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ABSTRACT
This conference paper deals with computational methods to determine the wavenumber spectrum of
acoustic data measured by a phased microphone array. Such problems occur e.g. within the analysis
of pressure fluctuations due to a turbulent boundary layer on a surface such as a wind-tunnel wall
or the skin of an aircraft. The problem is closely related to the deconvolution of dirty beamforming
maps in wavenumber domain, which seeks to determine the wavenumber spectrum by removing
the influence of the shift-invariant point spread function from the beamforming result. Firstly, we
recall how this task can be formulated as a minimization problem and then discuss a specific solver
for this problem, provided by the framework of the generalized FISTA algorithm. The resulting
method includes regularization with L1 and L2 penalties as well as a nonnegativity constraint.
By exploiting convolutional structures, the computation can be further accelerated. Finally, the
presented algorithmic framework is demonstrated with numerical examples.

1. INTRODUCTION

The analysis of turbulent boundary layers is an important task for various applications in experimental
aeroacoustic, such as the prediction of cabin noise due to structural vibrations on the fuselage or
denoising of aeroacoustic windtunnel measurement data. If a sensor array is used as measurement
device, the frequency wavenumber spectrum of the raw pressure fluctuations data is an essential
quantity that needs to be computed. A rough estimator of the frequency wavenumber spectrum can
be obtained by beamforming in the wavenumber domain. Subsequent postprocessing of the "dirty"
beamforming map (also known as deconvolution) further improves the accuracy of the result. This can
be done, for instance, by the DAMAS 2.1 scheme (cf. [1]). However, without further modifications,
this approach often converges very slowly and it does not guarantee a unique solution. Therefore
we discuss a framework that has a well-defined unique solution and provable optimal convergence
properties. The optimization scheme relies on the generalized FISTA algorithm (cf. [2]).

1hans-georg.raumer@dlr.de



2. DISCRETE PROBLEM FORMULATION

We consider a planar region beneath a turbulent boundary layer of a flow field. For the entire
analysis we assume that the flow is aligned with the x-direction of the spatial coordinate system.
Moreover, assume that the correlation of pressure fluctuations in frequency domain between two
points (x, y), (x′, y′) in the xy-plane can be described by a function that depends only on their spatial
separation. More precisely, for a given frequency f and a complex pressure signal p we have

E
(
p(x, y, f )p(x′, y′, f )

)
= Φ

(
x − x′, y − y′, f

)
.

To simplify the notation, we introduce the separation coordinates ξ (separation in flow direction) and
η (separation in cross flow direction). The frequency wavenumber spectrum of the pressure data is
then given by the two-dimensional spatial Fourier transform of Φ (cf. [3]) i.e.

Φ̂(kx, ky, f ) =
1

(2π)

∞∫
−∞

∞∫
−∞

Φ(ξ, η, f ) exp
(
−i(kxξ + kyη)

)
dξdη . (1)

Conversely, Φ can be recovered by the inverse Fourier transform

Φ(ξ, η, f ) =
1

(2π)

∞∫
−∞

∞∫
−∞

Φ̂(kx, ky, f ) exp
(
i(kxξ + kyη)

)
dkxdky . (2)

From now on we will omit the explicit dependency on the frequency f in the notation.

For the application to an experimental setup, one needs to discretize the equations above. We
consider a planar array of M microphones

M = {(xm, ym)| m = 1, . . . ,M} . (3)

The noise-free correlation data is given by the cross spectral matrix C ∈ CM×M with entries

Cml = E
(
p(xm, ym)p(xl, yl)

)
= Φ

(
ξml, ηml

)
,

where ξml = xm − xl and ηml = ym − yl. The wavenumber domain of interest is discretized by a grid of
wavenumber focus points K given by the cartesian product of two 1D grids Kx,Ky i.e.

K = {(kn,x, kn,y)| n = 1, . . .N} = {(kx, ky)| kx ∈ Kx, ky ∈ Ky} . (4)

We wish to reconstruct the frequency wavenumber spectrum at (kn,x, kn,y) for n = 1, . . .N, represented
by a vector φ̂ ∈ CN with entries

φ̂n = Φ̂(kn,x, kn,y) . (5)

The relation between the cross spectral matrix and the discrete wavenumber spectrum φ̂ can be
approximated as

Cml =
1

(2π)

∞∫
−∞

∞∫
−∞

Φ̂(kx, ky) exp
(
i(kxξ + kyη)

)
dkxdky

≈
area(K)
(2π)N

N∑
n=1

φ̂n exp
(
i(kn,xξml + kn,yηml)

)
=

area(K)
(2π)N

N∑
n=1

exp
(
−i(kn,xxl + kn,yyl)

