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A vast amount of location information exists in unstructured texts, such as social media posts, news stories,
scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location
references from texts and identifying their geospatial representations. While geoparsing can benefit many
domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive
review and comparison of existing approaches for location reference recognition, which is the first and
core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application
domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic
management, spatial humanities, tourism management, and crime management. We then review existing
approaches for location reference recognition by categorizing these approaches into four groups based on
their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based,
and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the
27 most widely used approaches for location reference recognition based on 26 public datasets with different
types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide.
Results from this thorough evaluation can help inform future methodological developments and can help
guide the selection of proper approaches based on application needs.
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1 INTRODUCTION

Location matters, and not just for real estate [179]. With the rapid development of the Global
Navigation Satellite System (GNSS), sensor-rich (e.g., inertial sensors, Wi-Fi module, and cameras)
smart devices, and ubiquitous communication infrastructure (e.g., cellular and 4G networks and
Wi-Fi access points), our capability of obtaining location information of moving objects and
events in both indoor and outdoor spaces has been dramatically improved [160]. This exponential
growth in location-based capabilities has significantly enhanced our understanding of geospatial
processes [179] and fueled the development of location-based services (LBS) with wide-ranging
applications in various domains, such as business, entertainment, and crisis management [87].
Apart from sensor equipment, natural language texts, such as social media posts, web pages, and
news stories, serve as a significant source of geospatial information through location references.
These location references encompass both simple place names, also known as toponyms, as
well as more complex location descriptions that incorporate additional spatial modifiers such
as direction, distance, and spatial relationships [177]. Geoparsing, an ongoing research problem
studied extensively over the past two decades [9, 15, 82, 92, 163], refers to the process of
extracting location information from texts. It involves two crucial steps: (1) recognizing location
references from texts, also known as toponym recognition or location reference recognition, and
(2) identifying the geospatial representations of the recognized location references, commonly
referred to as toponym resolution or geocoding. Figure 1 illustrates the workflow of geoparsing.

Geoparsing has traditionally been used in formal texts for location extraction, such as web pages,
news, scientific articles, travel blogs, and historical archives [15, 179]. However, the drastically in-
creased importance of social media data (SMD) in various domains such as social science, political
science, policy-making, and humanitarian relief [18, 22, 38, 76, 171] has facilitated efforts to ex-
tend geoparsing to informal texts [179]. According to Statista1, the number of worldwide social
network users will reach 4.4 billion by 2025. On average, 500 million tweets2 and 4.75 billion Face-
book items3 are shared each day. Formal texts normally do not have location-related metadata,
whereas informal texts, such as tweets, can be geotagged, i.e., a user of X (the platform formerly
known as Twitter) can select a location and attach that location to the posted message. However,
geotagged tweets are rare and, according to Cheng et al. [33], Morstatter et al. [135], and Kumar
et al. [101], only 0.42%, 3.17%, and 7.90% of the total number of tweets contain geotags, respectively.
In addition, Twitter removed the precise geotagging feature in 2019, showing only a rough location,
e.g., the bounding box of a tagged place rather than a pair of latitude and longitude coordinates.
This change could further decrease the number of geotagged tweets [86] In a nutshell, extracting
location information from unstructured texts is often necessary. Notably, informal texts, such as
tweets, are short, have few or no formatting or grammatical requirements, and can have uncom-
mon abbreviations, slang, and misspellings, which pose additional challenges for geoparsing [180].

While there exist many studies on geoparsing [68, 146], we identify two gaps in the literature
that motivate this current review article. First, the many possible applications of geoparsing are

1https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
2https://www.dsayce.com/social-media/tweets-day/
3https://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats
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Fig. 1. The general workflow of geoparsing and its two steps.

scattered in individual papers [1, 15, 58, 63] or are only partially reviewed [67, 83], and there is a
lack of a systematic and more comprehensive summary of these applications. Consequently, it is
difficult for researchers who are new to geoparsing to have a quick view of these many possible
applications. Second, existing review papers on geoparsing, such as [68, 125, 134, 181], focused on
the entire workflow of geoparsing (i.e., both of the two steps) rather than location reference recog-
nition alone (i.e., the first step only). While providing more comprehensive coverage on the topic
of geoparsing, existing efforts reviewed only some approaches for the step of location reference
recognition. In recent years, many new approaches for location reference recognition have been
developed, such as Flair NER [4], NeuroTPR [182], nLORE [53], and GazPNE2 [82]. Given the high
importance of location reference recognition in geoparsing (i.e., only those references that are cor-
rectly recognized can be geo-located), it is necessary to have a review that specifically focuses on
the possible and recent approaches for location reference recognition.

This work aims at filling the two research gaps discussed above. First, we summarize seven
typical application domains of geoparsing, which are geographical information retrieval (GIR)
[57, 146], disaster management [111, 162], disease surveillance [64, 159, 172], traffic management
[77, 115, 129], spatial humanities [63, 154], tourism management [27, 36, 37], and crime manage-
ment [17, 42, 178]. Second, we review existing approaches for location reference recognition by
categorizing the approaches into four groups: rule-based, gazetteer matching–based, statistical
learning–based, and hybrid approaches. Noticing that many existing approaches were not cross-
compared on the same datasets, we also conduct experiments to compare and evaluate the re-
viewed 27 existing approaches on 26 public datasets. We thoroughly analyze various aspects of
the existing approaches, encompassing their performance on both formal and informal texts, their
effectiveness across different types of places such as administrative units and traffic ways, and
their computational efficiency.

The remainder of this article is structured as follows. In Section 2, we summarize seven typi-
cal application domains of geoparsing. In Section 3, we review existing approaches for location
reference recognition. We evaluate existing approaches on the same public datasets in Section 4.
Finally, we conclude the article in Section 5 and discuss some potential future directions.

2 SEVEN APPLICATION DOMAINS OF GEOPARSING

Geoparsing offers numerous potential applications. In this section, we provide a concise overview
of seven prominent application domains frequently explored in the literature. Figure 2 provides an
illustration of these domains.

GIR: One of the primary applications of geoparsing is geographic information retrieval. Histori-
cally, documents have been indexed by subject, author, title, and type. However, a diverse and large
group of information system users (e.g., readers, natural resources managers, scientists, historians,
journalists, and tourists) desire geographically oriented access to document collections, such as by
retrieving interesting contents about specific geographic locations [26, 57, 108, 130, 145, 173, 191].
For instance, resources in digital libraries can be indexed by locations contained in descriptive
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Fig. 2. Seven application domains of geoparsing.

metadata records associated with the resources, thereby improving users’ experience in searching
for their needed resources [57]. People are looking for web pages containing useful information
about everyday tasks, such as local merchants, services, and news [26]. The public can consume
up-to-date information related to COVID-19 (e.g., disease prevention, disease transmission, and
death reports) on Twitter by locations [130].

Disaster management: News stories and SMD contain enormous historical and real-time
disaster information. Location-enabled SMD can be very helpful to timely map the situational
information, such as rescue requests [164, 198], resource needs (e.g., food, clothing, water, medical
treatment, and shelter) and availability [21, 50], and facility status (e.g., building collapse, road
closure, pipe broken, and power outage) [23, 52, 121, 157] in the aftermath of disasters. With a
crisis map, first responders can track the unfolding situation and identify stricken locations that
require prioritized intervention [19] and realize optimized real-time resource allocation [164],
government agencies can conduct the damage assessment of the disasters in a faster manner [192],
and the public can search for the locations where they can obtain needed resources. By extracting
spatiotemporal, environmental, and other information about disaster events from news stories,
flood-prone areas can be identified [194], the responsibility of atmospheric phenomena for floods
can be understood [20], the spatial and temporal distributions of natural disasters during a long
period can be analyzed [114], and the evolution of disasters (e.g., the phases of preparedness,
impact, response, and recovery) can be tracked [88, 183, 184].

Disease surveillance: Scientific articles, historical archives, news reports, and social media
contain detailed information about disease events, such as where the disease was first reported
and how it spread spatiotemporally. Mining geographic locations and other related information
of disease events can help track diseases [34, 64, 136, 140, 159, 172], perform early warning and
quick response [97], and understand the mechanisms underlying the emergence of diseases [12, 93].

ACM Computing Surveys, Vol. 56, No. 5, Article 112. Publication date: November 2023.
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For example, geoparsing historical archives (e.g., the annual US Patent Office Reports 1840–1850
and Registrar General’s Reports) can help track the spread of potato disease ‘late blight’ in the
19th-century in the United States [172] and understand the relationship between cholera-related
disease and place names during Victorian times [136]. Scientific articles were geoparsed to analyze
the demographic, environmental, and biological correlation of the occurrence of emerging infec-
tious diseases at a global scale [12, 93]. Social media can also reflect the movement of the public
and their feelings during pandemics through geotags or mentioned locations in texts. Location-
enabled tweets were applied to analyze the mental health status of the public after the occurrence
of COVID-19 [80, 197], to track and visualize the spread and diffusion of COVID-19 [16], and to
reveal human mobility patterns [89, 91].

Traffic management: Twitter users report near-real-time information about traffic events
(e.g., crashes and congestion). Detecting traffic events, their precise locations, and other re-
lated information from tweets is important for an effective transportation management system
[3, 13, 61, 71, 161, 168]. The detected traffic events can also support urban policy-making [40],
such as helping drivers to avoid risk zones and choose the fastest and safest routes [10], to help
the transportation management sector reduce fatalities and restore traffic flow as quickly as pos-
sible [10], to predict future traffic jams [11], and to improve road safety by recognizing high-risk
areas [129]. By doing so, Twitter users acting as social sensors can complement existing physical
transport infrastructure (e.g., video cameras and loop detectors) cost-effectively, which is especially
important for developing countries where resources are limited.

Spatial humanities: ‘Spatial turn’ was used to describe a general movement observed since the
end of the 1990s emphasizing the reinsertion of place and space in the humanities [185]. Digitizing
and geoparsing large historical textual collections, such as books, reports, and novels, create new
ways for research in the humanities (e.g., Archaeology, History, and Literature) [49, 62, 63, 69,
78, 131, 136, 172], such as to understand the historical geographies of 19th-century Britain and
its relationships with the wider world [62], to identify the significance of specific commodities
in relation to particular places and time [78], to analyze a correspondence between 18th-century
aesthetic theory and the use of the terms ‘beautiful’, ‘picturesque’, ‘sublime’, and ‘majestic’ in
contemporaneous and later accounts of the Lakes region [49], and to reveal the spatial structure
of a narrative in fictional novels [131].

