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Abstract
We position recent and emerging research in cognitive vision and perception addressing three key
questions: (1) What kind of relational abstraction mechanisms are needed to perform (explainable)
grounded inference –e.g., question-answering, qualitative generalisation, hypothetical reasoning– rele-
vant to embodied multimodal interaction? (2) How can such abstraction mechanisms be founded on
behaviourally established cognitive human-factors emanating from naturalistic empirical observation?
and (3) How to articulate behaviourally established abstraction mechanisms as formal declarative models
suited for grounded knowledge representation and reasoning (KR) as part of large-scale hybrid AI and
computational cognitive systems.

We contextualise (1–3) in the backdrop of recent results at the interface of AI/KR, and Spatial Cognition
and Computation. Our main purpose is to emphasise the importance of behavioural research based
foundations for next-generation, human-centred AI, e.g., as relevant to applications in Autonomous
Vehicles, Social and Industrial Robots, and Visuo-Auditory Media.
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1. Motivation

Multimodality in interaction is an inherent aspect of human activity, be it in social, professional,
or everyday mundane contexts. Next-generation AI technologies, aiming for compliance with
human-centred ethical and legal requirements, performance benchmarks, and inclusive usability
expectations will require an inherent foundational capacity to analyse –e.g., understand, explain,
anticipate– everyday interactional multimodality in naturalistic settings involving technology
mediated collaborative assistance of humans. Amongst other things, this necessitates that the
foundational building blocks of such next-generation systems be semantically aligned with the
descriptive complexity of human task conceptualisation and performance expectations.

Declaratively Mediated Multimodality. The significance of “grounding” in semiotic con-
struction, e.g., enabling high-level meaning-making, has been long-established in Artificial
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Intelligence and related disciplines. Our research addresses the theoretical, methodological,
and applied understanding of “grounded representation” mediated multimodal sensemaking
of human behaviour at the interface of language, logic, and cognition [1]. Here, declaratively
mediated grounded inference for collaborative autonomy through systematic neurosymbolic
mechanisms integrating knowledge representation and reasoning with visual computing is of
special significance. Intended functional purposes encompass diverse operative needs such as
explainable multimodal commonsense understanding, multimodal generation/synthesis for com-
munication and summarisation, multimodal interpretation guided decision-support, multimodal
behaviour adaptation & autonomy, and multimodal analytical visualisation. It is also necessary
that methods and tools developed towards realising such operational needs are designed tot
be domain agnostic, and that they cater to both online/real-time as well as post-hoc operation
in diverse application scenarios (e.g., refer [2] for the case of online neurosymbolic abduction
applied to the domain of autonomous driving).

Behavioural Foundations: Cognitive Human-Factors Informing KR. By analysing
real-world everyday scenarios that involve interactions between humans as well as between
humans and their surrounding environment, we extract and categorize cognitive aspects of
human multimodal communication and explore the nature of human interactions under different
circumstances (e.g. education, collaborative tasks, driving, social communication, industrial
work), as well as the effect of external factors (e.g. environmental complexity, event complexity)
on the interactions [3] (Fig. 1). Our research focus is on cognitive human-factors, primarily
pertaining to visual attention, and multimodal interpersonal communication that can be studied
in real-world scenes as well as through behavioural naturalistic studies. Through a systematic
study of such cognitive human-factors, e.g., involving conceptual and as well as empirical
analyses, we explicate means and mechanisms that are critical in human multimodal interaction;
these in turn constitute the basis of formal model development informing the design and
development human-centred AI systems.

In this position statement, we aim to present the confluence of the aforestated computational and
behavioural aspects of our research. Our aim is to conceptually highlight recent and emerging
work, while pointing out interested readers to relevant publications –e.g., particularly [2, 4, 5, 6, 7]–
where furthher (KR-centric) details may be consulted.

2. Cognitive Human-Factors Concerning Multimodality

Multimodal interpersonal communication refers to exchange of signals involving speech, ges-
tures, facial expressions, body posture and more. Multiple times people use a combination
of these signals to achieve a higher level of social interaction and mutual understanding of a
situation (e.g. joint or shared attention) [8]. The multimodality of an interaction refers to a
person’s way of communicating by using more than one modality at the same time as a signal,
or from a perceptual approach, it refers to more than one modality being received based on the
receiver’s perception of the signal [9]. Moreover, multimodal interactions are also involved in
everyday activities where people proceed to a sequence of actions in which interact with other
agents or objects (e.g. cooking, assembling).



