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Abstract

In this work, sample-efficient algorithms for a controller hyperparameter optimiza-
tion of an arbitrary aim point controller for solar power tower plants are introduced.
The objective is to find controller parameters, which optimize the performance of
the aim point controller, and thus increase the efficiency of the plant. This should
be accomplished within a minimum number of optimization steps, which implies the
need of a sample-efficient optimization strategy. The algorithms, proposed in this
work, are based on the Bayesian Optimization (BO) approach [41] and enhance the
algorithm’s sample efficiency by leveraging simulation data as prior information. It
is assumed that the utilized simulation data is possibly corrupted by mismatches to
the system’s real behavior and thus does not contain information about the optimal
controller parameter configurations. Therefore, it is not possible to choose them
directly from the simulation data, however it can still contain helpful information to
accelerate the optimization. The controller parameters, selected by an optimization
algorithm, have to be evaluated on the plant, after every optimization iteration.
Testing the controller parameters on the real system is a time-consuming procedure,
which explains the need to reduce the optimization iterations to a minimum. The al-
gorithms, proposed for this purpose, are mostly based on the methods for leveraging
prior information in BO of Antonova and Rai et al. [4], [45] and extended to the use
of multiple sets of simulation data, which was not sufficiently covered in literature so
far. Moreover, a novel approach for utilizing simulation data in BO is introduced in
this work, named Prior-Guided Expected Improvement. The algorithms were tested
on a six-dimensional test function, which imitates the performance of an aim point
controller, dependent on six controller hyperparameters. Several sets of simulation
data were deployed, that partly resemble the function and do not contain the func-
tion’s global optimum. As a reference, the standard BO algorithm was used. Two
of the proposed approaches outperformed the reference by reaching close to optimal
controller hyperparameters within 33 % less optimization steps, than the standard
BO. In addition, the prior-informed algorithms seemed to be less prone to get
stuck in local optima, than the standard BO. Moreover, in case of high simulation
to reality mismatches or unsuitable simulation data, the prior-informed algorithms
still yielded results similar to the reference. In a second test case, the proposed
approaches were used to optimize a simulated Vant-Hull aim point controller with
two hyperparameters, where they needed 23 % less optimization iterations than the
standard BO. However, to test the prior-informed aim point controller optimization
on a real solar power tower plant, further development has to be done to guarantee
save controller behavior during the hyperparameter optimization. Thereby, damages
to the receiver, caused by overheating, can be prevented.
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Chapter 1

Introduction

1.1 Motivation

To mitigate climate change, the climate target plan of the European Union aims
to cut greenhouse gas emissions of the base year 1990 by at least 55% by 2030 and
become climate neutral by 2050 [1]. To achieve these urgent objectives, the transi-
tion to renewable energy supplies has become an important topic in politics, as well
as research. Additionally, the current global energy crisis, caused by Russia’s war
against Ukraine, has added new urgency to accelerate renewable energy transitions
and highlighted its key role. Especially, wind and solar energy have the potential to
reduce the dependence of the European Union’s power sector on natural gas from
the Russian Federation [3].

The field of solar energy offers a variety of different technologies to produce cli-
mate friendly energy, such as photovoltaic modules, linear Fresnel systems, parabolic
through systems or solar power tower plants. Among those technologies, the main
advantage of solar power tower plants is their ability of storing energy. This is of
great importance, since there are possible temporal variations and regional differ-
ences in seasonal, monthly and daily power demand. By storing energy, these load
fluctuations and mismatches between the plant’s power generation and the power
demand can be compensated. Furthermore, they are regarded as the concentrated
solar power technology with the highest cost reduction potential and can be upscaled
easily and cost-effectively [5].

A solar power tower plant possesses a multitude of mirrors, called heliostats, which
focus the sunlight onto a receiver mounted on top of a tower. The concentrated ra-
diation is absorbed by a heat transfer medium (e.g. molten salt) inside the receiver.
Consequently, the thermal energy of the medium is fed into a connected energy con-
version process (e.g. steam power process) for electricity production. Due to high
achievable concentration ratios, solar power tower plants yield a high theoretical
efficiency, compared to other concentrated solar power technologies.

Worldwide, currently around 25 solar power tower plants are operational, such as
the Ashalim Power Station in Israel with a maximum capacity of 121 MW or the
recently commissioned Atacama-1 in Chile with a maximum capacity of 110 MW
[18]. In China, another solar power tower plant, called Shouhang Yumen, with a
maximum capacity of 100 MW, is under construction [19].
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Increasing the efficiency of solar power tower plants is of great importance, since
it considerably raises their economical value. One possibility to increase the effi-
ciency of solar power tower plants, is to use an aim point control strategy, which
intends to maximize the power on the receiver, while simultaneously not exceeding
an allowable maximum irradiation. This prevents damages to the receiver, caused
by overheating. An optimal aim point control algorithm is still a research question.
However, most of the potential aim point control strategies possess tunable hyper-
parameters with complex dependencies to the control behavior. Here, the choice
of the hyperparameters often considerably influences the controller’s performance
and thus the efficiency of the plant. This leads to a non-trivial hyperparameter
optimization problem. For simplicity, the hyperparameters of a control strategy are
often referred to as controller parameters.

Usually, simulations can be used to find optimal controller parameters. Unfortu-
nately, deviations from expected performance occur when there is a mismatch be-
tween simulation and reality due to modeling errors. Thus, to ensure optimal control
behavior, hyperparameters have to be readjusted on the real plant. This involves
testing various parameter configurations on the real system and observing the result-
ing performance of the aim point controller, which requires expert knowledge and is
a time-consuming procedure without guarantee of finding close to optimal parameter
configurations. A more sophisticated approach would be the use of a sample-efficient
optimization algorithm and further enhance sample efficiency by leveraging available
data from simulations. In this context, sample or data efficiency means the amount
of information the optimization algorithm is able to use from observed controller
parameter evaluations. Ideally, an increase in sample efficiency decreases the num-
ber of required optimization iterations to find nearly optimal controller parameters
and thus makes the procedure less time-consuming.

In literature, there exist approaches to sample-efficient hyperparameter optimiza-
tion. The most commonly used algorithm is called Bayesian Optimization (BO).
In fact, the BO framework allows to incorporate simulation data as prior informa-
tion to increase the sample efficiency of the algorithm. Former research in this area
mainly stems from the field of model-based Reinforcement Learning (RL). However,
they do not sufficiently engage with the question of how to deal with multiple sets
of simulation data, which are likely to have high mismatches to the real system.
This aspect is necessary for the application of solar power tower plants, since some
simulation variables of the plant, like mirror errors, rely on possibly inaccurate es-
timations. Therefore, it would be beneficial to generate multiple simulation data
sets for varying values of the simulation variable in question and jointly use them
to enhance the sample efficiency of the optimization algorithm.

1.2 Objective

The objective of this thesis is to develop hyperparameter optimization approaches,
which increase sample efficiency in BO, by incorporating multiple sets of simula-
tion data, for the application of finding nearly optimal controller parameters of an
arbitrary aim point controller for solar power tower plants. An increase in sample
efficiency ideally leads to a decrease in optimization iterations, which are required
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to find a close to optimal controller parameter configuration. Consequently, this
results in lowering the expenditure of time, required for the optimization procedure.
Finally, a suitable parameter configuration will improve the performance of the aim
point control strategy of a solar power tower plant and thus increase the efficiency
of the plant by maximizing the power on the receiver.

The approaches should be able to decide which sets of simulation data to use within
the optimization process and which simulation data sets to discard, based on obser-
vation data, gathered from previous controller parameter evaluations. Furthermore,
it is desirable to identify mismatches between simulation and reality and correct
them in order to take advantage of partly unsuitable simulation data or simulation
data with offsets.

To develop algorithms, which achieve these objectives, the fundamentals of the BO
algorithm and its individual components, as well as its advantages compared to
other hyperparameter optimization algorithms, will be elaborated and presented.
Subsequently, existing approaches from literature, which aim to increase sample
efficiency in BO by leveraging simulation data, will be reviewed and evaluated re-
garding the possibility of transferring it to the application of aim point controllers
for solar power tower plants. Promising methods will be adapted to the application
and extended to fulfill all relevant requirements, mentioned above. Finally, the de-
veloped approaches will be tested and analyzed to prove a possible enhancement in
sample efficiency and number of required optimization steps for reaching a close op-
timal parameter configuration, in comparison to a standard BO algorithm without
simulation data.
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Chapter 2

Fundamentals and Literature
Review

2.1 Solar Power Tower Plants

A solar power tower plant converts solar radiation to electricity via an energy con-
version process or uses it to support thermochemical processes. The plant consists
of several individual components, namely a heliostat field, a receiver, an energy
conversion system and a storage module. The heliostats, which are a multitude of
mirrors, focus the solar radiation onto the receiver which is mounted on top of the
tower. The exact points on the receiver surface, where the heliostats aim to, are
called aim points. These are determined by an aim point controller. The resulting
concentrated radiation is absorbed by a heat transfer medium inside the receiver.
The medium transfers the absorbed energy to an attached energy conversion pro-
cess. The following sections will give a deeper insight into the system fundamentals
of solar power tower plants and its individual components, as well as the aim point
control strategy.

2.1.1 System Components

The system structure of a solar power tower plant and its individual components is
depicted in fig. 2.1, which shows the heliostat field and the receiver, as well as the
energy conversion process and the storage module.

Heliostat Field

A heliostat is an optical aperture, which is used to always direct the solar radiation
to the same fixed point on the receiver, also called aim point, regardless of the change
of the sun’s position [9]. Tt consists of a reflecting surface, a supporting structure and
a tracking mechanism, which guarantees that the heliostat always targets the same
aim point. A multitude of usually identical heliostats are aggregated in concentric
circles or in rows around the solar power tower plant and create a heliostat field.
The heliostats as well as their arrangement are suspect to physical limitations and
deficiencies, called optical losses, which divert the radiation reflected by them and
thus lower the energy absorbed by the receiver. Examples for optical losses are
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mirror errors and tracking errors. Mirror errors denote a form deviation of a mirror
which can lead to a wider reflection image compared to an ideal mirror [9]. Tracking
errors cause a deviation in the tracking of a heliostat which results in an offset of the
reflected image onto the receiver [47]. Optical losses like tracking errors can vary
over time, caused by dirt and abrasion of the heliostats. This is of great relevance for
this work because it can considerably influence the tracking behavior and therefore
result in the need of re-tuning the hyperparameters of the aim point controller,
which directs the movement of the heliostats.

Receiver

The receiver, mounted on top of the tower, absorbs the reflected radiation by the
heliostats and conducts the stored energy within the receiver material to a heat
transfer medium via convection. The medium can be air, molten salt, water, liquid
metals or particles [36]. Depending on the transfer medium, the receiver surface
consists of different materials, such as metallic tubes for molten salt or porous ce-
ramics for air [8]. Certain receiver characteristics, such as the corrosion limit as well
as the maximum allowed thermal stresses of the receiver must not be exceeded, to
prevent damages to the receiver material [49]. Those physical limitations impose
restrictions on the intensity of the radiation on the receiver and thus on the allowed
flux density. Here, the flux density ¢ is defined as the radiant flux ® per area dA,
which can be expressed as

do
(25 = T
gg (2.1)
with & = —,
dt

with the radiant flux ®, as the radiant energy @) per time unit. The maximum
limit of the allowed flux density for a certain receiver aperture can be calculated
based on the receiver characteristics [9]. The resulting power P, that is fed into
the energy conversion process by the heat transfer medium, can be calculated from
integrating the flux density ¢, measured at every point on the receiver aperture,
over the receiver surface A as

pP= /¢ dA. (2.2)

Energy Conversion Process

The heat transfer medium is fed into an energy conversion process. In thermal
receivers, the energy conversion process may represent a conventional power plant
process (e.g. a Rankine cycle to produce electricity), while in thermochemical re-
ceivers, the heat will be used for a chemical reaction (e.g. hydrogen production).
Instead of being transferred to the energy conversion process, the medium can also
be directed to an energy storage module for later use.
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Figure 2.1: Simplified schematic structure of a solar power tower plant

2.1.2 Aim Point Control

The aim point controller optimizes the distribution of aim points on the receiver
surface, which determines how much and where the radiation is concentrated. An
optimal distribution of the aim points maximizes the power on the receiver. This
increases the plant’s efficiency, and thus makes the plant more economically attrac-
tive. However, at the same time the maximum limit of allowed flux density shall
not be exceeded, to prevent damage to the receiver.

Control Objective

The objective of the controller is to maximize the power Pieceiver O the receiver,
while not violating the allowed flux density and being robust to disturbances, such
as clouds. Therefore, the receiver surface is divided into sub-areas, called bins.
Optimal heliostat aiming is then achieved when the flux density at each bin on the
receiver is equal to the allowed flux density at the respective bin. However, since one
heliostat correlates with many bins on the receiver, this is not a trivial task. It may
even be impossible to find a solution where each bin value equals the allowed flux
density, because the flux density on one bin can not be adjusted without changing
it on other bins.

Consequently, the optimization problem of the control objective for a rectangular
receiver can be formulated as

maximize Preceiver = E ¢Z -dA
)

subject to (2.3)
¢i S ¢max,i7 Vi = 17 -+ NMbins
(Ia,hy ya,h) S R27 Vh - 1: -++y Nheliostats

where ¢; is the flux density at receiver bin 7, ¢pax; the respective maximum allowed
flux density and (Zap,Yas) the aim point coordinates for heliostat h. As stated
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in eq. (2.3), the intercepted power on the receiver Pecciver can be calculated by
multiplying the flux density with the bin area and sum them up for each bin.

Existing Aim Point Control Strategies

In literature, most developed aim point controllers are open-loop controllers, which
face the requirements of minimizing the spillage and not violating the flux con-
straints. Here, the constrained optimization problem in eq. (2.3) can be solved with
an optimization algorithm. An example would be a population-based optimization
approach used by Belhomme et al. [10] or a modified population-based approach
used by Maldonado et al. [35], constrained to a local neighborhood region of aim
points. However, there also exists research on closed-loop aim point control. For
instance, a controller introduced by Vant-Hull [57], is a simple method to prevent
exceeding the allowed flux conditions. When violation is measured at one bin, the
heliostat producing the greatest flux on the respective bin is identified and removed
from tracking. Recent research also focuses on using popular control strategies like
Proportional Integral Derivative (PID) [26] or Model Predictive Control (MPC) [27]
for aim point optimization, which also covers the rejection of disturbances. However,
a PID controller is usually used to control a single-input single-output system. For a
solar power tower plant, the aiming control strategy of a field of heliostats, which is
considered as a multiple-input multiple-output system, would have to be decoupled
into several single-input single-output systems. This approach is only reasonable if
the coupling between the inputs and outputs of the system is rather loose. Since
a heliostat can influence several output variables, an approach with a decoupled
system may not handle the interactions between inputs and outputs appropriately
[27].

Controller Hyperparameters

Most control strategies have tunable hyperparameters, which have to be chosen be-
forehand and have an appreciable impact on the control behavior. For classic con-
trol approaches, like a PID controller, there exist heuristic hyperparameter tuning
methods, like the popular Ziegler-Nichols method [61]. For other control strategies,
choosing controller hyperparameters is a non-trivial task and results in a hyper-
parameter optimization problem, if there are complex dependencies between the
controller’s tunable parameters and its performance. Here, the performance func-
tion, also called objective function, can be defined as any function indicating the
performance of an aim point controller. This could be a weighted sum of separate
performance metrics, like power and violation of allowable flux conditions. Since
the analytical expression of the objective function is usually unknown, the term
black-box optimization problem is suitable. Therefore, obtaining objective function
observations is only possible by observing the resulting performance of the aim point
controller for various controller parameter configurations. This is a costly procedure,
since it involves running the plant. Alternatively, simulations can be used to find
an optimal parameter configuration for the aim point controller. In particular, the
simulation, used in this work, leverages a ray tracing model to simulate optical ef-
fects like reflection and dispersion. However, deviations from expected performance



2.2 OVERVIEW ON BLACK-BOX HYPERPARAMETER OPTIMIZATION 5)

occur when there is a mismatch between simulation and reality due to modeling
errors. To ensure optimal control behavior, the controller parameters have to be
readjusted on the real plant. Here, manual controller parameter tuning by trial
and error is a possible strategy, but often requires expert knowledge and is a time-
consuming and therefore costly task. Moreover, there is no guarantee to actually
find optimal parameter configurations when selecting them by hand. Therefore, the
following section 2.2 gives an overview on most important black-box hyperparameter
optimization algorithms to avoid parameter tuning by hand.

2.2 Overview on Black-Box Hyperparameter Op-
timization

Optimization algorithms automate the search for optimal parameters and are usually
able to deliver better results in a less time-consuming way than manual hyperpa-
rameter tuning [58]. However, when having a black-box objective function, whose
analytical expression is not known, traditional optimization algorithms, which rely
on gradients or relaxations, are not suitable [55]. Therefore, this section focuses on
black-box hyperparameter optimization and gives an overview on most important
state-of-the-art approaches.

2.2.1 Grid Search and Random Search

Grid Search and Random Search are two of the most basic hyperparameter op-
timization approaches and belong to the category of gradient-free and model-free
exhaustive search algorithms.

In Grid Search, the search space of each hyperparameter is discretized. Then, every
possible combination of discretized parameters is evaluated. Theoretically, optimal
parameters can always be found as long as sufficient computational resources are
given.

In Random Search, a randomized search over hyperparameters is performed, by
randomly selecting parameters to evaluate from an assumed probability distribu-
tion. The procedure continues until a previously specified time budget is exhausted,
a desired accuracy or a performance value is reached. Compared to Grid Search,
Random Search performs better if hyperparameters are not uniformly distributed
within its search space and an assumption about the underlying distribution exists.
Both algorithms implicate performing many function evaluations to yield a good
parameter configuration, which makes them only suitable for functions which are
computationally cheap and not time-consuming to evaluate. Information gathered
from previous observations is not used in the optimization process, thus these ap-
proaches are not considered as sample efficient. [59]

2.2.2 Population-Based Algorithms

Population-based algorithms are adaptive meta-heuristic approaches, which include
Evolutionary Algorithms and Swarm Intelligence Algorithms. These nature-inspired
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algorithms intelligently exploit random search by using previously observed data to
direct the search into promising regions of the search space. Because they are in-
dependent of gradients, they can tackle problems like objective functions, whose
analytical expression is unknown, as well as non-continuous or non-differentiable
functions. Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) are
the two most important representatives of Evolutionary Algorithms and Swarm In-
telligence Algorithms, respectively. Both approaches were successfully used in many
applications and research areas. [15]

GAs are used to generate high-quality solutions for optimization problems [38]. They
simulate the iterative process of natural selection. This means that within a popu-
lation, only successful individuals will survive and contribute to the creation of the
next generation. GAs consist of three main steps. Firstly, within an initialization
step, a population, consisting of sample points, is randomly distributed over the
search space. Then the optimization loop is executed. Here, the population is eval-
uated with a performance metric, that selects individuals with the highest scores.
Subsequently, a reproduction step is performed in order to create the next genera-
tion of the population. The next generation results from best performing individuals
and a random mutation in order to explore unknown areas of the search space. [59]
The second popular approach within the class of population-based algorithms is
PSO [15], an iterative algorithm based on the concept of social interaction and the
intelligence and movement of swarms. Individual agents, called particles, constitute
a swarm, which moves around the search space, looking for the best solution. Each
particle tracks its positional coordinates, associated with the best solution so far
found by the respective particle, as well as the coordinates associated with the glob-
ally best observed value so far, obtained by any other particle in the neighborhood
of that particle. In every iteration, an updating rule trades off leading the swarm
to the direction of the best observed value so far and further exploring of the search
space. [29]

PSO is considered as more computational efficient in terms of speed and memory re-
quirements compared to GAs [33]. Nevertheless, both GAs and PSO rely on a high
number of function evaluations, and thus are not suitable for objective functions
which are computationally costly or time-consuming to evaluate. Both approaches
are not considered as sample efficient since they discard objective function observa-
tions, obtained in previous iterations [55].

2.2.3 Model-Based Algorithms

In contrast to previously outlined model-free methods, model-based search algo-
rithms deploy a surrogate model which is fitted on observation data, gathered from
former objective function evaluations. Based on the surrogate model, predictions
for the optimum can be made and used within the optimization process. An advan-
tage of model-based optimization is that prior beliefs about the objective function
can be easily incorporated into the surrogate model. The most important represen-
tatives within the class of model-based hyperparameter optimization for black-box
functions, are the BO algorithm and approaches using a Tree-Structured Parzen
Estimator (TPE). In addition, there are several variants of the BO algorithm, com-
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bining it with components from other optimization approaches to enable for example
parallelization of the optimization process. [59]

BO is an iterative method that aims to find the global optimum of an objective
function, whose analytical expression is usually not known, within a minimum num-
ber of trials [59]. It is considered as best-suited for optimization problems with
less than 20 dimensions [25]. In BO, a surrogate model of the objective function
is learned by fitting a probabilistic regression model, which is fast and computa-
tionally cheap to evaluate and robust to noisy observations [55]. For this purpose,
usually a Gaussian Process (GP) regression model is used, which can be under-
stood as a probability distribution over functions, conditioned on former objective
function evaluations. Based on the model, a previously defined function, called ac-
quisition function, decides which sample to evaluate next. Acquisition functions
usually achieve a trade-off between exploitation of areas that look promising from
previous function evaluations and exploration of unknown areas of the search space.
In an iterative procedure, the acquisition function picks a new promising point from
the search space, where the objective function will be evaluated next. Then the
probabilistic model is refined with the newly gathered data, before the acquisition
function again chooses the next point to evaluate. In this manner, BO takes advan-
tage of information gathered throughout the whole optimization process. Therefore,
it is considered as a sample efficient approach, which enables the algorithm to find
nearly optimal parameter configurations in only a few iteration steps. This makes
the algorithm particularly useful for optimization problems with objective functions
that are costly to evaluate. [51]

Another popular model-based optimization approach is the TPE, which is a favored
choice for hyperparameter optimization in machine learning [30]. The basic idea is
similar to BO, but instead of building a probabilistic surrogate model, models with
a graph structure are used. This technique is especially useful for problems with a
graph structured configuration space, meaning that parameters are conditionally de-
pendent on each other. An example would be a neural network architecture, where
the number of neurons in one layer can only be set if this particular layer exists. Be-
cause TPE uses the history of previously evaluated hyperparameter configurations
to sample the following ones, it is considered as sample efficient [11].

The tree structure can enable TPE to even outperform BO in dealing with condi-
tional variables [56]. However, for applications which does not have the attribute of
a tree-structured configuration space, the performance is questionable. Additionally,
unlike Gaussian Processes, TPE is not able to model interactions between parame-
ters [12].

Hence, BO outperforms other commonly used black-box hyperparameter optimiza-
tion algorithms in many relevant criteria such as sample efficiency, having an objec-
tive function, which is computationally costly or time-consuming to evaluate, the
assumption of obtaining possibly noisy observations, modeling interactions between
hyperparameters and most importantly, the possibility of leveraging prior assump-
tions about the objective function. An explanation of the BO algorithm and its
components in detail can be found in the following section.
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2.3 Bayesian Optimization Fundamentals

The BO algorithm was first proposed by Jonas Mockus in a series of publications
on global optimization in the 1970s and 1980s [42], [40], [41].
In BO, the goal is to find a vector of parameters x*, in the following also denoted
as the optimal parameter configuration, which yields the optimum of an objective
function f(x). However, the objective function’s explicit analytical expression, de-
pending on the parameter vector x, is usually not known. The general optimization
problem can be stated as

x* = argmax f(x), (2.4)

xeA

where A denotes the set of feasible parameter vectors. Additionally, the function f
is required to be continuous to make building a probabilistic model of the function
applicable. Of course, it can also be desired to find an optimal parameter vector,
yielding the minimum of an objective function. For that case, the maximization
problem in eq. (2.4) holds true for simply maximizing the negative objective func-
tion.
In general, the BO approach consists of two main components. Firstly, fitting a
statistical surrogate model, most commonly a GP model, and secondly, an acqui-
sition function which decides where to sample next. In an iterative procedure, the
acquisition function chooses a new promising vector of parameters, where the ob-
jective function will be evaluated next. The probabilistic model is then refined with
the newly obtained objective function observation, before the acquisition function
decides for the next parameter configuration to evaluate. Usually, it is assumed that
an objective function value f(x) differs from the observed function value y by ad-
ditive Gaussian noise €, which is independent and identically distributed with zero
mean and a noise variance o2 [46]

y = f(x) + ¢, with e ~ N(0,0?). (2.5)

2.3.1 Gaussian Process Regression

A GP is a multivariate normal distribution over functions, specified by a mean func-
tion m(x) and a covariance function k(x,«’). Thus, the function values themselves
are random variables. A GP is defined as

f(x) ~ GP(m(z), k(z,z')), (2.6)
with mean function
m(z) = E[f(x)], (2.7)
and covariance function
k(z, ') = E[(f(z) —m(z))(f(z') — m(z))]. (2.8)

The resulting distribution over functions is also called the GP prior distribution.
In order to use a GP as a regression model, the predictive posterior distribution,
conditioned on previously gathered objective function evaluations, is derived.
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Deriving the Predictive Posterior Distribution

Supposing that there exists a vector of objective function evaluations y for a set of n
parameter vectors X = [@y, ..., &,], one can derive the predictive posterior distribu-
tion of the GP, conditioned on the vector of function observations. Calculating the
predictive posterior leads to a normal distribution that can be completely described
by a mean and covariance. This is only trackable, because the prior distribution
was chosen to be Gaussian. With the posterior, it is possible to make predictions
for any unevaulated parameter configuration x, in a set of unevaluated parameter
vectors X,. The predictive posterior can be written as

with posterior mean p,, and posterior variance o2. To calculate mean and variance of
the predictive posterior, it is necessary to set up the joint distribution of the vector
of observations y and the vector of objective function values f, at unevaluated test
locations under the prior. [46]

The general definition of a joint Gaussian distribution of two random variables A

and B is

A ma| |cov(A,A) cov(A, B)

{B} NN<[mB} ’ |:COV(B,A) cov(B,B)| )’ (2.10)
where my and mp are the means and cov(-) denotes the covariance, for respective
random variables. [53]

Transferred to the vector of objective function observations y and function values
f« at unevaluated test locations, the observation noise from eq. (2.5) has to be

considered. From the independence assumption of the observation noise, it follows
that

cov(y,y) = K(X, X) + 0?1, (2.11)

with the covariance matrix K, generated by evaluating the covariance function k(-, -)
elementwise for all evaluated parameter vectors in the set X [46].
Thus, the joint distribution results in

2o [ mE). e

where [ is the identity matrix. K denotes the covariance matrix, generated by
evaluating the covariance function k(-,-) elementwise for all evaluated parameter
vectors in the set X and all unevaluated parameter vectors in the set X,, respec-
tively. Equivalently, m and m., denote the vectors generated by evaluating the mean
function m(-) for all parameter configurations in the sets X and X, respectively.
[46]

By applying Bayesian statistics, the joint Gaussian prior in eq. (2.12) is conditioned
on the observations, which yields the mean pu, and covariance o, of the predictive
posterior distribution f(x.)| y, X as

inl@,) = (@) + KT [K(X, X) + 0] (y — m) (2.13)
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o2(xy) = k(x,, x,) — kL [K(X, X) + 021 'k, (2.14)

with k. = [k(z., 1), ..., k(x., ,)]7. [46]

Thus, with eq. (2.13) and eq. (2.14), objective function predictions for an arbitrary
unevaluated parameter configuration x, can be calculated. The predictive posterior
mean from eq. (2.13) can be explained graphically. At evaluated parameter con-
figurations, the predictive posterior mean will take values of the objective function
observations, while at points far away from those observations, the predictive pos-
terior mean will transition into the prior mean function.

The concept of GP regression is visualized in fig. 2.2. In fig. 2.2a, random function
samples were drawn from a GP prior distribution with zero mean function and a
squared exponential covariance function. The GP prior mean and covariance func-
tion will be further explained in the following two sections, respectively. In fig. 2.2b,
random function samples were drawn from a GP posterior, conditioned on function
evaluations from a sinus function. It was assumed that there is no observation noise.

Mean Function of the GP Prior Distribution

The prior mean function can incorporate any prior belief about the function to be
modeled. For the case, that no prior assumption is available, most commonly a zero
mean is chosen for the GP prior distribution [46]. If observation data from previous
objective function evaluations exists, a simple and in most cases effective technique
to customize the mean function, is to define a constant mean

m(x) = c, (2.15)

where ¢ is chosen based on previous objective function observations [6].

Covariance Function of the GP Prior Distribution

The covariance function k(x,x’) of the GP, also called kernel function, returns a
modelled covariance between parameters @ and @’ [46]. Therefore, a distance metric
is included in every kernel function, which usually determines the distance between
two points in parameter space. In most kernel functions, the distance metric depends
on an adjustable parameter, which controls the smoothness of the function. Kernels
are typically defined, so that points close together in parameter space are considered
as strongly correlated, whereas points farther away in parameter space have little
correlation [25]. By choosing a specific kernel, it is possible to set prior assumptions
about the objective function to model. Thus, the choice of the kernel function can
significantly influence the GP regression. In general, there is a multitude of different
kernel classes, which can be divided into two subcategories. Namely, there are
stationary and non-stationary kernels, referring to the invariance to translations in
the input space [51]. Stationary kernel functions depend only on the radial distance
between points in some user-defined metric and are therefore shift invariant, as

k(x,2') = k(x + ¢, 2’ + ¢), (2.16)

with & € R" and ¢ € R".
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Figure 2.2: Function regression with a Gaussian Process (GP) model

On the contrary, non-stationary kernels depend on the values of the input coordi-
nates themselves, which implies more prior knowledge about the objective function.
Thus, eq. (2.16) does not hold true for non-stationary kernel functions.

A widely used kernel function is the squared exponential (SE) kernel, which is a
stationary kernel and thus shift invariant.

N2
s (@, ') = azexp(—%), (2.17)

where o7 denotes the output variance, which can be chosen as the average distance
of the observed function values from the prior mean. [ is the length-scale parameter
which determines the smoothness of the function. In other words, the length-scale
determines how far two data points can lie away from each other to be still consid-
ered as close. In general, it is not possible to extrapolate more than [ units away
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from a data point [22]. However, for objective functions, where strong smoothness
assumptions are unrealistic, it was argued that using a kernel function from other
kernel classes, like the Matérn kernel, can be beneficial [54].

In fig. 2.3, the impact of the length-scale parameter choice on the regression model
is visualized for a GP with zero prior mean function and SE kernel. Random sam-
ples from a GP with length-scale [ = 0.1 were drawn and plotted in fig. 2.3a. In
fig. 2.3b, the length-scale was changed to [ = 2. In fig. 2.3¢ and fig. 2.3d function
samples drawn from the GP posterior distribution, conditioned on function eval-
uations from a sinus function, are plotted. Again, it was assumed that there is
no observation noise. For the case of a SE kernel, a large length-scale results in
smooth functions. Especially from fig. 2.3¢ and fig. 2.3d it becomes apparent that
the choice of the length-scale parameter can significantly influence the quality of the
regression model, depending on the underlying objective function. The length-scale
parameter [ = 2 accounts for a model, which provides a better fit for the underlying
sinus objective function than the length-scale parameter [ = 0.1. Consequently, the
smoothness parameter of a kernel function can be seen as a tunable hyperparameter
of the GP. The following section will deal with the question of how to handle the
GP’s hyperparameters.