Tourism management: According to Statista, among all the active blogs, travel is rated as
the top 5 topics shared by bloggers4. Travel blogs contain a wealth of information about visited
places organized as bloggers’ experiences and insights as well as their perceptions of these places
[75]. These narratives reflect the blogger’s behavior and interaction with places as well as the
relationships among the places. Geoparsing travel blogs is helpful for understanding places [74],
such as to find their features and related activities, and can help describe a place with tourism
attributes to support tour planning [74, 75, 99, 196]. Applications include helping travelers choose
preferred places and visit them in an appropriate order at a proper time and supporting wayfinding
given the spatial relation of places [75].

Crime management: Many countries do not make crime data available to their citizens [17] or
provide only coarse-grained details5, such as the total number of thefts in a district or a province.
According to the Crime Information Need Survey [17], around 78.3% of respondents in Indonesia
agreed that crime information should be available to the public. The needed information includes
crime type, perpetrator, victim, time, and, very importantly, location. Meanwhile, crime-related
information is often scattered across news and social media. Mining and gathering crime-related

4https://www.statista.com/statistics/187267/number-of-bloggers-in-usa/
5http://liiofindia.org/
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Fig. 3. Classification of existing approaches for location reference recognition.

information from these text-based sources can be useful for informing the public and may even
help predict and prevent some crimes [14, 41, 42, 150, 156, 166]. In particular, geoparsing can help
extract location information of crimes, which can help residents to choose places to live and help
travelers to avoid certain unsafe places [17].

Different applications have distinct requirements for the approaches for location reference
recognition. For example, emergency response applications primarily rely on analyzing informal
texts such as tweets, whereas scientific articles serve as the main source for understanding the
mechanisms underlying disease emergence. GIR needs only coarse-grained geospatial informa-
tion, such as a city, whereas traffic management requires the fine-grained location (e.g., a street)
of traffic events. Geoparsing historical documents that contain billions of words requires a fast
processing workflow. Therefore, to guide the selection of proper approaches for location reference
recognition based on application needs, examining the characteristics of existing approaches is
necessary, which will be introduced in Section 4.

3 A SURVEY OF EXISTING APPROACHES

In this section, we review existing approaches for location reference recognition. In Section 3.1,
we review individual approaches by categorizing them into four groups. In Section 3.2, we review
existing comparative studies and differentiate our current review from the existing studies.

3.1 Approaches for Location Reference Recognition

In the existing literature, Leidner and Lieberman [105], Monteiro et al. [134] and Purves et al.
[146] identified three types of approaches for location reference recognition: rule-based, gazetteer
matching–based, and statistical learning–based approaches. However, many studies, such as [58,
81, 106, 124], used a combination of different approaches to compensate for the shortcomings of
each other. Therefore, in this review, we add a fourth type, hybrid approaches, which combines two
or all three types of approaches, and we use these four types to organize our review on location
reference recognition. We show this classification schema in Figure 3.

3.1.1 Rule-Based Approaches. Location references in texts often have certain lexical, syntac-
tic, and orthographic features. A set of rules, such as regular expressions (REs) and context-
free grammars (CFGs), can be defined to decide whether an n-gram of texts is a location refer-
ence or not [105]. n-grams are linear sequences of n words in texts. For example, given a text
T = {w0w1w2 . . .wn }, its unigrams or n-grams of size n = 1 include {w0},{w1},{w2} . . . ,{wn }. Its
bigrams or n-grams of size n = 2 include {w0w1},{w1w2} . . . ,{wn−1wn }.

Table 1 lists some RE and grammar rules used in previous studies [60, 61, 105, 124]. Each row
in the table indicates a rule. The former 12 rules are REs, using part-of-speech (POS) tags and/or
keywords. We use the standard meta characters (i.e., ‘?’, ‘+’, and ‘∗’) of REs. The ‘?’ sign indicates
the presence of a tag zero or one time, the ‘+’ sign indicates the presence of a tag at least one
time, and the ‘∗’ sign indicates the presence of a tag any times (zero or more). Numbers indicate

ACM Computing Surveys, Vol. 56, No. 5, Article 112. Publication date: November 2023.
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Table 1. Examples of RE and Grammar Rules for Location Reference Recognition

Rules Examples
<NN>+ Tiburon Blvd; San Mateo

<NNP>+ Heidelberg; San Francisco
<DT>?<JJ>?<NN>+ the Golden Gate Bridge; Long Island

<CD>?<DT>?<JJ>?<NN>+ Third Street; 11th Avenue
<DT>?<JJ>?<NN>+<CD>? Freeway 91; Highway 12

<DT>?<JJ><NN>(1) the High Cotton Lane; High Star Drive
(1)<CD> Beltway 10; SH73

(2)+<NNP>+(3)* South Northumbria Bridge Road; northeast Munich
<NNP>+(3)*(2)+ Camanche Avenue East; Heidelberg North

(2)+(3)*(of)?<NNP>+ 25 miles SW of San Francisco; 25 min away from New York State
(3)*(of)?<NNP>+(2)+ town of San Francisco; District of Columbia

<A-Z><a-z>*berg Heidelberg; Freiberg
(4) (of) X -><LOC> city of Beaumont; Gulf of Mexico;

(5) X -><LOC> this overturned tanker in Marin has created a huge jam on WB580

different types of words. 1 represents street indicators, such as ‘street’, ‘highway’, ‘road’, ‘sh’, and
‘beltway’. 2 represents words that specify direction or a distance in measurable terms, such as ‘10’,
‘away’, ‘from’, ‘miles’, ‘km’, ‘south’, and ‘northbound’. 3 represents place category words, such as
‘city’, ‘str’, ‘avenue’, ‘rd’, and ‘village’. Used POS tags include Nouns (NN), Proper Nouns (NNP),
Determiners (DT), Adjectives (JJ), Cardinal Numbers (CD), and Conjunctions (CC). The last two
rules are grammar rules. X denotes candidate n-grams. 4 represents place category words that are
often used with ‘of’, such as ‘city’, ‘town’, ‘gulf’, and ‘river’. 5 represents spatial prepositions that
normally appear before a location, such as ‘in’, ‘around’, ‘on’, ‘near’, and ‘between’.

Several studies used only rules to extract location references. For instance, Giridhar et al. [61]
used road-traffic-related tweets to detect and locate point events, such as car accidents. Specifically,
a set of REs were defined according to the composition of nouns, determiners, adjectives, cardinal
numbers, conjunctions, and possessive endings. To decrease false positives, grammar-based rules
were implemented based on spatial prepositions, such as ‘in’, ‘at’, ‘between’, and ‘near’. Zou et al.
[198] analyzed the rescue requests on Twitter during Hurricane Harvey. They assumed that the
formal description of an address in the United States is in the form of [Street Number, Street Name,
Apartment Number (optional), City, State, ZIP Code]. Since all rescue request tweets in their study
contain ZIP codes, the full address in each tweet can be extracted by locating the ZIP code as the
ending point and searching for the starting point based on several conditional criteria.

Although many studies classify rule-based approaches as one category [6, 105, 134], pure rules-
based approaches are rare. All the rule-based approaches discussed in [134] are, in fact, hybrid ap-
proaches. This is likely because the approaches that rely on linguistic patterns only are ineffective
[163]. Defining comprehensive and resilient rules to account for all potential instances of location
references in texts, particularly in microblogs characterized by diverse writing styles and loose
grammar [152], remains a challenging task. Nevertheless, rules can significantly bolster gazetteer
matching–and statistical learning–based approaches, as elucidated in the subsequent sections.

3.1.2 Gazetteer Matching–Based Approaches. A gazetteer is a dictionary of place names
associated with geospatial information (e.g., place types and geographic coordinates) and some
additional information such as population size, administrative level, and alternative names.
Gazetteers play important roles in location reference recognition in many studies. GeoNames6 is

6http://www.geonames.org/
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Fig. 4. Point density maps of the places contained in OpenStreetMap and GeoNames.

the most widely used gazetteer, and OpenStreetMap (OSM)7, in a broad sense, can be considered
as a gazetteer as well. There are 12,255,0288 and 23,876,9569 places in GeoNames and OSM,
respectively. Figure 4 illustrates the point density map of the places in OSM and GeoNames.

In gazetteer matching–based approaches, the n-grams of a text are first matched against a
gazetteer, which are then filtered or disambiguated with a couple of heuristics. Gazetteer match-
ing–based approaches are still faced with two main challenges. The first is that many location
references appearing in texts are missing from gazetteers due to various reasons, such as name
variation (e.g., ‘South rd’ for ‘South road’ and ‘Frankfurt airport’ for ‘Frankfurt international airport’)
and data incompleteness (e.g., the missing of ‘Hidden Valley Church of Christ’ from a gazetteer) [58].
Second, gazetteer matching-based approaches often run into ambiguity issues. For instance, the
names ‘Washington’, ‘MO’, ‘South Wind’, and ‘1 ft’ all exist in gazetteers, but can also refer to other
types of entities. This is called geo/non-geo ambiguities, while geo/geo ambiguities refer to the
situation in which different spatial locations use the same name, such as Manchester, NH, United
States versus Manchester, United Kingdom. For simplicity, we use ambiguities and ambiguous to
refer to geo/non-geo ambiguities by default. We will use the full name geo/geo ambiguities to refer
to the second situation. The main focus of gazetteer-based approaches is often to overcome the
two mentioned challenges by using heuristics to perform disambiguation (to increase precision)
and by including place name variants to expand the used gazetteer (to increase recall).