From a behavioural viewpoint, we investigate the nature of multimodal interaction in diverse
contexts as applicable to a range of application areas of interest, e.g., everyday driving [10, 11],
media studies [12, 13], social interaction and activity performance [14, 15] as applicable to
autonomous systems contexts as follows (Fig. 1):

• Autonomous Driving. Interactions between street stakeholders such as drivers, pedes-
trians, cyclists, etc. are mostly characterised by non-verbal communication, involving a
range of multimodal signals such as gestures, head movements, eye contact, that are either
based on traffic rules or socially and culturally developed to resolve traffic ambiguities.
We are interested in the combination of multimodal interactions used to establish joint
attention between the roadside users, especially during safety critical situations, and the
manner in which this knowledge of efficient coordination can be transfered to human
and autonomous systems communication (Fig. 1a).

• Visuo-auditory Media. In media communication, even the most "verbal" communica-
tion as media news makes use of the affordances provided by various non-verbal modes of
communication, such as prosody, intonation, gestures or facial expressions. The analysis
of visual and auditory stimuli in combination with visual attention, and reactions by the
audience lead to a better understanding of the effect that even humble changes in gaze
direction or in body posture can have in audience’s experience (Fig. 1b).

• Social and Industrial Robotics. Collaborative tasks among humans, or humans and
social robots, intelligent systems, or robotic arms, require a high-level of awareness
about the status, the actions and the interactions of the other part of the collaboration
that is usually expressed through multimodal actions tightly related to the nature of the
task performed. Head movement, gaze, and body posture, gaze are indicative in these
interactions, while the special subcategories of deictic and iconic gestures are present in
assembling everyday tasks such as cooking, organising, transferring, etc (Fig. 1c - 1d).

By analysing interaction events from various settings, and using knowledge of human perception
and cognition during such interactions, we can explicate aspects of communication that are
frequently connected to a successful or a failed interaction. A successful interaction, e.g., in
settings such as in Fig. 2, is frequently characterised by mutual social attention, and it can
be achieved with multiple modes and means of delivering intentions (e.g. explicit, implicit)
through a combination of (visuo-auditory) modalities (e.g. gestures, head movements, speech
and intonation). To study the range of possible interactions and their effect on human behaviour,
we conducted empirical studies focusing on evidence based qualitative analysis of embodied
multimodal interactions in naturalistic situations in two contexts: (1) embodied decision-
making in everyday driving, including a number of everyday interaction scenarios in real-world
scenes as well as in the virtual environment (e.g., crossing a street, overtaking, avoiding an
object, etc.) [16]; (2) visual attention in the moving image, where we analyse the changes in
visual attention along various movie clips (e.g. audience attention follows gaze swifts by actors,
directing attention by gestures). In these studies we collect and analyse multimodal data as
seen in Table 1. That led to an extended dataset of dynamic naturalistic stimuli accompanied by
empirical evidence for evaluating human performance under different interaction events, as
well as in different levels of visuospatial and event complexity.
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Figure 1: Multimodal communication in various contexts: (a) A pedestrian establishes joint attention
with a driver, and a cyclist’s gesture indicates intentions to turn following traffic rules; (b) Facial
expressions accompany speech during news media discussions or public talks; (c) Eye contact and
deictic gestures promoting joint attention under social (robotic) collaborative tasks; (d) Industrial
collaborative tasks with a robotic arm.

Behavioural Analysis – Human Perception Metrics
Performance Evaluation Search time - Accuracy - Detection rate - Detection time - Reaction time
(task specific) Steering - Breaking - Accelerating - Time of completion

Physiological Measurements Eye-tracking: Latency of first saccade - Number of fixations - Number of fixations (on targets) -
Number of fixations (on distractors) - Duration of Fixations - Scanpath ration - Final saccade
length - Pupilometry

Behavioural Metrics Head Movements - Think aloud - Sketch map - Orientation tasks - Changes in Speed

Table 1
Summary of metrics used for behavioural evaluation through empirical data.

