84.0%

(context), and 91.9% (combined).

Figure 5 shows the average confusion matrices for the three

models. The confusion matrix for each subject and fold was

calculated and the mean confusion matrix of each model

was calculated afterward. Overall, the models were classified

as turning best, with at least 88.8% correct classifications.

Both the fNIRS and the context model have more than 24%

wrongly classified “no turn” instances. In terms of safety, the

wrongly classified “turn” instances (false negatives, lower left

in the matrices) are the most important ones, as they are the

most safety-critical. Both fNIRS and context model misclassify

around 10% of these events and predict “no turn” although

the participants decided to turn. Importantly, the combined

model can significantly reduce this type of misclassification to
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FIGURE 5

Average confusion matrices for all three models.

FIGURE 6

ROC curves for each of the three models and each of the subjects.

FIGURE 7

Mean absolute SHAP values for each feature of the combined model. The features are sorted by descending SHAP values.

only 2.5%. Figure 6 shows the receiver operating characteristic

(ROC) curves for the three models and one curve per subject.

The corresponding average area-under-curve (AUC) and the

standard deviation are shown in the title. The combined model

has the highest AUC with a value of 0.94 ± 0.02. The context

model has a slightly lower AUC of 0.92 ± 0.04 but has larger

variability across participants. The ROC curves of the context

model for some participants have a comparable AUC to the
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combined model. However, some curves have a considerably

lower AUC. The fNIRS model has an average AUC of 0.83 ±

0.06 and has thus the highest variability of all three models.

Feature importance analysis

Feature importance analysis can be used to evaluate the

contribution of the model’s input variables to the model’s

classification. We used SHAP to investigate which variables

contribute most to the turning intention recognition. The mean

SHAP value of each variable and thus the average impact on the

model output is shown in Figure 7. It can be seen that “Gap Size”

has the highest impact on themodel outcome with amean SHAP

value of 0.21. It is followed by the principal components from

the fNIRS test data. The second fNIRS principal component has

a mean SHAP value of 0.11.

Figure 8 shows a beeswarm plot for the feature importance

analysis for one subject and one test dataset of one iteration of

the k-fold cross-validation. Each dot represents one sample of

the test dataset used. The SHAP values for each of these samples

are represented by their value on the x-axis. The feature value

of each sample is color-coded and normalized for visualization

purposes. One can see, based on the color coding, that wide gap

sizes and number of cars (red) waited have higher positive SHAP

values. This indicates that the model will most likely classify

turning in instances, where such feature values are present.

E�ect size analysis and functional brain
areas

To explore which brain areas may be predictive of the

turning decision, we computed average Cohen’s d brain maps

from t-values computed for the difference between “turn” and

“no turn” activation levels for each channel separately (Figure 9)

We visualized the average Cohen’s d brain map on the MNI

152 brain using MRIcron2 to determine MNI coordinates and

the corresponding putative Brodmann areas (BA) with increased

effect sizes. Table 1 lists the brain areas, the MNI coordinates of

the difference maxima, and the average Cohen’s d values. Note

the small range of Cohen’s d values (−0.2–0.2) in Figure 9 is

due to group-level averaging. On a single-subject level, Cohen’s

d values range from−0.95 to 1.10.

Our results showed the largest effect sizes for brain activation

differences in the left inferior parietal lobule (putative BA 39)

for “turn” compared to “no-turn” conditions (average Cohen’s

d∼ 0.2). Additionally, parts of themotor cortices, such as the left

primary motor cortex (PMC; putative BA 4), left supplementary

motor area (SMA; putative BA 8), and left premotor area

(putative BA 6), also indicate an increased activation difference

(average Cohen’s d ∼ 0.1), for “turn” compared to the “no turn”

condition. These areas have previously been implicated in action

planning and movement execution (van der Kallen et al., 1996;

Kapreli et al., 2006). Furthermore, some informative channels

can be seen in the left middle frontal gyrus (putative BA 9) and

the left middle temporal gyrus (putative BA 21).