7https://www.openstreetmap.org/
8Retrieved from the official web of GeoNames on 2022.02.25.
9Retrieved from OSMNames on 2022.02.25.
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Table 2. Common Heuristics used for Disambiguation in Gazetteer Matching-based Approaches

ID Heuristics Examples
1 Limit the length of place names in gazetteers Keep only 1- and 2-grams
2 Limit the type of places in gazetteers Keep only continent, country, state, and city
3 Limit the scale of places in gazetteers Keep only places with a population over 1000
4 Limit the spatial range of gazetteers Use the gazetteers in the area of Florence
5 Filter place names of common (stop) words ‘today’, ‘long’, ‘that building’ and ‘the street’
6 Use spatial indicators in texts ‘in’, ‘near’, and ‘at’ that appear before a place
7 Use orthographic cues Capitalization of words, such as ‘Houston’ and ‘Germany’
8 Filter candidates by POS tags Keep only noun phrases in texts
9 Use a dictionary of other entity types Person names, such as‘Washington Irving’ and ‘Houston Alexander’
10 Use other related place names ‘Chennai, IN’ and ‘stay safe Houston, flood in Houston is serious’

Table 2 summarizes the commonly used heuristics for disambiguation. The first four heuris-
tics are used to reduce the number of candidate place names matched in gazetteers, thereby
decreasing the number of ambiguous place names. The 5th heuristic uses common words. The
6th and 7th heuristics leverage the external and internal cues of candidate n-grams. The 8th
heuristic leverages the POS tags of candidate n-grams. The 9th heuristic leverages the dictionary
of other entity types (e.g., Person), such as to judge whether a candidate n-gram (‘Houston’) with
its preceding or succeeding word (‘Alexander’) in texts appears in the dictionary of person names.
The 10th heuristic leverages other related place names to judge whether an n-gram is valid or not.
For example, ‘IN’ is ambiguous. However, when it follows ‘Chennai’ in texts (e.g., ‘Chennai, IN’),
which is likely to be a location and related to ‘IN’, then ‘IN’ is treated as a valid location. If an
n-gram can be determined as a valid location by some heuristics, the other n-grams with the same
name in the text are also treated as a valid location, such as ‘stay safe Houston, flood in Houston is
serious’, where both instances of ‘Houston’ are judged as valid locations since the preceding word
(‘in’) of the second ‘Houston’ is a spatial indicator.

Many studies used gazetteer matching–based approaches to recognize location references
from texts [3, 6, 12, 15, 35, 43, 54, 127, 129, 141, 141, 143, 163, 169, 170, 191]. One of the earliest
geoparsing approaches was proposed by Woodruff and Plaunt [191] to support georeferenced
document indexing and retrieval. A gazetteer containing around 120,000 places in California was
first built on the US Geological Survey’s Geographic Names Information System (USGS 1985) and
the land use data from the US Geological Survey’s Geographic Information Retrieval and Analysis
System (GIRAS). The place names in a document were identified by matching texts’ n-grams
containing non-stop words against the gazetteer. If a token had no matches in the gazetteer, it
was depluralized (e.g., ‘valleys’ to ‘valley’) and rematched with the gazetteer. Amitay et al. [15]
developed Web-a-Where for recognizing and geocoding continents, countries, states, and cities
as well as their abbreviations in web pages. A gazetteer was created by collecting about 75,000
place names across the world from different data sources: USGS, World-gazetteer.com10, UNSD11,
and ISO 3166-112. The system first extracted candidate place names in a given page by matching
against the gazetteer. Then, four heuristics were sequentially used to disambiguate and geocode
the candidate place name, such as the vicinity of two candidate places (e.g., ‘Chicago, IL’) and the
population of places. Clough [35] proposed identifying candidate place names by matching against
gazetteers, which were then filtered using stop words and context cues, such as to filter person
names with a simple heuristic < title >< loc > (e.g., ‘Mr. Sheffield’), where < loc > is a candidate
place name and also in the dictionary of person names. Used gazetteers include the Ordnance

10http://www.world-gazetteer.com
11http://unstats.un.org/unsd
12https://www.iso.org/iso-3166-country-codes.html
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Survey 1:50,000 Scale Gazetteer for the UK (OS13), the Seamless Administrative Boundaries of
Europe dataset (SABE14), and the Getty Thesaurus of Geographic Names (TGN15). Pouliquen et al.
[143] proposed geoparsing approaches for multilingual texts. Candidate place names were first
identified by matching with a multilingual gazetteer, which were then disambiguated through
a dictionary of person names (e.g., ‘George Bush’ and ‘Tony Blair’) and stop words (e.g., ‘And’,
‘Du’, ‘Auch’) in a multilingual context. The multilingual gazetteer was created from three sources:
the Global Discovery database of place names (Global Discovery 2006), the multilingual KNAB
database (KNAB 2006), and a European Commission internal document.

Gazetteer matching–based approaches were also used to extract locations from tweets. For in-
stance, Paradesi [141] proposed an Twitter geoparser, TwitterTagger. It matched the noun phrases
of a tweet text with the entries in gazetteers (i.e., the USGS database), which was followed by disam-
biguating the matched entry with two heuristics. The first was to check whether spatial indicators
(e.g., ‘in’ and ‘near’) were used before a noun phrase. The second was to check whether other
users used a spatial indicator before the same noun phrase in their tweets. Middleton et al. [127]
proposed a multilingual geoparser for tweets named Geoparserpy. To overcome the place name
variation issues, a set of heuristics were applied to expand OSM place names. To deal with abbre-
viations, a multilingual corpus of the street and building types from OSM was used to compute
obvious variants for common location types (e.g., ‘Southampton Uni’ for ‘Southampton University’).
To overcome the ambiguity issue, uni-gram location names that are non-nouns were filtered us-
ing a multilingual WordNet corpus lookup, such as ‘ok’ and ‘us’, which can refer to locations or
other types depending on their POS tag. Location phrases were then filtered using a multilingual
stop-word corpus. de Bruijn et al. [43] introduced TAGGS, a method that leveraged metadata and
contextual spatial information from groups of related tweets. TAGGS matched uni- and bi-grams
from tweet texts with GeoNames and then filtered the candidates using various heuristics, such as
excluding candidates associated with the 1,000 most frequently occurring words.

Studies such as [3, 6, 23, 129, 168, 193, 194] focused only on local events whose geographical
scope is known, such as floods or traffic accidents that happened in a certain city. Therefore, they
would normally use a local gazetteer that contains only the places in a certain region, which can
dramatically mitigate the issues of geo/non-geo ambiguities and geo/geo ambiguities. Although
the proposed geoparsing approaches are not globally applicable, they are effective in dealing with
local events. For instance, Al-Olimat et al. [6] proposed a Location Name Extraction tool (LNEx),
which used n-gram statistics and location-related dictionaries to handle the abbreviations and
automatically filter and augment the place names in the OSM gazetteer (handling name contrac-
tions and auxiliary contents). Ahmed et al. [3] utilized tweets to monitor real-time traffic conges-
tion. They extracted location references from the tweets by matching n-grams with a list of road
names in Chennai. To handle place name variants, they employed the Jaro-Winkler metric to cal-
culate the similarity between the n-grams and the road names in gazetteers. Milusheva et al. [129]
used traffic-related tweets to derive the locations of road traffic crashes in Nairobi, Kenya. Specif-
ically, they developed a gazetteer matching–based geoparsing method to identify the location of
car crashes. A gazetteer of landmarks (e.g., roads, schools, and bus stops) for five counties that con-
stitute the Nairobi metro area was created from OSM, GeoNames, and Google Places. The location
of car crashes was then determined by matching the n-grams of the tweets with the entries in the
gazetteer. Gazetteer matching–based approaches are straightforward to implement and can readily
adapt to multilingual contexts. They prove particularly effective in specific applications, such as

13http://www.ordnancesurvey.co.uk/oswebsite/products/50kgazetteer/
14http://www.eurogeographics.org/eng/03_projects_sabe.asp
15http://www.getty.edu/research/conducting_research/vocabularies/tgn/
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Fig. 5. Basic architecture of statistical learning–based approaches. O denotes non-type. B-LOC and I-LOC

denote the beginning and inner part of a location reference, respectively.

those with a limited geographic scope (e.g., a city) or those that primarily require coarse-grained
location information, such as countries. However, proposing a generally applicable approach for
location reference recognition using gazetteer matching and simple heuristics remains challenging
due to the prevalence of name variants and geo/non-geo ambiguity in natural language texts. To
address this challenge, numerous studies have sought to combine gazetteer matching with rules
and/or statistical learning methods to overcome the limitations of each approach. These combined
approaches will be discussed in the subsequent sections.

3.1.3 Statistical Learning–Based Approaches. Statistical learning–based approaches are built on
annotated training corpora containing texts associated with the expected location references. The
annotated corpora are used to train a model via manually defined features, such as infrequent
strings, length, capitalization, contextual features, and/or features automatically learned by deep
learning methods. The trained model is then applied to unlabeled texts, and the same features are
computed to decide on the association of texts and location references. The basic architecture of
statistical learning–based approaches is illustrated in Figure 5, which use either traditional ma-
chine learning techniques, such as Random Forest (RF) [57], or deep learning techniques, such
as Long Short-Term Memory (LSTM) [182]. Statistical learning–based approaches can be further
divided into two groups: learning-based named entity recognition (NER) and learning-based place
name extraction (PNE). In the following, we discuss these two groups of approaches.

Learning-Based NER: Location reference recognition can be considered as a subtask of NER,
which has been extensively studied. Therefore, many studies [59, 71, 73, 95, 111, 121, 175] used
existing statistical learning-based NER models or retrain them to extract location references from
texts. For instance, Lingad et al. [111] used OpenNLP16, TwitterNLP [152], Yahoo!Placemaker,
and Stanford NER to extract place names from 2,878 disaster-related tweets. Stanford NER and
OpenNLP were also retrained and evaluated by using 10-fold cross-validation in their study. The
results show that retrained models achieved a much higher F1-score than pretrained models.
Karimzadeh et al. [96] proposed a geoparsing system for tweets, named GeoTxt. It integrated six
publicly available NERs for location reference recognition: Stanford NER, Illinois CogComp [151],
GATE ANNIE [25], MIT IE17, Apache OpenNLP, and LingPipe18. Belcastro et al. [23] utilized
tweets to discover sub-events after a disaster, such as collapsed buildings, broken gas pipes, and
flooded roads. CoreNLP [120] was adopted to recognize street and district names, which were then
geocoded by matching with a local gazetteer that covers the disaster area. Fan et al. [52] proposed
uncovering the unfolding of disaster events based on tweets. Place names were extracted using

16https://opennlp.apache.org/
17https://github.com/mit-nip/MITIE
18http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html
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Stanford NER, which was then filtered and geocoded by keeping only the matched places in the
Google Geocoding application programming interface (API) and excluding the places outside
affected areas. Tateosian et al. [172] used CLAVIN19 to geoparse two historical collections: the US
Patent Office Reports 1841-1850 and Google Books Corpus. CLAVIN is an open-sourced geoparser
that utilizes Apache OpenNLP for place name extraction. Mircea [130] implemented a prototype
dashboard for real-time classification, geolocation, and interactive visualization of COVID-19
tweets. spaCy20 was used to extract city and country names from tweet texts and user profiles.
Mao et al. [121] proposed mapping near-real-time power outages from tweets using a retrained
NeuroNER model [46]. Suat-Rojas et al. [168] retrained spaCy NER for the detection of location
references from Spanish tweets pertaining to traffic accidents in a Colombian city.