3. Grounded Representation Mediated Multimodality

Informed by the behavioural research into cognitive human-factors pertaining multimodal
interaction, we develop formal (declarative) methods supporting grounded relational categori-
sations –pertaining to space, motion, events, and actions– linking linguistic expressions with
non-linguistic, especially quantitative perceptual data pertaining, for instance, dynamic spatio-
temporal phenomena in embodied interaction contexts. Multimodal interpretation in our work
is broadly construed in the context of diverse forms of imagery, e.g., encompassing perceptual
and communicative data sources such as image, video, language, audition, text, eye-tracking,
neurophysiological markers in behavioural / clinical settings (Table 1). Example applications in
focus include autonomous vehicles, social & industrial robotics, creative design technologies,
and clinical diagnostic intervention tools. For the purposes of this position statement, we focus
on two select examples: joint attention in everyday driving, and everyday-activity-related
perceptual grounding in a robotics setting.



Grounded Representation
Interactions and Communication Tools
Practical Action Object / Environment Interactions - Au-

ditory cues - Motion Paths
enters(P,Q), crossing(P,Q), passing_behind(P,Q),
hides_behind(P,Q), approaching(P,Q), opening(P,Q),
removing(P,Q), holding(P,Q), touching(P,Q), ...

Explicit Interaction Eye Contact - Facial Expressions - Ges-
tures - Speech - Nodding

joint_attention(P,Q), monitoring_attention(P,Q),
gesture(P, Gesture), hand_sign(P, Sign), audi-
tory_cue(Source, Cue), ...

Implicit Interaction Body Posture / Positioning - Head
Movement - Gaze - Intonation - Be-
havioural changes

pose(P,Pose), turn_head(P, Direction), speed_up(P),
maintain_steady_speed(P), slow_down(P), detect(P,Q),
track(P,Q), ...

Facts / Beliefs (Fluents)
Scene Properties visibility: hidden(P), partially_hidden(P), occluded_by(P, Q), , ...; attention: looking_at(P, Q),

attentive(P), ...; location: on(P, Q), in(P, Q), next_to(P, Q), ...

Scene Elements
Types (Taxonomy) object dynamic person, animal, ...

vehicle car, truck, motorcycle, bicycle, ...
static traffic light, barrier, obstacle, ...

region road, sidewalk, lane, intersection ...

Structure & Properties people: body-parts (hands, face, ...), body pose, facing direction, gaze direction, ...
objects: orientation, parts, ...

Spatio-Temporal Characterisation
Domains Mereotopology, Incidence, Orientation, Distance, Size, Motion, ...
Relations topology / position: inside, outside, overlapping, connected, left, right, in front, behind, on top,

touching; direction: facing towards, facing away, same direction, opposite direction; moving:
towards, away, parallel; ...

Entities bounding boxes, polygons, line-segments, points, oriented-points, motion trajectories, time-points,
time intervals, ...

Table 2
Deep Semantic Structure of Multimodal Interactions

3.1. Grounding Multimodal Interactions: An Ontological Characterisation

From the analysis of real-world scenarios, as well as real-world based behavioural studies
using perceptual metrics to assess human behaviour (Table 1), we extract common features
of interactions, that can be categorised in a high-level, based on the type of (inter)action, the
modalities as communication tools, while the analysis of the scene leads to a definition of facts
and beliefs that describe the observations concerning the sequence of events. For example,
observing eye contact between a pedestrian and a driver, as well as the fact that the traffic light
is visible to both parts and green for the pedestrian, while the pedestrian is positioned close to
the street, lead to an informed assumption that the pedestrian feels safe and intends to cross
the road. These high-level interpretations of events can be further described with low-level
elements, involving objects and areas of the scene, their properties as well as the changes in their
spatio-temporal relations as the scenario evolves. We provide a structure of deep semantics for
multimodal interactions that is common to various domains of application, and which includes
high and low-level representations based on the following categories (Table 2):