Discussion

Our aim was to develop a model for the recognition of

driver turning intention using contextual experimental data

and neurophysiological measures. For this, we performed an

fNIRS-driving simulator study where participants had to wait at

an unsignalized intersection and perform a left-turn maneuver

through a stream of oncoming vehicles. The quantitative

analysis of our DNN modeling approach showed that a model

with both neurophysiological and contextual information is able

to considerably better classify the intent of the driver to turn

as compared to using only the contextual information or the

neurophysiological information. Especially with respect to false

negatives (no turn predicted when a turn was performed), the

inclusion of neurophysiological measures provides an additional

independent source of information for driver intent recognition,

which may reduce the amount or criticality of these severely

safety-critical situations. Our turning intention recognition

model with just fNIRS data achieves a median accuracy of

83.1%, which is already higher than the accuracies reported in

Lin et al. (2018). The context model has a similar accuracy

of 83.8%, which is slightly lower than the 85% accuracy of

the model presented by Phillips et al. (2017). Although the

paradigm differs between our model and Phillips et al. (2017),

incorporating more contextual information like intersection

layout may help to improve our model’s performance. The

combined model achieved a median classification accuracy

of 91.9%. This accuracy is above the results from Lin et al.

(2018), who investigated a similar paradigm and used an

electroencephalograph to classify turningmaneuvers. Themodel

proposed by Zhang and Fu (2020) achieves a slightly higher

accuracy of 94.2% based on contextual and vehicle data, like the

vehicle’s position, speed, and acceleration. These prediction rates

are higher than our context model’s accuracy (83.8%) and the

accuracy of our combined model (91.9%). Reasons for this may

be that the researchers had access to more contextual variables,

like the position or speed of the vehicle. Furthermore, a time

window of 11 s was used for the prediction in comparison to our

4 s time window for classification.

The results of the ROC analysis presented in Figure 6 show

that the context model has an average AUC of 0.92 ± 0.04 and

the combined model has an AUC of 0.94 ± 0.02. Although

the AUCs seem to be close to each other the combined model

has a lower variability between subjects regarding the AUC. For

some participants, the context model can achieve AUC values

close to the combined model. However, for others, the AUC

is considerably worse. We hypothesize that these participants
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FIGURE 8

Beeswarm plot of the feature importance analysis of one subject. Each dot represents one sample of the test dataset. SHAP values for each of
these samples are represented by their value on the x-axis. The normalized feature values of each sample are color-coded. Note how the
feature values vary systematically in the features with high average SHAP values.

FIGURE 9

Group-level average Cohen’s d brain maps depicting e�ect sizes computed from channel-wise averaged t-statistics. A tendency for
lateralization of activation over the brain is visible.

have in some intersections shown turning behavior that cannot

easily be modeled with a context-only model. Since the context-

only model has just two input variables, namely the gap size

and waiting time, the model will learn to recognize the driver’s

intention based on a combination of these two, which will most

likely represent an acceptable gap size with respect to the waiting

time or vice versa. The context model will not be able to make

the correct classification if the participant will decide to use a

smaller than usual gap size in some of the intersections. Using

a smaller gap size than normally preferred could for example be

caused by the time pressure applied during the experiment. In

these situations, the combined model seems to be able to utilize

information from the fNIRS brain activation measurements

to help classify these uncommon turning decisions with a

smaller than usual gap size, which leads to an overall more

consistent performance of the model in comparison to the

context only model.

To better understand the contribution of contextual and

fNIRS features for turning intent recognition, we performed

a SHAP feature importance analysis. Our results suggest that

both variables “waiting time” and “gap size” are important for

the model output. However, the mean SHAP value for the gap

size was nearly three times as high as the waiting time’s SHAP

value. These results are in line with results from previous gap-

acceptance studies for left-turning situations suggesting that

the gap size is the most important variable during the turning

decision-making process (Ragland et al., 2005; Yan et al., 2007).