Recently, many deep learning–based NERs have also been proposed. For example, Limsopatham
and Collier [110] proposed recognizing name entities from tweets by enabling BiLSTM to automati-
cally learn orthographic features using both character embedding and word embedding. Akbik et al.
[5] proposed Flair, an NLP tool that used contextual string embeddings for sequence labeling tasks,
such as POS tagging and NER. Qi et al. [148] proposed a deep learning-based NLP toolkit, named
Stanza, which adopted a contextualized string representation-based tagger. Recently, the fully con-
nected self-attention architecture (a.k.a. Transformer) has attracted a lot of attention due to its
parallelism and advantage in modeling long-range contexts. For instance, Ushio and Camacho-
Collados [176] presented a Python library for NER model fine-tuning, named T-NER. It facilities
the training and testing of a Transformer-based NER model. Nine public NER datasets from differ-
ent domains are compiled as part of the T-NER library, such as CoNLL 2003, OntoNoted 5.0, and
WNUT 2017 datasets.

Learning-based PNE: In addition to utilizing or retraining existing NER models, numerous
studies have developed their own models for location reference recognition employing various
machine learning [138, 155, 165] and deep learning techniques [9, 24, 30, 32, 100, 117, 123, 176, 193].
For instance, Nissim et al. [138] trained the Curran and Clark (C&C) maximum entropy tagger [39]
for recognizing location references from Scottish historical documents, using the built-in C&C fea-
tures, including morphological and orthographical features, information about the word itself, POS
tags, named entity tag history, and contextual features. The model was evaluated on 648 Scottish
historical documents containing 10,868 sentences and 5,682 places. Kumar and Singh [100] adopted
a multi-channel convolutional neural network (CNN) architecture to extract location references
from tweets. The model was evaluated on 5,107 earthquake-related tweets with 6,690 place names
using 10-fold cross-validation. Xu et al. [193] proposed DLocRL, a deep-learning pipeline for fine-
grained location recognition and linking in tweets. Specifically, they first used BiLSTM-CRF to
train a point of interest (POI) recognizer. Then, given an input pair POI, Profile, a linking mod-
ule was trained to judge whether the location profile corresponds to the POI. The profile is an
entry in a POI dictionary. The approach was evaluated on the Singaporean national dataset that
was first used in [106], containing 3,611 tweets and 1,542 POIs. Cadorel et al. [30] proposed to ex-
tract a property’s location and neighborhood from French housing advertisements by recognizing
place names and retrieving relationships between them. Specifically, a BiLSTM-CRF network with
a concatenation of several text representations, including CamenBERT [122], Flair, and Word2Vec
[128] was used to extract place names.

To mitigate the effort of manually annotating a large training dataset, semi-supervised ap-
proaches have been developed. For instance, Wang et al. [182] proposed generating training data
from Wikipedia articles, which was then used to train a BiLSTM model called NeuroTPR. Their

19https://github.com/Novetta/CLAVIN
20https://spacy.io/
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model contains several layers to account for the linguistic irregularities in Twitter texts, such
as using character embeddings to capture the morphological features of words and contextual
embeddings to capture the semantics of tokens in tweets. The approach was evaluated on 1,000
tweets related to the 2017 Hurricane in Texas and Louisiana. Qiu et al. [149] proposed ChineseTR,
a weakly supervised Chinese toponym recognizer. It first generated training examples based on
word collections and associated word frequencies from various texts. Based on the training exam-
ples, a BiLSTM-CRF network built on the BERT word embedding was explored to train a toponym
recognizer. The approach was evaluated on three Chinese NLP datasets: WeiboNER, Boson, and
MSRA21. Khanal and Caragea [98] used a multi-task learning setting to augment the learning of
fine-grained location identification. The three tasks related to crisis events are key-phrase identifi-
cation, eyewitness-account classification, and humanitarian category classification. The learning
was conducted on one of the three popular Tansformer-based models: BERT [47], Albert [104], and
RoBERTa [116]. Several public datasets for the training of the three tasks were utilized in multi-
task learning. The proposed approach was evaluated on two disaster-related Twitter datasets that
were used in Middleton et al. [127].

Given abundant annotated data, statistical learning-based approaches can automatically recog-
nize location references according to the contextual cues and the intrinsic features of location
references without requiring additional expert knowledge and gazetteers. However, a large num-
ber of labeled training sentences are often not available, making it difficult to use these approaches
in many situations [70]. Furthermore, deep learning–based models normally take much more time
to recognize place names from texts than rule and gazetteer matching–based approaches.

3.1.4 Hybrid Approaches. Every technique has its own drawbacks. Thus, researchers have pro-
posed fusing different techniques to achieve the best of all [25, 51, 79, 106, 119, 188, 195]. Hybrid
approaches can be further divided into four types based on the way they combine the previous
three approaches: fusing rule and gazetteer; fusing rule and statistical learning; fusing gazetteer
and statistical learning; and fusing rule, gazetteer, and statistical learning.

Fusing rule and gazetteer: Many studies [119, 123, 132, 133, 144, 184, 188] fused rules and
gazetteers to overcome each other’s shortcomings. Manually defined rules are fragile and the de-
tected location references can be thus further verified by gazetteers. Inversely, rules can help re-
move the ambiguities of the location references detected by gazetteer matching and by recognizing
those references that are not included in gazetteers. For instance, Pouliquen et al. [144] proposed
identifying cities and countries from newspapers in multiple languages. Location references were
recognized by matching texts’ n-grams written in upper case with a multi-language gazetteer,
named Global Discovery. The matches were then filtered by stop words and person names. To rec-
ognize the morphological variants of places, regular expressions were used to list all possible suf-
fixes and suffix combinations of location references. By doing so, some unseen places in gazetteers
can be recognized, such as ‘Lontoolaisen’, because it consists of ‘Lontoo’, which is in the gazetteer,
and the suffix ‘laisen’. The approach was evaluated on 28 texts with 1,650 places in 8 languages,
such as English, Spanish, and Russian. Weissenbacher et al. [188] presented a geoparsing system
for scientific articles related to phylogeography. GeoNames was first searched to detect location
references in articles, and then a black-list (e.g., ‘How’, ‘Although’, ‘Gene’, and ‘Body’) and a set of
rules were created to remove noisy entities found in GeoNames. Malmasi and Dras [119] first used
a POS rule-based tree-splitting method to extract noun phrases from tweets and then matched the
n-grams of the noun phrases with the entries of GeoNames. Dutt et al. [51] presented Savitr, a sys-
tem that geo-visualizes tweets during emergencies. They used a POS tagger to find proper nouns

21https://github.com/InsaneLife/ChineseNLPCorpus
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and then used REs to mitigate the ambiguity of proper nouns with the prefix and suffix words (e.g.,
‘road’, ‘south’, and ‘city’) of place names. Last, the phrases extracted by the above methods are
verified and geocoded using a gazetteer (i.e., GeoNames or OSM) in India. Martínez and Pascual
[123] presented LORE, a knowledge-based model that captures location references from English
and Spanish tweets. First, bi-grams and uni-grams in the tweets were matched with entries in the
GeoNames gazetteer and then filtered by heuristics. Second, linguistic patterns involving location-
indicative words (e.g., ‘city’ and ‘street’), location markers (e.g., ‘north’ and ‘10km’), and POS tags
were derived to recognize location expressions, such as ‘25 miles NW of London City’. They derived
the linguistic patterns from 500 English tweets and 100 Spanish tweets and then used 900 English
tweets and 500 Spanish tweets to test LORE.

Fusing rule and statistical learning: Statistical learning models might not generalize well due
to limited training samples; manually defined rules can be added to boost the performance of the
trained models, e.g., by correcting evident errors. For instance, Acheson and Purves [2] introduced
a geoparsing approach for scientific articles in PDF format. They initially employed Stanford NER
to recognize potential location references and subsequently applied rules to filter these candidates,
such as to include candidates with terms such as ‘University’ or ‘Institute’ while excluding candi-
dates with terms such as ‘Inc’ and ‘GmbH’. The Google Geocoding API was then used to determine
the spatial representation of the detected location references. The approach was evaluated on two
article corpora in the domain of Orchards and Cancer, containing 150 and 200 articles, respectively.
Das and Purves [40] proposed detecting traffic events (e.g., traffic accidents and congestion) in In-
dia using tweets. Specifically, they combined the detected location references by Stanford NER,
retrained OpenNLP, and a rule-based system involving spatial indicators (e.g., ‘in’, ‘at’, and ‘near’),
POS tags, and 85 words representing place categories (e.g., ‘hospital’, ‘road’, and ‘clinic’).

Fusing gazetteer and statistical learning: Gazetteers are utilized in two primary ways:
(1) combining the detection outcomes of statistical learning models with gazetteer matching
and (2) incorporating the gazetteer matching results (e.g., presence or absence of an n-gram in
the gazetteers) as input features for statistical learning models. Examples of the first way are
[57, 72, 79, 106]. For instance, Freire et al. [57] proposed geoparsing descriptive metadata records
associated with digital resources. Initial location references were recognized by matching tokens
of records with candidate entries in GeoNames. A Random Forest classifier was then trained to
disambiguate and link the initial location references. Li and Sun [106] proposed recognizing POIs
in tweets. Candidate POIs in tweets were first extracted by matching with a POI inventory, which
was constructed from check-in data in Foursquare. A trained time-aware POI tagger based on CRF
was then utilized to remove the ambiguity of the candidates based on the context cues in the text.
Hoang and Mothe [79] combined the detection results of multiple publicly available approaches,
such as Ritter’s tool [152], Gate NLP framework [25], and Stanford NER, and then filtered the
results using DBPedia. Different configurations of the NER approaches and DBPedia were tested
on the Ritter’s dataset [152] and MSM2013 dataset [31]. Examples of the second way include
[53, 90, 118, 142, 187]. For instance, Inkpen et al. [90] trained three CRF models for recognizing city,
province/state, and country mentions based on manually defined features, including gazetteer
features. The models were intended to detect location references in tweets and categorize them
into three types. The models were evaluated using 10-fold cross-validation on 6,000 tweets with
1,270 country mentions, 772 state/province mentions, and 2,327 city mentions. Weissenbacher et al.
[187] introduced a novel approach for recognizing location references within research articles.
The method used a CRF model, incorporating various features, such as lexical (i.e., POS tags),
semantic, and gazetteer features. Fernández-Martínez and Periñán Pascual [53] proposed nLORE,
a BiLSTM-CRF architecture for location reference recognition, exploiting linguistic and gazetteer
features from LORE [124]. The model was trained on 7,000 tweets and tested on 1,063 tweets.
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Fusing rule, gazetteer, and statistical learning: Some studies combined all three techniques
for location reference recognition [50, 60, 81, 82, 107, 118]. For instance, Gelernter and Zhang [60]
proposed a cross-lingual location reference recognizer, combining the results of a named location
parser based on gazetteer matching, a rule-based building parser, a rule-based street parser, and a
trained CRF-based named entity parser. The rules of the street and building parsers were created
based on POS tags and indicator words, such as adjective plus noun and street and building indi-
cators (e.g., ‘street’ and ‘highway’ in English and ‘calle’ and ‘carreterra’ in Spanish). They used a
dataset of 4,488 Spanish crisis-related tweets to evaluate the approach. Of these, 3,182 tweets were
used for training, and the remaining tweets served as the test set. Additionally, to evaluate the
English extractor, the Spanish dataset was translated into English using Google Translate.