2.3.2 Handling Hyperparameters of the Gaussian Process

In previous sections, a GP regression model was derived. However, a question not
answered yet, is how to determine the hyperparameters of a GP. This could be for
instance a vector 8 = [¢,[, 0%, 0%] with mean function constant ¢, kernel length-scale
[, kernel output variance o} and observation noise variance o2. The most commonly
advocated approach to prior hyperparameter estimation is to fit the parameters to
observed data [52]. This can be done by optimizing either the marginal likelihood or
the unnormalized posterior. In both cases, the results are fixed point estimates for
the hyperparameters in question and can be computed analytically for GP regres-
sion models [51]. It should be explicitly noted, that within this section, the term
"hyperparameters” always refers to the GP hyperparameters 6.

Optimizing the Marginal Likelihood

Optimizing the marginal likelihood pyy,(y|X, @) with respect to the GP’s hyperpa-
rameters @, chooses values for 0, that make the GP prior distribution most likely
to have generated a set of function observations y for a set of evaluated parameter
configurations X = [xy,...,x,]. Due to its practical success, this approach is a
widely-used method [34].

The general optimization problem can be stated as

0" = argmgxlogpML(mX, 0), (2.18)

where the marginal likelihood is usually used in logarithmic scale for reasons of
algebraic simplification. The term "marginal” refers to the fact that the unknown
latent function f is marginalized out [51].



2.3 BAYESIAN OPTIMIZATION FUNDAMENTALS 13

Samples from the GP Prior with Kernel Length-Scale /= 0.1 Samples from the GP Prior with Kernel Length-Scale /=2
3 3
5
L L
b= b=
(] [
f=3 o
a a
= =
S o
5 5
g g
[= [=
2 2
u [
2z 2z
o o
F T
[=] [=]
-2 4
5 = = prior mean 3 == prior mean
- confidence interval 95% - confidence interval 95%
-4 -2 0 2 4 -4 -2 0 2 4
parameter space parameter space

(a) Random samples drawn from the GP’s (b) Random samples drawn from the GP’s

prior distribution with [ = 0.1 prior distribution with [ = 2
Samples from the GP Posterior with Kernel Length-Scale /=0.1 Samples from the GP Posterior with Kernel Length-Scale /=2
3 3]

objective function space
objective function space

-2+ —— objective function =2 —— objective function

= = predictive posterior mean = = predictive posterior mean
® function observations ® function observations

confidence interval 95%

confidence interval 95%

T T T T T T T T T T
—4 -2 0 2 4 -4 -2 0 2 4
parameter space parameter space

(c) Random samples drawn from the GP’s (d) Random samples drawn from the GP’s
posterior distribution, conditioned on posterior distribution, conditioned on
sinus function evaluations, with [ = 0.1 sinus function evaluations, with [ = 2

Figure 2.3: Impact of the length-scale parameter [ on the Gaussian Process (GP)
prior and posterior distribution, shown for two different values of the length-scale
parameter

The likelihood function of a GP itself is Gaussian and therefore can be analytically
expressed by
pve(y|X, 0) =

(2.19)

where my is the vector of prior mean function evaluations and Ky the covariance
matrix for a set of evaluated parameter configurations X, given a certain vector of
GP hyperparameters 8. n denotes the number of observations contained in X.

Taking the logarithm of eq. (2.19) and performing some algebraic simplifications
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yields the marginal log-likelihood of a GP as

1
log puL(y| X, 0) = — 5(?/ —myg) (Ko +021)"' (y — my)
2 o (2.20)
- Elog |Ko + 02| — 5 log(2m).

[51] The parameters in question can now be determined by gradient-based optimiza-
tion, like gradient descent.

Optimizing the Unnormalized Posterior

Optimizing the unnormalized prior with respect to 6, also known as the a posteriori
approach, is particularly useful if there exists a prior belief p(@) about the distribu-
tion of the hyperparameters. With p(@) and the marginal likelihood pysr(y| X, 6),
the posterior belief over 6, given observations X can be decomposed using Bayes’
Rule as

p(6]X) = (Y| X, 9)29(9)‘ (2.21)

p(X)
The distribution p(X) is usually not trackable but can be neglected since it is in-
dependent of @ [25]. Discarding p(X) yields the unnormalized posterior. Thus, the
optimization problem results in

0" = arg mgxxpML(y|X, 0)p(0). (2.22)

Fully Bayesian Approach

The point estimates, which are the result of the previously described approaches,
cannot capture uncertainty, which plays a key role in guiding the exploration in BO.
Therefore, another approach is frequently proposed in literature, namely the Fully
Bayesian Approach or Fully Bayesian Gaussian Process Regression [32]. The main
idea is to compute an integrated acquisition function a, which is marginalized over
all possible values of hyperparameters

a(x) = Egx[a(z, 0)]

(2.23)
~ [ ata, 0)p(61) ab.
where a(x, ) is the acquisition function, depending on the parameter vector & and
the vector of GP hyperparameters 8. More details about the acquisition function a
and possible acquisition function choices will follow in the next section.
The resulting marginal acquisition function from eq. (2.23) now incorporates the un-
certainty in 6 directly into the process of choosing the next parameter configuration
per optimization iteration. This integral is typically intractable, but it is possible
to approximate it as

Eoixla(x,0)] ~ 3 %a(w, 0,). (2.24)

M
i=1
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To solve eq. (2.24), M samples, drawn from the posterior over GP hyperparameters
p(0]X), are required. In practice, it is not possible to directly sample from this pos-
terior. As stated before, p(X) is usually not known, which makes p(6|X) (eq. (2.21))
not fully trackable. However, there are techniques like sequential Monte Carlo or
Monte Carlo Markov Chains algorithms, which are able to produce a sequence of
samples, that are approximately distributed according to p(8|X). Once the M sam-
ples are obtained, eq. (2.24) can be computed, by evaluating the acquisition function
and averaging over all samples. [51]

2.3.3 Acquisition Function

This section explains the technique to select the next point in parameter space to
evaluate. As already mentioned, in BO, this is done by deploying an acquisition
function. This function uses the GP predictive posterior distribution to determine
which point in parameter space looks most promising for optimizing the objective
function. One of the main objectives of an acquisition function is to trade off the
exploration of the search space and the exploitation of areas which were already
discovered as promising. There is rich literature on selection strategies that use
the posterior model to guide the iterative search. Two traditional approaches, the
optimistic acquisition functions and the improvement-based acquisition functions,
will be explained in detail. For simplicity, observation noise will be neglected.

Optimistic Acquisition Function

The guiding principle behind this class of acquisition functions is to be optimistic in
the face of uncertainty. This means, that using an optimistic acquisition function for
every new point &, 41 to evaluate, corresponds to effectively using a fixed probability
best case scenario according to the model. [51]

The Upper Confidence Bound (UCB) acquisition function is such a strategy, which
is particularly popular for negotiating exploration and exploitation. For the aim of
maximizing an objective function f(x), it is defined as

aUCB,max(m) - Mn(w) + ’)/O'n(fl,') (225)
Whereas for the aim of minimizing an objective function f(), it changes to
auCBmin(T) = —pn(T) + y0u(T). (2.26)

Consequently, to select the next promising point «,+; in parameter space from the
feasible set of parameter vectors A, the UCB acquisition function (for the aim of
maximizing and minimizing an objective function) is maximized

41 = argmax aycp(x), (2.27)
€A

where aycp() is calculated based on n previous function evaluations. [51]

The first part of the sum in eq. (2.25) is the predictive posterior mean of the GP
regression model. The second part of the sum is the standard deviation of the
predictive posterior, weighted by a parameter . This parameter tunes the trade-off
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between exploration and exploitation and has to be chosen manually. As an example,
the following plot depicts a GP predictive posterior and three UCB acquisition
functions for three values of 7, respectively. A small value for + will result in
exploitation of regions, proposed by the predictive posterior mean, whereas a high
value for v will account for more exploratory behavior. It can be seen that the UCB
for v = 4 has a different maximal value than the UCB for v = 1.2. Respectively,
different points would be chosen to be evaluated next.

GP posterior and Upper Confidence Bound (UCB)

-3 -, =

— objective function
= = predictive postenior mean
@ function cbservations
-2 —— Upper Confidence Bound (UCB), y= 02
—— Upper Confidence Bound (UCB), y= 12
—— Upper Confidence Bound (UCB), y= 4
standard deviation

objective function space
o

—4 -2 0 2 4
parameter space

Figure 2.4: Gaussian Process (GP) posterior with Upper Confidence Bound (UCB)
for different values of the parameter

Improvement-Based Acquisition Function

Improvement-based acquisition functions favor points that are likely to bring im-
provement, compared to the best observed value so far. Probability of Improve-
ment (PI) and Expected Improvement (EI) are the most popular representatives of
improvement-based acquisition functions.

PI chooses the next query point as the one, which has the highest probability of
improvement. More precisely, it computes the probability that a point & will lead
to an improvement over the current best observed objective function value f(x™) at
the sample point &*. Since the posterior distribution of the target values is Gaus-
sian, the PI is trackable. For the aim of maximizing an objective function f(x), the
PI acquisition function is defined as

Jx) — f(xet
arrns(2) = PUf(@) > fla)) = (M IED) )
on(x)
U denotes the standard normal cumulative distribution function (CDF).
Analogously, for the aim of minimizing an objective function f(x) the PI is defined
as

(2.29)

x) — flxt
crrn(@) = P(f(@) < (@) = w( L2 L)

on()
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GP posterior and Probability of Improvement (Pl)

objective function space

—— objective function

= = predictive posterior mean
® function observations

standard deviation

Plix3)

X1 X2 X3 x*
parameter space

Figure 2.5: Visualization of the Probability of Improvement (PI) acquisition function

To select the next point @, in parameter space, the PI acquisition function (for
the aim of maximizing and minimizing an objective function) is maximized

Tnt1 = argmax api(x), (2.30)
xe

where apy() is calculated based on n previous function evaluations. [31]

In fig. 2.5 the main idea of the PI is visualized for three discrete example points in
parameter space. At each point a Gaussian curve is placed with a mean, that equals
the predictive posterior mean and a variance, that equals the predictive posterior
variance of the GP at respective points. The blue shaded area under the curve gives
the PI f(z3) > f(x4) at x3. The PI at x; and x5 is negligible.

The EI acquisition function can be seen as an enhancement of the PI. Other than
only measuring the probability of improvement, the expected magnitude of im-
provement is estimated. For the aim of maximizing the objective function f(x), EI
is defined as

a1 max(2) = Elmax(f(z) — f(z™),0)]. (2.31)
The EI can be evaluated analytically under the GP model as
aEI,max<w> = { E):L’Ln(w) - f(w‘*'))\IJ(Z) + Un(wW(Z), i Zzgzg i 8 , (232)

where ¥ and v are the CDF and probability density distribution (PDF), respectively.
Z is defined as

pn(@)—fah)
Z:{ rte o ion(@) > (2.33)

0
0, if op(x) =0
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Analogously, the EI acquisition function is defined for the aim of minimizing an
objective function f(x) as

oy = § (@) = f(@F)U(Z) + on(@)p(Z), if on(x) >0
apmin(®) = | if o () =0
po(@)—f(@T) - (2.34)
with Z = { e, if o () > 0
0, if op(x) =0

To select the next promising point x,41 in parameter space, the EI acquisition func-
tion (for the aim of maximizing and minimizing an objective function) is maximized

Tpi1 = arg max ag(x), (2.35)
xcA

where agp() is calculated based on n previous function evaluations. [28]

From eq. (2.32), it is easy to see that EI will yield high probability scores when
either the expected value of y,(x) — f(x™), or the value o, () is high. Here p,(x)—
f(x™) denotes the distance between the predicted posterior mean at the point x
in parameter space and the best observed objective function value so far. o,(x)
can be interpreted as the uncertainty around the point . Thus, the first term in
eq. (2.32) can be considered as the exploitation term, the second addend controls
the exploration.

In fig. 2.6, an example for a GP posterior with respective EI acquisition function is
plotted, where the maximum value of EI determines the next point to evaluate.

GP posterior and Expected Improvement (El)

-— -
—— objective function
—2 4 = = predictive posterior mean
& function observations
standard deviation

objective function space

0.05 A

0.00 A

T T T T T
—4 -2 0 2 4
parameter space

Figure 2.6: Gaussian Process (GP) posterior with Expected Improvement (EI) ac-
quisition function

2.3.4 Bayesian Optimization Algorithm

Based on the theory of GP regression, acquisition functions and choosing hyperpa-
rameters for the GP prior distribution, the complete Bayesian Optimization algo-
rithm can be set up. A basic pseudocode can be found in alg. 1. In the following, it
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is assumed that the hyperparameters 0 of the GP regression model are determined
by fitting them to observed data, as it was explained in section 2.3.2.

The algorithm starts with the initialization of the GP prior, which involves choosing
a mean and a covariance function. As an initialization step of the optimization,
¢ objective function evaluations are performed. Usually, this is done by randomly
sampling ¢ points in parameter space. From the evaluated parameters and the ob-
tained objective function observations, the set of evaluated parameter vectors X
and the observed function values y are initialized. Then a loop over a fixed number
of iteration steps is performed, until a budget N of maximum objective function
evaluations is exhausted.

Firstly, the GP is fitted on all available data by determining its parameters 8. Then
the predictive posterior distribution is (re)calculated on all available data X, y.
Next, the posterior distribution is used to set up and optimize the acquisition func-
tion. The parameter configuration x,1, that optimizes the acquisition function is
selected and evaluated, which yields a new observation y,, 1. After incrementing the
budget counter, the next iteration starts.

When budget N is exhausted, the parameter configuration x* is returned, which
yields the best observed value y*. [25]

Three optimization iterations of the BO algorithm are visualized in fig. 2.7 for the
objective of maximizing a sinus objective function with one-dimensional parameter
space. The predictive posterior mean and the standard deviation, obtained from
the predictive posterior variance, are depicted for the GP regression models. The EI
acquisition function was used, where the highest acquisition function score indicates
which point in parameter space will be evaluated next.

Algorithm 1: Bayesian Optimization

Initialize a GP with prior mean m(x) and kernel k(zx, 2’).

Perform 4 objective function evaluations. Set counter n = i.

Initialize X = [xg, ..., ;| and y = [y, ..., ¥i]

while n < N do

Fit the GP’s hyperparameters 8 on X, y.

Update the predictive posterior distribution, using X, y.

Set up the acquisition function, using the current posterior distribution.
Select the next point &,41 by optimizing the acquisition function.
Add Tn+1 to X.

Evaluate the objective function at @, 1, observe ¥,

Add y,41 to y.

Increment n.

end
Return parameter vector * that yields best observed value y*.




20 CHAPTER 2 FUNDAMENTALS AND LITERATURE REVIEW

1 y ry
— objective function

1 == predictive posterior mean
H ®  function observations
1

|

1

1

objective function space

standard deviation

—=— next parameter to evaluate

—— objective function
—— predictive posterior mean
@ function observations
standard deviation

objective function space
|

== next parameter to evaluate

—— objective function
== predictive posterior mean
® function observations
standard deviation

objective function space

I
I
1
1
1
1
1
i
I == next parameter to evaluate
I
1
1
1
1
1
1
1
1

“a -2 o 2 4
parameter space

Figure 2.7: One-dimensional Bayesian Optimization for three optimization steps

2.4 Enhancing Sample Efficiency in Bayesian Op-
timization

In some applications, there is prior information available about the process to be
optimized, for instance in the form of simulation data. Then the sample efficiency of
the BO algorithm can be increased by incorporating the information as a prior belief
into the GP model. In this context, sample or data efficiency means the amount of
information the BO algorithm is able to use from observed samples. Increasing sam-
ple efficiency ideally results in decreasing the number of required optimization steps
to reach optimal parameter configurations. As already mentioned in section 2.3,
prior information can be utilized in BO to formulate a suitable mean function, as
well as an appropriate kernel function for the GP prior distribution. Former research
on this topic mainly stems from the field of model-based RL in robotics, where it
is of crucial importance that a robotic agent profits from all available information
in order to minimize number of trials and time to learn a certain behavior. The
following sections provide an insight into existing approaches on incorporating sim-
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ulation data into a Bayesian surrogate model. The approaches can be divided into
creating either a prior-informed mean function or a prior-informed kernel function
of the GP model. In case of dealing with possibly unsuitable or multiple sets of
simulation data, it is necessary to choose or discard one or multiple models which
contain prior information. Therefore, section 2.4.3 elaborates different model se-
lection criteria from literature. Additionally, it is possible to use more than one
source of prior information during one optimization step. This can be achieved by
composing multiple models, which will be explained in section 2.4.4.

2.4.1 Prior-Informed Mean Functions

Defining a suitable mean function for the GP’s prior distribution is a possible strat-
egy for incorporating prior knowledge into the surrogate model. The following three
approaches from literature, use simulation data to create a so called prior-informed
mean function.

Preselecting Promising Points in Simulation

Cully et al. [20] propose an approach that enables robots to adapt to damages,
such as broken or missing legs. By tuning the hyperparameters of a parametrized
controller, behaviors, that compensate those damages, are learned efficiently. There-
fore, simulations are utilized to collect best performing parameters in simulation.
Those are used to define a metric for the behavior of the robot. Controller, that
result in desired behaviors, lie close together in behavior space, while a controller,
that results in undesired behavior, lies further away. This behavior metric is incor-
porated into the GP model as the prior mean function and guides BO to quickly
find controllers on hardware which can compensate the undesired behavior resulting
from damages on the robot. However, it has to be considered that the search on
hardware is then strongly limited to preselected successful points from simulation.
This helps to make the search faster and safer on hardware. But if an optimal point
was not preselected, BO can not sample it during optimization.

Tuning the Influence of the Simulation Data

In contrast to the previously described approach, Wilson et al. [2] consider the
setting where the simulator is not an accurate model of the true domain and may
not be trusted blindly. The main objective of the work proposed in [2], is to increase
sample efficiency in model-based RL by efficiently retraining models and choosing a
robot’s next actions to take, based on those models with BO. Whenever an action
results in desired behavior, a function which evaluates the behavior gives back a
high value, called reward. Accordingly, actions which result in undesired behaviors
are poorly rewarded. Thus, a sequence of actions, called policy, should maximize
the expected reward. To choose optimal policies, the system has to be modeled.
Therefore, several actions taken by the robot, which are denoted as trajectories, are
simulated. The simulated trajectory data D is then used to learn domain models
of the robot. In this context, domain models are several RL specific functions, such
as the reward function and the initial state distribution of the robot. By utilizing
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domain models, the reward of an arbitrary policy m(p, D) can be predicted by
computing Monte-Carlo estimates of generated trajectory roll-outs. Here, the term
trajectory roll-out means that an initial state is sampled from the learned initial
state distribution and policy p is executed from there until termination. Since
domain models are difficult to specify and learn, it is desired to efficiently refine
them on new data. To find the next policy to evaluate, a GP is used to model the
expected reward, which is used as the objective function to be optimized. Then, a
BO algorithm finds the next optimal point in policy space, which is evaluated to
consequently retrain the domain models efficiently. Within the GP, the estimated
policy reward m(p, D) is used as the prior mean function of the GP. The predictive
distribution of the GP can be calculated following the procedure in section 2.3.1.
By using m(p, D) as the prior mean function, the predictive posterior mean, given
a set D of n data points, results in

tin(ps) = m(p., D) + kI [K(X, X) + o21] "' (y — m(p, D)), (2.36)

where p, is an unevaluated policy and m(p, D) the vector of Monte-Carlo estimates
with an element for each policy in D. Wilson et al. assert, that the first part of this
sum is the Monte-Carlo approximation of the expected reward, whereas the second
part of the sum is the GP’s prediction of the residual to the true underlying reward
function, to be optimized.

For the case, that the domain models cannot be effectively approximated, the model-
based estimates of the expected return may have a bad influence on the optimization
procedure. An example would be the case where m(p, D) underestimates the true
mean function, resulting in zero expected improvement in areas of high deviations.
Therefore, a new model of the expected reward is introduced, regulated by a param-
eter 3, which controls the influence of the Monte-Carlo estimates of the expected
return

f(p) = (1 =B)1(p) + Bf2(p). (2.37)
Here the function f; is modeled by a GP as
fi(p) ~ GP(0, k(p,p')), (2.38)
with zero mean. The second function f, is modeled by an additional GP as
f2(p) ~ GP(m(p, D), k(p,p")), (2.39)

with the model-based mean m(p, D), introduced above, and the same kernel as f.
The resulting distribution for f(p) can be written as

f(p) ~ GP(Bm(p, D), d(B)k(p,p")), (2.40)

with prior mean fm(p, D) and a covariance computed by the kernel function k(p, p’)
and a factor d(f), which incorporates variance changes. The predictive posterior
mean from eq. (2.36) consequently changes to

pins(p) = Bm(p, D) + kL [K(X, X) 4 021] ' (y — fm(p, D)). (2.41)
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In [2] the parameter § is determined by maximizing the marginal likelihood on
gathered trajectory data D, as explained in section 2.3.2. The gradient of eq. (2.20)
in section 2.3.2 can be taken with respect to § and simply solved for 5, which yields

y"K'm(p, D)
m(p, D)TK-tm(p, D)

g* = (2.42)
Optimizing the parameter § in this manner allows the model to control the impact
of the prior-informed mean.

Parameterized Models

Another algorithm, called Black-DROPS, introduced by Chatzilygeroudis et al. [14],
leverages prior information within the mean function of a GP model. The goal is
to speed up model-based RL in robotics by being able to tune the parameters of a
parameterized prior model, as well as select the most suitable model from multiple
prior model. It can be seen as an enhancement to related approaches, proposed
in [21] by Culter et al. and [50] by Saveriano et al.. It should be noted that
Black-DROPS and related approaches do not use classic BO in their methods. In
fact, they employ popular techniques for policy search in model-based RL but build
their models with GP regression, which explains the relevance for this work. In
Black-DROPS, the dynamics of a robotic system is modeled with a GP surrogate.
It is stated that analytic equations of a robot’s dynamics alone are usually not
able to fully capture the system, for example in case of complex friction effects.
Furthermore, analytic equations depend on robot specific parameters, which have to
be determined in a model identification process beforehand. Therefore, a GP is used
to model the analytically known part of the dynamics, depending on robot specific
parameters and an additional part of the dynamics, which is analytically unknown.
Here, the analytic equations for the dynamics are used as the prior mean function
of the GP, depending on tunable robot specific parameters. These parameters can
then be determined by maximizing the likelihood function of the GP, as described
in section 2.3.2, which can be seen as the model identification procedure. In [14], it
is stated that the marginal likelihood can also be used to choose between multiple
parameterized models. More precisely, the model which yields the highest marginal
likelihood on previously evaluated data is selected. Finally, the resulting GP model
of the system is used in combination with popular techniques for model-based RL
to find optimal control policies.

2.4.2 Prior-Informed Kernel Functions

Defining a customized kernel function is another possible way of incorporating prior
knowledge into the GP model. The following approaches from literature define
prior-informed kernels to use information from simulation data.

Balancing between Effort and Accuracy

Marco et al. [37] tunes the parameters of a control policy for a cart-pole system by
taking a simulation as a complementary source of noisy data. The algorithm decides
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whether to gather accurate real world observations, which are costly to obtain, or
to use a simulator where evaluations are cheap to obtain but noisy. This trade-off
is achieved by deploying an additive kernel structure.

Therefore, the vector of parameters x to be optimized is extended by an additional
binary variable §, where 6 = 0 if the objective function is evaluated in simulation
or 6 = 1 if it is evaluated on the physical system. With the extended vector of
parameters a = [x, ]| an additive kernel is defined as

k(a,a') = kgm(x, @) + ks(5,0 ) kerr(x, ') (2.43)

where the kernels kg (-, -) and ke (-, ) model the objective function on the simulator
and its difference to the objective function on the physical system, respectively. The
kernel k; is defined as

ks(5,6') = 66", (2.44)

Thus, ks = 1 if two parameter configurations x and z’ are both evaluated on the
physical system, and ks = 0 otherwise. Consequently, if either § or ¢’ is zero, the
covariance between controller parameters is only captured by kg,,. Effectively, the
error covariance is not used in case of performing evaluations in simulation. On
the contrary, in case of performing a parameter evaluation on the physical system,
the kernel keqor is used and corrects the simulator assumptions with information
from real observations. To enable BO to properly trade off between evaluating
the simulator and the physical system, a so-called effort measure is introduced and
included into the acquisition function. This effort measure is an estimator of the
expected effort, such as the amount of time taken by a simulation relative to a
physical experiment.

Behavior-Based Kernels

Another contribution from Wilson et al. [2] are behavior-based kernels (BBK) for
RL in robotics. The objective is to choose an optimal policy for a robotic appli-
cation by BO. However, Policies are often non-parametric. In the context of BO,
this is problematic because standard kernels usually use a metric to determine the
distance between two points in parameter space. Therefore, within a BBK a new
distance metric is defined to determine the similarity of two policies, independent
of any parameterization. The metric compares two policies regarding their resulting
behavior on the robot. More precisely, the metric computes an estimate of a sym-
metric variant of the Kullback-Leibler divergence between trajectories, induced by
two controllers. However, computing k(p, p’) for arbitrary policies would require an
evaluation of every policy p and p’. Since an evaluation of every policy is consid-
ered as impractical, BBKs are suggested to be combined with previously described
model-based Monte-Carlo policy roll-outs by Wilson et al. [2].

Employing Neural Networks

Antonova and Rai et al. [4], [45] optimize parameters of locomotion controllers for
robotic applications with BO. They aim to increase sample efficiency in BO by
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incorporating a Neural Network (NN) into their surrogate models, which was previ-
ously trained on simulation data. To collect simulation data, short simulator runs
are performed. The resulting trajectories are summarized by a vector ¢, of several
generic aspects of locomotion, like walking time or position of the robot’s torso.
With these trajectory summaries t,, collected for a range of controller parameters
x, a NN is trained, so that

fan(m) =1, (2.45)

where @ denotes the controller parameter configuration and ¢, is a so-called re-
constructed trajectory summary. To train a NN on the trajectory summaries, can
be interpreted as a feature transform. Subsequently, the reconstructed trajectory
summaries can be incorporated into the kernel of a GP. They are utilized as the
distance metric within the kernel, which considers the available prior information.
In [4] a SE kernel is modified to include the reconstructed trajectory summaries as

k:NN(m, m’) =

 ofexp (3l (2) = fn &) diag(V) (o) — fanta)).
By incorporating the reconstructed trajectory summaries, the stationary SE kernel
is turned into a prior-informed and non-stationary kernel function, which is no longer
invariant to shifts in parameter space. With the prior-informed kernel kny (2, '),
BO is biased towards promising regions in the space of the recovered trajectory
summaries.

Correcting Mismatches

Antonova and Rai et al. [4] presented a prior-informed kernel which successfully
increased sample efficiency in BO. However, mismatches between simulation and
hardware can result in a considerable performance drop and can even prevent BO
from finding optimal controller parameters. Therefore, Antonova and Rai et al. [45]
propose an extended approach to prior-informed kernels to deal with mismatches
between simulation and hardware. For the sake of simplicity, it is for now assumed
that a trajectory summary ¢, is one-dimensional.

Firstly, an additional GP will be used to model the deviations dy, ..., d,, between tra-
jectory summaries ty,, ..., tx,, which were previously evaluated on hardware, and the
reconstructed trajectory summaries fyn(1), ..., fan(@,), obtained from simulation,
for a set of controller parameters x1, ..., ,. The deviations are calculated as

d; = fan(x;) —ty, fori=1,....n. (2.47)
The GP, which models the deviations, is then defined as
d(x) ~ GP(0, ksp(x, ")), (2.48)

with zero mean function and SE kernel. Conditioning the GP prior distribution
on previously observed deviations dy, ...,d, will yield the GP predictive posterior
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distribution. The predictive posterior mean fi, mis() from eq. (2.13) can now be
used to predict mismatches between recovered trajectory summaries and hardware
for arbitrary unevaluated parameter configurations. To extend this approach to
multidimensional trajectory summaries ty,, ..., tx,, the resulting multidimensional
deviations dy, ..., d,, are modeled with a multi-output GP. However, since this is not
of importance for this work, further details on multi-output GPs will be omitted.
The predicted mismatch fi, mis(2) is subsequently included in the prior-informed
kernel function. This is done by extending the kernel with an additional dimension,
as

g(z) = [u{; Nj(‘fm))] , (2.49)

b, 27) = otosp3late) - gteaies([1]) lotw) ~at@)). 250

with a diagonal matrix constructed from two independent length-scale parameters [;
and [5. Introducing independent length-scale parameters for the simulated objective
function values and the predicted deviations is necessary, because the scales can dif-
fer considerably. In case of multidimensional trajectory summaries, the length-scale
parameters [y and [y turn into length-scale vectors l; and 5.

By using the knxnmis kernel function, the correlation between parameter configu-
rations  and x’ is determined by two components: the similarity in interpolated
simulation data space and the predicted mismatch. Intuitively speaking, parameter
configurations will only be considered as strongly correlated if they have similar
simulated objective function values, as well as similar predicted mismatches. The
benefit becomes clear from a short example. A controller may look promising in
simulation, but result in undesired behavior, when tested on hardware. Then, all
controllers, which are considered as ”close” by the prior-informed kernel function
without mismatch correction, will not be evaluated, even if they lie in different areas
of the parameter space. However, when using the mismatch correction, the predicted
mismatch for controllers in different areas of the parameter space will most likely
not be equal. Thus, BO can still sample points that look promising in simulation,
and are in a different region of the controller parameter space.

2.4.3 Bayesian Model Selection

Yet another question, which is not covered in most approaches, is how to deal with
multiple sets of prior information. In this context, it is assumed that one set of sim-
ulation data will be incorporated into one GP model, respectively. A model M will
from now on refer to a GP prior, which contains information from one simulation
data set. A model M|y will refer to the respective GP posterior, conditioned on ob-
servations y. Hence, the arising question is how to evaluate these models and select
the one, which represents the underlying objective function best. In general, criteria
to evaluate the fit of a probabilistic surrogate are called probabilistic model selection
criteria. Since a GP is a Bayesian surrogate, the term Bayesian model selection is
used. Criteria for Bayesian model selection were already proposed several decades
ago. A traditionally used criterion is the marginal likelihood, for instance utilized



2.4 ENHANCING SAMPLE EFFICIENCY IN BAYESIAN OPTIMIZATION 27

within the previously described BLACK-DROPS approach by Chatzilygeroudis et
al. [14]. However, there is a strong polarization in literature regarding the marginal
likelihood, motivating current research to reconsider the topic of Bayesian model
evaluation and selection [34]. Therefore, this section outlines traditional model se-
lection criteria, as well as a recently suggested approach to the Bayesian model
selection problem.

Marginal Likelihood

The marginal likelihood py, was already introduced in section 2.3.2 in the context
of choosing hyperparameters of the GP prior distribution, where it is used as a
popular approach with great success. In addition, the marginal likelihood is also
widely applied to model selection problems, where from multiple fitted models one
particular model should be chosen, which is most likely to have generated a set of
observed data points. This model will yield the highest marginal likelihood score,
which is usually stated in logarithmic scale to simplify its analytic expression. The
optimization problem results in

= 1 X 2.51
M argMG/I\I/Ilaka ngML(y| aM)a ( 5 )

Lyeees

where the models My, ..., M, are k GP priors. X is a set of n evaluated parameter
vectors and y the respective objective function observations. [46]

As already introduced in eq. (2.20), the marginal log-likelihood can be analytically
expressed as

1

log pur (Y| X, M) = — 5(3/ —mp) (K + 021)(y — may)

1 (2.52)
9 n

— élog | K+ 021 — 510g(27r),
where m and K refer to the mean function and the covariance matrix of a prior
model M, respectively. Since M is a GP prior distribution, the marginal likelihood
gives information about the likelihood of a prior model to have generated a set of
data. However, usually it is desired to select a model that provides good predic-
tions on unseen data. Lofti et al. [34] state, that a meaningful model selection
criterion should therefore give information about the likelihood of the model’s pos-
terior M |Ytrain, conditioned on the set of training data, to have generated a set of
withheld test data points. This would yield information about a model’s predictive
performance on unseen data. Hence, the marginal likelihood still provides a mean-
ingful criterion for evaluating priors, but is generally not well-aligned with model
selection.

