Advanced Crack Tip Field Characterization

<u>David Melching</u>, Eric Breitbarth Institut für Werkstoff-Forschung Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Wissen für Morgen

Überblick

400 300 1. Einleitung 200 Williams-Reihe 100 Terme höherer Ordnung Ο 5 ¹⁰ -10⁻⁵0 -10 -5 Integrationspfade 5 10 x **** ង់ εġ ឆ់ ε εż 22 \$2 F [N] 2500.0 500 5000.0 - 7500.0 - 10000.0 400 4 300 200

100

0.2

0.3

0.4

0.5

 $\alpha = a/w$

0.6

0.7

0.8

2. Methodik

ii.

- Optimierungsmethode
- ii. Integralmethode
- iii. **Bueckner Integral**

3. Ergebnisse

- Konvergenzstudie
- ii. Parameterstudie
- iii. Methodenvergleich

Motivation

Charakterisierung des Rissspitzenfeldes

• Williamsreihe:

$$\sigma_{ij} = \sum_{n=1}^{\infty} r^{\frac{n}{2}-1} \left(A_n f_{\mathrm{I},ij}(\theta, n) + B_n f_{\mathrm{II},ij}(\theta, n) \right)$$

Mode I
Mode I
Mode II

• Rissspitzenfeld wird durch $(A_n, B_m)_{n,m\in\mathbb{N}}$ vollständig charakterisiert

Klassische bruchmechanische Kenngrößen

$$K_{I} = \sqrt{2\pi}A_{1}$$
$$K_{II} = -\sqrt{2\pi}B_{1}$$
$$T = 4A_{2}$$

Motivation

Reihenentwicklung

$$\sigma_{ij}^{N} = \sum_{n=1}^{N} r^{\frac{n}{2}-1} \left(A_n f_{\mathrm{I},ij}(\theta, n) + B_n f_{\mathrm{II},ij}(\theta, n) \right)$$

Je mehr Terme desto...

- Genauer wird die Approximation
- Kleiner wird der "Konvergenzradius"

Ziel

Bestimmung der Terme höherer Ordnung von DIC-Daten oder Simulationsdaten

N=1

Approximation Error $\left|\sigma_{xx}^{\text{FE}} - \sigma_{xx}^{N}\right|$

Methoden

In der Praxis wird über mehrere Integrale gemittelt

[1] Ayatollahi, Nejati (2011) An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis, *FFEMS*.
[2] Malíková, Veselý (2014) The influence of higher order terms of Williams series on a more accurate description of stress fields around the crack tip, *FFEMS*.
[3] Bueckner (1973) Field Singularities and Related Integral Representations, *Mechanics of Fracture*.
[4] Chen (1985) New path independent integrals in linear elastic fracture mechanics, *Engeneering Fracture Mech*.

Bueckner Integral Definition Pfadunabhängigkeit Betti's $I_{\Gamma} = \int_{\Gamma} (\sigma_{ij} \widehat{u}_i - \widehat{\sigma}_{ij} u_i) n_j \, ds$ Reziprozitäts- $I_{\Gamma} = I_{\nu}$ theorem Lastfälle Bestimmung von A_i für $i \in \mathbb{N}$ Echte Daten: Wähle $\hat{A}_n = 1$ für n = -i, sonst 0. $\sigma_{ij}(r,\theta) = \sum_{n=1}^{\infty} r^{\frac{n}{2}-1} \left(A_n f_{\mathrm{I},ij}(\theta,n) + B_n f_{\mathrm{I},ij}(\theta,n) \right)$ $u_i(r,\theta) = \sum_{n=1}^{\infty} \frac{r^{\frac{n}{2}}}{2\mu} \left(A_n g_{\mathrm{I},ij}(\theta,n) + B_n g_{\mathrm{II},ij}(\theta,n) \right)$ Chen `85 Wähle $\hat{B}_m \equiv 0$. $\Rightarrow I_{\Gamma} = \frac{\pi(\kappa+1)}{\mu} (-1)^{i} i A_{i}$ Testfunktion: $\hat{\sigma}_{ij}(r,\theta) = \sum_{n=1}^{\infty} r^{\frac{n}{2}-1} \left(\widehat{A}_n f_{\mathrm{I},ij}(\theta,n) + \widehat{B}_n f_{\mathrm{II},ij}(\theta,n) \right)$ $\hat{u}_i(r,\theta) = \sum_{n=1}^{\infty} \frac{r^{\frac{n}{2}}}{2\mu} \left(\widehat{A}_n g_{\mathrm{I},ij}(\theta,n) + \widehat{B}_n g_{\mathrm{II},ij}(\theta,n) \right)$ Formel für A_i für $i \in \mathbb{N}$ $A_{i} = \frac{\mu}{\nu + 1} \frac{(-1)^{i}}{i\pi} I_{\Gamma}, \qquad \kappa \in \left\{ \frac{3 - \nu}{1 + \nu}, 3 - 4\nu \right\}$

Chen (1985) New path independent integrals in linear elastic fracture mechanics, Engeneering Fracture Mech.

Testexperiment: FE Simulation

Materialmodell

- Linear-elastisch
- AA2024-T3
- *E* = 72000
- v = 0.33

Ergebnisse – A_1 , A_2

Ergebnisse – A_3, A_4

Konvergenzstudie - Elementgröße & Anzahl d. Integrationsknoten

<u>n gerade</u>

 Konvergenz hängt sowohl von der Anzahl d. Knoten pro Pfad ab als auch von der Elementgröße

<u>n ungerade</u>

Konvergenz hängt nur von der Anzahl
d. Knoten pro Pfad ab

Parameterstudie – MT Probe

Geometrien

- $H \in \{100, 200, 300, 400\}$ mm
- $W \in \{120, 160, 200\} \text{ mm}$
- $\alpha \in [0.2, 0.8]$
- Elementgröße ∈ {0.125,0.25,0.5,1}

Kräfte

• *F* ∈ {2500, 5000, 7500, 10000} N

Materialmodell

- Linear-elastisch
- E = 72 GPa
- v = 0.33

Konsistenz mit Ansys und Wechselwirkungsintegral – K_I, K_{II}

Krafteinfluss – A_1 , A_2

Parameter H/W = 1

⇒ linearer Zusammenhang

Krafteinfluss – A_3 , A_4

Parameter H/W = 1

⇒ linearer Zusammenhang

Geometrieeinfluss – A_1 , A_2

Parameter F = 10000 [N]

Geometrieeinfluss – A_3, A_4

Approximationsfehler

Zusammenfassung und Ausblick

Current Work

- 1. Bueckner-Chen Integral zur Bestimmung d. Terme beliebiger Ordnung d. Williams-Reihe
- 2. Integralmethode besser als Optimierungsmethode
- 3. Ergebnisse konsistent mit *Ansys* und Wechselwirkungsintegral
- 4. Integrale konvergieren für größer werdende Pfad exponentiell gegen Grenzwert

Future Work

- 1. Erweiterte Parameterstudie
 - CT
 - BIAX
 - CTS
 - Suche nach Korrelationen und Rückschlüssen auf das mechanische Verhalten
- 2. Anwendung auf DIC-Daten
- 3. Open-Source Veröffentlichung von Code

Danke für die Aufmerksamkeit!

N=1

N=1

INT-Fehler

ODM-Fehler

Dr. David Melching

Institut für Werkstoff-Forschung Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Mail: <u>David.Melching@dlr.de</u> GitHub: <u>https://github.com/dlr-wf</u>