Magge et al. [118] employed a deep feedforward neural network to determine whether a given
phrase in biomedical articles represents a toponym. They utilized rules to generate approximately
8 million training samples from unannotated datasets. These generated samples, along with
manually annotated training samples, were used to train the deep learning model. The input
vector for the model was constructed by concatenating various features, including the context
of the phrase represented by word embeddings, properties of the phrase (e.g., presence in
GeoNames), and properties of the document (e.g., abstract, introduction, body, or table). Dutt
et al. [50] focused on understanding crucial aspects of need-tweets and availability-tweets during
disasters. They aimed to extract information about the required resources (e.g., water, food,
shelter, medicines), the quantity of the resources needed or available, the geographical location
of the need or availability, and the individuals or organizations involved in providing or needing
them. Regarding geoparsing, the authors enhanced their previously proposed system, Savitr [51],
by combining the location references detected by spaCy and a rule-based system. They further
filtered the location references using a gazetteer to improve the accuracy of location extraction.
More recently, a place name extractor called GazPNE was proposed by Hu et al. [81]. GazPNE
utilized a neural classifier trained on place names from OSM in the United States and India, along
with synthesized non-place names generated by rules. However, due to its limited use of context
information, GazPNE still faced ambiguity issues. To address this, a more robust approach called
GazPNE2 was developed [82]. GazPNE2 utilized two pretrained transformer models, BERT and
BERTweet [137], to disambiguate the detected location references.

3.2 Comparative Studies

In addition to individual studies that focused on developing new methods, researchers also con-
ducted experiments to compare existing methods based on the same datasets. Liu et al. [113] cre-
ated a medium-scale corpus of locative expressions from multiple social media sources, which
include the TellUsWhere corpus [189], two sets of micro-blog posts from Twitter, comments from
YouTube, forums, blog posts from tier one of the ICWSM-2011 Spinn3r dataset22, Wikipedia, and
documents from the British National Corpus [29]. They then compared the performance of a cou-
ple of location reference recognition models over these seven corpora, which include Locative
Expression Recogniser (LER) [112], retrained Stanford NER, pretrained Stanford NER, GeoLocator
[58], UnLockText, and Twitter NLP. Gritta et al. [68] evaluated the performance of five geoparsers
(GeoTxt, Edinburgh Geoparser [69], Yahoo! PlaceSpotter, CLAVIN, and Topocluster [44]) on two
datasets, Local-Global Lexicon (LGL) [109] and WikToR, which was programmatically created by
the author. For location reference recognition, GeoTxt used Stanford NER, Edinburgh Geoparser
used LT-TTT2, TopoCluster used Stanford NER, and CLAVIN used Apache OpenNLP. The eval-
uation results showed that Stanford NER performed the best in location reference recognition,

22https://www.icwsm.org/2011/data.php
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and Edinburgh Geoparser and CLAVIN performed the best in geocoding. Wang and Hu [181]
developed an extensible and unified platform for evaluating geoparsers, named EUPEG, which
enabled direct comparison of nine geoparsers on eight public corpora, which are LGL, GeoVirus
[65], TR-News [95], GeoWebNews [66], WikToR [68], GeoCorpora [179], Hu2014 [84], and Ju2016
[94]. The compared geoparsers include GeoTxt, Edinburgh Geoparser, TopoCluster, CLAVIN, Ya-
hoo! PlaceSpotter, and CamCoder [65], which used spaCy NER for location reference recognition,
DBpedia Spotlight [126], and two systems that used Stanford NER and spaCy NER for location
reference recognition, respectively. Won et al. [190] evaluated the performance of five NERs and
voting systems that combined the NERs in extracting place names from two historical correspon-
dence collections, the Mary Hamilton Papers and the Samuel Hartlib collection. The NERs include
NER-Tagger [102], Stanford NER, spaCy, Edinburgh Geoparser, and Polyglot-NER [7]. The results
showed that although the individual performance of each NER system was corpus dependent, the
ensemble combination can achieve consistent measures of precision and recall, outperforming the
individual NER systems. At the International Workshop on Semantic Evaluation 201923, a task for
toponym resolution in scientific articles was launched. The evaluation results were presented in
[186]. Several systems were evaluated on a corpus of 150 full PubMed articles, 105 articles for train-
ing and 45 articles for testing, containing in total 8,360 toponyms. In the subtask of toponym recog-
nition, all systems except one adopted Deep Recurrent Neural Networks. The system proposed by
a team from Alibaba Group achieved the highest F1-score by adopting BiLSTM-CRF and training
it on various datasets, including OntoNote5.0, CoNLL13, and weakly labeled training corpora.

There are two major differences between this study and the aforementioned comparative studies.
First, these existing comparative studies focused on the entire workflow of geoparsing, whereas
we focus on a narrower topic, i.e., location reference recognition, and provide a deeper review and
comparison of methods on this topic. Second, our comparative experiments (presented in the fol-
lowing section) are more comprehensive than existing studies. We used more datasets (26 datasets,
containing 39,736 places worldwide) and compared 27 different approaches. In the following, we
present the results from the comparative experiments.

4 COMPARISON OF EXISTING APPROACHES

4.1 Methods

To inform future methodological developments for location reference recognition and help guide
the selection of proper approaches based on application needs, we examine numerous character-
istics of existing approaches for location reference recognition. We use or implement the 27 most
widely used approaches, including both general NERs and location-specific approaches. Note that
we do not include several approaches, such as LNEx [6], GazPNE [81], and Savitr [51], as they are
limited to local regions and cannot be applied globally, whereas our test datasets consist of place
names from around the world.

Table 3 summarizes the features of the compared approaches. The version number is indicated
alongside each approach’s name. The second column represents the approach’s category based on
its underlying principle. NERs not only recognize locations but also other entity types, as denoted
in the third column. The notation of 3 classes, 4 classes, 10 classes, and 18 classes corresponds to
{LOC, PER, ORG}, {LOC, PER, ORG, MISC}, {PERSON, GEO-LOCATION, COMPANY, PRODUCT,
FACILITY, TV-SHOW, MOVIE, SPORTSTEAM, BAND, OTHER}, and {LOC, PERSON, ORG, FAC,
GPE, CARDINAL, DATE, EVENT, LANGUAGE, LAW, MONEY, NORP, ORDINAL, PERCENT,
PRODUCT, QUANTITY, TIME, WORK_OF_ART}, respectively. The 28 classes include entities

23https://alt.qcri.org/semeval2019/
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Table 3. Main Features of Approaches Evaluated in This Study

Approach and Version Category
Recognized
Entity Type Target Text

Development
Language

Publishing
Time

Stanford NER 4.3.1 statistical learning 4 classes formal texts Java 2021
spaCy 3.2.1 statistical learning 18 classes formal texts Python 2021
Stanza 1.2 statistical learning 18 classes formal texts Python 2021

OpenNLP 1.9.4 statistical learning 4 classes formal texts Java 2021
DBpedia Spotlight statistical learning N/A formal texts Python 2021

NER-Tagger statistical learning 4 classes tweets Python 2016
Polyglot 16.07.04 statistical learning 3 classes formal texts Python 2016

NeuroNER statistical learning 4 classes formal texts Python 2017
CogComp 4.0 statistical learning 4 classes formal texts Java 2018

OSU TwitterNLP hybrid 10 classes tweets Java 2011
TwitIE-Gate 9.0.1 hybrid 4 classes tweets Java 2013

TNER statistical learning 28 classes formal texts Python 2021
Flair NER statistical learning 4 classes formal texts Python 2021

Flair NER (Ont) statistical learning 18 classes formal texts Python 2021
BERT-base-NER statistical learning 4 classes formal texts Python 2020

CLIFF 2.6.1 statistical learning LOC formal texts Python 2020
Edinburgh 1.2 hybrid LOC formal texts C 2021

GazPNE2 hybrid LOC tweets Python 2022
LORE hybrid LOC tweets C++ 2020

nLORE hybrid LOC tweets C++ 2021
SPENS hybrid LOC formal texts N/A 2018
RSD hybrid LOC tweets N/A 2018
RGD hybrid LOC tweets N/A 2018
RS hybrid LOC tweets N/A 2018

BaseSemEval12 hybrid LOC formal texts Python 2018
NeuroTPR statistical learning LOC tweets Python 2020

Geoparserpy 2.1.4 gazetteer matching LOC tweets Python 2020

from the 18 classes mentioned earlier, as well as {CELL TYPE, CELL LINE, CHEMICAL, CORPORA-
TION, DISEASE, DNA, GROUP, PROTEIN, RNA, OTHER}. The fourth column indicates the type
of texts on which each approach was developed, while the fifth column specifies the development
language used. The last column denotes the proposal or update date of a particular version of an
approach.

• Stanford NER (4.3.1) [55]24: It is a Java-based NER system that utilizes CRF, which was
developed and maintained by the Stanford Natural Language Processing Group. We keep
the entities of LOC (location) detected by Stanford NER as locations.
• spaCy (3.2.1): It is a general NLP tool. We use its retrained model (en_core_web_lg) and

keep the entities of LOC, FAC (facility), and GPE (geopolitical entity) detected by spaCy as
locations.
• Stanza (1.2) [148]25: It is a general NLP toolkit and includes a NER tool, which was built on

BiLSTM and CRF. We keep the entities of LOC, FAC, and GPE as locations.
• OpenNLP (1.9.4) [126]: The Apache OpenNLP library is an open-sourced and machine

learning-based toolkit for processing natural language text. We keep the entities of
LOCATION detected by OpenNLP as locations.