Cross-Validation

Cross-Validation (CV) is one of the most commonly used methods in machine learn-
ing for evaluating the predictive performance of a model M. It is not a specific
method for Bayesian model selection, however it can be transferred to Bayesian
models. The method is based on splitting an available set of observation data
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Z = (X, y), consisting of n data samples, into disjoint parts. One part of the data,
called training data Zi.in = (Xirain, Ytrain), contains m data samples and is used
for fitting each available model. The other part of the data, denoted as hold-out
data Znold-out = (Xhold-outs Ynold-out ), contains p = n — m data samples and is used
to estimate the predictive performances of the models by the validation errors. The
splitting ratio is optional and can be chosen by the user. However, a typical choice
is for example to take 80 % of the available data for training and to hold out 20 %
for testing.

Subsequently, the models in question are fitted on the training data set and the CV
is computed on the withheld data. Finally, the model with the best overall perfor-
mance is selected. [60]

The CV performance of a model M is evaluated by

1 p
CV‘/M(Zhold—out) = ]_) Z SM(Zhold—out,i)y (253)
=1

where s, is a scoring function for the model M. For the general evaluation of
machine learning models, usually the squared distance between a withheld observa-
tion Ynold.out; and the model’s prediction §; = M (@nodout,s) is used as the scoring
function. Logically, a small CV score denotes good performance of the model.

Delete-p Cross Validation To obtain a more stable assessment of a model’s
predictive performance, usually the average of multiple versions of data splittings,
which is called the delete-p CV, is considered as

1
R(p)|

CVdelete—p(Zy p) = Z CVM(Zhold—out (T))7 (254)

reR(p)

where R(p) is a collection of data splittings at the same splitting ratio with p with-
held data samples and r € R(p) denotes a specific splitting, producing the data sets
Ztrain<r) and Zhold—out (T)

There are different types of the delete-p CV, regarding the choice of the data split-
tings R.

Leave-p-Out Cross Validation One opportunity is to average over all possible
data orders |R| = (”) for a constant splitting ratio, which is called the leave-p-out
CV and is usually computationally expensive to calculate.

Alternatively, the delete-p CV can be calculated by choosing the splittings R, so
that 1 < |R| < (Z) This can be done by randomly choosing the |R| data orders,
either with replacement or without replacement.

Monte Carlo Cross Validation In this context, with replacement means, that
a withheld point can occur within the set of withheld data points for multiple data

splittings. Choosing the data orders randomly, with replacement, yields the so-called
Monte Carlo CV.
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Repeated Learning-Testing and k-Fold Cross-Validation On the contrary,
without replacement means, that a withheld data point can not be part of the
test data set for more than one data splittings. Choosing the data orders randomly,
without replacement, results in the so-called repeated learning-testing. The simplest
version of repeated learning-testing is the k-fold CV, where the data is randomly
partitioned into k£ equal-sized and mutually exclusive subsets. Which CV technique
to use depends on the application.

In general, the Monte Carlo CV yields results with higher confidence and is more
repeatable, compared to k-fold, since its variance is low. However, the Monte Carlo
CV will have a higher bias than the k-fold CV, since some data points will be
represented in more data splittings than others. [24]

Bayesian Cross-Validation The CV framework can be transferred to a Bayesian
model selection problem by choosing a Bayesian scoring function. Since it is desired
to evaluate the predictive performance of a GP posterior M|yraim, the predictive
posterior probability p,, will be used as a scoring function [24]. Logically, a high
probability value and thus a large CV score will now denote good performance of
the model. The predictive posterior probability on a set of withheld data for a
GP is Gaussian, and can thus be derived analogously to the marginal likelihood in
eq. (2.19). Instead of the prior mean and the kernel function, the posterior mean
and posterior variances are used. Consequently, the predictive posterior probability
of a Gaussian Process model GP can be expressed as

1 _
IOg ppp(yhold—out’XhOId-Outv Ztraiﬂ? gP) - - é(yhold—out - y’m)TK 1(’yhold—out - ll’m)

1 p
— —log |K| — =log(2
3 log |K| — Plog(2m),
(2.55)
where p,,, is the posterior mean (eq. (2.13)), conditioned on m training samples, and
K is the matrix of posterior variances, generated by evaluating the predictive poste-

rior variance o2, (x) (eq. (2.14)) for all withheld parameter configurations Xpoiq-out-

Cumulative Cross-Validation

Fong et al. [24] derive a novel Bayesian model selection criterion, based on a cumu-
lative CV score. In [24], they first prove an equivalence of the marginal likelihood
puL(y| X, M) of a Bayesian model with prior M, and the cumulative leave-p-out
CV, when using the predictive posterior probability from eq. (2.55) as a scoring
function. This equality can be expressed as

logpML(lea M) = Z Cvieave—p—out(Za p)

p=1

) (250
— Zl m Zl CVr(Znold-out (1))
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where Z again consists of the set X with evaluated parameter vectors and respective
objective function observations y. For simplicity, M denotes the GP predictive
posterior model, conditioned on the respective training data splitting. Fong et
al. state, that the representation of the marginal likelihood as a cumulative cross-
validation score provides insight into the sensitivity to the prior M. For instance,
the last term of the summation in eq. (2.56) denotes the case p = n, where no
training data is involved, and evaluates the model entirely on how well the prior
M is specified. In fact, 10% of terms contributing to the marginal likelihood come
from predictions, using on average less than 5% of the available training data [24].
A criterion, which compares models with a score that includes contributions from
predictions, made by using only a handful of training points, may not be suitable
for model selection. Therefore, Fong et al. propose to begin evaluating the model
performance after a preparatory phase, where for example 10% of the data is used
for preparatory training, before testing. This leads to a preparatory cross validation
score

PC‘/ieave—p—out(Za P) - Z Cvieave—p—out(Za p)a (257)

p=P

which is a sum of terms containing none and few samples of training data and thus
should at most be used for evaluating the prior M.
The respective Bayesian cumulative leave-p-out CV score, which is recommended to
be used for Bayesian model selection, the results in

P
OCVieave—p—out<Za P) = Z C(‘/ieave—p—out(Z7 p)v (258)

p=1

where it is recommended to set P between 0.9n and 0.5n.

Fong et al. provide test results, where both CV scores, namely the cumulative leave-
p-out CV from eq. (2.58) and standard leave-p-out CV from eq. (2.54), averaged over
all possible data orders, are able to determine the true model. However, the cumu-
lative leave-p-out CV provides more distinct scores, while being computationally
more expensive to calculate, than the standard CV.

2.4.4 Combining Models

Previously, possible techniques were introduced for choosing a model, that fits the
underlying objective function best, based on observed data. However, in many
applications, it is not guaranteed that the true model is included in a set of available
models. In fact, in many cases the model, resembling the underlying function, lies
somewhere in between available models. Therefore, it would be practical to choose k
best performing models, based on their model selection scores, and use a composition
of their information for selecting the next promising point in parameter space. This
can be achieved by two methods, namely, by either creating a composed acquisition
function, or a composed kernel function, which are presented in the following.
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Composed Acquisition Function

Most Likely Expected Improvement Pautrat et al. [43] in general advocate
the marginal likelihood as a suitable model selection criterion. However, they pro-
pose an approach where the marginal likelihood is combined with expected improve-
ment scores within the acquisition function. In [43], Pautrat et al. generally aim to
achieve a data-efficient policy search in RL for robotics by automatically selecting
a suitable prior mean function for a GP. Thereby, it is assumed to have multiple
priors to select from. To handle the available prior mean functions, they suggest
combining the step of model selection and the optimization step of choosing the
next promising point in parameter space. Therefore, they introduce a new acquisi-
tion function, based on the EI acquisition function. In contrast to the EI, this new
acquisition function, called Most Likely Expected Improvement (MLEI), is able to
choose a promising point in parameter space from all available GP models simulta-
neously. This is done by determining the EI scores of all available GP models, with
respective prior means, and weighting them by their marginal likelihood scores. By
optimizing the MLEI, the most promising point from all models is chosen.

The MLEI acquisition function can be stated as

aMLEI(my M) = IngML(y|X7 M)aEI

(2.59)
— log paut (Y X, M)Emax(f(@) — f(2™),0)

where agr denotes the EI acquisition function and M a prior model.
Thus, the next point in parameter space is chosen by maximizing the product of
marginal likelihood and EI scores, with respect to the parameter vector x from
the set of feasible parameter vectors A and the model M from k prior models
My, ..., M. The resulting optimization problem of the MLEI acquisition function
can be stated as

T S I, e M) 00

Utility Mean Roman et al. [48] performed an experimental study on adaptive
kernel selection for BO, where they propose different approaches for choosing and
utilizing GP models with varying kernels in BO. Their suggestions for choosing
a model correspond to already introduced methods like the marginal likelihood or
taking a MLEI acquisition function. However, they contribute new approaches on
weighting multiple models within the acquisition function in each optimization iter-
ation. Firstly, they introduce the so-called Utility Mean. In this method, a combi-
nation of multiple EI acquisition functions is used to select a new point in parameter
space to evaluate. The next point will be chosen by optimizing not one single ac-
quisition function, but the mean of Els of all available models as

41 = arg max aymer(€|GP1,. k)
xEA

L& (2.61)
= arg ggg(E ; aEI(w!QPi)) 7
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where ag; is the EI acquisition function, k is the number of GP models GP1, ..., GP;
to be used in the Utility Mean ayyg;.

Weighted Mixture Expected Improvement Another method, proposed by
Roman et al. [48], is called Weighted Mixture awngr and is based on the Utility Mean
acquisition function. Other than only taking the average of acquisition functions
from k£ GP models, they are additionally weighted by their marginal likelihood

ratios as
Lp41 = arg mgx{ aWMEI(m|gP1,...,k)
xTr

k
1
= arg TSX(E ;wiaEI(m|gPi))> (2.62)

log pur(y| X, GP;)
Zle log puir (Y| X, GP5)

The composed acquisition functions from eq. (2.61) and eq. (2.62) are used in [48]
to weight information from multiple GP models with varying kernels. However,
commonly used acquisition functions also incorporate information from the prior
mean. Therefore, the Utility Mean and the Weighted Mixture could also be used to
utilize multiple models with varying prior mean functions.

Composed Kernel Function

Duvenaud et al. [23] investigate different kernel structures, such as additive or
multiplicative kernels, and propose using combined kernels in BO. They state, that
kernels, composed by adding k sub-kernels, like

k(z, ') = ki(x, ')+ ... +ki(z, '), (2.63)

can be understood as an OR-operation between respective sub-kernels. Conse-
quently, two points yield a high covariance value if at least one sub-kernel yields
a high value. Analogously, kernels, composed by multiplying k& sub-kernels, like

k(x,2') = ki(z,x') - ... - ko(x,2), (2.64)

can be understood as an AND-operation between respective sub-kernels. Thus, two
points have a high covariance value only if all sub-kernels yield high covariance.
Using either eq. (2.63) or eq. (2.64) as the kernel function of a GP, yields a GP
model with combined prior information from both kernels. This model can then be
further used by the acquisition function to select the next parameter configuration
to evaluate.



Chapter 3

Bayesian Optimization with
Multiple Simulation Data Sets

In this chapter, different algorithms are developed for leveraging simulation data
within the BO framework and thus increasing sample efficiency in BO. Compared
to previous research, the developed algorithms focus more on the problem of having
multiple sets of simulation data, which are assumed as likely to have mismatches to
the real objective function to be optimized.

The first section of this chapter will give more details on available simulation data
and its properties. Then, three possible approaches of incorporating simulation
data into the BO framework are selected and presented for the simple case of having
a single set of simulation data. The approaches are, namely, the prior-informed
mean function, the prior-informed kernel function and the Prior-Guided Expected
Improvement (PGEI) acquisition function, which is a novel approach, introduced
in this work. To expand the methods to the deployment of multiple simulation
data sets, possible model selection criteria, as well as strategies to combine models,
are assessed and adjusted regarding the requirements of the application covered in
this work. Lastly, the resulting algorithms are summarized and complemented with
pseudocode.

3.1 Interpolated Simulation Data

In the context of this work, simulation data refers to sets of discrete data points,
previously obtained from a simulation of the aim point controller and its interac-
tion with the solar power tower plant. One set of simulation data contains vari-
ous controller parameter configurations and their corresponding objective function
value, indicating the performance of the aim point controller. Since some simula-
tion variables of solar tower plants, like mirror errors, rely on possibly inaccurate
estimations, multiple simulation data sets for different values of the simulation vari-
able in question are generated. To obtain objective function values for a continuous
range of parameter configurations, every set of simulation data is interpolated by
a regression NN, trained on the respective simulation data set. Certainly, other
interpolation methods could be used as an alternative to training a NN. However,
NNs are capable of representing even complicated relations in several dimensions

33
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and thus appear most suitable for this application. From now on, fyxn;(x) denotes
the output of a NN for a controller parameter configuration @, which interpolates
the simulation data set i, where ¢ = 1, ..., ny, for n, available sets of simulation data.

3.2 Prior-Informed Mean Function

Customizing the prior mean function of a GP surrogate model is one possibility
for the aim of incorporating prior information in BO. In section 2.4.1, approaches
from literature for this purpose were introduced. One of the methods, proposed by
Cully et al. [20], selects promising points in simulation. However, this approach
seems not suitable for the application covered in this work, because it constrains
the optimization to preselected points from simulation. In case of considerable mis-
matches between the true objective function and the simulation, which are likely to
happen for the application, covered in this work, BO could be prevented from find-
ing optimal controller parameters. Likewise, the Black-DROPS approach, proposed
by Chatzilygeroudis et al. [14] is not convincing when transferred to the problem
of controller parameter optimization for solar power tower plants. Although Black-
DROPS generated promising results for a robot, transferred to other applications
it may be unclear how to find a suitable parametric model, describing the system
with analytic equations. For the case of having a ray tracing model, as assumed
for the solar power tower plant, a closed analytic expression for the model does
not exist. Finally, a prior mean function, weighted by a parameter, which controls
the influence of simulation data on the model, as used by Wilson et al. [2], seems
to be a promising approach. It considers the case of having simulation data, that
possibly does not resemble the true objective function and can be transferred easily
to applications different from the original robotics use case. For now, it is assumed
that only one set of interpolated simulation data is available, which will be denoted

as fNN .

Analogous to [2], the objective function f(a) will be described by a convex combi-
nation of two GP function surrogates, regulated by a parameter 3

flx) = (=P (@) + Bfa(), (3.1)

where the function f; is modeled by a GP as
fi(x) ~ GP(0, ksg(x,x")). (3.2)

As proposed in [2], a zero mean function is used for the first GP. As a covariance
function, the SE kernel was selected, since it is most commonly used in literature
and advocated as a suitable choice for most objective functions.

The second function f, is modeled by an additional GP as

fa(x) ~ GP(fan(z), ksp(z, z')). (3-3)

Here the prior mean function equals the values of the interpolated simulation data
fxn. According to [2], the same covariance function should be used for both GPs.
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The linear combination of f; and fy in eq. (3.1) results in new GP, whose prior
distribution is again defined by a mean function and a covariance function. The
latter constitutes the covariance matrix of the prior distribution.

In general, the linear combination of statistically independent multivariate Gaussian
random variables can be determined analytically. With two statistically independent
multivariate random variables X and Y

X NN(mx,Zx)

3.4
Y ~ N(my, Ey) ( )
the linear combination Z = (1 — 5)X + Y can be stated as
Z ~ N(mz, Ez),
with my = (1 — ﬂ)mx + Bmy (35)

and EZ = (1 — ﬁ)zzx + ﬁ22y.

Furthermore, an analytical expression for the covariance ¥, can also be found for the
case, where the random variables are statistically dependent and jointly normally
distributed, but then the correlations between X and Y have to be known. In case
of statistical dependence, the mean m  would stay the same as in eq. (3.5). [53]
However, instead of determining the resulting covariance function of the new GP
analytically, Wilson et al. [2] again define the covariance by a SE kernel function.
Moreover, they add an unknown multiplicative factor d(/3) to the kernel function,
which indicates the variance changes, resulting from the use of the prior-informed
mean function, dependent on f3.

With the equations for the mean from eq. (3.5) and the weighted kernel function,
the complete distribution for f(x) assembles to

f(@) ~ GP(Bfxn(z), d(B)kse(z, x')), (3.6)

which is a GP with prior mean function

m(x) = B fan(), (3.7)

consisting of the g-weighted simulation data.

For the case of simulation data, resembling the objective function, S should take a
value close to one. Consequently, the prior mean function will take the values of
the interpolated simulation data fynx. On the contrary, in case of having unsuitable
simulation data, g should take a value close to zero to suppress its influence.

To obtain a GP regression model, the predictive posterior mean is calculated, ac-
cording to section 2.3.1, by conditioning the GP on observed data. When using a
prior mean function different from zero, the predictive posterior mean consequently
changes to

pn5(@2) = (Bfrn(@)) + ko [K (X, X) + 021] 7 (y — BF ), (3.8)

where x, denotes an unevaluated parameter configuration, y is a vector of objective
function observations and fyy a vector of interpolated simulation data values with
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one element for each parameter configuration @ in the set of evaluated parameter
configurations X.

The equation for the predictive posterior variance remains the same as in eq. (2.14).
However, the factor d(f) will have an influence on the kernel function itself and
therefore also on the predictive posterior variance. This topic will be further elabo-
rated after handling the GP’s hyperparameters.

3.2.1 Handling Hyperparameters

The resulting hyperparameters of the GP can be summarized in a vector 6, which
includes the kernel parameters of and [ (in case of using the SE kernel), as well
as the parameter 3 and the noise variance o?. Wilson et al. suggest tuning the
parameter S by maximizing the marginal likelihood of the GP on observed data.
In that way, (8 is able to control the influence of the simulation data, based on
gathered information about the true objective function. This corresponds to the
most commonly used method of handling the hyperparameters 8 by optimizing the
marginal likelihood on observed function evaluations, as previously explained in
section 2.3.2. This approach is especially practical, since 8 can be optimized jointly

with the other hyperparameters of the GP.

3.2.2 Pitfalls of the Prior-Informed Mean Functions

Wilson et al. [2] successfully assert improvements in sample efficiency and perfor-
mance deriving from a [-weighted prior-informed mean function. However, when
having a closer look at the approach, transferred to the optimization problem ex-
amined in this work, an issue will become apparent. In [2], it is assumed that there
is a deviation between the output of a simulator and the objective function, mod-
eled by the GP. However, in case of well suited interpolated simulation data, it
is possible that the prior mean function resembles the observed objective function
values well for several evaluations. The problem arising from this circumstance will
be explained with the help of an example, where for simplicity no observation noise
is assumed.

In the following, the SE kernel function is used

ksp(x, 2') = orexp (—%) (3.9)

The GP’s hyperparameters 6 = [[, o] are fitted on objective function observations
in every BO iteration, yielding the maximum marginal likelihood on observed data.
It is assumed, that the interpolated simulation data f{ is deployed, which resembles
the true objective function f at n previously gathered objective function observations

fin(@s) = f(x;) Vi=1,..n. (3.10)

Thus, it can be assumed that § will take a value close to one, which allows the prior
mean function to approximately take the values of the interpolated simulation data

with m(x) = fin(x) and S~ 1

— (@) ~ S (@) (3.11)
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In [2], it is stated, that the covariance function of the linear combination of GPs
changes by a multiplicative factor d(f), dependent on . Therefore, the SE kernel
function changes to

e, = (e ) = d(Bote(~EZFE ). @

with the kernel parameters o7 and [, which are contained in the vector of GP hy-
perparameters 6.

The factor d(f) indicates, that using the prior-informed mean function, dependent
on 3, has an influence on the covariance of the GP prior distribution. This influence
becomes visible for the kernel parameters, which incorporate the changes, after fit-
ting them on observed data. For the case, that the prior mean function resembles
the objective function observations, it was observed, that the kernel variance o}
takes values close to zero or zero, while the length-scale parameter [ increases by a
multiple of the search space. Both changes have the effect, that the kernel function
takes values close to zero. The vanishing covariance function is problematic in BO,
because it also lets the predictive posterior variance from eq. 4) approach zero.
A neglectable small predictive posterior variance will prevent explorative behavior
in BO and will result in exhaustive sampling in areas, which are considered as op-
timal by the posterior mean. Furthermore, a predictive posterior variance equal to
zero for all points of the search space, will even result in an EI of zero for respective
points, which can be easily verified from the definition of the EI in eq. (2.32). This
would prevent the acquisition function from choosing a new point to evaluate. In
this case, the next parameter configuration would have to be chosen randomly to
continue the optimization.

Visual Example: Degenerate Case of the Prior-Informed Mean Function

A visual example of the problem, stated above, is given in fig. 3.1 and fig. 3.2. In
fig. 3.1, a NN was trained on random sinus function samples, to imitate interpolated
simulation data. However, the simulation data is corrupted, since the true maxima
of the function are not well represented.

Using the corrupted simulation data in the prior-informed mean function, yields the
results, shown in fig. 3.2. Three BO steps are depicted, where a case without obser-
vation noise is considered. For every iteration, the number of function evaluations
n, as well as the values for 3 and the kernel parameters o7 and [ are stated.

In the first optimization step, the sinus objective function was already evaluated
n = 2 times at randomly chosen points during the BO initialization step. The
observations yield a good fit for the simulation data, as well as the true objective
function, which leads to a $-value of almost one from maximizing the marginal like-
lihood. Consequently, the prior mean function approximately takes the values of
the corrupted simulation data. In this case, where the objective function observa-
tions resemble the prior mean function, it can be observed, that the kernel variance
o? approaches zero, while the length-scale [ takes a value, which is a multiple of
the search space. Both of these kernel parameters lead to a vanishing covariance
function, which again leads to a neglectable small posterior variance and accord-
ingly small standard deviation. Therefore, the acquisition function solely relies on
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the predictive posterior mean. As already mentioned in section 2.3.1, the predic-
tive posterior mean takes values of the objective function observations at evaluated
points and transitions into the prior mean function at locations far away from the
evaluated points. Consequently, with a [-value close to one, the predictive poste-
rior mean approximately resembles the corrupted simulation data, which does not
contain the true function’s maxima. Therefore, the acquisition function will select
the maximum of the simulation data, which underestimates the true optimum of
the objective function in the stated example.

In the next iteration n = 3, [ is one, which leads to a prior mean equal to the
simulation data. Again, the kernel parameters cause vanishing posterior variances.
From the plot it can be seen, that in this iteration all EI acquisition function values
become zero and the acquisition function is not able to select a new promising point.
This is an indicator, that the posterior variance equals exactly zero for all points
within the search space. Thus, a random point is evaluated, which is plotted in the
optimization step n = 4.

At this new point, the simulation data is similar to the objective function observa-
tion, but has a small offset. Here, 3 takes the value 1.04 and the length-scale takes
a reasonable value of [ = 0.408. However, o7 is still quite small, which leads to small
posterior variances greater than zero. The acquisition function also takes values
greater than zero and selects a new point, but since the variance is still suppressed
by o, any form of exploration is prevented. Therefore, a point in the immediate
vicinity of the maximum within the simulation data is selected to be evaluated.

In further optimization steps, the observed behavior would be repeated until a point
gets evaluated, which has a considerable offset to the prior mean. Then, the vari-
ance would increase, allowing further exploration and eventually finding the true
optimum of the objective function. For the stated example in two dimensions, this
could be achieved in a reasonable number of function evaluations. However, for
objective functions with higher dimensionality, it possibly takes numerous function
evaluations. Since the aim of this work is to increase the sample efficiency and thus
reduce the number of function evaluations, the prior-informed mean could lead to
counterproductive behavior.

This problem may be fixed by approaches like setting the kernel parameters to pre-
defined values, instead of fitting them to observed data. However, this procedure
requires prior domain knowledge and decreases the flexibility of the surrogate model.
Therefore, the prior-informed mean function was not further investigated. Instead,
two alternative methods of leveraging simulation data in BO will be presented in
following sections.
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Corrupted Simulation Data for a Sinus Function
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Figure 3.1: Corrupted simulation data for a sinus function
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3.3 Prior-Informed Kernel Function

An alternative approach for incorporating prior information into a GP model, is to
use a suitable prior-informed kernel function. In section 2.4.2, methods from lit-
erature were introduced, that use prior knowledge from simulations in their kernel
functions. One of these algorithms, proposed by Marco et al. [37], trades off cost
and accuracy by switching between a simulator and the real system, to obtain ob-
jective function observations. This method can be successful when simulations are
not significantly different from the true system behavior. Otherwise, one needs to
carefully tune the influence of simulation data over real world observations. There-
fore, this approach seems not suitable for the application dealt with in this work,
whose simulation data has possibly high deviations from the real objective function.
In another contribution from Wilson et al. [2], a BBK kernel function is introduced,
which aims to compute a distance between actions, taken by a robot, not in any
parameter space, but regarding their resulting behavior on a robot. This method
is very specific for robotic applications and rather hard to transfer to other opti-
mization problems. The approach, suggested by Antonova and Rai et al. [4], also
calculates the kernel’s distance metric no longer in parameter space, but in simu-
lated and interpolated objective function space. To reconstruct simulation data at
unevaluated data points, they use NNs. Furthermore, they suggest an extension to
their prior-informed kernel function, which corrects mismatches between simulation
and reality, based on previous objective function observations. This method, which
was already explained in section 2.4.2, will now be transferred to the problem of
optimizing an objective function with respect to a vector of parameters x, while
having a possibly unsuitable set of simulation data as prior information.

Based on [4], a standard SE kernel function is turned into a prior-informed kernel by
incorporating predictions of a NN, previously trained on available prior information.
Evaluating the NN at any arbitrary parameter vector x yields a predicted objective
function value 7 as

Consequently, the NN predictions are used as prior information within the modi-
fied kernel function and thus directly provide information about the correlation of
parameter vectors in objective function space

(nle) - fn(e)?

(3.14)

Exn(, ') = orexp (— 572

Compared to a standard SE kernel, the prior-informed kernel function is no longer
stationary. Assuming two pairs of parameter vectors (x1,x1’) and (x2,x2’), that
have the same distance d(x1, 1) = d(x2,x2’) in parameter space, may have dif-
ferent distances d(fyn(@1), fan(1")) # d(fan(@2), fun(x2')) in interpolated simu-
lation data space. Thus, the kernel is no longer shift-invariant in parameter space,
but uses specific information about the objective function from simulation data.

In [4], a zero mean function is proposed as the GP’s prior mean. However, as
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already explained in section 3.2, a constant mean function m(x) = ¢, with constant
c fitted on objective function observations is beneficial and will be used instead of
the zero mean. The resulting GP surrogate model of the objective function with the
prior-informed kernel can be written as

f(x) ~GP(c, knn(z, x')). (3.15)

Finally, the mean and variance of the GP predictive posterior distribution can be
calculated without any modifications by eq. (2.13) and eq. (2.14), respectively.

3.3.1 Handling Hyperparameters

Fitting the hyperparameters @ of a GP to objective function observations by max-
imizing the marginal likelihood is a convenient technique, which yields in general
suitable results and will therefore also be used to determine the hyperparameters of
a GP with prior-informed kernel function.

However, when using the prior-informed kernel, it should be considered to introduce
a fixed upper bound for the lengths-scale [, before fitting the parameter to observed
data. This is particularly useful when having simulation data, that does possibly
not or only partly resemble the objective function observations. For this case, ob-
jective function observations will be gathered, which are unlikely to be drawn from
the GP prior distribution with the prior-informed kernel function. Consequently,
the marginal likelihood will decrease. However, sometimes a comparatively high
marginal likelihood can still be achieved by smoothing the GP model with a dis-
proportional large length-scale and thus suppressing the influence of the simulation
data within the kernel. This is problematic, since all unevaluated points are consid-
ered as close to the evaluated ones, which again yields a vanishing posterior variance
and prevents further exploration of the search space. Moreover, it also corrupts the
model at unevaluated points in parameter space, where the simulation data infor-
mation could possibly still be useful. An upper length-scale bound can prevent this
undesired behavior. When there is no further reliable prior knowledge about the
true objective function available, the maximum distance within the domain, which
is used in the kernel’s distance metric, can be chosen as the upper bound for /. For
the prior-informed kernel function, the length-scale bound would be chosen as the
maximum distance of objective function values within the simulation data space.
This is a suitable choice, since it will not be necessary to extrapolate more than this
maximum distance away from any data point.

3.3.2 Mismatch Correction

Compared to a standard kernel function, the prior-informed kernel can yield a more
accurate GP model of the underlying objective function by accessing prior knowl-
edge, and thus accelerate the BO algorithm in finding the optimum. However,
this is only the case if the set of interpolated simulation data fyn, used in the
prior-informed kernel, resembles the objective function well. For the case of using
unsuitable simulation data within the prior-informed kernel function, the resulting
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GP model will possibly not yield a good fit for the objective function and thus de-
crease the performance of BO. Therefore, the previously proposed prior-informed
kernel function eq. (3.14) will be extended by a mismatch correction term, based on
the approach of Antonova and Rai et al. [45].

For this purpose, an additional GP will be used to model the deviations between
previously collected objective function observations y = [y, ..., y,] for a set of eval-
uated parameter configurations X = [x1,...,@,] and the interpolated simulation
data values fyy = [fnn(21), -, fan(@,)]. The vector of observed deviations can be
written as

d — [dl, -~-;dn]7

3.16
with d; = fan(x;) —y; for i =1,... n. ( )

The GP, modeling the deviations is then defined as
d(zx) ~ GP(c, ksg(zx, ")), (3.17)

with standard SE kernel and constant prior mean function.

Conditioning the mismatch GP prior distribution on previously observed deviations
d will yield the GP posterior distribution with predictive posterior mean fi,, mis()
according to eq. (2.13). The predictive posterior mean can then be used to predict
mismatches between interpolated simulation data and arbitrary unevaluated param-
eter configurations.

The predicted mismatch can be directly included in the prior-informed kernel func-
tion. This is done by extending the kernel kxy from eq. (3.14) with an additional
dimension to

oo - [ i2)]

bt 2!) = oty lote) — gt aios([1]) lotw) ~gt@)), 229

with a diagonal matrix constructed from two independent length-scale parameters
Iy and [,. Introducing independent length-scale parameters for the simulated objec-
tive function values and the predicted deviations is beneficial because its scales can
differ.

By using the prior-informed kernel function kxy mis With mismatch correction, the
correlation between parameter configurations @ and x’ is determined by two com-
ponents: the similarity in interpolated simulation data space and the predicted
mismatch. Intuitively speaking, parameter configurations will only be considered as
strongly correlated if they have similar simulated objective function values, as well
as similar predicted mismatches.

This can be shown mathematically by reshaping eq. (3.19) to

kNN,miS (wa 33,)

— o2exp (_ (;\IN(:B) - fNN(:v'))Q) . a,%exp(— (b, mis () — ummis(m’))?). (3.20)

2[1 2l2

The result is a multiplicative kernel structure, where the first part of the multipli-
cation is a sub-kernel, which determines the covariance by computing a distance in
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parameter space, while the second part of the multiplication is a sub-kernel, which
calculates the covariance by computing a distance in predicted mismatch space.
As previously stated in section 2.4.4, a multiplicative kernel structure equals an
AND-operation between sub-kernels, which confirms the statement, that parameter
configurations will only be considered as strongly correlated if they have similar
simulated objective function values, as well as similar predicted mismatches.