Some researchers found that the waiting time also has an impact

Frontiers inNeuroergonomics 09 frontiersin.org

https://doi.org/10.3389/fnrgo.2022.956863
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Trende et al. 10.3389/fnrgo.2022.956863

TABLE 1 Brain areas showing di�erential activation e�ects in the decision-making phase during the intention to turn as compared to the waiting

phase.

Brain areas Putative brodmann area (BA) X Y Z Cohen’s d

Left primary motor cortex 4 −56 −10 44 0.15

Left premotor area 6 −26 8 70 0.08

Left supplementary motor area 8 −24 20 62 0.12

Left middle frontal gyrus 9 −10 56 36 0.10

Left middle temporal gyrus 21 −64 −48 0 0.15

Left inferior parietal lobule 39 −54 −62 22 0.20

Right primary motor cortex 4 18 −30 78 0.05

Right premotor cortex 6 24 2 74 −0.15

Right middle frontal gyrus 9 48 16 50 −0.15

Right middle temporal gyrus 37 58 −64 14 −0.20

The approximate MNI coordinates of activation differences along with the putative Brodmann areas and their Cohen’s d values are shown.

FIGURE 10

Beeswarm plots comparison of low and high context feature values for one subject and false negatives of the context only model. Left: Only
samples with low context feature values. The combined model learned to utilize the brain activation features for the correct classification. This is
indicated by the higher fNIRS SHAP values. Right: For large context feature values, the impact of the context features is on average higher than
the brain activation information.

on the driver’s turning intent (Fricker et al., 1991; Zohdy et al.,

2010). The analysis also showed that most of the principal

components (PCs) from the fNIRS data have an equal impact

on the model’s output than the waiting time. A more in-depth

analysis of the SHAP values (Figure 8) showed that the model

can utilize information in certain PCs for a “turn” and “no

turn” classification, respectively. As expected, larger gap sizes

and higher waiting times have larger positive SHAP values and

thus contribute more to a “turn” classification. The combination

of fNIRS and context information can reduce the number

of safety-critical false negatives as indicated by the confusion

matrices (Figure 5). A potential basis of this effect is suggested

by looking separately at the data of misclassified trials with low

or high context feature values in the combined model. Figure 10

shows two SHAP value beeswarm plots for the combined model

of one subject. The left plot only contains samples that have

below-average context feature values, meaning that these were

instances with low gap sizes and cars waiting. Conversely,

the right plot shows only samples with above-average context

feature values. Furthermore, the figures show only samples

where the context-only model would create false negatives, thus

classifying “no turn” where “turn” would have been correct.
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All samples shown in the figures are correctly classified by the

combined model. It can be seen that for the low context feature

values (left), where the subject merged after short waiting times

and into small gap sizes, the fNIRS features tend to have higher

SHAP values than the context features. This indicates that they

contribute most to the model’s correct classification. For the

large context feature values (i.e., longer waiting times and wider

gaps), the gap size has the highest impact on the model output.

Although both fNIRS and waiting time have an impact on the

model’s correct classification, they appear to contribute less to

the classification than gap size. This suggests that the combined

model can use information from the fNIRS features to make a

correct classification in situations where a context-only model

would fail to make the correct classification. In this example, the

information from fNIRs seems to be most important in atypical

turns with small gaps and short waiting times. This suggests that

the brain data provide information independent of the context

and supports the notion that this affects the subject’s decision

to turn.

One advantage of whole-head fNIRS in complex realistic

tasks is that it allows for the analysis of distributed brain

networks that contribute to the observed behavior (Unni et al.,

2017). The analysis of the predictive fNIRS channels in the

decision-making phase comparing the “turn” vs. “no turn”

phases revealed brain activity predictive for turning in brain

areas that are thought to underly a wide range of functions

important for safe turning through oncoming traffic like visual

processing, evidence accumulation, decision-making, executive

control of behavior, and the execution of motor sequences.

