

"Drag Predictions at and beyond Cruise for the Common Research Model by an International Collaborative Community"

Edward N. Tinoco The Boeing Company, Retired and Stefan Keye DLR

This presentation is a summary of the 7th CFD Drag Prediction Workshop held in June 2022 in conjunction with AVIATION 2022

Objectives of the Drag Prediction Workshop series:

- To assess state-of-the-art CFD methods as practical aerodynamic tools for prediction of forces & moments on industry-relevant geometries, with a focus on drag
- To provide an impartial international forum for evaluating the effectiveness of CFD Navier Stokes solvers
- To identify areas needing additional research and development

Principles

- Use Public Domain Subject Geometries
- Maintain a public-domain accessible database of geometries, grids, and results

Drag Prediction Workshop History

- DPW1 2001 DLR F4 Wing-Body
- DPW2 2003 DLR F6 Wing-Body & Wing-Body-Nacelle
- DPW3 2006 DLR F6 Wing-Body +/- FX2B Fairing
- DPW4 2009 NASA Common Research Model (CRM) Wing-Body & Wing-Body-Tail
- DPW5 2012 NASA CRM Wing-Body
- DPW6 2016 NASA CRM Wing-Body & Wing-Body-Nacelle
- DPW7 2022 NASA CRM Wing-Body

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- Case 2: Angle of Attack Sweep
- •Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

NASA Common Research Model (CRM)

- Designed to be representative of a modern jet transport configuration
- Built to be tested in cryogenic wind tunnels (NTF & ETW)
- Available geometries and grids include wing measured aeroelastic twist and deflection for a range of angles of attack at Mach=0.85 at two different dynamic pressures
- In addition to the NASA model different scale wind tunnel models have been built and tested by ONERA and JAXA

Participant Data for DPW7:

- 18 Teams/Organizations
 - 7 N. America, 7 Europe, 4 Asia
 - 7 Government, 3 Industry, 4 Academia, 4 Commercial
- 33 Total Data Submittals
- Grid Types:
 - 20 Unstructured (12 Teams)
 - 4 Overset (3 Teams)
 - 8 Structured Multi-block (5 Teams)
 - 1 Custom Cartesian (1 Team)
- Turbulence Models:
 - 16 SA-QCR (all types), 7 SA w/o QCR, 5 SST, 2 EARSM,

1 SSG/LRR, 1 AMM-QCR, 1 RSM-ln(w)

Outline:

- Configuration and Participants
- Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

Case 1: Grid Convergence Study

- Mach=0.85, C_L =0.580±0.001 (Note that this C_L is considerably higher than the design C_L of 0.50 at the beginning of shock induced separation)
- Chord Reynolds Number: 20x10⁶, 5x10⁶ Optional
- Parametric family of grids "uniformly" refined in thee coordinate directions – grid resolution level:
 - 1) Tiny (~5M)2) Coarse
 - 4) Fine5) Extra-Fine

- 3) Medium,
- 6) Super-Fine (~200M+)

Grid Convergence?

<u>Richardson Extrapolation:</u>

- Standard 2nd order least squares fit
- For 2nd order codes, should be linear vs. Grid_Factor = N^{-2/3}
- Y-intercept estimates theoretical infinite resolution (continuum) result

Applied Aerodynamics Technical Committee Drag Predictions at and beyond Cruise for the Common Research Model by an International Collaborative Community

Case 1: CD_T (Total) Grid Convergence Mach = 0.85, CL = 0.58 Re = 20M

Case 1 - Observations

- With very few exceptions solutions showed very good linear Richardson extrapolation.
- No clear break-outs with grid type or turbulence model AT THIS (MOSTLY ATTACHED FLOW) CONDITION!

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- Case 2: Angle of Attack Sweep
- •Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

Case 2: Angle of Attack Sweep

- Mach=0.85:
 - α =2.75 °, 3.00 °, 3.25 °, 3.50 °, 3.75 °, 4.00 °, 4.25°,
- Grid Resolution Level:
 - 3) Medium,
- Chord Reynolds Number: 20x10⁶, 5x10⁶ Optional
- Measured Static Aero-Elastic Wing Deformation at each angle of attack

Excessive Aft-Loading

- Excessive aft-loading contributes to greater lift and more negative (nose down) pitching moment
- Little changed with increasing angle-of-attack
- NOT a geometry problem!