The resulting benefit can be seen in the following example. It is assumed, that
parameter configuration x; was already evaluated and yielded bad performance. A
second parameter configuration xs lies in another region of the parameter space,
but has a similar predicted objective function value in simulation data space. With-
out using a mismatch correction, x5 will not be selected and evaluated, even if the
point could still be promising. However, with mismatch correction, @ can still be
selected, if the predicted mismatch for xo yields another value than the predicted
mismatch for x;, which is likely for points in different areas of the parameter space.

3.4 Prior-Guided Expected Improvement

Within this work, a new method for leveraging prior information from simulation
data in BO is introduced. This method is fundamentally different from previously
described approaches. Instead of incorporating a set of interpolated simulation data
into the GP model, it is used to directly guide the EI acquisition function towards
promising areas in simulated objective function space. In the broadest sense, this
approach is inspired by the prior-informed mean function by Wilson et al. [2], while
overcoming the limitation of a vanishing posterior variance. Instead of incorporating
the simulation data into the prior mean function of the GP model, the idea is to add
them to the posterior mean function p,(x) (eq. (2.13)) which is then used within
the acquisition function.

Firstly, the posterior mean is calculated from the GP model and adjusted to

fina(T) = pn(T) + o fun (), (3.21)

with the parameter a, controlling the influence of the interpolated simulation data
fax ().

Then, within the acquisition function, the original posterior mean u,(x) is substi-
tuted with the adjusted posterior mean p, (), which results in guiding the search
towards promising areas of the interpolated simulation data space. Other than the
prior-informed mean in section 3.2, there is no risk of a vanishing covariance if the
adjusted posterior means equals or resembles observed objective function evalua-
tions. The EI acquisition function with modified predictive posterior mean (for the
aim of maximizing an objective function) yields

?

_ (nal®) = f(@1)V(Z) + on(x)(Z), if op(z) > 0

o) 0 if op(z) =0

with Z = { %@J;(m, if op(x) >0 (3.22)
Oa if O'n<33) =0
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The PGEI will be likely to favor points, which are promising in simulated objective
function space. For the case, that the interpolated simulation data and the original
predicted posterior mean p,, are contradictory, the PGEI will yield a medium score,
allowing to first evaluate promising points, where the original model and the interpo-
lated simulation data agree. Moreover, it has to be considered, that a modification
of the posterior mean also affects points of the regression model, where objective
function observations already exist. For other acquisition functions, like UCB, this
can lead to the undesired behavior, that the modified posterior mean of a point,
which was already evaluated, again results in a higher acquisition function score
than unevaluated points and therefore is again selected to be evaluated. However,
for the EI acquisition function this is unlikely to happen, since the posterior variance
at those points vanishes, which yields vanishing EI scores, as it can easily be seen
from eq. (3.22).

3.4.1 Determining the Weight Parameter

Wilson et al. [2] suggest determining the weight parameter, which controls the
influence of the simulation data, by maximizing the marginal likelihood on obser-
vation data. By doing so, the probability that the observation data was drawn
from the GP’s prior distribution is maximized. This seems reasonable, since they
modify the prior mean function of the GP. However, for adjusting the acquisition
function, it is desired to modify the posterior mean of the GP. Thus, maximizing
the marginal likelihood is not a suitable approach. In fact, the weight parameter «
should rather maximize the probability that some withheld observation data sam-
ples are drawn from the posterior distribution of the GP. This can be achieved by
using the predictive posterior probability p,,, which was introduced in section 2.4.3,
eq. (2.55). Therefore, the set Z = (X,y) of evaluated parameter configurations
and respective objective function observations is separated into disjoint data sets.
Zirain = (Xtrain, Yirain) Will denote m data points on which the GP’s prior distribu-
tion will be conditioned on. The data split ration can be chosen freely. However, a
suitable approach is to take 80 % of the available data for training and to hold out
the remaining 20 % for testing.

Subsequently, the predictive posterior mean pu,,(x) of the GP and the predictive pos-
terior variance o2, (x) can be computed, based on the m training points. Zyold.out =
(Xhold-outs Ynold.out) Will be the set of p withheld data points.

Maximizing the predictive posterior probability, to obtain the parameter o* yields
an optimization problem which, can be stated as

04* = arg ngX IOg ppp(yhold—out|Xhold-outa Ztraim gPa Oé). (323>

The predictive posterior probability, depending on parameter «, can then be ex-
pressed (analogously to eq. (2.55)) by

log ppp<yh01d_out |Xhold—0uta Ztraina gP, Oé) -

1 _
= _§(yhold—out - l’l’m,CX)TK 1<yhold—out - l’l‘mya) (324)

1 (0] —ou
— 5 log | K| — “25=" log2r),
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where K is the matrix of posterior variances, generated by evaluating the predictive
posterior variance o2, (x) for all withheld parameter configurations Xygq.ous. Anal-
ogously, fm.a is the vector of modified predictive posterior means, evaluated at
withheld parameter configurations.

After plugging in the modified posterior mean from eq. (3.27) into the predictive
posterior probability in eq. (3.24), the gradient of eq. (3.24) can be taken with re-
spect to a. Consequently, solving the equation for o will yield the parameter which
maximizes the predictive posterior probability on withheld data points

o = (y - /'l'm)TK_lfNN’ (325)

b NN K 1NN
where u,, and fnn are the vectors of posterior means and interpolated simulation
data, evaluated at parameter configurations Xjg1q.out, respectively.
However, the parameter a* now depends on the choice of withheld data points. To
make the estimation of a* more robust, the procedure is repeated for r random
splits of withheld data with a constant splitting ratio. This results in r values for
the parameter «, which will be averaged to

I,
af = — g Q. 3.26
(" l ( )
The predictive posterior mean with optimal control parameter yields

fino(®) = pn(x) + 0 fun (), (3.27)

which can then be used in within the acquisition function. In case of suitable simula-
tion data, the parameter o* will take values unequal to zero, guiding the acquisition
function to promising areas in simulation data space. In case of untrustworthy sim-
ulation data, the parameter will take the value zero or close to zero, which yields
the unmodified acquisition function without influence of simulation data.

3.4.2 Mismatch Correction

So far, the described method of a prior-guided acquisition function just discards
simulation data if it appears unsuitable, based on objective function observations.
Alternatively, a mismatch correction step can be executed before calculating an op-
timal averaged a*. Therefore, an additional GP will model the observed mismatch
between n already gathered objective function evaluations and interpolated simu-
lation data values, as previously explained in section 3.3.2. The posterior mean
finmis() of the mismatch GP can again be calculated, which predicts the deviation
between simulation data and reality for arbitrary parameter configurations x.
Consequently, the corrected simulation data can be written as

Fan(®) = fan () = i mis (). (3.28)

Therefore, the adjusted posterior mean from eq. (3.21) is further modified to

fina(®) = pn(@) + afyn(@). (3.29)



46 CHAPTER 3 BAYESIAN OPTIMIZATION WITH MULTIPLE SIMULATION DATA SETS

The optimal parameter a* can then be calculated following eqs. (3.24) to (3.26).
Finally, the predictive posterior mean with mismatch correction and optimal control
parameter yields

~

o) = pin () + 07 fyn (), (3.30)

which is used to guide the acquisition function in eq. (3.22).

3.5 Expansion to Multiple Sets of Simulation Data

So far, approaches for incorporating a single set of simulation data were explained in
detail. However, for the application covered in this work, it is essential to leverage
multiple sets of simulation data. The previously introduced approaches for incorpo-
rating prior information into a GP model will be extended to multiple sets of prior
information in section 3.5.1. Therefore, multiple prior-informed GP models are gen-
erated, where one model contains one set of simulation data, respectively. Thus, the
first question to answer is how to decide which models should be used during the
optimization process and which should be discarded. Therefore, a suitable model
selection criterion has to be chosen. Because it can not be assumed that there is one
model, perfectly representing the true objective function, it may be desired to use
more than one source of prior-information during one optimization iteration. Thus,
the second question is how to combine multiple models. Similar to the approaches
that involve a prior-informed model, the concept of having a prior-guided acquisition
function will be extended to multiple sets of prior information in section 3.5.2, by
deciding which set of simulation data to trust in guiding the acquisition function to
promising regions in simulation data space.

3.5.1 Multiple Prior-Informed Models

For ng sets of simulation data, ny GP models are generated, where each model
incorporates prior information from one set of simulation data, respectively. The
GPs can be generated by using either a prior informed mean function, as explained in
section 3.2, or a prior-informed kernel function, as described in section 3.3. However,
since it is not ensured that any set of simulation data resembles the true objective
function, one additional GP model without prior information will be generated.
This additional GP has a constant prior mean function and the commonly used
SE kernel, which is suitable for most objective functions. Consequently, it solely
relies on previous function observations and thus will be called the standard GP.
In every BO iteration, the resulting ng + 1 GP models are updated on gathered
objective function observations. Since it is assumed that controller parameters are
time-consuming to evaluate on the real system, it would be impractical to let an
acquisition function choose a promising point from all ng + 1 GP models and thus
evaluate ng + 1 parameters per iteration. Therefore, in each BO iteration, it has to
be decided which model to use for choosing the next point in parameter space to
evaluate.
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Choosing a Model Selection Criterion

In section 2.4.3 four possible Bayesian model selection criteria were introduced,
which are either commonly used or previously proposed in literature.

The most-widely used Bayesian model selection criterion is the marginal likelihood.
Based on observation data, the marginal likelihood would be able to choose the GP
prior M* € { My, ..., M,,_;1}, which is most likely to have generated the observation
data. In general, this does not guarantee that the GP posterior performs well when
predicting on unseen data. However, this is the crucial factor in model selection for
BO, since the acquisition function uses the GP posterior to predict the performance
of unseen points in parameter space. Therefore, the marginal likelihood and related
criteria seem not suitable for the problem of Bayesian model selection in this work.
A meaningful model selection criterion should give information about the likelihood
of a posterior M |Yrain, conditioned on a set of training data, to have generated a
set of withheld test data.

To fulfill this requirement, in section 2.4.3, eq. (2.55), the predictive posterior proba-
bility was introduced. However, the predictive posterior probability alone, evaluated
on only one split of training data and withheld data, would also yield no robust cri-
terion for choosing a model. Thus, promising methods are the presented CV related
techniques with the predictive posterior probability as a scoring function. Here, the
cumulative leave-p-out CV outperforms classic CV in terms of more distinct scores
when applied to multiple models. This seems especially useful under the assumption
that there is one model, which represents the true objective function well. However,
for the case of having multiple models that possibly mismatch the true function or
only party resemble it, it is unclear if using a cumulative CV score is worth the
additional computational effort.

Therefore, it was decided to use a classic CV criterion for model selection. The
leave-p-out CV, where the average over all possible orders of data is calculated, is in
general costly to compute. Usually, it is reasonable to average over a smaller number
of data splits by choosing random data orders for a constant split ratio. These data
splits can be generally chosen with or without replacement, where without replace-
ment means, that a withheld data point can not be part of the test data set for
another data split. On the contrary, with replacement means, that a withheld point
can occur within the set of withheld data points for multiple data splits. Gener-
ally, it is rather hard to tell if methods, that choose data splits with replacement
are more or less beneficial, compared to methods, choosing the data splits without
replacement. It was decided to take a method with replacement, namely the Monte
Carlo CV, which in general has a low variance and a high bias. However, the k-fold
CV, which has a higher variance and lower bias, would have been a suitable choice
as well. The formula for the Monte Carlo CV can be found in eq. (2.54), where the
ratio for the split in training data and withheld data set was chosen to 80 % for
training and 20 % for testing. This split is used, whenever the Monte Carlo CV
is computed in this work. The number of data splits |R|, on which the CV scores
are determined and averaged, was chosen to 10. This rather low number for |R| is
reasonable, since the data set of gathered objective function observations contains
only a couple of data points. Therefore, choosing a higher number of data splits |R|
would be computationally more costly, while hardly yielding any benefits.
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Combining Models

As explained in section 2.4.4, there are methods to combine multiple models, either
within the acquisition function, or by directly using a composed kernel. Conse-
quently, £ models can be combined and used in BO to select the next promising
point in parameter space.

Composed Acquisition Function The first option is to combine predictions
from multiple GP posteriors within a composed acquisition function. The MLEI
acquisition function, from eq. (2.59), chooses the next parameter configuration to
evaluate from & GP models simultaneously. However, it incorporates the marginal
likelihood, which was assessed as rather unsuitable for determining a model’s pre-
dictive performance. Nevertheless, the MLEI could still be a promising approach for
considering multiple GP models, when the marginal likelihood gets substituted with
another criterion for the model’s predictive performance. Here, the Monte Carlo CV
of the considered GP model can be simply used to replace the marginal likelihood.
For simplicity, the Monte Carlo CV of a GP model, computed with a share of 20 %
withheld data points from available observation data, will be denoted as CVyc(GP).
For the MLEI acquisition function with Monte Carlo CV scores, this results in

CLMLEI(CB, 973) = CVMC(gP)aEI
= CVaic(GP)E[max(f(z) — f(xT),0)],

which can be optimized with respect to the parameter vector and the GP model, as
stated in eq. (2.60).

(3.31)

Another composed acquisition function, the Utility Mean from eq. (2.61) yields
the mean of the EI of multiple models. Therefore, it possibly tends to favor points,
suggested by optimistic models. A more suitable approach is the Weighted Mixture
acquisition function from eq. (2.62), where the EI of the models is weighted by their
ratios of model selection scores. Originally, the marginal likelihood is utilized to
compute the weights. However, after assessing that the marginal likelihood is an
unsuitable criterion, it is replaced by the Monte Carlo CV. The resulting Weighted
Mixture Expected Improvement (WMEI) with Monte Carlo CV can be stated as

Tp+1 = arg max awner(Z|GP1. k)
xrEA

L

= arg TQX(E izlwiaEI(m|gPi))7 (3.32)
CVaic(GP;)

>h, CVarc(GP;)

Composed Kernel Function The second possibility of combining k£ models, is
to create a composed kernel function from the models’ kernels by using them as k
sub-kernels for a multiplicative or additive kernel structure. Using a multiplicative
kernel structure would limit BO to points where all k sub-kernels agree, whereas
an additive kernel structure is able to consider the information of all sub-kernel
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functions. Therefore, the method of adding kernels seems more reasonable than
multiplying kernels. Since it may not be desired to weigh the information from each
sub-kernel equally, the k sub-kernels will be weighted by their respective Monte

Carlo CV ratios as
k

kww(z, ') = Z wiki(x, '),

=1 (3.33)
CVame(GP;)

>r CVac(GP;)

with w; =

The resulting kernel function in eq. (3.33) will be referred to as Weighted Mixture
Kernel (WMK), which yields a composed GP regression model. The composed
model can then be further used by the acquisition function to select the next pa-
rameter configuration to evaluate.

Unfortunately, a downside of combining too many models is, that it can easily
lead to untraceable results. This means, the more models are combined, the harder
it gets to reconstruct how much information is used from which model throughout
the optimization. Therefore, it was decided to follow a specific approach, where at
most k = 2 models are combined, concerning the composed acquisition function,
as well as the composed kernel. The first model will always be the standard GP
model with the GP’s hyperparameters 0 fitted on observation data, since it can be
assumed that it becomes a good representative of the true objective function, when
enough objective function observations are gathered. The second model will be one
prior-informed model, yielding the highest model selection score.

3.5.2 Prior-Guided EI with Multiple Sources of Prior Infor-
mation

Lastly, the approach of the PGEI acquisition function has to be extended to the use
of multiple sets of prior information. The difference to the approaches in section 3.5.1
is, that here only one GP model is deployed, namely a standard GP, without prior in-
formation from simulation data. After setting up the modified prior-guided posterior
mean from section 3.4 eq. (3.21), depending on parameter «, the optimal weighting
parameter o is computed for every i = 1, .., n, set of available interpolated simula-
tion data fyn,1, ... fxn .. Therefore, the steps of maximizing the predictive posterior
probability, described in section 3.4.1, can be followed. A mismatch correction step
can be performed, analogously to the explanation in section 3.4.2. As a result, the
respective modified posterior mean for simulation data set ¢ can be written as

f o, () = pin () + af fani(). (3.34)

To evaluate the modified predictive posterior means for every set of simulation
data, the Monte Carlo CV is used with the predictive posterior probability p,, from
eq. (3.24) as a scoring function. The Monte Carlo CV of the GP model GP, with a
posterior mean, which is modified by the simulation data set i, is then determined
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by

1
IR(p)|

Cvl\Z/IC<Z7 b, gp) = Z CVM(Zhold—out<r))

r€R(p)

= ! Z _l(yhold-out - N:L,ai)TK_l(yhold-out - ll’:n’ai)
RO 2 2
r€R(p)
~ S log| K]~ L log(2m),

(3.35)
where M for simplicity denotes the posterior model, conditioned on respective train-
ing data splitting. Again, 20 % of the data were withheld for testing. R(p) is the
set of random data splittings for a constant number of p withheld data samples
and pr, ; 18 the vector of modified predictive posterior means, based on m training
data sar’nples and evaluated at p withheld data points. Finally, the particular set of
simulation data, which yields the highest predictive posterior probability, indicated

by the Monte Carlo CV, will be selected to guide the EI acquisition function.

3.6 Resulting Algorithms

This section summarizes all promising approaches for incorporating simulation data
sets into the BO framework, by proposing concrete algorithms. Since the theory of
all the algorithms’ components was explained in detail in previous sections, the focus
lies on putting together the individual components. For more detailed explanation
on individual components, it will be referred to respective previous sections. Because
of its downsides, the approach of utilizing a prior-informed mean function will be
omitted. Thus, three classes of algorithms are elaborated. Firstly, algorithms that
use prior-informed kernels for incorporating simulation data. Secondly, algorithms
that deploy a prior-guided acquisition function. And lastly, hybrid algorithms, which
deploy prior-informed kernels, as well as a prior-guided acquisition function.
Whenever a standard acquisition function is used within one of the algorithms, it
was decided to utilize the EI acquisition function, because of its popularity and well
performance, stated in literature.

3.6.1 Algorithms with Prior-Informed Kernels

For the sake of clarity, the algorithms with prior-informed kernels had to be divided
into three sub-categories. Firstly, a basic algorithm with prior-informed kernel and
either standard EI acquisition function or MLEI acquisition function will be pre-
sented and complemented with pseudocode in alg. 2. Secondly, an algorithm with a
Weighted Mixture Kernel (WMK) structure will be summarized in alg. 3. The last
algorithm, given by alg. 4, deploys the Weighted Mixture EI acquisition function.

Basic Algorithm with Prior-Informed Kernels

A basic algorithm, stated in alg. 2, which uses prior-informed kernels, starts with
choosing whether the standard EI or the MLEI acquisition function should be used
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for the optimization process. Subsequently, a standard GP, denoted as GP,, and
1,...,ns GP models with prior-informed kernel function for n, sets of simulation
data, respectively, are initialized. To initialize the sets of gathered objective func-
tion data X and y, ¢ objective function evaluations are performed.

Then the optimization loop is performed, until the pre-defined budget of function
evaluations N is exhausted. Firstly, the hyperparameters @ of all ng + 1 GPs are
fitted on all available data, by maximizing the marginal likelihood. Then the Monte
Carlo CV is determined, as explained in section 2.4.3, for all GPs, which provides
information about the models’ predictive performance.

For the case of setting up the EI acquisition function, firstly the best scoring GP
model GP* is selected from all GPs. Then its predictive posterior distribution is
updated on all available objective function observations. Based on the predictive
posterior mean and variance, EI selects the next promising point in parameter space.
On the contrary, in case of using the MLEI acquisition function instead of EI, the
Monte Carlo CV scores are computed as well, but directly used to weigh the pre-
dictions of all models within the acquisition function. Therefore, the predictive
posterior distributions of all GP models are updated on available objective function
observations. Then, in contrast to the previous approach, the MLEI acquisition
function selects the next promising point from all GP posteriors.

Evaluating the new point in parameter space yields a new observation y,,1. Con-
sequently, the budget counter is incremented and the next iteration starts. After
budget N being exhausted, the parameter configuration x* is returned, yielding the
best observed value y*.

Additionally, it has to be noted, that the option of performing a mismatch correc-
tion within the prior-informed kernel is not explicitly stated in the pseudocode in
alg. 2, in order to keep the structure of the algorithm simple. For correcting the
mismatches between objective function observations and every set of interpolated
simulation data, an additional GP has to be fitted for each set of simulation data
1 = 1,...,ng, respectively, and further used as explained in section 3.3.2. In every
BO iteration, the mismatch GP predictive posterior distributions are updated on
available observation data.

Algorithm with Weighted Mixture Kernels

When using a WMK, as presented in section 3.5.1 in eq. (3.33), some steps are added
to the basic algorithm with prior-informed kernels. This results in a new algorithm,
stated in alg. 3. After the initialization steps, the optimization loop starts analo-
gously to the basic algorithm with fitting the GP hyperparameters by maximizing
the marginal likelihood on observation data and computing the Monte Carlo CV
scores. Then the best performing model GP*, among the prior-informed models, is
selected for building the WMK function of an additional GP model, denoted as GP..
The composed kernel is constructed, following eq. (3.33), by combining the standard
GP’s kernel function and the kernel of the best performing prior-informed model.
The kernel parameters of the WMK can be adopted from the standard kernel and
the best performing prior-informed kernel, respectively. Consequently, the Monte
Carlo CV of the additional composed GP is computed as previously done for the
other models. Finally, the overall best model is chosen, which yields the highest
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model selection score (denoted as GP**) and the algorithm proceeds like alg. 2.
Again, the mismatch correction, which can be performed when using a prior-informed
kernel, was not explicitly stated in the pseudocode of alg. 3. For correcting the
mismatches between objective function observations and every set of interpolated
simulation data, again an additional GP has to be fitted for each set of simulation
data i = 1, ..., ng, following section 3.3.2, and updated on available observation data
in each BO iteration.

Algorithm 2: Bayesian Optimization with prior-informed kernels

Choose an acquisition function a, with a € {agr, aypgr}-

Initialize GP; with mean m(x) = ¢ and kernel kgg(x, x’).

Initialize GP; with mean m(x) = ¢; and prior-informed kernel knn; (2, ')
for j =1,...,ns.

Perform i objective function evaluations. Set counter n = i.

Initialize X = [z, ..., ;] and y = [y, ..., ¥i

while n < N do

Fit the hyperparameters 8; of GP; on X, y for all j = 1,...,ns + 1.

Compute C'Vey(GP;) forall j =1,...,n, + 1.

if a = ag; then

Choose GP*, that yields the highest C'Viy score.

Update the predictive posterior of GP*, using X, y.

Set up ag; with current predictive posterior of GP*.

else

Update the predictive posterior of GP; for all j = 1,...,n, + 1, using
X, y.

Set up amrrr with current predictive posteriors of all GPs.

end

Select the next point x,,41 by optimizing the acquisition function.
Add 41 to X.

Evaluate the objective function at @, 41, observe vy, 1

Add y,.1 to y.

Increment n.

end
Return parameter vector &* that yields best observed value y*.

Algorithm with Weighted Mixture Acquisition Function

An algorithm, which deploys the WMEI acquisition function, is stated in alg. 4 and
proceeds similar to alg. 3. Instead of creating a composed kernel structure, from the
standard GP and the overall best performing GP, the WMEI function, which was
introduced in section 3.5.1 in eq. (3.32), is set up, using the Monte Carlo CV for
computing the weights. Unlike the WMK function, the WMEI is only set up if there
is a prior-informed GP model which performs better than the standard GP. If the
standard GP outperforms all other available models, it can be assumed that no set
of simulation data resembles the true objective function. To use an additional prior-
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informed model within the acquisition function could then possibly worsen the choice
of the next parameter vector to evaluate. Therefore, the standard EI acquisition
function is used in this case, which selects the next parameter configuration from
the standard GP. As usual, the optimization loop is repeated until termination.

Algorithm 3: Bayesian Optimization with Weighted Mixture Kernels

Choose an acquisition function a, with a € {agr, appgr }-

Initialize GP; with mean m(x) = ¢ and kernel kgg(x, x’).

Initialize GP; with mean m(x) = ¢; and prior-informed kernel kyy; (z, ')
for j=1,...,ns.

Perform 4 objective function evaluations. Set counter n = i.

Initialize X = [xo, ..., ;| and y = [y, ..., ¥i]

while n < N do

Fit the hyperparameters 6, of GP; on X, y for all j =1,...,ns + 1.

Compute C'Vey(GP;) for all j =1,...,n,+ 1.

Choose prior-informed GP*, that yields the highest C'Viy score.

Initialize GP. with composed kernel function from GP* and GP,.

Compute CVey (GP,).

if a = ag; then

Choose GP**, that yields the highest C'Vvy score.

Update the predictive posterior of GP**, using X, y.

Set up agy with current predictive posterior of GP**.

else
Update the predictive posterior of GP; for all j =1, ...,ns + 2, using
X, vy.
Set up ayer with current predictive posteriors of all GPs.
end

Select the next point ,41 by optimizing the acquisition function.
Add Tn+1 to X.

Evaluate the objective function at x,41, observe ¥, 41

Add y,.1 to y.

Increment n.

end
Return parameter vector &* that yields best observed value y*.

3.6.2 Algorithm with Prior-Guided Acquisition Function

An algorithm with prior-informed acquisition function can be found in alg. 5 has the
same structure as the classic BO algorithm from section 2.3.4. However, instead of
utilizing a commonly used acquisition like EI or UCB, the PGEI acquisition function
is set up, as previously explained in section 3.4 for one set of simulation data, and
extended for multiple sets of simulation data in section 3.5.2.
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Algorithm 4: Bayesian Optimization with Weighted Mixture Expected
Improvement

Initialize GP, with mean m(x) = ¢ and kernel kgg(z, ).

Initialize GP; with mean m(x) = ¢; and prior-informed kernel knn; (2, ')
for j =1,...,ns.

Perform 7 objective function evaluations. Set counter n = i.

Initialize X = [xoy, ..., x;] and y = [y, ..., ¥i]

while n < N do

Fit the hyperparameters 8; of GP; on X, y for all j =1,...,ns + 1.

Compute C'Vey(GP;) forall j =1,...,n, + 1.

Choose GP*, that yields the highest C'Viy score.

if GP* # GP, then

Update the predictive posteriors of GP* and GPy, using X, y.

Set up awwmgr with current predictive posteriors from GP* and GP,.

else

Update the predictive posterior of GP,, using X, y.

Set up ag; with current predictive posterior from GP.

end

Select the next point x,,+1 by optimizing the acquisition function.
Add z,,41 to X.

Evaluate the objective function at @, 41, observe ¥,

Add y,41 to y.

Increment n.

end
Return parameter vector &* that yields best observed value y*.

Algorithm 5: Bayesian Optimization with prior-guided acquisition func-
tion
Initialize GP, with mean m(x) = ¢ and kernel kgg(x, ).
Perform 7 objective function evaluations. Set counter n = i.
Initialize X = [xo, ..., x;] and y = [y, ..., ¥i
while n < N do
Fit the hyperparameters 8 of GP, on X.
Update the predictive posterior of GPy, using X, y.
Set up apggr with the current predictive posterior of GPj.
Select the next point «,,41 by optimizing the acquisition function.
Add 41 to X.
Evaluate the objective function at @, 41, observe ¥, 1
Add y,41 to y.
Increment n.

end
Return parameter vector &* that yields best observed value y*.
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3.6.3 Hybrid Algorithms

So far, only the standard GP model was used within the prior-guided acquisition
function. As explained in section 3.4, the prior-guided acquisition function only
influences the predictive posterior mean within the acquisition function. However,
it could also be useful to additionally integrate prior information into the predictive
posterior variance. To achieve this, the prior-guided acquisition function can be used
with a GP model with prior-informed kernel. Therefore, the prior-guided acquisition
function is combined with the approach of employing either a normal prior-informed
kernel function, or a WMK. This yields a hybrid algorithm, which can be found in
alg. 6.

Here, ng + 1 GP models for n, sets of simulation data are initialized, as already
seen in algs. 2 to 4. Then, some additional steps are included, before setting up the
prior-informed acquisition function. Firstly, The Monte Carlo CV is computed for
all GP models and the best performing GP model is chosen. In case of deploying a
composed kernel structure, the WMK is created and used within an additional GP,
named GP.. Finally, the prior-informed acquisition function is set up, based on the
overall best performing model GP**, and the algorithm proceeds selecting the next
promising point and repeating the optimization loop until termination.

Algorithm 6: Bayesian Optimization with Prior-Guided Expected Im-
provement and prior-informed kernels

Choose composed kernel structure ¢ = {True, False}.

Initialize GP; with mean m(x) = ¢ and kernel ksg(x, x’).

Initialize GP; with mean m(x) = ¢; and prior-informed kernel kyy; (z, z’)

for j =1,...,ns.

Perform ¢ objective function evaluations. Set counter n = i.

Initialize X = [xo, ..., ;] and y = [y, ..., ¥i]

while n < N do

Fit the hyperparameters 8; of GP; on X, y for all j =1,...,ns + 1.

Compute CVey(GP;) for all j =1,...,n, + 1.

if ¢ = True then
Choose prior-informed GP*, that yields the highest C'Vy score.
Initialize GP. with composed kernel function from GP* and GP,.
Compute CVey(GP,).

end

Choose GP**, that yields the highest C'Vy score.

Update the predictive posterior of GP**, using X, y.

Set up apgrr with the current predictive posterior of GP**.

Select the next point &,41 by optimizing the acquisition function.

Add Tn+1 to X.

Evaluate the objective function at x,41, observe ¥,

Add y,.1 to y.

Increment n.

end
Return parameter vector * that yields best observed value y*.
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3.6.4 Algorithm Overview

The prior-informed approaches, presented in this chapter, result in a total number
of 16 different algorithms, which are listed in table 3.1.

Firstly, there are six options for algorithms with prior-informed kernel (PIK), with-
out composed kernel structure. Namely, approaches with PIK and either a standard
EI acquisition function, the MLEI acquisition function, or the WMEI acquisition
function. Additionally, every option can be performed either with or without cor-
rection of the mismatches between simulation data and observed objective function
values.

Secondly, there are four algorithms with prior-informed kernels that have a composed
kernel structures, called Weighted Mixture Kernels (WMK). These approaches can
also be used with or without mismatch correction and combined with either the
standard EI acquisition function or the MLEI acquisition function, respectively.
Lastly, there are six algorithms with Prior-Guided Expected Improvement (PGEI)
acquisition function. It is possible to combine the PGEI either with the PIK, the
WMK, or a kernel without prior information, where in this case a standard squared
exponential kernel (SEK) will be used. Again, for every algorithm, there is the op-
tion of using it with or without mismatch correction. In the following table table 3.1,
the use of a mismatch correction will be denoted with the abbreviation "m”.