24https://nlp.stanford.edu/software/CRF-NER.html
25https://stanfordnlp.github.io/stanza/
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• DBpedia Spotlight [126]26: It is for recognizing and linking entities to DBpedia. We treat
the place mentions detected by this approach as locations.
• NER-Tagger [102]27: It is a NER tool for tweets, built on BiLSTM and CRF. We treat the

entities tagged with B-LOC and I-LOC as locations.
• Polyglot (16.07.04) [7]28: It is a natural language pipeline and includes a multi-language

NER tool. The entities tagged with I-LOC are regarded as locations.
• NeuroNER [46]29: It is a BiLSTM-CRF-based NER system developed by the Massachusetts

Institute of Technology. We use the pretrained model and keep the entities of LOC, FAC,
and GPE detected by NeuroNER as locations.
• CogComp (4.0) [151]30: It is a NER tagger, developed by the University of Illinois. The

entities tagged with LOC are taken as locations.
• OSU Twitter NLP [152]31: It is a NER tool for tweets. The entities tagged with GEO-

LOCATION and FACILITY are treated as locations.
• TwitIE-Gate (9.0.1) [25]32: It is an Twitter-specific NER tool, providing an executable

pipeline on an open-source software toolkit GATE33 (General Architecture for Text Engi-
neering). The entities tagged with LOCATION by this approach are treated as locations.
• TNER [176]34: It is an All-Round Python Library for Transformer-based NER. We keep the

entities of LOC, FAC, and GPE as locations.
• Flair NER [4]35: Flair is an NLP framework designed to facilitate training and distribution

of sequence labeling and text classification. Flair-NER is the standard 4-class NER model
trained on CoNLL-03. We keep the entities of LOC as locations.
• Flair NER (Ontonotes) [158]36: This is the large 18-class NER model trained on Ontonotes

that ships with Flair. It is named Flair NER (Ont) for short in this review. We include entities
tagged with LOC, GPE, and FAC as locations.
• BERT-based-NER37: It is a fine-tuned BERT model that is ready to use for NER. We include

entities tagged with B-LOC and I-LOC as locations.
• GazPNE2 [82]38: It fuses global gazetteers and two pretrained Transformer models. The

latest version utilizes Stanza to enhance GazPNE2.
• CLIFF (2.6.1) [48]39: It integrates the results of Stanford NER and a modified CLAVIN

(Cartographic Location and Vicinity Indexer) geoparser.
• LORE [124]: It is a rule-based location extractor for tweets.
• nLORE [123]: It is a deep learning model, an advanced version of LORE. We use the

trained model provided by the author to extract locations.
• Edinburgh Geoparser (1.2) [69]40: It is a geoparsing approach developed by Edinburgh

University, which combines rules and gazetteers to extract place names from texts.

26https://www.dbpedia-spotlight.org/
27https://github.com/glample/tagger
28https://polyglot.readthedocs.io/en/latest/index.html
29https://github.com/Franck-Dernoncourt/NeuroNER
30https://github.com/CogComp/cogcomp-nlp/tree/master/ner
31https://github.com/aritter/twitter_nlp
32https://gate.ac.uk/wiki/twitie.html
33https://gate.ac.uk/
34https://github.com/asahi417/tner
35https://huggingface.co/flair/ner-english
36https://huggingface.co/flair/ner-english-ontonotes-large
37https://huggingface.co/dslim/bert-base-NER
38https://github.com/uhuohuy/GazPNE2
39https://cliff.mediacloud.org/
40http://www.ltg.ed.ac.uk/software/geoparser/
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• BaseSemEval12 [118]41: It is a baseline system for SemEval-2019 Task 12 (i.e., Toponym
Resolution in Scientific Papers) that uses a 2-layer feedforward neural network.
• NeuroTPR [182]42: It is a neuro-net toponym recognition approach trained on recurrent

neural networks. We use their trained model and implementation to detect location
mentions in texts.
• Geoparserpy (2.1.4) [127]: It is a gazetteer matching–based geoparser. We use its

implementation and deploy the required OSM gazetteer to extract place names from texts.
• SPENS [190]: This approach combines the result of five different systems in a voting

mechanism, including Stanford NER, Polyglot NER, Edinburgh Geoparser, NER-Tagger, and
spaCy. It is thus named SPENS for short. We reimplement the approach using the code or
API of the five modules.
• Ritter+Stanford NER+DBpedia [79]: It uses DBpedia to filter the merged detection by

Ritter’s tool (also named OSU Twitter NLP) and Stanford NER. We name this approach RSD
for short and reimplement the approach using the code or API of the three modules.
• Ritter+GATE+DBpedia [79]: It uses DBpedia to filter the merged detection by Ritter’s

tool and GATE. We name this approach RGD for short and reimplement the approach using
the code or API of the three modules.
• Ritter+Stanford NER [79]: It merges detection by Ritter’s tool and Stanford NER. We

name this approach RS for short and reimplement the approach using the code or API of
the two modules.

All methods are configured based on thorough experimental results to ensure the selection of
optimal parameter settings. For example, we consider not only Location and GPE but also Facility
detected by Stanza as locations since this can achieve the best F1-score on all datasets.

4.2 Test Data

We collect 26 commonly used datasets, which serve as our test data. The datasets comprise 3
formal datasets (i.e., news) and 23 informal datasets (i.e., tweets), containing 39,736 place names
in total, as shown in Table 4. They can be categorized into two groups based on the purpose of
the datasets: Location Extraction (LE) and NER. The former only annotates Location whereas
the latter annotates not only Location but also the other types, such as Person, Organization, and
Facility. Note that we do not use some available geoparsing datasets that were used to evaluate the
geoparsing approaches by Wang and Hu [181], such as WikToR [68], due to their limited coverage
of toponyms. For instance, in the WikToR dataset, each text or article corresponds to a Wikipedia
page titled with a specific toponym, along with specified coordinates. However, only that partic-
ular toponym was automatically annotated, while other toponyms mentioned in the text were
disregarded. Although suitable for evaluating toponym resolution approaches, this dataset does
not adequately address toponym recognition approaches. The description of the used datasets is as
follows:

• LaFlood2016, HouFlood2015, CheFlood201543: They are three flood-related datasets,
which were created by Al-Olimat et al. [6]. The locations in the three datasets were anno-
tated as one of the three types: inLOC, outLOC, and ambLOC, denoting the locations inside
the area (e.g., ‘Houston’) of interest, outside the area, and ambiguous locations (e.g., ‘my

41https://github.com/amagge/semeval-ffnn-baseline
42https://github.com/geoai-lab/NeuroTPR
43The datasets can be obtained by filling out the Dataset Registration form at https://docs.google.com/forms/d/e/
1FAIpQLScf6-DNwkgJXPS5e28Mj18hIW3Ap_Ym7Kna-SO7oSmiC72qGw/viewform
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Table 4. Summary of 26 Datasets

Name Source Type
Tweet

(Article)
Count

Place
Count

Resolved Description

LaFlood2016 [6] tweet LE 1,500 2,295 No Louisiana flood in 2016
HouFlood2015 [6] tweet LE 1,500 3,060 No Houston flood in 2015
CheFlood2015 [6] tweet LE 1,500 3,671 No Chennai flood in 2015
Harvey2017 [182] tweet LE 1,000 2,107 No 2017 Hurricane Harvey in Texas and Louisiana
NzEq2013 [127] tweet LE 1,994 1,252 No New York hurricane in 2012

NyHurcn2012 [127] tweet LE 1,997 764 No New Zealand earthquake in 2013
Martinez_I [124] tweet LE 800 539 No Multiple emergency events across the world
Martinez_II [124] tweet LE 1,371 642 No Multiple emergency events across the world
Martinez_III [53] tweet LE 8,063 5,122 No Multiple emergency events across the world

CrisisBench-1000 [82] tweet LE 1,000 861 No 1,000 tweets from CrisisBench [8]
HumAID-1000 [82] tweet LE 1,000 1,422 No 1,000 tweets from HumAid [56]
COVID19-1000 [82] tweet LE 1,000 1,245 No 1,000 tweets from COVID-19 [103]
GeoCorpora [179] tweet LE 6,634 3,083 Yes Multiple events across the world

BTC-A [45] tweet NER 2,000 229 No Section A of Broad Twitter Corpus
BTC-B [45] tweet NER 200 148 No Section B of Broad Twitter Corpus
BTC-E [45] tweet NER 2,000 572 No Section E of Broad Twitter Corpus
BTC-F [45] tweet NER 2,113 1,330 No Section F of Broad Twitter Corpus
BTC-G [45] tweet NER 1,999 287 No Section G of Broad Twitter Corpus
BTC-H [45] tweet NER 1,000 119 No Section H of Broad Twitter Corpus

NEEL2016 [153] tweet NER 2,135 602 Yes
Dataset of Named Entity rEcognition and Linking

Challenge in 2016
Ritter’s dataset [152] tweet NER 2,394 276 No A general-purpose NER dataset

MSM2013 [31] tweet NER 2,815 619 No
Dataset of Concept Extraction Challenge at the
Making Sense of Microposts Workshop in 2013

WNUT2016 [167] tweet NER 3,850 791 No
Dataset of shared task on NER in Twitter at the

Workshop on Noisy User–generated Text in 2016
LGL [109] news LE 588 5,057 Yes Local-Global Lexicon corpus

GeoVirus [65] news LE 229 2,167 Yes WikiNews related to global disease and epidemics
TR-News [95] news LE 118 1,300 Yes Annotated news articles from various news sources

There are in total 39,736 places.

house’), respectively. We only evaluate the approaches on the inLOC and outLOC locations,
ignoring the ambLOC locations. ‘Louisiana’, ‘Houston’, ‘Texas’, and ‘Chennai’, as well as their
abbreviations, such as ‘La’, ‘Hou’, and ‘Tx’, appear frequently in the datasets. Moreover, many
location mentions appear in hashtags, such as ‘#laflood’, ‘#txwx’, and ‘#ChennaiRain’.
• Harvey201744: This dataset is related to the 2017 Hurricane Harvey and was created by