)
φ̂n exp

(
i(kn,xxm + kn,yym)

)
,

(6)



where area(K) =

(
max

n
kn,x −min

n
kn,x

)
·

(
max

n
kn,y −min

n
kn,y

)
. With the wavenumber focus matrix

Emn = exp
(
i(xmkn,x + ymkn,y)

)
(7)

and the scaling factor

s =
area(K)

N2π
(8)

Equation 6 can be compactly reformulated by the discrete forward model

C = s · ED(φ̂)EH =: T (φ̂) , (9)

where D(φ) = diag
(
φ̂1, . . . , φ̂N

)
and EH denotes the Hermitian transpose. The discrete adjoint forward

operator T ∗ is given by

T ∗(K) = s · diag
(
EHKE

)
,

for an arbitrary matrix K ∈ CM×M. Hence, setting K = T (φ̂) we get

T ∗
(
T (φ̂)

)
= s2 · diag

(
EHED(φ)EHE

)
. (10)

In practice, the exact (noise-free) data C is not accessible but only a noisy approximation Cobs ≈ C.
An estimator of the discrete wavenumber spectrum can be obtained by the following regularized non-
negative least squares problem

min
φ̂≥0

1
2

∥∥∥T (φ̂) −Cobs
∥∥∥2

F
+
α2

2

∥∥∥φ̂∥∥∥2

2
+ α1

∥∥∥φ̂∥∥∥
1
, (11)

with regularization parameters α1, α2. For α2 > 0 the problem is strictly convex and there exists a
unique minimizer.

3. FISTA FOR WAVENUMBER SPECTRUM DETERMINATION

The minimization problem from Equation 11 consists of a smooth part and a convex non-smooth part.
Moreover, the later has a computable proximal mapping. Problems of such type can be efficiently
solved by the generalized FISTA algorithm [2, p. 291 ff.] (also known as fast proximal gradient
method).

3.1. Vectorized FISTA formulation
A straightforward implementation of the FISTA algorithm for problem 11 is given below. For

guaranteed convergence, the stepsize τ must be chosen such that

τ <

 sup
x∈RN ,x,0

‖T ∗T (x)‖2
‖x‖2

−1

.

The upper bound can be sufficiently estimated by a few steps of the power method (cf. [4, p. 239]).
The expensive step in Algorithm (1) is performed in line 6. Using the specific structure of

those matrix products, the computation can be accelerated compared to a straightforward matrix
multiplication. For a detailed discussion of this aspect within the context of acoustic source power
reconstruction, we refer to [5].

However, for the wavenumber domain problem considered here, the vectorized formulation
can be even further accelerated. This will be discussed in the next subsection.



Algorithm 1: FISTA in wavenumber domain (standard formulation)
input : E ∈ CM×N wavenumber focus matrix , Cobs ∈ CM×M observed CSM, φ̂(0) ∈ RN starting

value, α1, α2 > 0 regularization parameters, τ > 0 stepsize, niter number of maximum
iterations

output: φ̂(niter) ∈ RN approximate solution of Problem (11)
1 t0 := 0; φ̂(−1) := φ̂(0); z := Re

(
diag (E∗CE)

)
2 for n = 0, . . . , niter − 1 do
3 tn+1 := 1

2

(
1 +

√
1 + 4t2

n

)
4 βn := tn −1

tn+1

5 v(n) := φ̂(n) + βn(φ̂(n) − φ̂(n−1))
6 u(n) := s2 · diag

(
E∗ED(φ̂)E∗E

)
7 w(n) := v(n) − τ

(
u(n) − z

)
8 φ̂(n+1) :=

(
Re

(
w(n)−τα1
α2τ+1

))+

// (...)+ takes the positive part

9 end

3.2. Convolutional FISTA formulation
As mentioned before, the computational step that dominates the overall computational cost is the

evaluation of T ∗T (φ̂) (cf. Equation 10). For an arbitrary but fixed component index j ∈ {1, . . . ,N}
we get

(
T ∗T (φ̂)

)
j
= s2

N∑
n=1

∣∣∣(E∗E) jn

∣∣∣2 φ̂n

= s2
N∑

n=1

φ̂n

M∑
m,l=1

exp
(
−i(xm − xl)(k j,x − kn,x)

)
exp

(
−i(ym − yl)(k j,y − kn,y)

)
=: s2

N∑
n=1

φ̂n P
[
k j,x − kn,x, k j,y − kn,y

]
. (12)

Note that P must be evaluated at all possible differences between two wavenumber grid points.
Therefore, P is defined for the extended wavenumber grid

K e
x = {kx − k′x| kx, k′x ∈ Kx}, K e

y = {ky − k′y| ky, k′y ∈ Ky}, K e = K e
x × K

e
y

i.e. we have P ∈ R|K
e
x |×|Ke

y |. Moreover, we consider the frequency wavenumber spectrum in matrix
form denoted by X ∈ R|Kx |×|Ky| such that

X
[
kx, ky

]
= Φ̂(kx, ky) for kx ∈ Kx, ky ∈ Ky .