Algorithm Overview
algorithm abbreviation kernel

acquisition function

PIK, EI prior-informed kernel EI

PIK, EI, m prior-informed kernel EI

PIK, WMEI prior-informed kernel Weighted Mixture EI
PIK, WMEI, m prior-informed kernel Weighted Mixture EI
PIK, MLEI prior-informed kernel Most-Likely EI

PIK, MLEI, m prior-informed kernel Most-Likely EI

PIK, PGEI prior-informed kernel Prior-Guided EI
PIK, PGEI, m prior-informed kernel Prior-Guided EI
WMK, EI Weighted Mixture Kernel EI

WMK, EI, m Weighted Mixture Kernel EI

WMK, MLEI, Weighted Mixture Kernel Most-Likely EI
WMK, MLEI, m Weighted Mixture Kernel Most-Likely EI
WMK, PGEI Weighted Mixture Kernel Prior-Guided EI
WMK, PGEI, m Weighted Mixture Kernel Prior-Guided EI
SEK, PGEI SE kernel Prior-Guided EI
SEK, PGEI, m SE kernel Prior-Guided EI

Table 3.1: Overview on resulting prior-informed algorithms for leveraging multiple
sets of simulation data



Chapter 4

Algorithm Evaluations and
Performance Analysis

In this chapter, the prior-informed algorithms, which were presented in chapter 3,
are tested, evaluated and compared to each other. Therefore, a meaningful test sce-
nario has to be constructed. Firstly, a multidimensional test function with known
optimum has to be chosen as an objective function, which imitates the objective
function of an aim point controller with multiple hyperparameters. Secondly, mul-
tiple sets of simulation data are generated for the test function, which ideally cover
realistic scenarios, like being a medium or possibly even a bad fit for the objective
function. Moreover, a suitable reference has to be chosen to assess the performance
of the prior-informed approaches and identify possible improvements in sample ef-
ficiency, compared to a commonly used baseline approach. Lastly, some evaluation
criteria have to be defined, which facilitate the comparison of the different prior-
informed algorithms and the baseline. Eventually, they should help to identify the
best performing algorithms, which fulfill the requirements, imposed by the objective
of this thesis and the application.

To perform the tests and evaluate the results, all algorithms, were implemented in
Python with Ax [7], an open-source platform for sequential experimentation, where
Ax relies on BoTorch [13], which is a python library for Bayesian Optimization.

4.1 Hartmann6 Test Function

As a test function, which imitates the objective function of an aim point controller,
the six-dimensional Hartmann function was chosen, also referred to as Hartmann6,
with known optimal function value as well as respective parameter values. Hart-
mann6 is a commonly used test function for optimization problems, with the ob-
jective to find the global minimum of the function. It is usually evaluated on the
hypercube z; € [0, 1], for all i = 1,...,6. Moreover, the function possesses two local
minima, stated in tab. 4.1. The global minimum is highlighted.

57
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Local Minima of Hartmann6

# 1 T2 T3 Ty s T Y

1 0405 0.882 0.846 0.574 0.139 0.038 -3.203
2 0.202 0.150 0477 0.275 0.312 0.657 -3.322

Table 4.1: Local minima of 6-dimensional Hartmann6 test function

4.2 Simulation Data

Four sets of simulation data were created for the Hartmann6 objective function. To
imitate a real use case with possibly inaccurately estimated simulation parameters,
the simulation data was drawn from shifted or noisy versions of the real Hartmann6
function. To consider the case of completely unsuitable simulation data, one set
resembles a six dimensional polynomial function. Consequently, none of the simu-
lation data perfectly resembles the true function in the area of the global optimum.
To interpolate the data points, a regression NN was used. More details about the
employed NN and the training procedure can be found in appendix A.1.1.

The plots in fig. 4.1 compare real Hartmann6 function values with predicted values
from the interpolated simulation data for several parameter configurations, where
the true minimum of the Hartmann6 function is highlighted by a red marker, re-
spectively. Fig. 4.1a shows the case where simulation data was drawn from a noisy
version of the Hartmann6 function. The result is simulation data, which roughly
resembles the underlying function. However, the true minimum of the function is
underestimated by the simulation data, whereas values in the area of the local min-
imum seem to be overestimated. In fig. 4.1b and fig. 4.1c, the case was imitated,
where simulation hyperparameters, like the mirror error, were estimated incorrectly.
In fig. 4.1b, the data points were drawn from the Hartmann6 function, shifted for
0.1 points on the z;-axis and for 0.2 points on the zo-axis. In fig. 4.1c, the data was
drawn from the Hartmann6 function, shifted for 0.5 points on the z;-axis. Lastly,
in fig. 4.1d, the simulation data does not resemble the Hartmann6 function at all,
since the data points were collected from a six-dimensional polynomial function.
In general, none of the shown simulation data would directly lead to the true ob-
jective function’s optimum. Transferred to the problem of optimizing an aim point
controller of a solar power tower plant, the parameter configuration, obtained from
simulation data alone, wouldn’t lead to optimal control behavior and would have to
be readjusted on the real system. However, the following sections will evaluate, to
which extent it is still beneficial to use those corrupted sets of simulation data in
order to find optimal parameters on the real system.

4.3 Baseline

A suitable reference approach for hyperparameter optimization is needed to assess
the performance of the prior-informed approaches and identify possible improve-
ments in sample efficiency, compared to the baseline. For this purpose, a standard
BO algorithm with SE kernel and EI acquisition function is chosen as a reference.
As explained in section 2.2, BO already outperforms other commonly used hyper-
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parameter optimization approaches in terms of sample efficiency and consequently
also in terms of number of required function evaluation to reach well performing
parameter configurations. Therefore, the standard BO approach is a suitable choice
to assess the prior-informed algorithms regarding possible further improvement in
sample efficiency.

Simulation Data Prediction vs. Real Value Simulation Data Prediction vs. Real Value
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Figure 4.1: Hartmann6 function values vs. simulation data predictions for four sets
of simulation data

4.4 Evaluation Criteria

To evaluate the proposed algorithms and compare them with the baseline, as well
as with each other, evaluation criteria have to be developed. The goal is to identify
if one or more prior-informed algorithms fulfill the following requirements. Firstly,
an increase in sample efficiency should be assessed, which should be clearly recog-
nizable by a reduced number of required objective function evaluations to find well
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performing parameters, compared to the baseline. Secondly, well performing pa-
rameters should not only be located fast, but also as close to the global optimum as
possible. Thirdly, an algorithm, which uses prior-information, should not be more
prone to get stuck in a local optimum, as the baseline. Ideally, the prior information
should even help to overcome a local extreme value. Lastly, the performance of the
prior-informed algorithms, regarding the evaluation criteria, should not notably de-
crease when they are exposed to simulation data, which does not resemble the true
objective function. In this case, the performance should be similar to the standard
BO’s performance.

Within the following subsections, these criteria are explained in more detail and
applied to the standard BO, which will be used as the baseline performance for the
assessment of the prior-informed algorithms. For the evaluation of standard BO in
this section and all following evaluations of prior-informed algorithms within this
chapter, the determined results are rounded to integers.

4.4.1 Number of Function Evaluations

The first criterion, which is used to assess the algorithms, is the number of required
function evaluations to obtain well performing parameters. More precisely, it will be
determined how many function evaluations have to be performed to reach a certain
accuracy of the optimum in objective function space. In this context, the accuracy
is calculated in percentage and defined as

ace = (1 - M) -100 %, (4.1)

dmax
with | fopt — fT| denoting the absolute difference between the optimal function value
(maximum value of the function for maximization problems or minimum value of the
function for minimization tasks) and the best observed objective function value f*
so far. dy.x stands for the maximum difference between values in function output
space.
To gain an insight into the whole optimization process, it will be determined how
many function evaluations are required to reach an accuracy of 50 %, 80 %, 90 %
and 95 %, respectively. Especially when comparing standard BO to proposed prior-
informed algorithms, the amount of required function evaluations to reach a certain
accuracy can be used as the indicator for an increase in sample efficiency.
However, to obtain meaningful results, the optimization should be performed several
times and the number of required function evaluations determined on average. This
is necessary, firstly, since one or more randomly chosen initial parameter configu-
rations can considerably affect the optimization process. Secondly, BoTorch uses
a gradient-based optimizer for optimizing the acquisition function. This optimizer
makes use of multiple random restarts to improve optimization quality, which can
lead to deviations in selected parameter configurations from one optimization run
to another.
It was decided to perform an overall number of 30 optimization runs, where this
guiding value was taken from literature with comparable test scenarios [48], [45].
The 30 optimization runs were performed with five randomly chosen initial param-
eter configurations, respectively, which represent the first five function evaluations.
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In general, the number of initial function evaluations can be chosen freely. However,
it should trade off the preferably widespread initial discovery of the search space,
while not wasting costly function evaluations. For a six-dimensional test function,
five initial function evaluations seemed reasonable.

Results for Standard BO In tab. 4.2, the standard BO approach for finding
the minimum of the Hartmann6 function was evaluated regarding the introduced
criterion, where the abbreviation ”eval.” is used for number of function evaluations,
"acc.” for the achieved accuracy and "BO” for the standard Bayesian Optimization
approach. For the six-dimensional Hartmann function, the standard BO without
simulation data needs on average 12 function evaluations to find parameters, which
yield a 50 % accuracy of the objective function’s optimum. Respectively, accuracies
of 80 %, 90 % and 95 %, can be reached on average after 23, 31, and 43 function
evaluations.

Number of Function Evaluations
algorithm 50 % acc. 80 % acc. 90 % acc. 95 % acc.
BO 12 eval. 23 eval. 31 eval. 43 eval.

Table 4.2: Hartmann6 test: number of required function evaluations (eval.) of
standard Bayesian Optimization to reach 50 %, 80 %, 90 % and 95 % accuracy
(acc.) of the optimum, averaged over 30 optimization runs

4.4.2 Accuracy of the Located Optimum

As the second criterion, the accuracy, introduced in eq. (4.1), is determined, which
an algorithm is able to reach after a certain amount of function evaluations. Intu-
itively speaking, the first criterion can be used to assess how fast an algorithm finds
well performing parameter configurations, the second one indicates more how close
to optimal and thus how accurate the results are.

The accuracy is determined after the maximum number of function evaluations,
denoted as the budget N, which consists of the number of initial parameter con-
figurations and the amount of optimization iterations. For the following tests, the
number of optimization iterations was chosen to 70. With the five initial parame-
ter evaluations, this results in a budget of N = 75 maximum function evaluations.
This number was chosen, since standard BO does not show noteworthy improve-
ment in objective function observations after more than 75 function evaluations.
A prior-informed algorithm, which outperforms standard BO, will therefore show
improvements within this fixed budget.

In addition to the accuracy after the maximum number of function evaluations, some
intermediate results are determined, to gain a deeper insight into the performance
during the whole optimization process. Therefore, the accuracy is also calculated
after 25 %, 50 %, 75% in addition to 100 % of the number of maximum function
evaluations NN, which corresponds to 19, 38, 57 and 75 objective function evalua-
tions, respectively.
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Primarily, the reachable accuracy in objective function space is of main importance,
since it will be the indicator for the controller’s performance. However, some objec-
tive functions, including Hartmann6, have local optima closely located to the global
optimum in function output space, as stated in tab. 4.1. Therefore, it may not be
clear if an algorithm is prone to get stuck in a local optimum, from only looking at
the yielded accuracy of the objective function’s output. For Hartmann6, local and
global optimum lie in different parts of the parameter space. Thus, for a compre-
hensive performance analysis of the algorithms on the Hartmann6 test function, it
is helpful to also consider the accuracy of the algorithms in parameter space. For
this purpose, a second accuracy metric is defined as

_ @ope — 27|

ACCparam = (1 ) 100 %, (4.2)

dmax,p

which is defined analogously to eq. (4.1), but considers the euclidean distance be-
tween parameter vectors instead of objective function output values. Consequently,
dmaxp denotes the maximum euclidean distance between points in parameter space.

Results for Standard BO In tab. 4.3 and tab. 4.4, the standard BO approach
for finding the minimum of the Hartmann6 function, was evaluated regarding the
accuracy criterion in function output and parameter space, respectively. Again, 30
optimization runs were performed and averaged to obtain meaningful results.

To additionally give an indication of the confidence interval (CI), fig. 4.2a visual-
izes the mean distances of the so far best observed value to the global optimum
in objective function space, as well as the CI 95 %. Analogously, fig. 4.2b depicts
the mean distance of the parameter vector, which leads to the so far best observed
objective function value, to the true function optimum in parameter space and CI
95 %. Here, the so-called model change denotes the iteration where the regression
model is adapted to observation data for the first time. This usually happens after
randomly collecting and evaluating the initial parameter configurations within the
initial iterations.

From tab. 4.3, it can be seen that the standard BO approach reaches on average
98 % accuracy of the true optimum in function output space. After at least 57
function evaluations, the accuracy does not show any noteworthy improvements.
However, in parameter space, on average only 84 % accuracy is reached after budget
N is exhausted. Again, there is only small improvement during the last quarter
of the optimization iterations. Additionally, in fig. 4.2b a relatively large CI can
be observed, which indicates that optimization runs with different initial parameter
configurations lead to highly varying results in parameter space. Thus, the pre-
sumption is, that for some initial parameter configurations, the optimization moves
towards the local extreme value and is not able to overcome it in order to find the
global optimum. For other initial parameter configurations, the global optimum is
discovered. The next evaluation criterion will further investigate this assumption.
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Accuracy in Function Output Space
algorithm 19 eval. 38 eval. 57 eval. 75 eval.
BO 72 % acc. 94 % acc. 98 % acc. 98 % acc.

Table 4.3: Hartmann6 test: accuracy (acc.) of standard Bayesian Optimization after
25 % (= 19 eval.), 50 % (= 38 eval.), 75 % (= 57 eval.) and 100 % of maximum
function evaluations (eval.) (= 75 eval.), averaged over 30 optimization runs

Accuracy in Parameter Space
algorithm 19 eval. 38 eval. 57 eval. 75 eval.
BO 75 % acc. 82 % acc. 83 % acc. 84 % acc.

Table 4.4: Hartmann6 test: accuracy of standard Bayesian Optimization in param-
eter space after 25 % (= 19 eval.), 50 % (= 38 eval.), 75 % (= 57 eval.) and 100 % of
maximum function evaluations (eval.) (= 75 eval.), averaged over 30 optimization
runs
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Figure 4.2: Hartmann6 test: Mean distance to the global optimum and confidence
interval 95 % in function output space (a) and parameter space (b) for standard
Bayesian Optimization, averaged over 30 optimization runs

4.4.3 Overcoming Local Optima

As already explained, it may be useful to determine the accuracy of the algorithms in
parameter space, to achieve a comprehensive performance analysis of the algorithms,
when testing them on objective functions with local extreme values, like the used
Hartmann6 function.

In tab. 4.4, it was observed, that standard BO only achieves an averaged accuracy
of 84% in parameter space, within the budget of maximum function evaluations
N = 75, while yielding 98 % accuracy in function output space. Therefore, the
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presumption was made, that certain initial parameter configurations lead towards
the local minimum of Hartmann6, which the standard BO is not able to overcome
within a reasonable number of function evaluations.

To support this statement, a set of five fixed initial parameter configurations was
created, where one parameter value was included, which lies in the area of the local
optimum in parameter space. The standard BO approach with these fixed initial
parameters was tested for optimizing Hartmann6 and averaged over five optimization
runs. In this context, averaging over a smaller number of optimization runs seams
reasonable, since the initial parameter configuration remains the same, which reduces
the deviation between optimization runs.

Results for Standard BO The accuracies in tab. 4.5 show the consequences of
the fixed initial parameter configurations. They immediately lead the optimization
close to the local optimum, which in case of Hartmann6 yields good accuracies in
function output space, since the local extreme value is located close to the global
optimum in function output space. However, from the accuracies in parameter space
in tab. 4.6, it becomes apparent, that the optimization at most moves deeper into
the local optimum and resigns there, while it is not able to discover parameters with
an averaged accuracy greater than 56 % of the global optimum in parameter space,
within the budget of N = 75 function evaluations.

Again, the averaged distances to the global optimum and respective Cls are plotted
in function output space, as well as parameter space in fig. 4.3a. In addition, this
time also the mean distances to the local optimum and respective Cls are plotted
in function output space, as well as parameter space in fig. 4.4a. The plots support
previous observations. Moreover, it can be seen, that the optimization on aver-
age exactly reaches the local optimum in function output space with a very small
confidence interval, while on average not completely reaching it in parameter space
with a larger confidence interval. This is an indicator, that the local optimum of
Hartmann6 is a rather broad plateau in parameter space.

Accuracy in Function Output Space
algorithm 19 eval. 38 eval. 57 eval. 75 eval.
BO 93 % acc. 94 % acc. 96 % acc. 96 % acc.

Table 4.5: Hartmann6 test: accuracy (acc.) of standard Bayesian Optimization in
function output space after 19, 38, 57 and 75 evaluations (eval.), averaged over 5
optimization runs with fixed initial parameter configurations

Accuracy in Parameter Space
algorithm 19 eval. 38 eval. 57 eval. 75 eval.
BO 55 % acc. p. 57 % acc. p. 57 % acc. p. 56 % acc. p.

Table 4.6: Hartmann6 test: accuracy of standard Bayesian Optimization in param-
eter space (acc. p.) after 19, 38, 57 and 75 evaluations (eval.), averaged over 5
optimization runs with fixed initial parameter configurations
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Figure 4.3: Hartmann6 test: mean distance to the global optimum and confidence
interval 95 % in function output space (a) and parameter space (b) for standard
Bayesian Optimization, averaged over 5 optimization runs with fixed initial param-
eter configurations
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4.4.4 Dealing with Unsuitable Simulation Data

Lastly, the prior-informed algorithms are analyzed regarding their exposure to sim-
ulation data, which does not resemble the objective function. This is an essential
aspect, since it has to be secured, that possibly unsuitable simulation data does not
worsen the performance of a prior-informed algorithm, compared to standard BO.
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4.5 Algorithm Evaluations

In the following, the 16 prior-informed algorithms, which were summarized in sec-
tion 3.6.4, are tested, evaluated regarding introduced evaluation criteria and com-
pared to the standard BO, which is used as the performance baseline.

Recalling the different approaches, there are, firstly, six options for algorithms
with prior-informed kernel (PIK), without composed kernel structure. Namely, ap-
proaches with PIK and either the standard EI acquisition function, the Most-Likely
Expected Improvement (MLEI) acquisition function, or the Weighted Mixture Ex-
pected Improvement (WMEI) acquisition function. Additionally, every option can
be performed either with or without correction of the mismatches between simula-
tion data and observed objective function values. Secondly, there are four algorithms
with prior-informed kernels and composed kernel structures, the so-called Weighted
Mixture Kernels (WMK). These approaches can also be used with or without mis-
match correction and combined with either the standard EI acquisition function or
the MLEI acquisition function, respectively. Lastly, there are six algorithms with
Prior-Guided Expected Improvement (PGEI) acquisition function. It is possible to
combine the PGEI either with the PIK, the WMK or a kernel without prior informa-
tion, where in this case a standard squared exponential kernel (SEK) will be used.
Again, for every algorithm, there is the option of using it with or without mismatch
correction. In the following tables and figures, the use of a mismatch correction will
be shortened as "m”.

4.5.1 Test Case

If not stated otherwise, the test scenario is considered, where all available sets of
simulation data from section 4.2 are used as prior information for the algorithms.
Moreover, for each algorithm, 30 optimization runs were performed, and their results
averaged for the individual evaluation criteria. Each optimization run again starts
with evaluating five randomly chosen initial parameter configurations, respectively.
However, for better comparability, it was ensured that all algorithms start with the
same initial parameter configuration for a certain optimization run.

To additionally analyze the algorithms’ behaviors under exceptional circumstances,
further test cases will be introduced and explained when assessing the if the algo-
rithms are prone to get stuck in local optima and their behavior when being exposed
to unsuitable simulation data.

4.5.2 Number of Function Evaluations

Firstly, the mentioned algorithms are evaluated regarding the criterion which as-
sesses the number of function evaluations. Additionally, their improvement or de-
cline in comparison to the baseline is determined in percentage. It should be noted,
that since this criterion evaluates the number of function evaluations, an improve-
ment is indicated by a negative percentage number.

In tab. 4.7, the results are stated. For easier assessment, well performing algorithms,
which outperform the baseline, are marked in light gray. Algorithms, which yield
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the best performance, regarding the considered criterion, are highlighted in a darker
shade of gray.

Results Generally, it can be noticed that all prior-informed algorithms reach ac-
curacies of 50 %, 80 % and 90 % on average within 30 to almost 70 % less function
evaluations, compared to standard BO. For reaching 95 % accuracy, especially the
algorithms with PIK in combination with WMEI acquisition function, as well as the
PGEI approaches with WMK or SEK stand out with up to 58 % less required func-
tion evaluations, compared to the baseline. The two WMEI approaches, with and
without mismatch correction, show similarly well averaged performance throughout
the optimization procedure, compared to each other. The same observation holds
for both approaches with SEK and PGEI. Additionally, the algorithm with PIK
and MLEI, with mismatch correction shows good performance, whereas PIK and
MLEI without mismatch correction reaches 95 % accuracy within an increased, but
still reasonable number of evaluations, compared to standard BO.

On the contrary, all algorithms, which utilize the standard EI acquisition function,
are on average either not able to make it to 95 % accuracy or reach 95 % accuracy
much slower than the standard BO. Likewise, algorithms with PIK in combination
with PGEI and approaches with WMK in combination with MLEI are outperformed
by standard BO for reaching 95 % accuracy. Here, the performance of algorithms
with mismatch correction turns out worse than without correcting mismatches.

Number of Function Evaluations

algorithm 50 % acc. 80 % acc. 90 % acc. 95 % acc.
BO (baseline) 12 eval. 23 eval. 33 eval. 43 eval
PIK, Bl S(33%) 12 (48%) 16 (48 %) - ()

PIK, EI, m 8(-33%) 13 (-43%) 17 (45 %) - (-)

PIK, WMEI T(42%) 12 (48 %) 16 (48 %) 29 (-33 %)
PIK, WMEL, m 8 (-33 %) 13 (43 %) 17 (-45%) 29 (-33 %)
PIK, MLEI T(42%) 11 (52%) 14 (55 %) 46 (+7 %)
PIK, MLEL, m 8 (-33%) 12 (48 %) 17 (-45%) 37 (-14 %)
PIK, PGEI 6 (-50 %) 9 (-61 %) (-61 %) 48 (+12 %)
PIK, PGEL m 6 (-50 %) 9 (-61 %) (465 %) 70 (+63 %)
WMK, EI 8(33%) 15(35%) 21(32%) -0
WMK, EL m 8 (-33%) 13 (-43%) 20 (-35 %) 73 (+70 %)
WMK, MLEI 8 (-33%) 13 (-43%) 16 (-48 %) 52 (+21 %)
WMK, MLEL, m 9 (-25 %) 13 (-43 %) 17 (-45 %) 54 (+26 %)
WMK, PGEL 6 (-50 %) 9 (-61 %) (65 %) 26 (-40 %)
WMK, PGEL m 6 (-50 %) 9 (-61 %) (-65 %) 34 (-21 %)
SEK, PGEI 6 (-50 %) 8 (-65 %) (-68 %) 19 (-56 %)
SEK, PGEL, m 6 (-50 %) 8 (-65 %) (65 %) 18 (-58 %)

Table 4.7: Hartmann6 tests with all simulation data sets: number of required func-
tion evaluations (eval.) to reach 50 %, 80 %, 90 % and 95 % accuracy (acc.) of the
optimum in comparison to the baseline, averaged over 30 optimization runs
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4.5.3 Accuracy of the Located Optimum

The algorithms are evaluated regarding the accuracy criterion in function output,
as well as in parameter space. Again, their improvement or decline in comparison to
the baseline’s performance is determined in percentage. However, in comparison to
the first criterion, an improvement is now denoted by a positive percentage number,
since it indicates an increase in accuracy.

The results are stated in tab. 4.8 and tab. 4.9 for the function output space and
parameter space, respectively. Algorithms, that outperform the baseline are marked
in light gray, whereas algorithms which yield the highest accuracies in function
output space, are highlighted in a darker shade of gray.

Results in Function Output Space In function output space, almost all prior-
informed algorithms reach accuracies of at least 90 % within only 19 function eval-
uations, which is a quarter of the maximum number of evaluations. Compared to
the baseline, this is an improvement of up to 33 %.

Especially well performances show algorithms with PIK in combination with either
WMEI or MLEI, as well as the Prior-Guided EI approach with SEK. After 38 and
57 function evaluations, these algorithms mostly achieve better averaged accuracies
than the baseline. After 75 function evaluations, they outperform standard BO
with one to two percentage points improvement. Here, algorithms with mismatch
correction seem to yield similar to slightly better performance compared to their
counterpart without mismatch correction.

On the contrary, the performance of algorithms with a standard EI acquisition func-
tion declines for the second half of the optimization, compared to standard BO and
all other approaches. Likewise, the PGEI approaches with either PIK or WMK, as
well as approaches with WMK with MLEI acquisition function can not reach the
baseline’s performance for the second half of the optimization process.

The observations for the best performing algorithms can be visually assessed in
fig. 4.5, where the mean distances to the optimum are plotted for well performing
algorithms in function output space. To keep the plots clear, the algorithms were
divided in approaches with and without mismatch correction. The mean distances
are complemented with the respective 95 % CI, which provides information about
the divergence between optimization runs. These turned out especially small for the
prior-informed algorithms, which indicates that the performance in function output
space barely differs between optimization runs.

The plots for the remaining algorithms can be found as supplementary material in
appendix A.2; in fig. A.1.

Results in Parameter Space From the averaged accuracies in parameter space,
it can be seen, that many prior-informed algorithms move away from the true opti-
mum in parameter space, throughout the first half of the optimization. In general,
this is not critical, as long as the accuracy in function output space does not suf-
fer. This is not the case, as long as the optimization does not get stuck in a local
optimum and eventually discovers values close to the global optimum.
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Accuracy in Function Output Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 72 % acc. 94 % acc. 98 % acc. 98 % acc.
PIK, EI 2% (128 %) 93% (1 %) 94% (4 %) 94 % (-4 %)
PIK, EI, m 92% (428 %) 93% (-1%) 94% (-4 %) 95 % (-3 %)
PIK, WMEI 92 % (+28 %) 97 % (+3 %) 99% (+1 %) 99 % (+1 %)
PIK, WMEL, m 93 % (+29 %) 97 % (+3 %) 99 % (+1 %) 100 % (+2 %)
PIK, MLEI 02 % (+28 %) 94 % (+0 %) 97 % (-1 %) 99 % (+1 %)
PIK, MLEL, m  91% (+26 %) 95% (+1%) 97 % (-1%) 99 % (+1 %)
PIK, PGEI 04 % (+31 %) 95% (+1 %) 95% (-3%) 96 % (-2 %)
PIK, PGEL m 93 % (429%) 94 % (+0%) 94 % (-4 %) 95 % (-3 %)
WMK, EI S8 % (+22%) 94% (+0%) 94 % (4%) 95 % (-3 %)
WMK, EL m 90 % (+25 %) 94% (+0%) 94 % (-4 %) 95% (-3 %)
WMK, MLEI 92 % (+28 %) 94 % (+0 %) 96 % (2 %) 98 % (+0 %)
WMK, MLEL, m 92 % (+28 %) 94 % (+0 %) 96 % (2 %) 97 % (-1 %)
WMK, PGEI 94 % (+31 %) 96 % (+2%) 96 % (-2%) 97 % (-1 %)
WMK, PGEL m 93 % (+20 %) 95 % (+1%) 96 % (2%) 96 % (-2 %)
SEK, PGEI 95 % (132 %) 98 % (+4 %) 99 % (+1%) 99 % (+1 %)
SEK, PGEL, m 96 % (+33 %) 98 % (+4 %) 99 % (+1 %) 99 % (+1 %)

Table 4.8: Hartmann6 tests with all simulation data sets: accuracy (acc.) in func-
tion output space in comparison to the baseline after 19, 38, 57 and 75 function
evaluations (eval.), averaged over 30 optimization runs
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fidence interval 95 %, averaged over 30 optimization runs, for algorithms without
mismatch correction (a) and algorithms with mismatch correction (b)
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The algorithms with PIK in combination with WMEI and MLEI acquisition func-
tion, initially move away from the true optimum, but overcome the local extreme
value and eventually outperform the accuracy of the baseline in parameter space.
The algorithms with PGEI even directly approach the global optimum from the be-
ginning. However, as previously stated, only the SEK with PGEI yields convincing
performance in function output space, compared to standard BO.

In contrast to the well performing algorithms, approaches with EI acquisition func-
tion show the worst performance in parameter space, compared to the baseline and
all other algorithms. One explanation for this behavior could be, that they are likely
to get stuck at values, that look locally promising, but are located in another area
of the parameter space, compared to the globally optimal parameters. However,
this will be separately examined with the next evaluation criterion. Lastly, the ap-
proaches with WMK in combination with MLEI seem to overcome local extreme
values in parameter space and approach the true optimum, however, in function
output space it can not surpass the baseline’s performance.

The plots in fig. 4.6 show the mean euclidean distances for the well performing al-
gorithms in parameter space and additionally visualize the Cls, which are larger
than in function output space. This indicates, that the history of evaluated pa-
rameters can differ between optimization runs, while the performance in function
output space remains more or less stable. For Hartmann6 this makes sense, since
the global and the local optimum lie in different parts of the parameter space, while
yielding similar results in function output space. Additionally, for PIK with WMEI
and MLEI, the trend becomes visible, that using a mismatch correction seems to
accelerate overcoming local extreme values and finding the true optimum.

The plots for all remaining algorithms in parameter space can be found in fig. A.2.
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Figure 4.6: Hartmann6 tests with all simulation data sets for best performing al-
gorithms: mean distance to the global optimum in parameter space and confidence
interval 95 %, averaged over 30 optimization runs, for algorithms without mismatch
correction (a) and algorithms with mismatch correction (b)
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Accuracy in Parameter Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 75 % acc. p. 82 % acc. p. 83 % acc. p. 84 % acc. p.
PIK, EI 67 % (-11 %) 73 % (-11 %) 77 % (-7 %) 80 % (-5 %)
PIK, EI, m 0% (-7%) TT%(-6%) 7% (-7T%) 81 % (-4 %)
PIK, WMEI 68% (-9%) 84 % (+2%) 92% (+11 %) 95 % (+13 %)
PIK, WMEL m 72% (-4%) 80 % (-2%) 93% (+12%) 98 % (+17 %)
PIK, MLEI 64 % (-15 %) 69 % (-16 %) 81 % (-2 %) 92 % (+10 %)
PIK, MLEI, m 68% (-9 %) 80 % (-2%) 88 % (+6%) 93 % (+11 %)
PIK, PGEI 75 % (40 %) 82 % (+0 %) 85 % (+2 %) 83 % (-1 %)
PIK, PGEI, m 80 % (+7 %) 85 % (+4 %) 84 % (+1 %) 87 % (+4 %)
WMK, EI 65 % (-13%) 76 % (-7%) 4% (-11%) 77 % (-8 %)
WMK, EI, m 63 % (-16 %) 66 % (-20 %) 67 % (-19 %) 76 % (-10 %)
WMK, MLEI 0% (-7%) 70 % (-15%) 82 % (-1 %) 90 % (+7 %)
WMK, MLEL, m 64 % (-15 %) 69 % (-16 %) 82 % (-1 %) 89 % (+6 %)
WMK, PGEI 78 % (+4 %) 87 % (+6 %) 87 % (+5 %) 87 % (+4 %)
WMK, PGEI, m % (-5%) 80 % (-2%) 84 % (+1%) 84 % (+0 %)
SEK, PGEI 80 % (+7 %) 84 % (+2 %) 88 % (+6 %) 88 % (+5 %)
SEK, PGEL, m 80 % (+7 %) 86 % (+5 %) 88 % (+6 %) 88 % (+5 %)

Table 4.9: Hartmann6 tests with all simulation data sets: accuracy in parameter
space (acc. p.) in comparison to the baseline after 19, 38, 57 and 75 function
evaluations (eval.), averaged over 30 optimization runs

4.5.4 Overcoming Local Optima

In this passage, the ability to overcome local extreme values is assessed more ac-
curately. Therefore, the algorithms are firstly tested with the set of fixed initial
parameter configurations, introduced in section 4.4.3. These lead towards the area
of the local extreme value of Hartmann6.