» Interactions and Communication Tools. Interactions are characterised based on the
relational spatio-temporal structure underlying the respective interaction and the effects on
the facts and beliefs about the world they are performed in. Practical actions (e.g. (re)direction
of a path, pushing/pulling an object), describe the interactions between a person and the
environment during an everyday task. Communicative interactions are classified based on the
mode of deliverance of the message, as explicit or implicit interactions. Explicit interactions
involve a range of modalities such as facial expressions or gestures, e.g. a cyclist’s extension of
one hand on the side, is a gesture that conveys his intention to turn in the upcoming intersection
(Fig. 1a). Implicit interactions involve a set of modalities as communication tools that require
lower effort, such as gaze, body posture or head movements, e.g. a gaze shift the someone’s
mobile phone towards the street traffic might communicate his intention to cross (Fig. 1a).

» Facts – Beliefs. The observed and inferred environmental properties and characteristics of
the entities in a scene, such as the visibility of objects/agents, their locations and facing directions,
etc., are considered facts and beliefs that describe the state of the world. A combination of
facts and events observed over a longer time interval may lead to hypothesis about ongoing
interactions, agent’s intentions, or the anticipation of near future events. In particular, analysing
the sequence of interactions, as well as the properties of a scene, and the resulting changes in
the belief state lead to hypothesis about the events occurring, or being in progress. For instance,
observing a pedestrian located next to a zebra crossing while he is looking towards the road
traffic indicates an intention of crossing in the near future.

» Scene Elements. The distinct, domain specific elements of the physical world obtained
from high-level sensing and processing and describing the scene, e.g. traffic lights, zebra cross-
ings for a driving scenario, or right hand, tea box, table for an everyday action scenario. These
elements are categorised based on their type, structure and properties, and are geometrically
represented as low-level entities (e.g. bounding boxes) that are involved in spatio-temporal
relationships, and that constitute the underline representations to describe interactions.

» Spatio-Temporal Characterisation. Referring to commonsense relations for the abstrac-
tion of space, motion, and (inter)action. These involve primitive spatio-temporal entities and
relations holding amongst them, with respect to position, orientation, direction of movement,
etc., during a time interval. An adequate commonsense spatio-temporal characterisation can
connect with low-level quantitative data, and also help to ground symbolic descriptions of
actions and objects to be queried, reasoned about, or even manipulated in the real world.

EXAMPLES I–II. In two scenarios from two different domains: (I) everyday actions, and (II)
driving, we show how high-level interactions between humans as well as between human and
objects can be represented based on the deep semantic structure introduced.

I. Perceptual Grounding of Everyday Activities. Analysing an everyday scenario of
human activity such as "making a cup of tea" (Fig. 2) from the perspective of the person, may
be interpreted as a sequence of interactions represented as high-level steps such as:

opening the tea-box, removing a tea-bag from the box and putting the tea-bag into a cup
filled with water while holding the cup.
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“Remove tea-bag from tea-box”

Figure 2: Analysing interactions with an object in an everyday activity – "making a cup of tea"
(egocentric view from a head-mounted RGB-D capture device).

Each action can be described with high-level spatial and temporal relationships between the
person and the involved objects. For example, one may identify relationships of contact and
containment that hold across specific time-intervals, such as:

the left hand is attached to the tea box, the right hand is touching the tea box at the top,
then the right hand is touching a tea bag, while the tea bag is inside the tea box. After
that, the right hand is moving away from the tea box together with the tea bag.

The parametrised manipulation or control actions1 (Θ1(𝜃), ...Θ𝑛(𝜃)) effectuate state transitions,
which may be qualitatively modelled as changes in topological relationships amongst involved
domain entities.

II. Joint Attention in Everyday Driving. Of special interest are multimodal interactions
between the different street stakeholders (e.g. drivers, cyclist, pedestrians) in safety critical
situations during everyday driving scenarios, and the level of (mutual) social attention achieved
between the parts during the course of interaction. Using the semantic structures of Table 2,
in two successive instances, we describe the sequence of multimodal interactions between the
involved parts (Fig. 3):

1Control actions are formally defined based on their preconditions and effects and are used to represent spatio-
temporal interactions in the scene. For a sample technical elaboration, consult [17]. A more broader discussion on
the intended/possible semantics of integrated “reasoning about space, actions, and change” is available in [18], where
formal semantics realised in a situation calculus setting is available in [19].
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Figure 3: Analysing the sequence of two interactions: Interaction 1 – between Driver and Cyclist A,
and Interaction 2 – between the Driver and Cyclist B. This instance involves a successful and a failed
case of establishing joint attention between the two parts of interaction.