Among the areas listed in Table 1, the posterior part of the

middle temporal gyrus (putative BA 21) has been shown to

be involved in the observation of motion, such as tracking a

stream of oncoming vehicles at the intersection (Kolster et al.,

2010). The BA 39, potentially including the caudal part of the

intraparietal sulcus has been shown to be involved in executive

control of behavior, visuospatial processing, spatial focusing of

attention, and executing a sequence of actions (Köhler et al.,

1995; Crozier et al., 1999; Buchsbaum et al., 2006; Kübler et al.,

2006). Putative BA 9 in the left middle frontal gyrus (putative BA

9) has been associated with executive functions, such as decision-

making and action planning (Rogers et al., 1999; Fincham

et al., 2002; Zhang et al., 2003; Babiloni et al., 2005). Moreover,

activation modulations in left BA 4, BA 6, and BA 8may indicate

the preparation for the execution of the turning maneuver as

they include brain areas important for the execution of complex

movement sequences, such as the primary motor cortex (PMC;

putative BA 4), premotor area (PMA; putative BA 6), and

supplementary motor area (SMA; putative BA 8). While the

primary motor cortex in BA 4 is implied in the control of muscle

movements (Vogt and Vogt, 1919; van der Kallen et al., 1996;

Kapreli et al., 2006), PMA and SMA have been associated with

visuomotor coordination, such as preparation and planning of

movement-execution and interlimb coordination (Freund, 1990;

Stephan et al., 1995; Crozier et al., 1999; Ehrsson et al., 2000;

Rämä et al., 2001; Schubotz and von Cramon, 2001).

The current study has a few limitations. First, the left-

turning scenario has limited context variables. Besides gap size

and waiting time, there are not many other context variables

to include in the model. Previous studies on gap acceptance in

such scenarios suggest demographic variables, such as gender,

age, and driving style (Pollatschek et al., 2002; Yan et al., 2007;

Trende et al., 2019), have an impact on the decision-making in

these situations and may help to further improve a recognition

model. However, this approach is not possible for the subject-

wise modeling approach used in this study. Furthermore, the

sample size of 13 participants is relatively small. Small sample

sizes are common for studies involving neurophysiological

measurements due to the complex experimental setup and data

processing pipeline. However, the analyses were here performed

at the single subject level to demonstrate the feasibility of

turning prediction in a realistic driving simulator scenario. Due

to the limited transfer of classification models across subjects,

it is necessary to perform this type of analysis. Group-level

studies in traffic research commonly involve dozens up to

hundreds of participants or recorded vehicles, which lead to

a more detailed picture of the drivers’ behavior in a given

situation. However, they typically investigate average behavior

instead of attempting predictions of behavior in single situations,

as it was done here, and as is relevant to the design of an

actual safety function used in situ as a sub-function of vehicle

control. Furthermore, we used only fNIRS HbR data for the

modeling approach since the HbO signal by itself has been

shown to be far more susceptible to systemic physiological

artifacts compared to HbR. This results in the possibility of

inadvertently measuring the hemodynamic responses that are

not caused due to neurovascular coupling and misinterpreting

them as brain activity (Tachtsidis and Scholkmann, 2016).

Hence, these “false positives” in the fNIRS data are more likely

to be observed in HbO than HbR. Additionally, fNIRS studies

using connectivity metrics to better understand brain networks

in complex decision-making tasks and user state estimation are

gaining popularity (Senoussi et al., 2017; Dehais et al., 2018;

Verdière et al., 2018). While the PCA approach that we used

as input features in our model could be considered as one

such type of network analysis, the interpretation of the PCs is

often difficult. Future studies could explore other connectivity

methodologies which can provide better insights into the brain

dynamics while driving.

We hypothesize that a working intention recognition model

could help to prevent critical situations or even accidents when

integrated into a vehicle control function (Damm et al., 2019).

An intention recognition model could warn the driver via a user

interface or initiate an emergency braking maneuver. Including

brain activation measures into such models may be particularly

helpful in atypical turns, where the brain activation may provide

valuable information independent of the context and reduce
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the number of misclassifications, particularly in risky situations.

With the rise of Vehicle-to-Vehicle communication, such a

system could also be used to warn the oncoming vehicle in time

to slow down and thus increasing the gap size.
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