However, when evaluating if the prior-informed algorithms are likely to get stuck
in local optima, an additional test case should be considered. Not only disadvan-
tageous initial parameters are able to lead the optimization towards local extreme
values. In case of prior-informed algorithms, logically also unsuitable simulation
data, which overestimate local extreme values, can guide the search into a local op-
timum. Recalling section 4.2, where simulation data for Hartmann6 was introduced,
the simulation data set 1 in fig. 4.1a, exactly reproduces this case. Simulation data
set 1 is a noisy version of the six-dimensional Hartmann function and in general
resembles the true objective function. However, in the area of the objective func-
tion’s optimum there are mismatches between simulation data and true objective
function. Since for Hartmann6 the local and global optimum lie close together in the
function’s output space, adding noise had the effect of underestimating the global
extreme values, while overestimating the local ones. As a consequence for using only
this set of misleading simulation data, the prior-informed algorithms will be directly
led to the local optimum. Therefore, evaluations are made for a second test case,
where only simulation data set 1 is used as prior information for the algorithms.
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Test Case 1: All Simulation Data Sets with Fixed Initial Parameters

In tab. 4.10 and tab. 4.11 the results for testing the algorithms with the previously
introduced fixed initial parameter configuration can be found in function output
space and parameter space, respectively.

Results in Function Output Space In function output space, the accuracies of
the prior-informed approaches mainly resemble the baseline.

One to two percent improvement can be achieved by the PIK with MLEI, WMK
with MLEI and mismatch correction and the SEK with PGEI and mismatch correc-
tion. An improvement of up to four percent is visible for the PIK with the WMEI
acquisition function.

The remaining algorithms yield either similar performances as the baseline or slightly
worse, with a maximum decline in accuracy of two percent for approaches with EI.

Accuracy in Function Output Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 93 % acc. 94 % acc. 96 % acc. 96 % acc.
PIK, EI 03 % (+0 %) 94% (10 %) 94% (2 %) 95 % (-1 %)
PIK, EI, m 04% (+1 %) 94% (+0%) 94% (2%) 94 % (-2 %)
PIK, WMEI 95 % (+2 %) 100 % (+6 %) 100 % (+4 %) 100 % (+4 %)
PIK, WMEL m 95% (+2%) 97% (+3%) 99% (+3%) 99 % (+3 %)
PIK, MLEI 93 % (+0 %) 96 % (+2 %) 97 % (+1 %) 98 % (+2 %)
PIK, MLEL m 94 % (+1%) 95% (+1%) 98% (+2%) 98 % (+2 %)
PIK, PGEI 4% (+1%) 94% (+0%) 95% (-1%) 96 % (+0 %)
PIK, PGEL m  95% (+2%) 95% (+1%) 95% (-1 %) 95 % (-1 %)
WMK, EI 01% (+1%) 94% (10%) 94% (2%) 95% (-1 %)
WMK, ELm  93% (+0%) 93% (-1%) 94% (-2%)  95% (-1 %)
WMK, MLELT  93% (+0%) 94% (+0%) 94% (2%)  95% (-1 %)
WMK, MLEL m 93 % (+0 %) 95% (+1%) 97 % (+1%) 98 % (+ %)
WMK, PGEI 94 % (+1 %) 96 % (+2 %) 96 % (+0 %) 96 % (+0 %)
WMK, PGEL m 94 % (+1%) 95% (+1%) 95% (-1 %) 95 % (-1 %)
SEK, PGEI 03 % (+0 %) 95% (11 %) 95% (-(1%) 96 % (+0 %)
SEK, PGEL m 94 % (+1%) 96% (+2%) 96 % (+0 %) 97 % (+1 %)

Table 4.10: Hartmann6 tests with all simulation data sets and fixed initial param-
eters: accuracy (acc.) in function output space in comparison to the baseline after
19, 38, 57 and 75 function evaluations (eval.), averaged over 5 optimization runs
with fixed initial parameter configurations

Results in Parameter Space In parameter space, the true differences between
standard BO and prior-informed algorithms become apparent. Obviously, the four
sets of utilized simulation data help the optimization to overcome the local extreme
value in parameter space and expand the search more into the direction of the true
optimum, even if it is not directly contained in the simulated data.

Those prior-informed algorithms, which showed slightly better performance than the
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baseline in function output space, yield much higher averaged accuracies in param-
eter space with improvements up to 77 % compared to the baseline and therefore
are more likely to find the true optimum than standard BO for initial parameters,
leading to the local optimum of the objective function.

The remaining algorithms also yield better accuracies than the baseline in parame-
ter space, which indicates that the simulation data guides them away from the local
extreme value, closer to the global one. However, apparently they are on average nei-
ther able to exactly locate the true optimum of the function, nor the local optimum
within the predefined budget of 75 function evaluations, since their performance in
function output space declines compared to the baseline.

An outlier among the best performing algorithms is the approach with SEK and
PGEI, which yields a small improvement in parameter space of only 16 %, which
is even smaller than the improvement of algorithms, which did not yield convincing
results in function output space. A possible explanation is, that in some cases the
global optimum is discovered, which boosts the accuracy in function output space,
while in other cases the algorithm however still finds the local extreme value.

In fig. 4.7, the mean distances to the global optimum of the objective function
are plotted in function output and parameter space. To clearly identify the CIs,
only the two best performing approaches were selected, namely PIK with WMEI
with and without mismatch correction, in comparison to the baseline. The plots
for the remaining algorithms can again be found in the supplementary material in
fig. A.3 and fig. A 4.

From the little CI of the standard BO approach in fig. 4.7b, it can be clearly seen,
that the baseline with a high probability never overcomes the local optimum in pa-
rameter space. With a similarly little CI, the WMEI without mismatch correction,
is very likely to always reach parameters close to the global optimum for given sets
of simulation data. On the other side, indicated by a rather large CI, WMEI with
mismatch correction apparently in some cases gets close to the global optimum,
while in other cases not. A possible explanation for this difference between these
approaches with and without mismatch correction is, that without mismatch cor-
rection some or all simulation data are discarded at some point of the optimization,
since they are assessed as unsuitable by the model selection criterion, however, after
already guiding the search into the right direction of the search space. In contrast,
for the approach with mismatch correction, multiple corrected sets of simulation
data could be assessed as trustworthy throughout the whole optimization, depend-
ing on the exact values of previously evaluated parameters per optimization run
and guiding the search into different directions of the search space, for different op-
timization runs, respectively. However, these differences between approaches with
and without mismatch correction will be examined in more detail with the criterion
of how prior-informed algorithms deal with unsuitable simulation data.
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Accuracy in Parameter Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 55 % acc. p. 57 % acc. p. 57 % acc. p. 56 % acc. p.
PIK, EI 56 % (+2 %) 64 % (+12 %) 64 % (+12 %) 80 % (+43 %)
PIK, EI, m 71 % (429 %) 79 % (+39 %) 79 % (+39 %) 79 % (+41 %)
PIK, WMEI 88 % (+60 %) 99 % (+74 %) 99 % (+74 %) 99 % (+77 %)
PIK, WMEL, m 71 % (+29 %) 89 % (4+56 %) 90 % (+58 %) 90 % (+61 %)
PIK, MLEI 73 % (+33 %) 81 % (+42 %) 81 % (+42 %) 82 % (+46 %)
PIK, MLEI, m 63 % (+15 %) 88 % (+54 %) 90 % (+58 %) 91 % (+62 %)
PIK, PGEI 64 % (+16 %) 72 % (+26 %) 80 % (+40 %) 88 % (+57 %)
PIK, PGEI, m 79 % (+44 %) 79 % (439 %) 79 % (+39 %) 79 % (+41 %)
WMK, EI 55 % (+0 %) 53 % (-7 %) 54 % (-5 %) 79 % (+41 %)
WMK, EI, m 55 % (40 %) 64 % (+12 %) 72 % (426 %) 88 % (+57 %)
WMK, MLEI 54 % (-2 %) 55 % (-4 %) 56 % (-2 %) 65 % (+16 %)
WMK, MLEI, m 63 % (+15 %) 80 % (+40 %) 89 % (+56 %) 98 % (+75 %)
WMK, PGEI % (+29 %) 71 % (+25 %) 71 % (+25 %) 71 % (+27 %)
WMK, PGEI, m % (+29 %) 71 % (+25 %) 80 % (+40 %) % (+45 %)
SEK, PGEI 56 % (+2 %) 65 % (+14 %) 65 % (+14 %) 64 % (+14 %)
SEK, PGEL, m 64 % (+16 %) 66 % (+16 %) 66 % (+16 %) 65 % (+16 %)

Table 4.11: Hartmann6 tests with all simulation data sets and fixed initial parame-
ters: accuracy in parameter space (acc. p.) in comparison to the baseline after 19,
38, 57 and 75 function evaluations (eval.), averaged over 5 optimization runs with
fixed initial parameter configurations
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Figure 4.7: Hartmann6 tests with all simulation data sets and fixed initial param-
eters for best performing algorithms: mean distance to the global optimum and
confidence interval 95 %, averaged over 5 optimization runs with fixed initial pa-
rameter configurations, in function output space (a) and parameter space (b)
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Test Case 2: Simulation Data Set 1

In tab. 4.12 and tab. 4.13 the test results are stated for the test case of utilizing only
simulation data set 1, in function output space and parameter space, respectively.
In this test case, the goal is to identify prior-informed algorithms, which are not
more prone to get stuck in local optima, than the standard BO itself, when being
exposed to respective simulation data. Thus, as well performing will be considered
those algorithms, which yield accuracies at least as good as the baseline in function
output space, as well as in parameter space, which is the better indicator for local
extreme values.

Results in Function Output Space In function output space, the averaged
accuracies for all prior-informed algorithms increase up to 93 % within only few
function evaluations, following the guidance of the noisy Hartmann6 simulation
data. After the maximum number of function evaluations, approaches with WMEI
and MLEI reach similar performance as the baseline, while the other algorithms
yield less accuracy.

Accuracy in Function Output Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 72 % acc. 94 % acc. 98 % acc. 98 % acc.
PIK, EI 01 % (+26 %) 92% (2 %) 93% (5 %) 94 % (4 %)
PIK, EI, m 90 % (+25 %) 93% (-1 %) 93% (-5%) 94 % (-4 %)
PIK, WMEI 91 % (+26 %) 95% (+1%) 97 % (-1 %) 98 % (+0 %)
PIK, WMEL m 89 % (+24 %) 94 % (+0 %) 96 % (-2%) 98 % (+0 %)
PIK, MLEI 92 % (+28 %) 95% (+1%) 97 % (-1 %) 98 % (+0 %)
PIK, MLEL, m 91 % (+26 %) 95% (+1%) 97 % (-1 %) 99 % (+1 %)
PIK, PGEI 02 % (+28 %) 93 % (-1 %) 93% (-5%) 94 % (-4 %)
PIK, PGEL m 91 % (+26 %) 93% (-1 %) 94 % (-4 %) 94 % (-4 %)
WMK, EI 8T % (+21 %) 94 % (+0 %) 95% (3 %) 95 % (-3 %)
WMK, EL, m 88% (+22%) 92% (2%) 93% (-5%) 94 % (-4 %)
WMK, MLEL 86 % (+19 %) 95% (+1%) 97 % (-1 %) 99 % (+1 %)
WMK, MLEL, m 88 % (+22 %) 93% (-1 %) 96 % (-2 %) 98 % (+0 %)
WMK, PGEL 91 % (+26 %) 93% (-1 %) 94% (4 %) 94 % (-4 %)
WMK, PGEL m 92 % (+28 %) 93% (-1 %) 94% (-4 %) 95 % (-3 %)
SEK, PGEI 93 % (129 %) 96 % (12 %) 96 % (2 %) 97 % (1 %)
SEK, PGELm  93% (429%) 96 % (+2%) 96 % (-2 %) 97 % (-1 %)

Table 4.12: Hartmann6 tests with simulation data set 1: accuracy (acc.) in function
output space in comparison to the baseline after 19, 38, 57 and 75 function evalua-
tions (eval.), averaged over 30 optimization runs

Results in Parameter Space In parameter space, it becomes clear that all prior-
informed algorithms move away from the true optimum in parameter space during
the half of the optimization procedure, following the simulation data to the local
extreme value.
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However, within the second half of function evaluations, some algorithms manage
to increase the accuracy in parameter space and thus overcome the local optimum.
After 75 function evaluations, the algorithms with WMEI and MLEI and mismatch
correction yield results similar to the baseline. Approaches with WMK and MLEI
even outperform the baseline, with both mismatch correction options.

In contrast, PIK without mismatch correction in combination with WMEI or MLEI
is not able to reach a similar accuracy as the baseline in parameter space, even if the
accuracy in function output space was similar to the baseline. Therefore, it is likely
that these approaches are slightly more prone to resign at a local extreme value,
than their counterparts with mismatch correction.

The remaining algorithms can not convince in this test scenario. Especially sen-
sitive to the local optimum, which is overestimated by the used simulation data,
seems to be the algorithm with SEK and PGEIL. It yields the smallest accuracies
in parameter space, while being only slightly worse than the baseline in function
output space. For the Hartmann6 test function, this is a strong indicator that the
algorithm mostly discovers parameters close to the local optimum.

In fig. 4.8, previous analysis for the best performing algorithms is complemented
with the visual presentation of the average mean distances of the best observed
values so far to the function’s global optimum, as well as confidence intervals. Ad-
ditionally, in fig. 4.9 the respective mean distances to the local optimum are plotted
in parameter space for the best performing algorithms, as well as the worst perform-
ing ones. From the parameter space of the best performing approaches in fig. 4.9a,
it can be seen that the optimizations at first follow the simulation data into the
direction of the local optimum, before discovering the area of the global optimum.
Especially, the algorithm with WMK and MLEI without mismatch correction stands
out in quickly overcoming local extreme values. On the contrary, fig. 4.9b shows the
respective plot for the worst performing approaches regarding this evaluation cri-
terion, namely the algorithms with PGEI acquisition function, which is especially
sensitive to get stuck in local optima.

The plots of the mean distances to the global optimum for the remaining algo-
rithms can be found in fig. A.5 for the function output space and in fig. A.6 for the
parameter space.

4.5.5 Dealing with Unsuitable Simulation Data

This passage will analyze how the individual algorithms deal with the exposure
to unsuitable simulation data. Especially, the differences between approaches with
mismatch correction and without mismatch correction will be examined.

To facilitate the analysis, a new test scenario will be introduced. The tests will
be performed on only one set of unsuitable simulation data, namely the simulation
data set 4, introduced in section 4.2, fig. 4.1d. This simulation data set resembles a
six-dimensional polynomial function, which is not related to Hartmann6. Assessed
will be the performance of the algorithms in combination with the amount of prior
information, used from the simulation data. Since the used simulation data set
does not resemble the true objective function and thus most likely does not contain
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beneficial prior information, the goal is to identify those prior-informed algorithms
which are not impeded by unsuitable simulation data and yield performances at
least as good as standard BO in function output space.

Accuracy in Parameter Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 75 % acc. p. 82 % acc. p. 83 % acc. p. 84 % acc. p.
PIK, EI 59 % (-21 %) 66 % (-20 %) 73 % (-12 %) 74 % (-12 %)
PIK, EI, m 65% (-13%) 6% (-7%) S1% (2%) 82% (-2%)
PIK, WMEI 65 % (-13 %) 68 % (-17 %) 72 % (-13 %) 76 % (-10 %)
PIK, WMEL, m 62 % (-17 %) 67 % (-18 %) 76 % (-8 %) 83 % (-1 %)
PIK, MLEI 59 % (=21 %) 68 % (-17 %) 75 % (-10 %) 79 % (-6 %)
PIK, MLEL, m 66 % (-12%) 70% (-15%) 77% (-7 %) 89 % (+6 %)
PIK, PGEI 67 % (-11%) 4% (-10%) 7T % (-7%) 77T % (-8 %)
PIK, PGEI, m 0% (-7%)  72% (-12%) 75 % (-10 %) 75 % (-11 %)
WMK, EI 0% (7 %) 4% (-10%) 84% (1 %) 85 % (+1 %)
WMK, EI, m 64 % (-15 %) 67 % (-18 %) 68 % (-18 %) 68 % (-19 %)
WMK, MLEI ~ 73% (-3%) 81% (-1%) 86% (+4 %) 97 % (+15 %)
WMK, MLEL, m 64 % (-15%) 72% (-12%) 82% (-1 %) 90 % (+7 %)
WMK, PGEL 61 % (-19%) 64 % (-22%) 70 % (-16 %) 73 % (-13 %)
WMK, PGEL, m 64 % (-15 %) 72 % (-12%) 75 % (-10 %) 77 % (-8 %)
SEK, PGEI 57 % (24 %) 62 % (24 %) 62 % (25 %) 63 % (-25 %)
SEK, PGEL, m 60 % (-20 %) 62% (-24 %) 63 % (-24 %) 63 % (-25 %)

Table 4.13: Hartmann6 tests with simulation data set 1: accuracy in parameter
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Figure 4.9: Hartmann6 tests with simulation data set 1 for selected algorithms:
mean distance to the local optimum in parameter space and confidence interval 95
%, averaged over 30 optimization runs, for best performing approaches (a) and worst
performing approaches (b)

Test Case 3: Simulation Data Set 4

Accuracy In tab. 4.14 and tab. 4.15 the accuracies in function output and pa-
rameter space can be found.

The results show, that for most algorithms the accuracies resemble the baseline.
However, some algorithms with mismatch correction are outperformed by standard
BO in function output, as well as in parameter space. These are approaches with
PIK or WMK in combination with EI, as well as the approaches with PGEI in com-
bination with PIK and WMK. An additional accuracy drop can be observed for the
WMK and EI without mismatch correction during the first half of the optimization.
However, for the second half, the accuracy again resembles the baseline.

The remaining algorithms with mismatch correction, which yield good performance
in function output space, still show a slight decrease in accuracy in parameter space.
An example are the approaches with PIK and WMEI or MLEI acquisition function.
Since the performance drop of those algorithms does not exceed more than two
percent, compared to the baseline, and does not noticeably affect the accuracy in
function output space, the approaches can still be considered as well performing.
The corresponding plots for this test case, which show the mean distances to the true
optimum of Hartmann6 and respective Cls, can be found in fig. A.7 and fig. A.8.
To better understand the observed performance differences between algorithms with
and without mismatch correction, the following sections examine the behavior of the
algorithms by firstly having a closer look at the amount of prior information, which
is used throughout the optimization, and secondly explaining the reasons and con-
sequences of observed behavior.
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Accuracy in Function Output Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 72 % acc. 94 % acc. 98 % acc. 98 % acc.
PIK, EI 69 % (-4 %) 95 % (+1 %) 98 % (+0 %) 99 % (+1 %)
PIK, EI, m 53 % (-26 %) 75 % (-20 %) 85 % (-13 %) 87 % (-11 %)
PIK, WMEI 2% (+0 %) 95 % (+1 %) 98 % (+0 %) 98 % (+0 %)
PIK, WMEL, m 76 % (+6 %) 97 % (+3 %) 98 % (+0 %) 98 % (4+0 %)
PIK, MLEI 73 % (+1 %) 94 % (+0 %) 98 % (+0 %) 98 % (+0 %)
PIK, MLEI, m 0% (-3%) 96 % (+2 %) 98 % (+0 %) 98 % (+0 %)
PIK, PGEI 2% (+0 %) 98 % (+4 %) 99 % (+1 %) 99 % (+1 %)
PIK, PGEI, m 60 % (-17 %) 80 % (-15 %) 86 % (-12 %) 88 % (-10 %)
WMK, EI 59 % (-18 %) 89%(5 %) 97T% (-1 %) 98 % (+0 %)
WMK, EI, m 3% (+1%) 91 % (-3%) 93% (-b%) 93 % (-5 %)
WMK, MLEI 74 % (+3 %) 95 % (+1 %) 98 % (+0 %) 98 % (+0 %)
WMK, MLEL, m 75 % (+4 %) 95 % (+1 %) 98 % (+0 %) 98 % (+0 %)
WMK, PGEI 63 % (-12 %) 98 % (+4 %) 98 % (+0 %) 99 % (+1 %)
WMK, PGEL, m 76 % (+6 %) 92 % (-2%) 94 % (-4 %) 94 % (-4 %)
SEK, PGEI 75 % (+4 %) 96 % (+2 %) 98 % (+0 %) 99 % (+1 %)
SEK, PGELL m 74 % (+3 %) 96 % (+2 %) 98 % (+0 %) 98 % (+0 %)

Table 4.14: Hartmann6 tests with simulation data set 4: accuracy (acc.) in func-
tion output space in comparison to the baseline after 19, 38, 57 and 75 function
evaluations (eval.), averaged over 5 optimization runs with fixed initial parameter
configurations

Used Prior Information In fig. 4.11, a visualization is given for assessing which
models are predominantly chosen by the model selection criterion and used in each
iteration within the acquisition function for 30 optimization runs. Therefore, one
plot shows in total 30 markers at each iteration step, located at the y-location of
the respective used model. To make differences better visible, the marker sizes en-
large with the quantity of markers, gathered at the respective model for at a certain
iteration. This representation was chosen to make assessments also possible for al-
gorithms, which choose between more than two models. In this case, determining
the mean between used models would lead to wrong results. For example, the al-
gorithm with WMK chooses between the standard GP, the GP with prior-informed
kernel and the GP with composed kernel. Here, determining a simple mean between
models with y-location y = 0 and y = 2, would yield the model at y = 1 as the
model, which was used on average, although this model was not used at all.

In fig. 4.11a and fig. 4.11b the used models are plotted for the PIK in combination
with EI, without and with mismatch correction, respectively. For the EI acquisition
function, simply the model with the highest model selection score is selected in each
iteration and used within the EI acquisition function. The plots make the difference
between the options for mismatch correction clearly visible. Without correcting the
mismatches between simulation data and function observations, mainly the stan-
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Accuracy in Parameter Space

algorithm 19 eval. 38 eval. 57 eval. 75 eval.

BO (baseline) 75 % acc. p. 82 % acc. p. 83 % acc. p. 84 % acc. p.
PIK, EI 76 % (+1 %) 85 % (+4 %) 88 % (+6 %) 88 % (+5 %)
PIK, EI, m 2% (-4%) 2% 12%) 3% (-12%) 70 % (-17 %)
PIK, WMEI 75 % (40 %) 82 % (+0 %) 84 % (+1 %) 84 % (+0 %)
PIK, WMELL m 75 % (+0 %) 81 % (-1 %) 82 % (-1%) 82% (-2%)

PIK, MLEI 7% (+3 %) 83 % (+1 %) 85 % (+2 %) 85 % (+1 %)
PIK, MLEI, m 4% -1%) 81 %(-1%) 82%(-1% 8% (-2%)

PIK, PGEI 80 % (+7 %) 88 % (+7 %) 89 % (+7 %) 89 % (+6 %)
PIK, PGEI, m 3% (-:3%) 13% (-11 %) 74 % (-11 %) 75 % (-11 %)
WMK, EI % (-3%) 8% (+1%) 86 % (+4%) 86 % (+2 %)
WMK, EI, m 4% -1%) 1% (-6%) 8% (-6%) 18 % (-7%)

WMK, MLEI 76 % (+1 %) 84 % (+2 %) 85 % (+2 %) 85 % (+1 %)
WMK, MLEL, m 72 % (-4 %) 78 % (-5%) 80 % (-4 %) 81 % (-4 %)

WMK, PGEI 78 % (+4 %) 87 % (+6 %) 87 % (45 %) 88 % (+5 %)
WMK, PGEL, m 75 % (+0 %) 80 % (-2 %) 1% (-2%) 81 % (-4 %)

SEK, PGEI 79 % (+5 %) 86 % (+5 %) 89 % (+7 %) 89 % (+6 %)
SEK, PGEL m 74 % (-1%) 80 % (2%) 82 % (-1%) 82% (-2%)

Table 4.15: Hartmann6 tests with simulation data set 4: accuracy in parameter

space (acc. p.) in comparison to the baseline after 19, 38, 57 and 75 function
evaluations (eval.), averaged over 5 optimization runs with fixed initial parameter
configurations

dard model is used throughout the whole optimization. The simulation data of
the polynomial function is slightly utilized for some optimization runs, only during
the first iterations, but then discarded. On the contrary, for the algorithm with
mismatch correction, mainly the model with prior-information from the simulation
data is chosen, whereas the standard model is rarely chosen from time to time.
Obviously, the prior-informed model with unsuitable simulation data and corrected
mismatch seems more suitable to the model selection criterion, than the standard
GP. However, apparently this is a misconception, since the accuracies in function
output- and parameter space noticeable drops for this approach in comparison to
standard BO.

In case of the WMEI, a weighted mixture acquisition function is created, between
the EI scores of the standard GP and the best performing prior-informed model.
The weighted mixture is only created if any prior-informed model yields a higher
model selection score, than the standard GP. If this is not the case, only the stan-
dard model is used to not possibly worsen the performance. The chosen models
in fig. 4.11c and fig. 4.11d look similar to the results of EI. This makes sense, be-
cause just like before, the model with the highest model selection score is chosen.
However, this time, the selected prior-informed GP is not solely used within the ac-
quisition function. Whenever the prior-informed model is chosen, it is used within
the weighted mixture of the models’ Els. Therefore, the weights, used within the
composed WMEI acquisition function are averaged over 30 optimization runs and
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depicted in fig. 4.10a and fig. 4.10b for approaches without and with mismatch cor-
rection, respectively. For the WMEI, the weights themselves are dependent on the
similarity of model selection scores of the considered models. For instance, identical
performance of the models would lead to a 50/50 weighting. Only if one prior-
informed model would outperform the standard GP by far, the standard model’s
weight would approach zero and thus, would not be considered. From fig. 4.10a, it is
noticeable, that the algorithm without mismatch correction on average only uses a
small share of maximum 20 % of the prior-informed model’s information during the
first iterations of the optimization. On the contrary, in fig. 4.10b, it can be seen, that
even if the prior-informed model was selected by the model selection criterion, still
20 % to 40 % of the information, used within the acquisition function, comes from
the standard model. By also leveraging the standard GP, the PIK with WMEI and
mismatch correction yields higher accuracies than the PIK with EI and mismatch
correction.

For MLEI, the model with the highest product of model selection score and EI was
plotted, indicating from which model the respective point in parameter space was
chosen. Again, two separate plots show the algorithms without and with mismatch
correction in fig. 4.11e and fig. 4.11f, respectively. Here, the difference between the
approach with and without mismatch correction is less apparent, which also ex-
plains their minor difference in yielded accuracies. Both algorithms mainly use the
standard GP throughout the optimization. The approach without mismatch correc-
tion slightly increases the use of the prior-informed model in the second half of the
optimization process, whereas the approach with mismatch correction utilizes the
prior-informed GP only within the first quarter of the procedure with a noteworthy
occurrence. Apparently, even if the model selection criterion would predominantly
choose a prior-informed model with corrected mismatch over the standard model,
as seen for the case of EI, the MLEI acquisition function still mainly chooses points,
proposed by the standard GP, where EI scores are high enough to overrule the model
selection criterion.

Averaged Weights for Weighted Mixture Expected Improvement and Cl 95%  Averaged Weights for Weighted Mixture Expected Improvement and Cl 95%

—— standard GP _ —— standard GP

104
prior-informed GP prior-informed GP
0.8 1
0.8 {

0.6 4 0.6 4

weight
weight

0.4 4 0.4

0.2 A
0.2 4

0.0 4

0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
iteration iteration

(a) WMEI without mismatch correction (b) WMEI with mismatch correction

Figure 4.10: Hartmann6 tests with simulation data set 4: weights of used models in
the Weighted Mixture Expected Improvement, averaged over 30 optimization runs,
without mismatch correction (a) and with mismatch correction (b)
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Figure 4.11: Hartmann6 tests with simulation data set 4 for algorithms with prior-
informed kernel: used model per iteration for 30 optimization runs, for algorithms
with and without mismatch correction and different acquisition functions
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Next, it will be assessed which models are used within the acquisition function for the
case of choosing between three model, namely, the standard GP, the prior-informed
GP and an additional model with WMK. In fig. 4.12 selected models are visualized
for EI and MLEI without and with mismatch correction.

In fig. 4.12a and fig. 4.12b, again, the difference can be clearly seen between the
model choices for an approach without mismatch and an approach with mismatch
correction, both with EI acquisition function. The weights for the sub-kernels of the
WMK can be found in fig. 4.13. Without mismatch correction, the model selection
criterion mainly chooses the GP with WMK. From the weighting in fig. 4.13a it can
be seen, that information from the standard model significantly prevails through-
out the optimization, except for the first optimization iterations, which explains the
observed accuracy drop during the first iterations. In the last half of the optimiza-
tion procedure, where the accuracy again resembles the baseline, the prior-informed
sub-kernel is indeed only rarely used. On the contrary, for the algorithm with mis-
match correction the weighted mixture GP is predominantly used during the first
half of the optimization. From fig. 4.13b, it can be seen that the prior-informed sub-
kernel dominates the WMK throughout the optimization, but still uses information
from the standard kernel. For the second half of optimization iterations, the prior-
informed GP, without information from the standard model, is chosen by the model
selection criterion. From this analysis it is again obvious, that the model selection
criterion tends to choose a model with unsuitable prior information and corrected
mismatch over the standard model. Because the accuracy again decreases for this
algorithm with mismatch correction, in comparison to the baseline, the model se-
lection criterion again seems to overestimate the model with corrected simulation
data.

For the WMK with MLEI, the weighting of the sub-kernels looks similar to the
previous case of EI. The exact curves can be found in fig. A.9. The approach
with WMK and MLEI without corrected mismatch again mostly uses the weighted
mixture model with prevailing information from the standard GP, as plotted in
fig. 4.12c, which explains its accuracies, similar to the baseline. However, in some
optimization runs also the standard GP alone, as well as the prior-informed GP are
used.

In fig. 4.12d the model choice for MLEI with mismatch correction is shown. MLEI
still selects mainly points, proposed by the standard model, which explains why the
accuracies do not drop as much as for the approach with mismatch correction and
EI. The standard model apparently again yields EI scores, which are high enough
to overrule the overly optimistic model selection score, which would favor the model
with predominant information from corrected simulation data.
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Figure 4.12: Hartmann6 tests with simulation data set 4 for algorithms with
Weighted Mixture Kernel: used model per iteration for 30 optimization runs, for
algorithms with and without mismatch correction and different acquisition functions
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Figure 4.13: Hartmann6 tests with simulation data set 4: weights of used sub-kernels
in the Weighted Mixture Kernel, averaged over 30 optimization runs with Expected
Improvement, without mismatch correction (a) and with mismatch correction (b)
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Lastly, one algorithm with PGEI will be examined, where the approach with stan-
dard SEK was chosen. The plots in fig. 4.14 show the weights of the prior infor-
mation within the PGEI for an approach without and with mismatch correction,
respectively. For both cases, the prior information is only used during the first half
of the optimization procedure, indicated by a weight unequal to zero. This means
that for the second half of the optimization iterations, the simulation data informa-
tion is suppressed and the standard EI acquisition function is used. For the case
with mismatch correction, the prior information is suppressed slightly faster, and
takes values of exactly zero during the second half of the iterations, while the weight
without mismatch correction still stays slightly positive.
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Figure 4.14: Hartmann6 tests with simulation data set 4: weighting of the simulation
data in the Prior-Guided Expected Improvement, averaged over 30 optimization
runs, without mismatch correction (a) and with mismatch correction (b)

Reasons and Consequences In the previous analysis, it was observed that the
model selection criterion discards unsuitable simulation data after a few optimiza-
tion iterations for algorithms without mismatch correction. After gathering some
function observations, a meaningful standard GP model can be built, which yields
higher model selection scores than the prior-informed GP model with unsuitable
simulation data. Consequently, this leads to performance similar to standard BO
for all algorithms without mismatch correction.