Trailing Edge Pressures

CFD Aft-Loading

Case 2: Lift and Pitching Moment Mach = 0.85, Re=20M All Solutions

- Solution level: aft-loading
- Solution spread: shock location
- Accurate prediction of pitch break and subsequent pitching moment behavior important for safety!
 - How can we make any sense of these results?

Collapsing CFD to a Common Value of α and \textbf{C}_{M}

- CFD and WT are better at predicting increments than absolutes.
- Collapse CFD results to pass through a common point by adding a ∆ angle-of-attack (∆a) and ∆ pitching moment (∆C_M) to each solution.
- Clear view of C_L and C_M variation with a variation

Lift and Pitching Moment Shifted to Match Experiment at $C_L = 0.53$.

- Collapsing data to a common point where the flow is still attached allows a better look at how the solutions vary with increasing angle-of-attack
- Note that up to about a C_L=0.57 all solutions are essentially identical
- Shock induced separation is increasing above C_L=0.57

Case 2 - Observations

- High angles of attack characterized by shock induced separation which significantly influences pitching moments.
- Pitching moment trend for all solutions
 - Tighter moment up to CL=0.58
 - Significant force and moment spread at a=4.25° DCL=0.05, DCM=0.043
- Most solutions that best matched pitching moment trends used SA-QCR turbulence model and a structured grid (but many outliers)
- Excessive aft-loading on outboard wing sections contributes to too negative section pitching moments and excessive section lift.

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

Case 3: CRM Wing-Body Reynolds Number Sweep At Constant CL Flow conditions are: M = 0.85, <u>CL = 0.50 (Design cruise)</u> Different grid with appropriate Re spacing and aeroelastic twist and deflection for each condition

- Re = 5M LoQ, Reference temperature = 100° F (Same LoQ R5 medium grid solution from Case 2b)
- Re=20M LoQ, Reference temperature = -250° F (Same LoQ R30 medium grid solution from Case 2a)
- Re=20M HiQ Reference temperature = -182° F
- Re=30M HiQ Reference temperature = -250° F

Case 3 - Observations

- Computational drag trends with changes in Reynolds number and dynamic pressure were consistent with the test data.
- Little difference with choice of turbulence model

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- •Case 3: Reynolds Number Sweep
- Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

Case 4: CRM WB Grid Adaptation:

- Mach=0.85
- Chord Reynolds Number: 20x10^{6,} 5x10⁶ Optional
- Angle of Attack sweep (preferred priority):
 - CL = 0.58
 - α = 4.00° 4.00-deg LoQ AE CRM geometry
 - α = 3.50° 3.50-deg LoQ AE CRM geometry
 - α = 4.25° 4.25-deg LoQ AE CRM geometry
 - α = 3.25° 3.25-deg LoQ AE CRM geometry
 - α = 3.75° 3.75-deg LoQ AE CRM geometry
- Solution Adapted Grids instead of specified fixed grids

Case 4: CRM WB Grid Adaptation CD_T (Total) Grid Convergence Mach = 0.85, CL = 0.58, Re = 20M

Case 4: CRM WB Grid Adaptation CD_T (Total) Grid Convergence Mach = 0.85, CL = 0.58, Re = 5M

GGNS-T1/EPIC Unstructured

Case 4 - Observations

- Little benefit is seen for adaptive grid solutions compared to fixed grid solutions <u>for this simple wing-</u> <u>body geometry.</u>
- Decades have been spent developing and validating gridding guidelines for these "simple" geometries and expected flow features.
- The benefit of adaptive grid solutions is to be seen for geometries/flow features for which there is little prior experience.

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- •Observations/Issues

Case 5: Beyond RANS [Optional]:

Solution technologies beyond steady RANS such as URANS, DDES, WMLES, Lattice Boltzmann, etc. Flow conditions are: M = 0.85; Re = 20 million; Reference temperature = -250°F. Single solution at CL = 0.58 or alpha sweep. Baseline grids not provided

Only one solution submitted. Insufficient information submitted to draw any meaningful conclusions

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)

 Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)

•Observations/Issues

Case 6: CRM WB Coupled Aero-Structural Simulation: (Optional)

- Mach=0.85, $C_{L}=0.580\pm0.001$
- Chord Reynolds Number: 20x10⁶, 5x10⁶ Optional
- Fixed lift condition and/or Alpha Sweep for the CRM Wing-Body coupled with computational structural analysis
- Structural FEM from the CRM Website
- 'Medium' Grid Level, NoQ CRM geometry (Jig Shape)
- Solutions requested for:
 - a) Target Lift Coefficient:
 - b) Angle of Attack sweep:

C_L = 0.580, and/or

 α = [3.25°, 3.50°, ..., 4.25°]

Common Approach to static Aero-Elastic Simulations:

- Direct coupling of CFD simulation and structural analysis methods to determine the static aero-elastic equilibrium state.
- Simultaneous interaction between outer fluid flow and flexible aircraft structure simulated through:
 - 1. alternating computation of solutions of the RANS equations and the structural mechanics equations,
 - 2. repeated interpolation of aerodynamic loads and structural deformations.
- Start from initial RANS CFD solution,

Case 6 Coupled Aero-Structural Simulation

CASE 6 PARTICIPANTS			
Organization	Metacomp Technologies Inc., USA	German Aerospace Center (DLR)	
ID	K1	R1	
CFD Code	CFD++ 20.1	TAU 2020.1.0	
Turbulence Model	SARC-QCR	RSM- <i>ln</i> (ω)	
Grid Type	Common Hybrid (JAXA)	Common Hybrid (DLR)	
CSM Code	ICSM++	NASTRAN 2019.0	
Coupling Method	direct	direct	
Force Interpolation	nearest neighbor	nearest neighbor	
Mesh Deformation	RBF	RBF	

Case 6 Coupled Aero-Structural Simulation

CASE 6 PARTICIPANTS				
Organization Metacomp Technologies Inc., German		German Aerospace Center (DLR)		
Data submitted for Case 6:				
• Wing bending and twist deformations				
Turbulen	• 500	actional lift and moment distributions		
Grid Type	• Static proceuro distributions			
CSM Cod				
Coupling	Method	direct	direct	
Force Inte	erpolation	nearest neighbor	nearest neighbor	
Mesh Def	ormation	RBF	RBF	

Case 6: Coupled Aero-Structural Simulation Wing Bending & Twist Deformation M=0.85, <u>CL=0.58</u>, Re=20M

Case 6: Coupled Aero-Structural Simulation Wing Bending & Twist Deformation M=0.85, <u>AOA=4.00°</u>, Re=20M

Case 6: Coupled Aero-Structural Simulation Wing Tip Bending & Twist Deformation M=0.85, Re=20M

Applied Aerodynamics Technical Committee

Case 6 - Observations

- Difficult to make any meaningful observations from limited number of solutions available.
- Participants data show some differences in wing bending deformation, but good agreement for twist.
- Very good agreement of static pressure distributions over entire wing and for all angles-of-attack.
- Small differences in spanwise lift distribution.

Outline:

- Configuration and Participants
- •Case 1: Grid Convergence Study
- •Case 2: Angle of Attack Sweep
- •Case 3: Reynolds Number Sweep
- •Case 4: Grid Adaptation (Optional)
- •Case 5: Beyond RANS (Optional)
- •Case 6: Coupled Aero-Structural Simulation by Stefan Keye (Optional)
- Observations/Issues

General Observations and Comments:

- Drag comparisons generally favorable, but too much variation of pitching moment at higher angles of attack – we need to better understand the interaction of grid, solver, turbulence model
- A new CFD study of the CRM wind tunnel mounting system effects is needed and should include the effects on the CRM Wing-Body, and Wing-Body-Tail configurations.
- We need to better understand the issue of the excessive aft loading
- A few solutions matched the test data at the high angles of attack very well

 but WHY? (Steady RANS vs Unsteady WT test).
- Further detailed experimental measurements that adequately capture the flow separation and unsteadiness on these types of configurations at "off-design" conditions are needed. Hard to make CFD progress without adequate experimental data for guidance and validation.

General Observations and Comments:

 These solution sets and experimental data represent a gold mine of information to further the knowledge of CFD and aerodynamics – GREAT PROJECTS FOR MASTERS STUDENTS.

Where do we go from here?

1 or 2 paper sessions planned for AIAA Aviation 2023 in June 8th Drag Prediction Workshop ??????

For detailed analyses of DPW4, 5, and 6 featuring the NASA CRM - Tinoco, Edward N., "An Evaluation and Recommendations for Further CFD Research Based on the NASA Common Research Model (CRM) Analysis from the AIAA Drag Prediction Workshop (DPW) Series," NASA/CR-2019-220284

Thank You for Your Interest

Questions?