Wang et al. [182]. The dataset contains many fine-grained locations, such as ‘398 Garden
Oaks Blvd’ and ‘26206 longenbaugh rd’. No places appear in hashtags since they have been
removed from the dataset.
• NzEq2013, NyHurcn201245: The two Twitter datasets correspond to the New Zealand

earthquake in 2013 and New York Hurricane in 2012, respectively. They were created
by Middleton et al. [127]. We found several missing place names (e.g., ‘Christchurch’)
which, however, appear frequently in the two datasets. To mitigate this issue, we manu-
ally create two missing place name lists (i.e. [(‘new’,‘zealand’), (‘nz’), (‘uk’), (‘christchurch’),
(‘chch’), (‘lyttleton’), (‘southland’), (‘wellington’), (‘south’, ‘island’)] and [(‘new’,‘york’), (‘nyc’),
(‘new’,‘york’,‘city’), (‘ny’)] ) for the two datasets, respectively. We define that the detection
of an entity which is not annotated in the dataset but in the corresponding missing list
is a true positive. Moreover, sub-place names exist in dataset NzEq2013. For example, in

44https://github.com/geoai-lab/NeuroTPR/tree/master/Data/TestData/HarveyTweet2017
45https://revealproject.eu/geoparse-benchmark-open-dataset/
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the text ‘Christchurch hospital is now back in operation’, both ‘Christchurch hospital’ and
‘Christchurch’ were annotated as Location. To tackle this issue, we remove sub-place names
from the dataset.
• Martinez_I, Martinez_II, Martinez_III: These three Twitter datasets correspond to mul-

tiple crises and emergency events (e.g., earthquakes, floods, car accidents, bombings, shoot-
ings, terrorists, and incidents) that happened across the world. They were initially utilized
in Fernández-Martínez and Periñán Pascual [53], Martínez and Periñán-Pascual [124]. One
of the features of the datasets is that many fine-grained locations, such as ‘13219 S penrose
Ave’ and ‘Exit 34’ as well as complex location expressions, such as ‘50 miles SW of Liverpool’
and ‘25mins away from Northumbria Street’ were annotated.
• GeoCorpora46: It was created by Wallgrün et al. [179]. In the dataset, location references

in tweets were not only annotated but also linked to GeoNames. The dataset corresponds to
multiple worldwide events (e.g., earthquake, Ebola, fire, flood, protest, and rebellion) in 2014
and 2015. Most annotated places are admin units, such as continent, country, state, and city.
• CrisisBench-1000, HumAID-1000, COVID19-100047: These three datasets, developed by

[82], consist of 1000 randomly selected tweets from CrisisBench [8], HumAID [56], and a
COVID-19 dataset [103], respectively. For each dataset, place names were manually anno-
tated, encompassing various types such as admin units (e.g., countries and villages), traffic
ways (e.g., streets and highways), natural features (e.g., hills and rivers), and POIs (e.g., parks
and schools).
• BTC-A, BTC-B, BTC-E, BTC-F, BTC-G, BTC-H48: The Board Twitter Corpus (BTC) was

created by Derczynski et al. [45]. The datasets were sampled across different regions, tempo-
ral periods, and types of Twitter users. Apart from Location, Organization and Person were
also annotated. Several annotated place names are in mentions (e.g., ‘@HoustonFlood’). How-
ever, they are usually ignored by existing location extractors. Thus, we remove the place
name in the mentions from the six datasets.
• NEEL201649: It is the gold dataset of the 2016 Named Entity rEcognition and Linking (NEEL)

Challenge. The dataset includes tweets covering multiple noteworthy events from 2011 to
2013, such as the death of Amy Winehouse, the London Riots, the Oslo bombing, and the
Westgate Shopping Mall shootout. Entities of different types, such as Location, Person, Orga-
nization, Event, and Product were annotated and linked to DBPedia. We use its training set,
which contains 2,135 tweets and 602 places.
• Ritter’s dataset50: It was initially used by Ritter et al. [152]. Location, Facility, Person, and

Organization were annotated in the dataset. We use its training set, which contains 2,394
tweets and 276 places.
• MSM201351: It is the gold standard dataset of the Concept Extraction Challenge held at the

Making Sense of Microposts Workshop in 2013 ( #MSM2013). Entities of Person, Organization,
Location, and MISC were annotated. We use its training set, which contains 2,815 tweets and
619 places.
• WNUT201652: It is the gold data of the shared task on named entity recognition in Twitter.

The task is part of the 2nd Workshop on Noisy User–generated Text (W-NUT 2016). Ten

46https://github.com/geovista/GeoCorpora
47https://github.com/uhuohuy/GazPNE2/tree/main/data/test_data
48https://github.com/GateNLP/broad_twitter_corpus
49http://microposts2016.seas.upenn.edu/challenge.html
50https://github.com/aritter/twitter_nlp/blob/master/data/annotated/ner.txt
51https://www.researchgate.net/profile/Andrea-Varga-4/publication/256682215_MSM2013_Concept_Extraction_
Challenge_dataset
52https://metatext.io/datasets/wnut-2016
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Fig. 6. Overall precision, recall, and F1 score of the 27 approaches on the entire set of datasets with 39,736

location references.

types of entities were annotated, such as Location, Facility, Person, and Movie. We use its
training set, which contains 3,850 tweets and 791 places.
• LGL53: The Local-Global Lexicon (LGL) corpus was created by Lieberman et al. [109]. To-

ponyms were manually annotated and geocoded from 588 human-annotated news articles
published by 78 local newspapers.
• GeoVirus54: The GeoVirus dataset, introduced by Gritta et al. [65], serves as an evaluation

resource for geoparsing methodologies within the context of news articles pertaining to
disease outbreaks and epidemics, such as Ebola, Bird Flu, and Swine Flu. Only admin units
were annotated in the dataset. Buildings, POIs, streets, and rivers were disregarded.
• TR-News55: TR-News was created by Kamalloo and Rafiei [95]. Toponyms were manually

annotated and geocoded from 118 news articles from various news sources.

We adopted the standard comparison metrics: precision, recall, and F1-score. In the case of over-
lapping or partial matches, we penalize an approach by adding 1/2 FP (False Positive) and 1/2
FN (False Negative) (e.g., if the approach marks ‘The Houston’ instead of ‘Houston’), following Al-
Olimat et al. [6].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 · Precision · Recall
Precision + Recall

(3)

4.3 Results of Location Reference Recognition

We execute the 27 approaches on the complete set of test datasets. Their overall precision, recall,
and F1-scores are presented in Figure 6. To obtain these scores, we compute the sums of FP, FN, and
TP across all datasets instead of calculating precision, recall, and F1-scores individually for each
dataset and subsequently averaging them across the entire dataset. This approach was adopted due
to the imbalanced distribution of place name counts (ranging from 119 to 5122) across different

53https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/lgl.xml
54https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/GeoVirus.xml
55https://github.com/milangritta/Pragmatic-Guide-to-Geoparsing-Evaluation/blob/master/data/Corpora/TR-News.xml
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Fig. 7. Precision, recall, and F1-score of the tested approaches on the datasets of formal texts, containing

8,517 places.

datasets. Detailed results of these approaches on each dataset can be accessed from the provided
online file56.

Most of the employed approaches demonstrate high precision, with 21 out of the total
27 achieving a precision exceeding 0.7. In contrast, most of these approaches exhibit significantly
low recall, with only two approaches, GazPNE2 and LORE, achieving a recall surpassing 0.7. This
indicates that most approaches missed a considerable number of location references. To further
investigate the underlying reasons for this, we conduct a detailed analysis in Section 4.4, where we
examine the detection accuracy of the approaches across various types of texts and location ref-
erences. Furthermore, it is noteworthy that the top five best-performing approaches — GazPNE2,
Flair NER (Ont), nLORE, Flair NER, and Stanza — are all based on deep learning and have been
introduced within the last four years. This observation underscores the superior performance and
notable progress achieved by deep learning in addressing this task. Moreover, two voting-based sys-
tems — SPENS and RS — achieve remarkable results by combining the detection outcomes of mul-
tiple classic approaches, thereby enhancing the performance of each individual approach. These
two voting systems demonstrate comparable performance to Stanza and Flair NER, suggesting a
great potential for leveraging voting mechanisms in location reference recognition. Such potential
holds significant promise, considering the availability of numerous place name extractors.

4.4 Error Analysis

We conducted an error analysis to gain insight into these approaches’ mistakes. The analysis fo-
cused on their performance regarding formal and informal texts and detecting location references
across various categories and forms.

4.4.1 Text Type. Among the test datasets, 3 comprise formal texts, whereas 23 consist of in-
formal texts, encompassing 8,517 and 31,219 places, respectively. Figure 7 and Figure 8 depict the
performance of the approaches on the formal and informal text datasets, respectively. Notably,
Flair NER (Ont), Flair NER, SPENS, Stanford NER, and Stanza exhibit superior performance on
formal texts, whereas GazPNE2 and nLORE outperform others on informal texts. This discrep-
ancy arises primarily because the former five approaches were trained using formal texts, whereas
the latter two approaches were specifically designed to handle tweets. The dissimilarity in place
definitions across these datasets also contributes to the observed variations. Formal datasets pre-
dominantly focus on coarse-grained toponyms such as countries and cities, including adjectival
forms (e.g., ‘American’, ‘British’, ‘Chinese’) but disregard fine-grained places such as highways,

56https://docs.google.com/spreadsheets/d/16cyuyDhty04hQE1gBfP4zq23Lr3OWJ5EY_bsVMoYxfQ/edit#gid=1536784545
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Fig. 8. Precision, recall, and F1-score of the tested approaches on the datasets of informal texts, containing

31,219 places.

POIs, streets, and buildings. For instance, the LGL dataset contains 337 adjectival toponyms, the
GeoVirus dataset has 14, and the TR-News dataset contains 124. Conversely, informal datasets such
as Martinez_III and HouFlood2015 encompass fine-grained places and places mentioned in hashtags
while omitting adjectival toponyms. Furthermore, different approaches adopt distinct place defi-
nitions. For instance, some NER approaches, such as Stanford NER, disregard fine-grained places,
whereas others, such as GazPNE2 and nLORE, include fine-grained places. Owing to these dispari-
ties in place definitions, accurately evaluating the performance of these approaches on formal and
informal texts poses challenges. Therefore, we conduct more comprehensive evaluations to assess
their performance with regard to different types and forms of places in the subsequent sections.