Interaction 1: A Driver is located on a one-way road and is moving towards the
intersection, while Cyclist A is located on the sidewalk on the left of the Driver and is
moving towards the same intersection. Boths part are approaching the intersection. The
Driver looks at Cyclist A. When Cyclist A is at a distance of 10 meters from the intersection,
Cyclist A performs a head turn towards right and he is looking at the Driver. As a result,
they establish joint attention. Then, the Driver and Cyclist A slow down, and then Cyclist
A passes in front of Driver. After Cyclist A crosses the intersection, the Driver moves
towards the intersection, until the time when Cyclist A is not visible in the scene anymore.

The two parts of the interaction at this instance, Driver and Cyclist A, are approaching the
same intersection from two different directions. Because we examine the instance from the
perspective of the Driver, we observe Cyclist A approaching the intersection from the left side
of the scene. The interaction between the two parts starts with monitoring attention from the
Driver, who detects and tracks Cyclist A (Gaze), meaning that at that stage only the Driver is
aware of the situation and can anticipate the upcoming events close to the intersection. Then,
practical actions are getting involved in the interaction, when the Driver slows down as a
reaction to the monitoring attention he establishes with Cyclist A, and later implicit interactions



are introduced when Cyclist A turns his head towards the Driver (Head Movement) and looks
at the Driver (Gaze). After these multimodal signals, the two parts engage in eye contact, and
so the interaction evolves into an explicit interaction of joint attention. At the stage of joint
attention, is expected that the two parts of the interaction have achieved a mutual understanding
of the situation, and that they can proceed to a safe resolution of the episode. As we can confirm
from the observations after this interaction, the two parts are crossing the intersection one after
the other, that indicates an efficient communication.

Similarly, the second interaction can be represented as follows:

Interaction 2: The Driver is looking at Cyclist B, while Cyclist B is looking towards the
pedestrians. The Driver slows down, while Cyclist B maintains steady speed. The Driver
stops and Cyclist B is passing in front of the Driver in close distance.

The Driver detects and tracks Cyclist B along the way, while Cyclist B appears inattentive
towards the Driver. Cyclist B does not gaze towards the car, but instead he tracks the movements
of pedestrians close to the intersection. In this case, the Driver establishes monitoring one-
sided attention with Cyclist B. As there is no change in the behaviour of Cyclist B during the
interaction, the social attention remains in the level of monitoring attention from the perspective
of the Driver because there is no evidence of any mutual understanding of the situation by
Cyclist B during the time interval we examine. As a result, the Driver slows down, and eventually
stops to avoid an accident with Cyclist B. In this case we observe how an one-sided attention,
and a failed communication between the parts can lead to a "close to accident" event.

By examining the two interactions together we observe that there is a narrow margin in time
between the two incidents and for this reason the Driver had to switch his attention quickly
from Cyclist A to Cyclist B. Consequently, failure in interactions, and respectively failure to a
mutual understanding of the situation by all the parts involved can introduce major load to one
part, the Driver in our case. This is a common example of how environmental factors, including
visuospatial complexity (e.g. narrow street, low visibility from the sidewalk) as well as events
complexity (e.g. multiple events in short time) can affect the interactions and lead to safety
critical situations.

3.2. Deep Semantic Inference

The development of domain-independent computational models of perceptual sensemaking —
e.g., encompassing visuospatial Q/A, learning, abduction— with multimodal human behavioural
stimuli such as RGB(D), video, audio, eye-tracking requires the representational and inferential
mediation of commonsense and spatio-linguistically rooted abstractions of space, motion,
actions, events and interaction (Table 2). We characterise deep (visuospatial) semantics as:

▶ the existence of declarative models pertaining to space, space-time, motion, actions &
events, spatio-linguistic conceptual knowledge and their corresponding formalisation
supporting (domain-neutral) commonsense cognitive reasoning capabilities with quan-
titatively sensed dynamic visual imagery. Here, it is of the essence that an expressive



ontology consisting of, for instance, space, time, space-time motion primitives as first-class
objects is accessible within the (declarative) programming paradigm under consideration,
and that operational (reasoning) capabilities such as visuospatial question-answering,
spatio-temporal learning, non-monotonic visuospatial abduction be directly supported.