However, in case of correcting mismatches between simulation data and function ob-
servations, the model selection criterion predominantly chooses the prior-informed
model. Here, the predictive performance of the corrected prior-informed GP is ob-
viously overestimated, since the accuracy in function output, as well as parameter
space considerably drops, when using only this model in the EI acquisition function.
A possible reason for this behavior is the way of calculating the model selection
criterion for a GP model with mismatch correction, which is included in the kernel.
As explained in section 3.3.2, the mismatch correction is performed by creating an
additional GP, denoted as the mismatch GP. A mismatch regression model is cre-
ated by conditioning the mismatch GP on the deviations between observed function
evaluations and respective simulation data values, to obtain its predictive posterior
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mean. This predictive posterior mean is used to predict the mismatches of arbitrary
points within the simulation data. The mismatch correction is included into the
kernel of the prior-informed GP. To determine the predictive performance of the
prior-informed GP, the Monte Carlo CV is computed with the predictive posterior
probability. To calculate this predictive score, the observation data is separated into
a training data set and a set of withheld data points for testing the predictive perfor-
mance of the model. The prior-informed GP is conditioned on the training data set,
and the predictive posterior probability is determined on the withheld data points.
However, the predictive posterior mean of the mismatch GP, which is incorporated
in the prior-informed GP’s kernel function, is still conditioned on all deviations, also
those, which belong to withheld observations. Therefore, the Monte Carlo CV uses
information about the mismatches of data points, which are actually considered as
unseen to the model. As a result, the fit of the prior-informed GP with mismatch
correction is possibly overestimated for withheld data points.

Luckily, there are alternative acquisition functions to the EI acquisition function,
which not solely rely on the previous choice of the model selection criterion. One
opportunity is to use the MLEI acquisition function, which includes the EI scores of
the models into the model selection criterion. Thus, high EI scores of the standard
GP have the effect of balancing out the overly optimistic choice of the model se-
lection criterion, which overestimates the fit of the corrected prior-informed model
on the observations. The performance of the algorithm with PIK and MLEI and
mismatch correction is therefore comparable to the baseline. The WMK with MLEI
shows similar behavior regarding the utilized information, however in parameter
space a slightly higher accuracy decrease was visible. This could be explained by
the fact, that on average the simulation data was slightly more used, than for the
PIK with MLEI.

Similarly, the WMEI acquisition function is able to deal with a corrected prior-
informed model, which is overestimated by the model selection criterion. WMEI
uses a weighted mixture of the EI scores of the prior informed model and the stan-
dard model. Therefore, high EI scores of the standard GP, again have the effect
of balancing out poor choices, made by the model selection criterion. This is still
dependent on the weight of the EI scores of the standard GP, which itself is de-
pendent on the similarity of model selection scores. However, even if the model
selection score of the prior-informed model is higher than the model selection score
of the standard GP, there is still a high chance of considering the standard model’s
information.

Lastly, the PGEI acquisition function with standard kernel seems to be less sensi-
tive to corrected simulation data, which is overestimated by the predictive posterior
probability. The PGEI discards the unsuitable simulation data in both cases with-
out and with mismatch correction, after slightly using it for the first quarter to half
of optimization iterations. The reason is, that for the PGEI, in any case, the simula-
tion data information is usually not used during the entire optimization process. It
should be recalled, that the weight, which tunes the influence of the simulation data,
is determined by maximizing the predictive posterior probability. During the phase
where only a few function observations are gathered, and the standard model is
not yet a meaningful representative of the true objective function, adding weighted
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simulation data to the posterior mean, can possibly increase the predictive posterior
probability on withheld data and help the optimization to quickly find the opti-
mum in simulation data space. However, as soon as the standard GP is conditioned
on enough function observations, the predictive posterior mean usually fits the ob-
jective function well. Then, an additive term to the predictive posterior mean is
unnecessary and even worsens the predictive probability, which leads to discarding
the simulation data in any case, with or without mismatch correction. This behavior
of the PGEI also explains its liability to local optima, which is overestimated within
the simulation data, as previously observed for the criterion of overcoming local
extreme values. If the simulation data is not completely unsuitable on the initial
function observations, the PGEI will immediately lead the optimization to the local
extreme values. Before the simulation data is significantly corrected by gathered
observations from the local optimum, it is already discarded and not further used
by the PGEI. Without the use of simulation data, the PGEI transitions into the
standard EI acquisition function. As shown in section 4.4.3, the BO algorithm with
EI acquisition function alone is not able to overcome the local extreme value.

4.5.6 Comparison of the Algorithms

Based on previous assessments, the algorithms can now be compared regarding the
individual evaluation criteria. In tab. 4.16, the algorithms are listed, together with
the four evaluation criteria. The standard BO approach is listed as the reference and
rated as reasonable ("r”) regarding required number of function evaluations ("no.
eval.”) and achieved accuracy. However, for the criterion of overcoming a local op-
timum, the standard BO does not show convincing results for initial parameters,
guiding towards the local extreme value. Therefore, it is rated with ”x”, which
denotes bad performance. How the algorithm deals with an exposure to unsuitable
simulation data is logically not assessed for the standard BO.

Regarding the criterion of finding well performing parameters with an accuracy in
function output space of 90 % and higher within a few function evaluations, all
prior-informed algorithms are able to outperform the baseline for the case of four
utilized simulation data sets, which do not contain the global optimum of the test
function. Therefore, all algorithms are at least rated with ”g”, which denotes good
performance. Especially, algorithms with PGEI acquisition function are able to
find well performing parameters outstandingly fast. Therefore, their performance is
rated as "vg”, denoting very good results.

However, for the criterion of reaching a high accuracy of the true optimum in func-
tion output, as well as in parameter space, most algorithms with PGEI fall back
behind the baseline. Only the PGEI with SEK yields very good performance in
function output space and good performance in parameter space, which was overall
rated as good performance. From the approaches with WMK, the MLEI acquisi-
tion function shows reasonable performance, similar to the baseline. Good and very
good accuracies in function output, as well as in parameter space, are observed for
approaches with PIK and MLEI or WMEI acquisition function, respectively.
Moreover, the algorithms were assessed in two test scenarios with circumstances,
which are likely to guide them to local extreme values. The WMK with MLEI con-
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vinced with reasonable to good performance for the first test case and very good
performance for the second test case, which was overall ranked as a good perfor-
mance. Additionally, the PIK with either WMEI or MLEI, both without correcting
mismatches, provided reasonable performance, by outperforming the baseline in the
first test case and reaching only slightly lower accuracies as the reference in the sec-
ond test case. However, their counterparts with mismatch correction could convince
in both test cases with very good performance, compared to the baseline.
Subsequently, the algorithms were exposed to unsuitable simulation data and ana-
lyzed regarding the amount of utilized prior information, used throughout the op-
timization procedure. All algorithms, without mismatch correction, yielded good
results, resembling the baselines performance or even slightly outperforming it.
However, algorithms with mismatch correction mostly overestimated the fit of the
prior-informed model on observed data and mostly showed a decrease in accuracy
compared to the standard BO. The PIK in combination with WMEI or MLEI can
still be ranked as good, since there was no noteworthy accuracy decline in function
output space and only a small accuracy drop in parameter space. Likewise, WMEI
with mismatch correction and MLEI acquisition function still showed reasonable
performance, in comparison to the baseline and other prior-informed approaches.
Lastly, the PGEI approach with standard kernel, turned out as robust to unsuitable
simulation data and therefore is also ranked as well performing.

Algorithm Comparison

algorithm ‘ 1. no. eval. 2. accuracy 3. loc. optima 4. bad sim. data
BO (baseline) r r X -
PIK, EI g X X g
PIK, EI, m g X X X
PIK, WMEI g vg r g
PIK, WMEL, m | g vg vg g
PIK, MLEI g g r g
PIK, MLEI, m g g vg g
PIK, PGEI vg X X g
PIK, PGEI, m vg X X X
WMK, EI g X X g
WMK, EI, m g X X X
WMK, MLEI g T g g
WMK, MLEL, m | g r g r
WMK, PGEI vg X X g
WMK, PGEI, m | vg X X r
SEK, PGEI vg g X g
SEK, PGEI, m vg g X g

Table 4.16: Comparison of the algorithms regarding the evaluation criteria 1. num-
ber of required function evaluations, 2. accuracy of the located optimum, 3. over-
coming local optima and 4. dealing with unsuitable or ”bad” simulation data, where
"1” denotes reasonable performance, ”g” denotes good performance, "vg” denotes
very good performance and "x” denotes bad performance
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4.5.7 Conclusion

As a conclusion it can be stated, that some prior-informed algorithms are able to
fulfill all evaluation criteria with a good to very good performance, compared to the
baseline. Namely, the approaches using a PIK with mismatch correction and WMEI
or MLEI acquisition function can be recommended for optimization problems with
multiple sets of simulation data, which are possibly unsuitable for the objective
function to be optimized. Even for unfavorable prior information, these algorithms
yield similar performance as standard BO, while clearly outperforming standard BO
with helpful prior information. Furthermore, for the case that there is knowledge
about having an objective function without local optima or having simulation data
which most likely fits the objective function well, also the PGEI with SEK can be
a very efficient choice, by yielding nearly optimal parameters within a minimum
number of required function evaluations.
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Chapter 5

Application: Vant-Hull-Controller

In this chapter, the best performing algorithms from previous evaluations will op-
timize a Vant-Hull controller with two controller parameters, which is used as an
aim point controller for a solar power tower plant. The goal is to find a parameter
configuration, which yields the maximum of the objective function, indicating the
performance of the controller. Again, a comparison to standard BO will be given,
in order to precisely assess the improvements regarding number of required function
evaluations to find well performing controller parameters and achieved accuracy of
the located parameter configuration.

5.1 Vant-Hull Control Strategy with Two Con-
troller Parameters

As already mentioned in section 2.1.2, the Vant-Hull controller is a simple control
method to prevent exceeding the overflux conditions of the receiver. When overflux
is measured, the respective heliostat aim points are moved away from the receiver’s
equator in a vertical direction and are located in alternate rows at the upper and
lower receiver edges. The distance of the new aim point to the edge of the receiver
is determined by taking the product of the heliostat beam radius and a parameter
k, which controls the aiming process for the entire heliostat field.

This single-parameter Vant-Hull controller is able to decrease an exceeding flux
density to allowable flux values. However, it can result in two flux peaks at the
receiver edges with a gap in the middle, which leads to high spillage and thus
decreases the efficiency. To yield a more efficient aim point control strategy, it is
desirable to fill the gap between those flux peaks and make the flux profile more
homogenous. Therefore, the Vant-Hull controller was extended to a two-parameter
control strategy by Collado et al. [17]. Here, the heliostat field is divided into three
zones, where zone one contains heliostats which are close to the tower, zone two is
further away and zone three denotes the furthest zone from the tower. Consequently,
heliostats in zone three produce the largest heliostat beam radius on the receiver.
Every zone is allocated with a parameter k;, with ¢ denoting the respective zone
t = 1,...,3. However, it is assumed, that k& = ko, which results in two selectable
controller hyperparameters k; and k3, which are aimed to be optimized in this test.

91
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Compared to the single-parameter approach, the additional parameter results in a
more homogeneous flux profile on the receiver, by redirecting aim points from zone
three closer to the receiver’s equator. Thus, the spillage is reduced, which increases
the efficiency, while not exceeding allowable flux values.

5.2 Simulation Data

The simulation data was generated by simulating the solar power tower plant in
Jiilich. Here, the receiver is a rectangular receiver, which consists of ceramic absorber
structures and works with air as heat transfer medium. The 2153 heliostats are
arranged in a so-called northern field [9] with respect to the tower, which is depicted
in fig. 5.1.

In total 14 sets of simulation data were generated for different values of certain
simulation hyperparameters. Namely, the maximum allowable flux density of the
receiver, as well as the mirror error and the mirror reflectivity, where the latter
are usually difficult to estimate. The mirror reflectivity is directly proportional to
the direct normal irradiation (DNI), which denotes the amount of solar radiation,
received per unit area by the heliostat surface, that is always held perpendicular to
the rays, which are coming in a straight line from the direction of the sun at its
current position in the sky [16]. Therefore, changing the simulated DNI, has the
effect of varying the simulated mirror reflectivity factor. Here, a simulated DNI of
1000 was assumed as a mirror reflectivity factor of 0.9. The exact values of the
simulation hyperparameters for all simulation data sets are listed in tab. 5.1.
Subsequently, the generated sets of simulation data were again interpolated by a
regression NN. Further details on the NN architecture and the training process can
be found in appendix A.1.2.

- — 100m

— -100m

Figure 5.1: Heliostat field layout: northern field of the Jiilich plant
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Overview of Simulation Data Sets for the Vant-Hull Test

data set | max. allowable flux [Wm™] mirror error [mrad] mirror reflectivity
1 750000 0.002 0.72
2 750000 0.002 0.81
3 750000 0.002 0.9

4 750000 0.0015 0.72
) 750000 0.0015 0.81
6 750000 0.0015 0.9

7 775000 0.002 0.81
8 800000 0.002 0.72
9 800000 0.002 0.765
10 800000 0.002 0.81
11 800000 0.002 0.9
12 800000 0.0015 0.72
13 800000 0.0015 0.81
14 800000 0.0015 0.9

Table 5.1: Generating 14 sets of simulation data of the solar power tower plant in
Jiilich, by varying the following simulation hyperparameters: maximum allowable
flux density [W m™2], mirror error [mrad] and mirror reflectivity factor

5.3 Test Case

To avoid running time-consuming tests on the real plant, one set of interpolated
simulation data was chosen to imitate the true objective function of the Vant-Hull
controller, which indicates the controller’s performance, depending on the controller
parameters k; and k3. Namely, the simulation data set 7 in tab. 5.1 was chosen for
this purpose. To evaluate the accuracy of parameters, selected by the optimization,
the global optimum of the objective function, and the respective optimal controller
parameters, have to be known. Therefore, the optimum of the NN function, taken
as the Vant-Hull controller’s objective function, and respective parameters were de-
termined by a grid search procedure.

Consequently, the tests were performed on all remaining sets of simulation data.
By plotting the interpolated values of the remaining simulation data sets against
the respective Vant-Hull objective function values, it was assessed that none of the
simulation data sets exactly resembles the objective function. To give an example
for the fit of the simulation data, in fig. 5.2 the plots are shown for two different
sets of simulation data, namely data set 3 and data set 4 from the simulation data
sets, listed in tab. 5.1. In the plots, the true optimum of the objective function is
highlighted by a red marker.

From the evaluations in chapter 4, the best performing algorithms were selected
to optimize the Vant-Hull objective function, which are namely the algorithms
with prior-informed kernel function (PIK) and Most-Likely Expected Improvement
(MLEI), as well as Weighted Mixture Expected Improvement (WMEI) acquisition
function. Additionally, the approach with a standard squared exponential kernel
(SEK) and Prior-Guided Expected Improvement (PGEI) was tested. As a refer-
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ence, again the performance of the standard BO is stated, regarding number of
function evaluations and accuracy.

Like in the previous chapter, again 30 optimization runs were performed and av-
eraged, to obtain meaningful results. In every optimization run, 50 optimization
iterations are executed. In the same way as for the Hartmann6 test case, the num-
ber of optimization iterations was set to the number of iterations, after which the
standard BO stopped showing any noteworthy improvement in objective function
observations. In contrast to the tests on Hartmann6, only two initial parameters are
randomly chosen and evaluated, which in total yields a budget of N = 52 maximum
function evaluations. Choosing less initial parameter configurations, than for the
six-dimensional Hartmann function is reasonable, since the objective function of the
Vant-Hull controller is only two-dimensional.

Simulation Data Prediction vs. Real Value Simulation Data Prediction vs. Real Value
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Figure 5.2: Vant-Hull objective function values vs. simulation data predictions for
two sets of simulation data

5.4 Results

To assess the performance of the algorithms, again the average number of function
evaluations was determined, which is required to reach accuracies of 50 %, 80 %, 90
% and 95 % of the global optimum in objective function space, where the accuracy
is determined by eq. (4.1). Moreover, the averaged accuracies, reached after 25 %,
50 %, 75 % and 100% of the maximum number of function evaluations N = 52,
were calculated to gain a deeper insight into the performance of the algorithms
throughout the optimization procedure. Analogously to the evaluations in chapter 4,
the accuracies are again stated in objective function output space and in parameter
space, where the accuracy in parameter space is calculated from eq. (4.2).

All resulting averaged function evaluations and accuracies, stated in the following
tables, are rounded to integers.

Number of Function Evaluations From the number of required function eval-
uations, stated in tab. 5.2, it is clearly visible, that standard BO itself yields high
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accuracies within a very little number of function evaluations.

For the prior-informed algorithms, the number of required evaluations to reach 50 %
and 80 % accuracy, resemble the baseline. For 90 % accuracy, the PIK with WMEI
requires one evaluation less than the baseline, which is an improvement of 25 %
compared to the baseline’s function evaluations. The same observation holds for
the SEK with PGEI and mismatch correction. The other prior-informed algorithms
either yield the same result as the reference or need one function evaluation more.
However, to reach an accuracy of 95 %, almost all prior-informed algorithms require
between 15 % and 23 % less function evaluations than standard BO. Only the ap-
proach with SEK and PGEI (without mismatch correction) yields the same results
as the baseline.

Number of Function Evaluations

algorithm 50 % acc. 80 % acc. 90 % acc. 95 % acc.
BO (baseline) 1 eval. 2 eval. 4 eval. 13 eval.
PIK, WMEI 1 (40%) 2 (+0%) 3 (25%) 10 (23 %)
PIK, WMEL, m 1 (+0 %) 2 (+0%) 5 (+25%) 10 (-23 %)
PIK, MLEI 1(+0%) 2(+0%) 4(+0%) 10 (-23 %)
PIK, MLEL m 1 (+0%) 2 (+0%) 5 (+25%) 12 (-8 %)
SEK, PGEI 1(+0%) 2(+0%) 4 (+0%) 13 (+0 %)
SEK, PGEL,m 1 (+0%) 2(+0%) 3(25%) 11 (-15 %)

Table 5.2: Vant-Hull tests with all simulation data sets: number of required function
evaluations (eval.) to reach 50 %, 80 %, 90 % and 95 % accuracy (acc.) of the
optimum in comparison to the baseline, averaged over 30 optimization runs

Accuracy in Function Output Space The accuracies in objective function out-
put space are calculated after 25 %, 50 %, 75% and 100 % of the number of maximum
function evaluations N = 52, which corresponds to 14, 27, 39 and 52 objective func-
tion evaluations, respectively.

From the results, stated in tab. 5.3, it can be seen that the accuracies mostly resem-
ble the baseline’s performance. After 14 function evaluations, all algorithms already
reach at least 96 % accuracy. The maximum accuracy of 99 % is reached by all algo-
rithms after at most 39 function evaluations. Because there was no further change
in accuracies, the column for N = 52 function evaluations was omitted in tab. 5.3.

For a visual assessment of the results, the plots in fig. 5.3 show the mean distances of
the best found values so far to the objective function’s optimum and the confidence
interval of 95 %. To keep the plots clear and easy to distinguish, separate plots
were generated for algorithms without and with mismatch correction in comparison
to the baseline. From fig. 5.3a, it can be seen that the PIK with WMEI and the
PIK with MLEI without mismatch correction, on average mostly outperform the
baseline throughout the optimization. However, compared to the PIK with MLEI,
the baseline seems to reach slightly better performing parameters during the last
quarter of the optimization procedure. The differences are yet small enough to not
be unnoticeable from the rounded numbers in tab. 5.3.
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In fig. 5.4, the algorithms’ counterparts with mismatch correction are plotted. While
the PIK with MLEI and the SEK with PGEI show performances similar to the base-
line, the PIK with WMEI slightly outperforms the baseline for several optimization
steps.

Accuracy in Function Output Space

algorithm 14 eval. 27 eval. 39 eval.

BO (baseline) 96 % acc. 98 % acc. 99 % acc.
PIK, WMEL 97 % (+1 %) 99 % (+1 %) 99 % (+0 %)
PIK, WMEL, m 97 % (+1 %) 98 % (+0 %) 99 % (4+0 %)
PIK, MLEI 97 % (+1 %) 98% (+0 %) 99 % (+0 %)
PIK, MLEL, m 96 % (+0 %) 98 % (+0 %) 99 % (+0 %)
SEK, PGEI  95% (-1 %) 98 % (+0 %) 99 % (+0 %)
SEK, PGEL, m 96 % (+0 %) 98 % (+0 %) 99 % (+0 %)

Table 5.3: Vant-Hull tests on all simulation data sets: accuracy (acc.) in function
output space after 25 % (= 14 eval.), 50 % (= 27 eval.) and 75 % (= 39 eval.) of
maximum function evaluations (eval.) (= 52 eval.), averaged over 30 optimization
runs
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—— standard BO (baseline)
PIK & MLEI + m

— PIK & WMEI + m

—— SEK & PGEI+m

—=- model change

—— standard BO (baseline)
PIK & MLEI

— PIK & WMEI

—— SEK & PGEI

—=- model change

distance
distance

e
=
o

o
o
@

0.00 1

T ; T ; T : T ; T ; ; T : T ; T : T ; T
0 6 12 18 24 30 36 42 a8 54 0 6 12 18 24 30 36 42 48 54
iteration iteration

(a) Algorithms without mismatch correction (b) Algorithms with mismatch correction

Figure 5.3: Vant-Hull tests on all simulation data sets: mean distance to the global
optimum in function output space and confidence interval 95 %, averaged over 30
optimization runs, for algorithms without mismatch correction (a) and algorithms
with mismatch correction (b)

Accuracy in Parameter Space In tab. 5.4, the accuracies are stated in param-
eter space. Some prior-informed approaches show a slight improvement or decrease
throughout the optimization process, however in total the accuracies of all prior-
informed algorithms mostly resemble the baseline. The maximum accuracy, reached
by most algorithms in parameter space, comprises 95 %.

The results are again complemented with plots in fig. 5.4a and fig. 5.4b, which
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Accuracy in Parameter Space
algorithm 14 eval. 27 eval. 39 eval. 52 eval.

BO (baseline) 85 % acc. p. 92 % acc. p. 94 % acc. p. 95 % acc. p.

PIK, WMEL 87 % (12 %) 92% (+0%) 94 % (10 %) 95 % (10 %)
PIK, WMEL m 86 % (+1 %) 92% (+0 %) 94 % (+0 %) 95 % (+0 %)
)
)

( ( ( (

PIK, MLEI 90 % (+6 %) 93 % (+1 %) 94 % (+0 %) 94 % (-1 %)
PIK, MLEL, m 86 % (+1 %) 90 % (-2%) 93 % (-1 %) 95 % (+0 %)
SEK, PGEI 83% (2%) 91% (-1%) 93% (-1%) 95 % (+0 %)
( (- ( (

SEK, PGEL, m 85% (+0%) 91 % (-1 %) 94% (+0 %) 95 % (+0 %)

Table 5.4: Vant-Hull tests on all simulation data sets: accuracy in parameter space
(acc. p.) after 25 % (= 14 eval.), 50 % (= 27 eval.), 75 % (= 39 eval.) and 100 % of
maximum function evaluations (eval.) (= 52 eval.), averaged over 30 optimization
runs

show the mean distances to the optimum in parameter space and the confidence
intervals of 95 % for algorithms without and with mismatch correction, respectively.
After the maximum number of N = 52 function evaluations, all prior-informed algo-
rithms, except approach with PIK and MLEI (without mismatch correction), seem
to outperform the baseline from the reached accuracy in parameter space. However,
the improvements are again small enough to not be noticeable from the rounded
numbers in tab. 5.4.

Averaged Distance to Optimum in Parameter Space and Cl 95 % Averaged Distance to Optimum in Parameter Space and Cl 95 %
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Figure 5.4: Vant-Hull tests on all simulation data sets: mean distance to the global
optimum in parameter space and confidence interval 95 %, averaged over 30 opti-
mization runs, for algorithms without mismatch correction (a) and algorithms with
mismatch correction (b)
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5.5 Conclusion

From previously stated results, it can be seen, that most of the considered prior-
informed algorithms slightly outperform the standard BO approach regarding the
number of required function evaluations. However, the improvements are much
smaller compared to improvements, observed for the Hartmann6 test function.
From the reached accuracies it can be seen, that for most parts of the optimization
process, the algorithm with PIK and WMEI slightly outperforms the baseline, while
the PIK with MLEI is slightly outperformed by the standard BO. Additionally, the
approach with PGEI and mismatch correction could yield slight improvements re-
garding the number of required function evaluations, compared to the baseline. In
total, however, the results of all prior-informed algorithms are quite similar to the
baseline, which already performs well without leveraging simulation data.

The reason for the hardly recognizable differences in observed performances is,
that the Vant-Hull controller possesses only two parameters, which yields a two-
dimensional objective function. In comparison to the six-dimensional Hartmann
function, a two-dimensional function is less complex to optimize. Therefore, the
standard BO algorithm without simulation data already yields well performance.
For simulation data sets, which do not exactly represent the true objective function,
it is hardly possible for the prior-informed algorithms to outperform the reference
performance.

To support this explanation, in fig. 5.5, the Vant-Hull objective function observa-
tions, gathered throughout one BO optimization run, are plotted in parameter space
and constitute a prediction of the underlying objective function, given as a mean
prediction and the standard error. Here, it is clearly visible that the area of bad
performing parameter values is rather small, compared to a rather large the area
of well performing parameter values, which is easy to find within a few function
evaluations.
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Figure 5.5: Mean prediction and standard error of the Vant-Hull objective function,
based on objective function observations
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To conclude the test of optimizing a Vant-Hull aim point controller, it can be stated,
that using the prior-informed approach with PIK and WMEI can decrease the num-
ber of required objective function evaluations by a couple. When testing a parameter
configuration on the real system, this is still more time efficient than using the stan-
dard BO approach and therefore beneficial. However, bigger improvements are only
noticeable when having a controller with more than two hyperparameters, which
would increase the complexity of the objective function and make it more challeng-
ing to be optimized.
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Chapter 6

Summary and Outlook

In this work, novel approaches were proposed for sample-efficient hyperparameter
optimization of an arbitrary aim point controller for solar power tower plants, by
leveraging multiple sets of simulation data as prior information in Bayesian Op-
timization. In total, three classes of prior-informed algorithms were developed.
Namely, approaches with prior-informed kernels, approaches with a novel acqui-
sition function, called Prior-Guided Expected Improvement, and hybrid algorithms,
which utilize both mentioned concepts. In order to utilize information from multi-
ple sets of simulation data, the algorithms deploy a model selection criterion, which
determines the prior information to be used in each optimization iteration. More-
over, methods were developed to make use of more than one source of prior in-
formation simultaneously within one optimization iteration, by combining multiple
prior-informed models. These are, namely, the Most Likely Expected Improvement
and the Weighted Mixture Expected Improvement acquisition function, as well as
the Weighted Mixture Kernel. To further increase the performance with possibly
unsuitable simulation data, the algorithms were extended with a strategy for cor-
recting mismatches between simulation data and objective function observations.

The approaches were tested and evaluated for all possible combinations of proposed
kernel types, acquisition functions and mismatch correction options, where the six-
dimensional Hartmann test function was used as an objective function. The prior-
informed algorithms utilized multiple sets of simulation data, that do not contain the
true optimum of the objective function. For comparison, a standard Bayesian Op-
timization approach was used as a baseline. In total, four test cases were analyzed.
Firstly, a general test was performed on all tests of available simulation data with
randomly selected initial parameter configurations. Secondly, the test was repeated
for a set of fixed initial parameters, which lead the optimization into the direction
of a local optimum. Thirdly, the proposed approaches were tested with only one
set of simulation data, which underestimated the global optimum of the objective
function, while overestimating the local extreme values of the function. Lastly, it
was assessed how the prior-informed algorithms deal with only one set of simula-
tion data, which does not resemble the objective function. From the test results,
the drawbacks of some developed algorithms became apparent. However, especially
the approaches with prior-informed kernel and either Weighted Mixture Expected
Improvement acquisition function or Most Likely Expected Improvement acquisi-
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tion function could convince in all test cases and mostly outperform the baseline
for considered evaluation criteria. For instance, the algorithm with prior-informed
kernel and Weighted Mixture Expected Improvement, tested with all sets of simula-
tion data, managed to reach parameters, which yielded an accuracy of 95 % of the
objective function’s global optimum, within 33 % less function evaluations, than the
baseline. This was an absolute difference of 14 function evaluations. Moreover, for
the remaining test cases, this approach was able to quickly overcome local optima
and was not negatively affected by unsuitable simulation data.

To give a second test scenario, the best performing algorithms were selected and
used to optimize a Vant-Hull aim point controller with two controller hyperparam-
eters. Here, it was noticed, that for a two-dimensional objective function, the im-
provements from using a prior-informed algorithm compared to a standard Bayesian
Optimization approach, become less apparent, than for Hartmann6. The algorithm
with prior-informed kernel and Weighted Mixture Expected Improvement still out-
performed the baseline. For finding controller parameters, which yield an accuracy
of 95 % of the objective function’s global optimum, the prior-informed algorithm
needed 23 % less function evaluations compared to the baseline. However, this re-
sulted in the absolute difference of only three function evaluations. Therefore, it
was concluded, that using a prior-informed algorithm for controller hyperparameter
optimization is especially profitable when having more complex objective functions,
than for the Vant-Hull controller with two controller hyperparameters.

Overall, at least two of the prior-informed algorithms, could fulfill all objectives of
this thesis. These were, firstly, to increases the sample-efficiency and thus reduce the
number of required objective function evaluations to find well performing controller
parameters, compared to a standard Bayesian Optimization algorithm, by leveraging
multiple sets of simulation data. Secondly, the proposed approaches should either
take advantage of, or discard simulation data, that is (partly) unsuitable for the ob-
jective function or shifted on the x-axis, which imitates the realistic case of having
inaccurately estimated simulation hyperparameters. In fact, the best-performing
approaches could meet these requirements by outperforming the baseline regarding
required number of function evaluations and accuracy of the located parameters, in
most test cases. Simultaneously, they yielded performances, similar to the baseline
for the tested worst case scenarios, like having unsuitable simulation data.

In future work, the algorithms could be evaluated on other aim point control strate-
gies, to validate their performance for arbitrary objective functions. Furthermore,
as explained in section 4.5.5, the strategy used for calculating the model selection
score, tends to overestimate the predictive performance of a prior-informed model
with unsuitable simulation data and mismatch correction between simulation data
and objective function observations. The reason was, that the mismatch correction
is calculated only one time for all objective function observations. The model selec-
tion criterion then determines a predictive score of the used model on withheld data
points after being fitted to training data points. Consequently, the predictive score
uses information about the mismatch of withheld data points, which leads to overly
optimistic results. Respective algorithms could be further modified and improved
by adjusting the way of calculating the model selection criterion. A new mismatch
correction could be determined on every share of observation data, which is used
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as training data within the calculation of the model selection criterion. However, it
would be necessary to validate, if possible improvements in performance would be
big enough to justify the additional computational burden, caused by this modifi-
cation.