4.4.2 Place Category. The location references within the datasets are classified into four distinct
categories: admin units (e.g., country, state, town, and suburb), traffic ways (e.g., street, road, high-
way, and bridge), natural features (e.g., river, creek, beach, and hill), and POIs (e.g., park, church,
school, and library). For this particular experiment, we select four datasets — Harvey2017, Geo-
Corpora, LGL, and TR-News — as they provide information regarding the category of the places
mentioned. In the Harvey2017 dataset, the places are categorized into 10 different types [85]. To
ensure consistency in our classification, we assign the types of house number addresses, street
names, highways, exits of highways, and intersections of roads as traffic ways, the type of natu-
ral features as natural features, the types of other human-made features and local organizations
as POIs, and the types of admin units and multiple areas as admin units. In the remaining three
datasets, place names are linked to the entries in GeoNames. Our classification approach is based
on the feature codes provided by GeoNames57. Places with feature codes A (e.g., country, state,
and region) and P (e.g., city and village) are classified as admin units. Places with feature codes R

(e.g., road and railroad) are categorized as traffic ways. Natural features include places with feature
codes H (e.g., stream and lake), T (e.g., mountain, hill, and rock), U (e.g., undersea and valley), and
V (e.g., forest and grove). POIs consist of places with feature codes L (e.g., park and port) and S

(e.g., sport, building, and farm). Across the four datasets, there are 9,790 admin units, 773 traffic
ways, 263 natural features, and 754 POIs.

The detection rate, defined as the proportion of correctly detected places out of the total places
within a specific category, serves as a measure of performance. In this study, we consider only
exact matches as correct detections. Figure 9 presents the detection rates of the approaches in the
four categories. We can observe that many approaches show superior performance in recognizing
coarse-grained places, with 13 of 27 achieving a detection rate of over 60% for admin units.

57http://www.geonames.org/export/codes.html
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Fig. 9. Detection rate of approaches on the four categories with 9,790 admin units, 773 traffic ways, 263

natural features, and 754 POIs.

However, most approaches struggle to recognize fine-grained places. Only 2 of 27 successfully
identify over 60% of traffic ways, while 6 of 27 and 4 of 27 achieve the same for natural features
and POIs, respectively. These three categories represent geographical scopes that are significantly
more precise than admin units and hold great value in various critical applications, such as
emergency rescue and traffic event detection. It is worth mentioning that GazPNE2 stands out by
achieving a recognition rate of over 70% in all four categories.

4.4.3 Form of Location References. We consider three forms of location references: the place
names with numbers (e.g., ‘500 Neches Ave’ and ‘Highway 25’ ), abbreviation of place names
(e.g., ‘us’ and ‘tx’ ), and place names in hashtags (e.g., ‘#HoustonFlood’ and ‘#Chennai’ ). Place
names with numbers typically refer to fine-grained locations, such as highways, roads, and home
addresses. For the abbreviation of place names, we define it as a single word with a character
length of no more than 3. There are a total of 1,621 place names in the number form, 3,697 place
names in the abbreviation form, and 6,560 place names in the hashtag form. The detection rate
of the approaches for each form of place names is presented in Figure 10. We can observe that
recognizing place names with numbers poses a challenge, as only 4 of the 27 approaches achieve
a detection rate of over 0.3. On the other hand, recognizing abbreviations is comparatively more
straightforward, with more than half (16 of the approaches) achieving a recognition rate of over
30% for abbreviations. However, it is worth noting that none of the approaches achieve a detection
rate exceeding 0.6 for either of these two forms. Recognizing place names in hashtags also presents
a challenge, with only 5 approaches achieving a detection rate of over 0.3. Nonetheless, it is
encouraging to see that GazPNE2 and LORE can recognize over 70% of the place names in hashtags.

4.5 Computational Efficiency

In this section, we delve into the computational efficiency, specifically the speed, of different ap-
proaches. Many applications involve processing large volumes of text, such as major historical
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Fig. 10. Detection rate of approaches on location references in three forms: place names with numbers (1,621),

abbreviations (3,697), and place names in hashtags (6,560).

Fig. 11. Time consumption of the approaches running on all of the datasets.

books and reports (e.g., the Old Bailey Online) consisting of millions or even billions of words [63],
as well as millions of crisis-related tweets [147]. Therefore, a rapid geoparsing procedure is crucial,
making speed a critical factor. To assess the computational efficiency, we execute each approach
on the entire dataset and measure the time consumed by each approach. We exclude Edinburgh
Geoparser and DBpedia Spotlight from the comparison since they are online services, and it is not
possible to measure their processing time directly on the server. Most of the approaches are exe-
cuted on a MacBook Pro laptop equipped with an Intel Core i7 (2.2 GHz 6-Core) processor and 16
GB of RAM. However, three approaches — OSU TwitterNLP, LORE, and nLORE — are executed on a
Lenovo laptop with an Intel Core i5 (2.5 GHz 4-Core) processor and 3.8 GB of RAM, as they require
a Linux or Windows environment. Figure 11 provides an overview of the speed of the approaches.

We can observe a significant variation in the processing speed among the different approaches.
The time required for these approaches to process all of the datasets, which contain 1,092,093
words, ranges from 6 minutes to 33 hours. Interestingly, OSU Twitter NLP exhibits an unex-
pectedly long processing time of nearly 9.6 hours. As a result, the approaches RSD, RGD, and
RS, which rely on OSU Twitter NLP, also take approximately 10 hours. The other approaches
that take over 5 hours are all deep learning based. On the other hand, approaches such as
spaCy, Cliff, LORE, Polyglot, and OpenNLP are approximately 20 times faster compared with
these deep learning-based approaches. However, it is worth noting that the deep learning-based
approaches achieve significantly higher F1-scores than the other approaches. Therefore, there
exists a trade-off between correctness and computational efficiency.
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Table 5. Summary of Best-Performing Approaches in Various Contexts

Top 1 Top 2 Top 3 Top 4 Top 5

Informal GazPNE2 nLORE Flair NER (Ont) TNER LORE
Formal Flair NER (Ont) Flair NER SPENS Stanford NER Stanza

Admin Unit (R) GazPNE2 Flair NER (Ont) NeuroTPR Flair NER Geoparserpy
Traffic Way (R) GazPNE2 Flair NER (Ont) BERT-base-NER nLORE NeuroTPR

Natural Feature (R) GazPNE2 NeuroTPR Flair NER RS LORE
POI (R) GazPNE2 NeuroTPR LORE nLORE Flair NER (Ont)

Number (R) nLORE LORE Flair NER (Ont) GazPNE2 Stanza
Abbreviation (R) nLORE Flair NER (Ont) GazPNE2 TNER Stanza

Hashtag (R) GazPNE2 LORE nLORE Flair NER (Ont) TNER

Table 6. Summary of Best-Performing Approaches’ Weaknesses (Indicated by Cross Marks)

Speed Formal Informal
Admin
Unit (R)

Traffic
Way (R)

Natural
Feature (R)

POI (R) Number (R) Hashtag (R) Abb (R)

GazPNE2 ✗
Flair NER (Ont) ✗

nLORE ✗ ✗ ✗
TNER ✗ ✗ ✗

BERT-base-NER ✗
LORE ✗

Flair NER ✗
SPENS ✗ ✗ ✗ ✗ ✗ ✗

Stanford NER ✗ ✗ ✗ ✗
Stanza ✗ ✗ ✗

NeuroTPR ✗ ✗ ✗
RS ✗ ✗ ✗

Geoparserpy ✗ ✗ ✗ ✗ ✗ ✗

‘Abb’ denotes ‘Abbreviation’.

4.6 Summary

This section summarizes the top-performing approaches in various contexts, including formal and
informal texts and different types and forms of place names, presented in Table 5. Additionally, we
analyze the weaknesses of these approaches, which are documented in Table 6. An approach is
deemed weak (indicated by a cross mark) within a given context if it ranks within the lower 50%.
In the tables, R denotes the recall or detection rate of the approaches concerning specific place
categories and forms.

5 CONCLUSIONS AND OUTLOOK

This article summarizes seven typical applications of geoparsing and surveys existing approaches
for location reference recognition, categorizing them as rule-based, gazetteer matching–based, sta-
tistical learning–based, and hybrid approaches. We then thoroughly evaluate 27 approaches across
26 datasets, considering overall accuracy, performance on formal and informal texts and various
place categories and forms, and computational efficiency. From the results, we can conclude that
(1) deep learning is so far the most promising technique in location reference recognition; (2) the
integration of existing approaches through a voting mechanism surpasses individual limitations
and offers enhanced robustness; (3) the performance of different approaches varies on the type
of texts and location references, and their computational efficiency also varies drastically. Users
should select the most suitable approach based on specific application demands.

Several research directions can be further explored in the future.

• Location reference recognition: The emergence of Large Language Models (LLMs)
such as GPT3 (175B) [28] and LLaMA (65B) [174] has garnered significant attention in
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recent years due to their exceptional language generation and processing capabilities.
Notably, models such as ChatGPT have further propelled advancements in various fields,
including translation, sentiment analysis, text summarization, and information retrieval.
Location reference recognition is no exception to the impact of these models. However, one
significant challenge is the large size and high computational requirements of these LLMs,
making them impractical for local deployment on personal computers. Therefore, a crucial
future research direction is developing robust location reference recognizers that balance
accurate performance, manageable memory, and computing costs.
• Geocoding: Existing geocoding or toponym resolution approaches primarily focus on

formal texts, leaving a gap in handling informal texts such as tweets. While some studies
have proposed geocoding approaches for tweets, their applicability is often limited to
specific known geographic regions, such as a city affected by a flood [3, 6]. In such cases,
simply searching for a local gazetteer suffices for geocoding. Only a few studies attempted
to tackle the challenge of geocoding tweets at a global scale [96, 139]. This task presents two
main challenges: geo/geo ambiguities caused by limited contexts in short texts of tweets and
unseen place names caused by place name variants and the informal features of tweets that
often contain abbreviations, slang, and misspellings. Three main ways might be explored
to overcome the challenges: (1) to leverage clustering techniques [43] that can group tweets
of the same topic to expand the context of tweets; (2) to combine multiple state-of-the-art
geocoders in a voting mechanism; and (3) to integrate small or middle-scaled LLMs with
global gazetteers to enhance geocoding capabilities.
• Datasets for geoparsing research: Current datasets for geoparsing research primarily

consist of formal text, with limited availability of Twitter datasets designed for geoparsing.
Existing Twitter datasets for general NER research often lack geographic coordinates
for labeled entities, rendering them insufficient for comprehensive geoparsing research.
Additional datasets comprising informal texts with labeled location references and cor-
responding geographic coordinates are necessary. Furthermore, most location references
in the existing datasets are admin units, such as countries and cities, while finer-grained
location references, such as traffic ways and POIs, are scarce. However, they are essential in
many applications, such as determining the precise locations where rescue is needed during
disasters. A comprehensive Twitter dataset encompassing diverse fine-grained locations
worldwide would significantly contribute to the progress of methods for recognizing and
geocoding fine-grained location references in texts.
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