We particularly emphasise the abilities to abstract, learn, and reason with cognitively rooted
structured characterisations of commonsense knowledge about space and motion. Formal
semantics and computational models of deep semantics manifest themselves in declarative
AI settings such as Constraint Logic Programming (CLP) [20], Inductive Logic Programming
(ILP) [21], and Answer Set Programming (ASP) [22]. Present focus has been on visuospatial
question-answering, abduction, and relational learning:

I. Visuospatial Question-Answering [6, 23]. Focus is on a computational framework for
semantic-question answering with video and eye-tracking data founded in constraint logic
programming; we also demonstrate an application in cognitive film & media studies, where
human perception of films vis-a-via cinematographic devices is of interest.

II. Visuospatial Abduction [4, 7, 24]. Focus is on a hybrid architecture for systematically
computing robust visual explanation(s) encompassing hypothesis formation, belief revision,
and default reasoning with video data (for active vision for autonomous driving, as well as
for offline processing). The architecture supports visual abduction with space-time histories as
native entities, and founded in (functional) answer set programming based spatial reasoning.

III. Relational Visuospatial Learning [5, 25]. Focus is on a general framework and pipeline
for: relational spatio-temporal (inductive) learning with an elaborate ontology supporting a
range of space-time features; and generating semantic, (declaratively) explainable interpreta-
tion models in a neurosymbolic pipeline demonstrated for the case of analysing visuospatial
symmetry in visual art.

From a foundational viewpoint, a deep semantic (grounded) multimodal inference entails inher-
ent support for tackling a range of challenges concerning epistemological and phenomenological
aspects relevant to a wide range of dynamic spatial systems [19, 26, 18]:

• interpolation and projection of missing information, e.g., what could be hypothesised
about missing information (e.g., moments of occlusion); how can this hypothesis support
planning an immediate next step?

• object identity maintenance at a semantic level, e.g., in the presence of occlusions,
missing and noisy quantitative data, error in detection and tracking,

• ability to make default assumptions, e.g., pertaining to persistence of objects and/or
object attributes,

• maintaining consistent beliefs respecting (domain-neutral) commonsense criteria, e.g.,
related to compositionality & indirect effects, space-time continuity, positional changes
resulting from motion,

• inferring / computing counterfactuals, in a manner akin to human cognitive ability to
perform mental simulation for purposes of introspection, performing “what-if” reasoning
tasks etc.



Addressing such challenges —be it realtime or post-hoc— in view of human-centred AI concerns
pertaining to representations rooted to natural language, explainability, ethics and regulation
requires a systematic (neurosymbolic) integration of Semantics and Vision, i.e., robust com-
monsense representation & inference about spacetime dynamics on the one hand, and powerful
low-level visual computing capabilities, e.g., pertaining to object and other human feature
detection and tracking.

4. Conclusion

Semantically grounded reasoning (e.g., with sensor data pertaining to multimodal human
behaviour [27]) has been long recognised to be a crucial requirement to achieve computational
cognition. Yet, its significance must now be reiterated, re-asserted even, in view of recent
advances in neural machine learning, and its status quo vis-a-vis explainability requirements
from the viewpoint of human-centred AI. We suggest that KR-research has always concerned
itself with the “hard” question of semantics, entailing explainability amongst other things, and
that KR research and its role and contribution towards large-scale hybrid intelligence is of
even greater significance now than ever before given the tremendous opportunities afforded by
methods such as deep learning. In this position statement, we have attempted to summarise
our ongoing work towards establishing a human-centric foundation and roadmap for the
development of neurosymbolically grounded inference about embodied multimodal interaction
as relevant to a range of application contexts. For key technical details and to obtain a summary
of open directions, we direct interested readers to [2, 4, 5, 6, 7].
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