Lastly, an additional modification or extension of the prior-informed algorithms
would be necessary to test them on a real plant. As mentioned in section 2.1.2,
the objective of the aim point controller is to maximize the power on the receiver.
However, at the same time the allowed flux density must not be exceeded to prevent
damage to the receiver, caused by overheating. Running the plant with an arbitrary
configuration of controller hyperparameters, carries the risk, that the controller is
not able to meet these objectives due to bad performance. In the worst case, dam-
age to the receiver could be caused. To prevent this, the prior-informed algorithms
could be further modified by introducing safety constraints, which limit BO to areas
of the parameter space, which were estimated as ”save”.
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Appendix A

Supplementary Material

A.1 Neural Networks for Interpolating Simula-
tion Data

The regression NNs for interpolating the sets of simulation data points, were im-
plemented and trained in Python with the open-source machine learning framework
PyTorch [44].

A.1.1 Regressing Hartmann6 Simulation Data

To interpolate the simulation data sets, generated for the six-dimensional Hartmann
test function, a regression NN with five neuron layers was used, based on the pro-
posed NN in [39]. The training was performed in 250 epochs with a learning rate of
0.005 and a batch size of 32.

A.1.2 Regressing Vant-Hull Simulation Data

To interpolate the simulation data sets, generated for the two-dimensional Vant-
Hull controller objective function, a regression NN was used, again based on the
proposed NN in [39], however, with only three neuron layers. This choice was made,
since a two-dimensional function requires less complexity than the six-dimensional
Hartmann function. Since the amount of available simulation data points was much
more limited, than for the Hartmann6 function, the number of training epochs and
the learning rate were reduced to 50 and 0.001, respectively. This prevents the unde-
sired behavior of overfitting the function, which usually leads to poor generalization
to unseen data points.
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A.2 Supplementary Test Results for Hartmann6

A.2.1 All Simulation Data Sets
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Figure A.1: Hartmann6 tests with all simulation data sets for remaining algorithms:
mean distance to the global optimum in function output space and confidence in-
terval 95 %, averaged over 30 optimization runs, for algorithms without mismatch
correction (a) and algorithms with mismatch correction (b)
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Figure A.2: Hartmann6 tests with all simulation data sets for remaining algorithms:
mean distance to the global optimum in parameter space and confidence interval 95
%, averaged over 30 optimization runs, for algorithms without mismatch correction
(a) and algorithms with mismatch correction (b)
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A.2.2 All Simulation Data Sets with Fixed Initial Parame-

ters
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Figure A.3: Hartmann6 tests with all simulation data sets and fixed initial param-
eters for remaining algorithms: mean distance to the global optimum in function
output space and confidence interval 95 %, averaged over 5 optimization runs with
fixed initial parameter configurations, for algorithms without mismatch correction
(a) and algorithms with mismatch correction (b)
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Figure A.4: Hartmann6 tests with all simulation data sets and fixed initial param-
eters for remaining algorithms: mean distance to the global optimum in parameter
space and confidence interval 95 %, averaged over 5 optimization runs with fixed
initial parameter configurations, for algorithms without mismatch correction (a) and
algorithms with mismatch correction (b)
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A.2.3 Simulation Data Set 1
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Figure A.5: Hartmann6 tests with simulation data set 1 for remaining algorithms:
mean distance to the global optimum in function output space and confidence in-
terval 95 %, averaged over 30 optimization runs, for algorithms without mismatch
correction (a) and algorithms with mismatch correction (b)
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Figure A.6: Hartmann6 tests with simulation data set 1 for remaining algorithms:
mean distance to the global optimum in parameter space and confidence interval 95
%, averaged over 30 optimization runs, for algorithms without mismatch correction
(a) and algorithms with mismatch correction (b)
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A.2.4 Simulation Data Set 4
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Figure A.7: Hartmann6 tests with simulation data set 4: mean distance to the global
optimum in function output space and confidence interval 95 %, averaged over 30
optimization runs, for algorithms without mismatch correction (a) and algorithms
with mismatch correction (b)
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Figure A.8: Hartmann6 tests with simulation data set 4: mean distance to the
global optimum in parameter space and confidence interval 95 %, averaged over 30
optimization runs, for algorithms without mismatch correction (a) and algorithms
with mismatch correction (b)
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Figure A.9: Hartmann6 tests with simulation data set 4: weights of used sub-kernels
in the Weighted Mixture Kernel, averaged over 30 optimization runs, with Most

Likely Expected Improvement acquisition function without mismatch correction (a)
and with mismatch correction (b)



Bibliography

[1] 2030 Climate Target Plan. 2022. URL: https://ec.europa.eu/clima/eu-
action/european-green-deal/2030-climate-target-plan_en (visited on
06/29/2022).

2] Aaron Wilson, Alan Fern, and Prasad Tadepalli. “Using Trajectory Data to
Improve Bayesian Optimization for Reinforcement Learning”. In: Journal of
Machine Learning Research 15.8 (2014), pp. 253-282. 1SSN: 1533-7928.

[3] International Energy Agency. Renewable Energy Market Update. 2022, p. 29.
DOI: https://doi.org/https://doi.org/10.1787/faf30eba-en. URL:
https://www.oecd-ilibrary.org/content/publication/faf30e5a-en.

[4] Rika Antonova, Akshara Rai, and Christopher G. Atkeson. “Deep Kernels
for Optimizing Locomotion Controllers”. In: PMLR 78:47-56 ( (2017). URL:
https://arxiv.org/pdf/1707.09062.

[5] Marco Astolfi et al. “Heliostat aiming point optimization for external tower
receiver”. In: Solar Energy 157 (2017), pp. 1114-1129. 18sN: 0038-092X. DOTI:
10.1016/j.solener.2016.03.042.

(6] George de Ath, Jonathan E. Fieldsend, and Richard M. Everson. What do you
Mean? The Role of the Mean Function in Bayesian Optimisation. 2020. DOT:
10.48550/arXiv.2004.08349. URL: https://arxiv.org/pdf/2004.08349.

(7] Az. 2022. URL: https://ax.dev/ (visited on 07/09/2022).

[8] David Barlev, Ruxandra Vidu, and Pieter Stroeve. “Innovation in concen-
trated solar power”. In: Solar Energy Materials and Solar Cells 95.10 (2011),
pp. 2703-2725. 18SSN: 09270248. pOI: 10.1016/J.SOLMAT.2011.05.020.

9] Boris Belhomme and Robert Pitz-Paal. “Bewertung und Optimierung von
Zielpunktstrategien fiir solare Turmkraftwerke: Fakultat fiir Maschinenwesen” .
PhD thesis. Shaker and Zugl.: Aachen, Techn. Hochsch., Diss., 2010.

[10] Boris Belhomme, Robert Pitz-Paal, and Peter Schwarzbozl. “Optimization of
Heliostat Aim Point Selection for Central Receiver Systems Based on the Ant
Colony Optimization Metaheuristic”. In: Journal of Solar Energy Engineering
136.1 (2014). 1ssN: 0199-6231. DOI: 10.1115/1.4024738.

[11] James Bergstra et al. “Algorithms for Hyper-Parameter Optimization”. In: Ad-
vances in Neural Information Processing Systems 24 (2011). 1sSN: 1049-5258.
URL: https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc26191
Paper.pdf.

111


https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_en
https://ec.europa.eu/clima/eu-action/european-green-deal/2030-climate-target-plan_en
https://doi.org/https://doi.org/https://doi.org/10.1787/faf30e5a-en
https://www.oecd-ilibrary.org/content/publication/faf30e5a-en
https://arxiv.org/pdf/1707.09062
https://doi.org/10.1016/j.solener.2016.03.042
https://doi.org/10.48550/arXiv.2004.08349
https://arxiv.org/pdf/2004.08349
https://ax.dev/
https://doi.org/10.1016/J.SOLMAT.2011.05.020
https://doi.org/10.1115/1.4024738
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

112

BIBLIOGRAPHY

[16]

[17]

[18]
[19]
[20]

[21]

[22]

23]

[24]

[25]

Alois Bissuel. Hyper-parameter optimization algorithms: a short review. 2019.
URL: https://medium. com/criteo - engineering/hyper - parameter -
optimization-algorithms-2fe447525903 (visited on 05/23/2022).

BoTorch. URL: https://botorch.org/ (visited on 07/09/2022).

Konstantinos Chatzilygeroudis and Jean-Baptiste Mouret. Using Parameter-
1zed Black-Box Priors to Scale Up Model-Based Policy Search for Robotics.
2017. URL: https://arxiv.org/pdf/1709.06917.

Shi Cheng et al. “Survey on data science with population-based algorithms”.
In: Big Data Analytics 1.1 (2016), pp. 1-20. 1sSN: 2058-6345. DOI: 10.1186/
s41044-016-0003-3. URL: https://bdataanalytics.biomedcentral.com/
track/pdf/10.1186/s41044-016-0003-3.

“Section 10 - Solar”. In: Handbook of energy, Volume I. Ed. by Cutler J.
Cleveland, Christopher Morris, and Christopher G. Morris. Oxford: Elsevier
Science, 2013, pp. 405-450. 1SBN: 978-0-08-046405-3. DOT: 10.1016/B978-0-
08-046405-3.00010-3. URL: https://www.sciencedirect.com/science/
article/pii/B9780080464053000103.

Francisco J. Collado and Jesus Guallar. “A two-parameter aiming strategy to
reduce and flatten the flux map in solar power tower plants”. In: Solar Energy
188 (2019), pp. 185-189. 1ssN: 0038-092X. DOI: 10.1016/j.solener.2019.
06.001. URL: https://www.sciencedirect.com/science/article/pii/
S0038092X19305663.

Concentrating Solar Power Projects. 2022. URL: https://solarpaces.nrel.
gov/by-status/operational (visited on 06/29/2022).

Concentrating Solar Power Projects. 2022. URL: https://solarpaces.nrel.
gov/by-status/under-construction (visited on 06/29/2022).

Antoine Cully et al. Robots that can adapt like animals. 2015. DOT: 10.1038/
naturel4422. URL: https://arxiv.org/pdf/1407.3501.

M. Cutler and J. How. “Efficient reinforcement learning for robots using in-
formative simulated priors”. In: undefined (2015). URL: http://ieeexplore.
ieee.org/stamp/stamp. jsp?tp=&arnumber=7139550.

David Duvenaud. “Automatic model construction with Gaussian processes”.
In: undefined (2014). por: 10.17863/CAM. 14087.

David Duvenaud et al. Structure Discovery in Nonparametric Regression through
Compositional Kernel Search. 2013. URL: http://arxiv. org/pdf/1302.
4922v4.

E. Fong and C. C. Holmes. “On the marginal likelihood and cross-validation”.
In: Biometrika 107.2 (2020), pp. 489-496. 1sSN: 0006-3444. por: 10 . 1093/
biomet /asz077. URL: https://academic . oup . com/biomet /article-
pdf/107/2/489/33217997/asz077 . pdf.

Peter 1. Frazier. A Tutorial on Bayesian Optimization. 2018. URL: https :
//arxiv.org/pdf/1807.02811.


https://medium.com/criteo-engineering/hyper-parameter-optimization-algorithms-2fe447525903
https://medium.com/criteo-engineering/hyper-parameter-optimization-algorithms-2fe447525903
https://botorch.org/
https://arxiv.org/pdf/1709.06917
https://doi.org/10.1186/s41044-016-0003-3
https://doi.org/10.1186/s41044-016-0003-3
https://bdataanalytics.biomedcentral.com/track/pdf/10.1186/s41044-016-0003-3
https://bdataanalytics.biomedcentral.com/track/pdf/10.1186/s41044-016-0003-3
https://doi.org/10.1016/B978-0-08-046405-3.00010-3
https://doi.org/10.1016/B978-0-08-046405-3.00010-3
https://www.sciencedirect.com/science/article/pii/B9780080464053000103
https://www.sciencedirect.com/science/article/pii/B9780080464053000103
https://doi.org/10.1016/j.solener.2019.06.001
https://doi.org/10.1016/j.solener.2019.06.001
https://www.sciencedirect.com/science/article/pii/S0038092X19305663
https://www.sciencedirect.com/science/article/pii/S0038092X19305663
https://solarpaces.nrel.gov/by-status/operational
https://solarpaces.nrel.gov/by-status/operational
https://solarpaces.nrel.gov/by-status/under-construction
https://solarpaces.nrel.gov/by-status/under-construction
https://doi.org/10.1038/nature14422
https://doi.org/10.1038/nature14422
https://arxiv.org/pdf/1407.3501
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139550
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139550
https://doi.org/10.17863/CAM.14087
http://arxiv.org/pdf/1302.4922v4
http://arxiv.org/pdf/1302.4922v4
https://doi.org/10.1093/biomet/asz077
https://doi.org/10.1093/biomet/asz077
https://academic.oup.com/biomet/article-pdf/107/2/489/33217997/asz077.pdf
https://academic.oup.com/biomet/article-pdf/107/2/489/33217997/asz077.pdf
https://arxiv.org/pdf/1807.02811
https://arxiv.org/pdf/1807.02811

BIBLIOGRAPHY 113

[26] Jesus Garcia et al. “Heat Flux Distribution Over a Solar Central Receiver
Using an Aiming Strategy Based on a Conventional Closed Control Loop”.
In: American Society of Mechanical Engineers Digital Collection, 2017. DOTI:
10.1115/ES2017-3615. URL: https://asmedigitalcollection.asme.org/
ES/proceedings-pdf/ES2017/57595/V001T05A011/2379246/v001t05a011~
es2017-3615.pdf.

[27] Jesus Garcia et al. “Multivariable Closed Control Loop Methodology for He-
liostat Aiming Manipulation in Solar Central Receiver Systems”. In: Jour-
nal of Solar Energy Engineering 140.3 (2018). 1SSN: 0199-6231. por: 10 .
1115/1 . 4039255. URL: https: //asmedigitalcollection . asme . org/
solarenergyengineering/article-pdf /140/3/031010/6330634/sol _
140_03_031010.pdf.

[28] Donald R. Jones, Matthias Schonlau, and William J. Welch. “Efficient Global
Optimization of Expensive Black-Box Functions”. In: Journal of Global Op-
timization 13.4 (1998), pp. 455-492. 1SsN: 1573-2916. DOI: 10 . 1023 /A :
1008306431147. URL: https://link. springer . com/content /pdf /10 .
1023/A:1008306431147 .pdf.

[29] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: undefined
(1995). URL: http :// ieeexplore . ieee . org/ stamp / stamp . jsp?tp=
&arnumber=488968.

[30] Brent Komer, J. Bergstra, and C. Eliasmith. “Hyperopt-Sklearn: Automatic
Hyperparameter Configuration for Scikit-Learn”. In: undefined (2014). URL:
https://pdfs.semanticscholar.org/9078/7a8ebbebcbad951fadbab579f2f7e221e4522.
pdf.

[31] H. J. Kushner. “A New Method of Locating the Maximum Point of an Arbi-
trary Multipeak Curve in the Presence of Noise”. In: Journal of Basic Engi-
neering 86.1 (1964), pp. 97-106. 1ssN: 0021-9223. por: 10.1115/1.3653121.
URL: https://asmedigitalcollection . asme.org/fluidsengineering/
article-pdf/86/1/97/5763745/97_1.pdf.

[32] Vidhi Lalchand and Carl Edward Rasmussen. Approximate Inference for Fully
Bayesian Gaussian Process Regression. 2019. DOI: 10.48550/arXiv.1912.
13440. URL: https://arxiv.org/pdf/1912.13440.

[33] George Lindfield and John Penny. Introduction to nature-inspired optimiza-
tion. London, San Diego, and Cambridge, MA: Academic Press an imprint of
Elsevier, 2017. 1SBN: 9780128036365.

[34] Sanae Lotfi et al. Bayesian Model Selection, the Marginal Likelihood, and Gen-
eralization. 2022. DOT: 10.48550/arXiv.2202.11678. URL: https://arxiv.
org/pdf/2202.11678.

[35] Daniel Maldonado, Robert Flesch, and Peter Schwarzbozl. “Hybridization of
Aim Point Optimization Methods for Solar Tower Power Plants”. In: MATH-
MOD 2018 extended abstract volume. Ed. by Felix Breitenecker et al. Argesim
Report. Vienna: ARGESIM Publisher, 2018, pp. 39-40. 1SBN: 9783901608919.
DOI: 10.11128/arep.55.a55230.


https://doi.org/10.1115/ES2017-3615
https://asmedigitalcollection.asme.org/ES/proceedings-pdf/ES2017/57595/V001T05A011/2379246/v001t05a011-es2017-3615.pdf
https://asmedigitalcollection.asme.org/ES/proceedings-pdf/ES2017/57595/V001T05A011/2379246/v001t05a011-es2017-3615.pdf
https://asmedigitalcollection.asme.org/ES/proceedings-pdf/ES2017/57595/V001T05A011/2379246/v001t05a011-es2017-3615.pdf
https://doi.org/10.1115/1.4039255
https://doi.org/10.1115/1.4039255
https://asmedigitalcollection.asme.org/solarenergyengineering/article-pdf/140/3/031010/6330634/sol_140_03_031010.pdf
https://asmedigitalcollection.asme.org/solarenergyengineering/article-pdf/140/3/031010/6330634/sol_140_03_031010.pdf
https://asmedigitalcollection.asme.org/solarenergyengineering/article-pdf/140/3/031010/6330634/sol_140_03_031010.pdf
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://link.springer.com/content/pdf/10.1023/A:1008306431147.pdf
https://link.springer.com/content/pdf/10.1023/A:1008306431147.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=488968
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=488968
https://pdfs.semanticscholar.org/9078/7a8ebbebcba951fa9ba6579f2f7e221e4522.pdf
https://pdfs.semanticscholar.org/9078/7a8ebbebcba951fa9ba6579f2f7e221e4522.pdf
https://doi.org/10.1115/1.3653121
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/86/1/97/5763745/97_1.pdf
https://asmedigitalcollection.asme.org/fluidsengineering/article-pdf/86/1/97/5763745/97_1.pdf
https://doi.org/10.48550/arXiv.1912.13440
https://doi.org/10.48550/arXiv.1912.13440
https://arxiv.org/pdf/1912.13440
https://doi.org/10.48550/arXiv.2202.11678
https://arxiv.org/pdf/2202.11678
https://arxiv.org/pdf/2202.11678
https://doi.org/10.11128/arep.55.a55230

BIBLIOGRAPHY

[37]

[38]

[39]

[40]

[41]

[48]

Daniel Maldonado et al. “Evaluation of aim point optimization methods”. In:
AIP Conference Proceedings 2033.1 (2018), p. 040025. 1sSN: 0094-243X. DOTI:
10.1063/1.5067061. URL: https://aip.scitation.org/doi/pdf/10.
1063/1.5067061.

Alonso Marco et al. “Virtual vs. real: Trading off simulations and physical
experiments in reinforcement learning with Bayesian optimization”. In: IEEE
International Conference on Robotics and Automation (ICRA). Piscataway,
NJ: IEEE, 2017, pp. 1557-1563. 1SBN: 978-1-5090-4633-1. DOI: 10.1109/ICRA.
2017.7989186.

Melanie Mitchell. “Genetic algorithms: An overview”. In: Complexity 1.1 (1995),
pp. 31-39. 18sN: 1099-0526. DOI: 10.1002/cplx.6130010108. URL: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.6130010108.

MLP for regression model. 2022. URL: https://github.com/wlemusl/MLP-
for-regression-model/blob/main/MLP%5C%20for%5C%20regression’,5C%
20model.ipynb (visited on 07/12/2022).

J. Mockus. “On Bayesian Methods for Seeking the Extremum and their Ap-
plication”. In: undefined (1977).

Jonas Mockus. Bayesian Approach to Global Optimization: Theory and Appli-
cations. Vol. v.37. Mathematics and Its Applications Ser. Dordrecht: Springer

Netherlands, 1989. 1SBN: 9789400909090. URL: https://ebookcentral . proquest.

com/lib/kxp/detail.action?docID=6556877.

J. Mockus. On Bayesian Methods for Seeking the Extremum. 1975. DOI: 10.
1007 /978-3-662-38527 - 2{\textunderscore } 55. URL: https://link.
springer.com/content/pdf/10.1007/978-3-662-38527-2_55.pdf.

Rémi Pautrat, Konstantinos Chatzilygeroudis, and Jean-Baptiste Mouret. Bayesian

Optimization with Automatic Prior Selection for Data-Efficient Direct Policy
Search. 2017. DOI: 10.48550/arXiv.1709.06919. URL: https://arxiv.org/
pdf/1709.06919.

PyTorch. 2022. URL: https://pytorch.org/ (visited on 07/12/2022).

Akshara Rai et al. Using Simulation to Improve Sample-Efficiency of Bayesian
Optimization for Bipedal Robots. 2018. DOI: 10.48550/arXiv. 1805.02732.
URL: https://arxiv.org/pdf/1805.02732.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes
for machine learning. Adaptive computation and machine learning. Cambridge
Mass.: MIT Press, 2006. 1SBN: 026218253X.

Pascal Richter et al. “Optimization of robust aiming strategies in solar tower
power plants”. In: SOLARPACES 2018: International Conference on Concen-
trating Solar Power and Chemical Energy Systems. AIP Conference Proceed-
ings. AIP Publishing, 2019, p. 030045. DOI1: 10.1063/1.5117557.

Ibai Roman et al. “An Experimental Study in Adaptive Kernel Selection for
Bayesian Optimization”. In: IEEE Access 7 (2019), pp. 184294-184302. DOI:
10.1109/ACCESS.2019.2960498.


https://doi.org/10.1063/1.5067061
https://aip.scitation.org/doi/pdf/10.1063/1.5067061
https://aip.scitation.org/doi/pdf/10.1063/1.5067061
https://doi.org/10.1109/ICRA.2017.7989186
https://doi.org/10.1109/ICRA.2017.7989186
https://doi.org/10.1002/cplx.6130010108
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.6130010108
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cplx.6130010108
https://github.com/wlemusl/MLP-for-regression-model/blob/main/MLP%5C%20for%5C%20regression%5C%20model.ipynb
https://github.com/wlemusl/MLP-for-regression-model/blob/main/MLP%5C%20for%5C%20regression%5C%20model.ipynb
https://github.com/wlemusl/MLP-for-regression-model/blob/main/MLP%5C%20for%5C%20regression%5C%20model.ipynb
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6556877
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6556877
https://doi.org/10.1007/978-3-662-38527-2{\textunderscore }55
https://doi.org/10.1007/978-3-662-38527-2{\textunderscore }55
https://link.springer.com/content/pdf/10.1007/978-3-662-38527-2_55.pdf
https://link.springer.com/content/pdf/10.1007/978-3-662-38527-2_55.pdf
https://doi.org/10.48550/arXiv.1709.06919
https://arxiv.org/pdf/1709.06919
https://arxiv.org/pdf/1709.06919
https://pytorch.org/
https://doi.org/10.48550/arXiv.1805.02732
https://arxiv.org/pdf/1805.02732
https://doi.org/10.1063/1.5117557
https://doi.org/10.1109/ACCESS.2019.2960498

BIBLIOGRAPHY 115

[49]  Alberto Sénchez Gonzéalez, Rodriguez Sénchez, Maria de los Reyes, and Domingo
José Santana Santana. “Allowable solar flux densities for molten-salt receivers:
Input to the aiming strategy”. In: 2590-1230 (2020). 1sSN: 2590-1230. URL:
https://e-archivo.uc3m.es/bitstream/10016/32589/1/Solar-flux_RE_
2020.pdf.

[50] Matteo Saveriano et al. “Data-efficient control policy search using residual
dynamics learning”. In: undefined (2017). URL: http://ieeexplore.ieee.
org/stamp/stamp. jsp?tp=&arnumber=8206343.

[51] Bobak Shahriari et al. “Taking the Human Out of the Loop: A Review of
Bayesian Optimization”. In: Proceedings of the IEEE 104.1 (2016), pp. 148—
175. 18SN: 0018-9219. poI1: 10.1109/JPROC.2015.2494218.

[52] Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. “Practical Bayesian
Optimization of Machine Learning Algorithms”. In: Advances in Neural In-
formation Processing Systems (2012). 1SSN: 1049-5258. URL: https://dash.
harvard.edu/bitstream/1/11708816/1/snoek-bayesopt-nips-2012.pdf.

[53]  Statistical factor analysis and related methods: Theory and applications. Wi-
ley series in probability and mathematical statistics. Probability and mathe-
matical statistics. Hoboken, N.J.: Wiley InterScience, 2008, pp. 80-82. ISBN:
9780470316894. DOI: 10 . 1002 / 9780470316894. URL: https : //search .
ebscohost . com/login. aspx?direct=true&scope=site&db=nlebk&db=
nlabk&AN=294328.

[54] Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. 1st
ed. Springer Series in Statistics Ser. New York, NY: Springer New York, 1999.
ISBN: 9781461214946. URL: https://ebookcentral . proquest . com/1ib/
kxp/detail.action?docID=3074879.

[55] David Stenger, Muzaffer Ay, and Dirk Abel. “Robust Parametrization of a
Model Predictive Controller for a CNC Machining Center Using Bayesian
Optimization”. In: IFAC-PapersOnLine 53.2 (2020), pp. 10388-10394. 1SSN:
2405-8963. DOT: 10.1016/j.ifaco0l.2020.12.2778.

[56] Carolin Strobl et al. “Conditional variable importance for random forests”. In:
BMC Bioinformatics 9.1 (2008), p. 307. 1sSN: 1471-2105. por1: 10.1186/1471~
2105-9-307. URL: https://bmcbioinformatics . biomedcentral . com/
track/pdf/10.1186/1471-2105-9-307.

[57] Lorin L. Vant-Hull. “The Role of “Allowable Flux Density” in the Design
and Operation of Molten-Salt Solar Central Receivers”. In: Journal of So-
lar Energy Engineering 124.2 (2002), pp. 165-169. 1ssN: 0199-6231. por: 10.
1115/1 . 1464124, URL: https : // asmedigitalcollection . asme . org/
solarenergyengineering/article-pdf/124/2/165/5700741/165_1.pdf.

[58] Jia Wu et al. “Hyperparameter Optimization for Machine Learning Models
Based on Bayesian Optimizationb”. In: Journal of FElectronic Science and
Technology 17.1 (2019), pp. 26-40. 1SSN: 1674-862X. pOI: 10.11989/ JEST .
1674-862X.80904120. URL: https://www.sciencedirect.com/science/
article/pii/S1674862X19300047.


https://e-archivo.uc3m.es/bitstream/10016/32589/1/Solar-flux_RE_2020.pdf
https://e-archivo.uc3m.es/bitstream/10016/32589/1/Solar-flux_RE_2020.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206343
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8206343
https://doi.org/10.1109/JPROC.2015.2494218
https://dash.harvard.edu/bitstream/1/11708816/1/snoek-bayesopt-nips-2012.pdf
https://dash.harvard.edu/bitstream/1/11708816/1/snoek-bayesopt-nips-2012.pdf
https://doi.org/10.1002/9780470316894
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294328
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294328
https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=294328
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3074879
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=3074879
https://doi.org/10.1016/j.ifacol.2020.12.2778
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-307
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-307
https://doi.org/10.1115/1.1464124
https://doi.org/10.1115/1.1464124
https://asmedigitalcollection.asme.org/solarenergyengineering/article-pdf/124/2/165/5700741/165_1.pdf
https://asmedigitalcollection.asme.org/solarenergyengineering/article-pdf/124/2/165/5700741/165_1.pdf
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.11989/JEST.1674-862X.80904120
https://www.sciencedirect.com/science/article/pii/S1674862X19300047
https://www.sciencedirect.com/science/article/pii/S1674862X19300047

BIBLIOGRAPHY

[60]

[61]

Tong Yu and Hong Zhu. Hyper-Parameter Optimization: A Review of Algo-
rithms and Applications. 2020. DOI: 10 . 48550/ arXiv . 2003 . 05689. URL:
https://arxiv.org/pdf/2003.05689.

Yongli Zhang and Yuhong Yang. “Cross-validation for selecting a model selec-
tion procedure”. In: Journal of Econometrics 187.1 (2015), pp. 95-112. 1SSN:
0304-4076. DOT: 10.1016/j. jeconom.2015.02.006.

J. G. Ziegler and N. B. Nichols. “Optimum Settings for Automatic Con-
trollers”. In: Journal of Dynamic Systems, Measurement, and Control 115.2B
(1993), pp. 220-222. 18SN: 0022-0434. DOI: 10.1115/1.2899060.


https://doi.org/10.48550/arXiv.2003.05689
https://arxiv.org/pdf/2003.05689
https://doi.org/10.1016/j.jeconom.2015.02.006
https://doi.org/10.1115/1.2899060

Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbststandig verfasst und

keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe.

Alle Stellen, die wortlich oder sinngeméf aus veroffentlichten oder noch nicht veroffentlichten
Quellen entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder
Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem
entsprechenden Quellennachweis versehen. Diese Arbeit ist in gleicher oder ahn-

licher Form noch bei keiner anderen Priifungsbehorde eingereicht worden.

5 olens

30.07.2022 Barbara Marie Anna Lenz

Miinchen, date Name



	Abstract
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	Motivation
	Objective

	Fundamentals and Literature Review
	Solar Power Tower Plants
	System Components
	Aim Point Control

	Overview on Black-Box Hyperparameter Optimization
	Grid Search and Random Search
	Population-Based Algorithms
	Model-Based Algorithms

	Bayesian Optimization Fundamentals
	Gaussian Process Regression
	Handling Hyperparameters of the Gaussian Process
	Acquisition Function
	Bayesian Optimization Algorithm

	Enhancing Sample Efficiency in Bayesian Optimization
	Prior-Informed Mean Functions
	Prior-Informed Kernel Functions
	Bayesian Model Selection
	Combining Models


	Bayesian Optimization with Multiple Simulation Data Sets
	Interpolated Simulation Data
	Prior-Informed Mean Function
	Handling Hyperparameters
	Pitfalls of the Prior-Informed Mean Functions

	Prior-Informed Kernel Function
	Handling Hyperparameters
	Mismatch Correction

	Prior-Guided Expected Improvement
	Determining the Weight Parameter
	Mismatch Correction

	Expansion to Multiple Sets of Simulation Data
	Multiple Prior-Informed Models
	Prior-Guided EI with Multiple Sources of Prior Information

	Resulting Algorithms
	Algorithms with Prior-Informed Kernels
	Algorithm with Prior-Guided Acquisition Function
	Hybrid Algorithms
	Algorithm Overview


	Algorithm Evaluations and Performance Analysis
	Hartmann6 Test Function
	Simulation Data
	Baseline
	Evaluation Criteria
	Number of Function Evaluations
	Accuracy of the Located Optimum
	Overcoming Local Optima
	Dealing with Unsuitable Simulation Data

	Algorithm Evaluations
	Test Case
	Number of Function Evaluations
	Accuracy of the Located Optimum
	Overcoming Local Optima
	Dealing with Unsuitable Simulation Data
	Comparison of the Algorithms
	Conclusion


	Application: Vant-Hull-Controller
	Vant-Hull Control Strategy with Two Controller Parameters
	Simulation Data
	Test Case
	Results
	Conclusion

	Summary and Outlook
	Supplementary Material
	Neural Networks for Interpolating Simulation Data
	Regressing Hartmann6 Simulation Data
	Regressing Vant-Hull Simulation Data

	Supplementary Test Results for Hartmann6
	All Simulation Data Sets
	All Simulation Data Sets with Fixed Initial Parameters
	Simulation Data Set 1
	Simulation Data Set 4


	Bibliography