Using this data representation we can reshape the result in Equation 12 to matrix form, where the
evaluation index j is replaced by the corresponding 2D index [kx, ky]. This yields

s2
∑

k′x∈Kx,
k′y∈Ky

X
[
k′x, k

′
y

]
P

[
kx − k′x, ky − k′y

]
, (13)

which is essentially a 2D convolution of X and P. The computation of the convolution in 13 can
be efficiently carried out by fast convolution schemes, based on the fast Fourier transform such as
SciPy’s fftconvolve. For the FISTA algorithm one has to ensure that the output has the same shape
as X. With fftconvolve this is achieved by the Python command



fftconvolve(X, P, mode=’same’) .

A full description of the convolutional FISTA scheme is given below.
Algorithm 2: FISTA in wavenumber domain (convolutional formulation)

input : E ∈ CM×N wavenumber focus matrix, P ∈ R|K
e
x |×|Ke

y | convolution kernel matrix,
Cobs ∈ CM×M observed CSM, X(0) ∈ R|Kx |×|Ky| starting value, α1, α2 > 0 regularization
parameters, τ > 0 stepsize, niter number of maximum iterations

output: X(niter) ∈ R|Kx |×|Ky| approximate solution of Problem (11) in 2D form
1 t0 := 0; X(−1) := X(0); Z := reshape

(
Re

(
diag (E∗CE)

)
, |Kx| ×

∣∣∣Ky

∣∣∣)
2 for n = 0, . . . , niter − 1 do
3 tn+1 := 1

2

(
1 +

√
1 + 4t2

n

)
4 βn := tn −1

tn+1

5 V (n) := X(n) + βn(X(n) − X(n−1))
// fast convolution V (n) ∗ P, ensure that U (n) has shape |Kx| ×

∣∣∣Ky

∣∣∣
6 U (n) := s2 · fastConv

(
V (n), P

)
7 W (n) := V (n) − τ

(
U (n) − Z

)
8 X(n+1) :=

(
Re

(
W(n)−τα1
α2τ+1

))+

// (...)+ takes the positive part

9 end

4. NUMERICAL EXAMPLES

To illustrate the discussed algorithm we consider an exemplary problem. The convective velocity,
i.e. the speed of propagation of turbulent structures on the array surface, is denoted by uc and the
convective wavenumber is given by kc =

2π f
uc

. Moreover, lx, ly denote the correlation lengths of
turbulent structures in x and y direction and a denotes an amplitude factor. With these parameters we
model the exact correlation data by

Φ(ξ, η) = a · exp (iξkc) · exp
(
−
|ξ|

lx
−
|η|

ly

)
. (14)

Given this expression we can explicitly evaluate the spatial Fourier transform, which yields the exact
wavenumber frequency spectrum

Φ̂(kx, ky, f ) =
1

(2π)

∞∫
−∞

∞∫
−∞

Φ(ξ, η, f ) exp
(
−i(kxξ + kyη)

)
dξdη =

2alxly

π
(
1 + l2

x(kx + kc)2
)(

1 + l2
yk2

y

) . (15)

The physical and algorithmic parameters are summarized in table 1. The microphone array consists
of an array with M = 144 microphones aranged in spiral arms. This array was used in the benchmark
measurement ’DLR1’ (cf. [6, 7]). Figure 1 shows the microphone positions and their spatial
separations (the co-array).
The true solution (cf. Equation 15) is shown in Figure 2. The dominant structure is the so-called
convective ridge.

For the FISTA computations we consider noisy data

Cobs = C + ε · a · rrH , (16)

with a multivariate complex standard normal random variable r ∼ [NC(0, 1)]M and a noise power
factor ε. Figure 3 shows the FISTA results for several choices of ε.



Parameter Value

convective velocity uc 82 m
s

speed of sound cs 343 m
s

frequency f f = 1347 Hz

coherence length lx lx = uc
0.1·2π f m

coherence length ly ly = uc
2π f m

amplitude a 1000 Pa2

noise power factor ε 0.0, 0.01, 0.02, 0.05

acoustic wavenumber k0 =
2π f
cs

1000 m−1

wavenumber grid Kx uniform grid on [−8, 8] with 64 grid points

wavenumber grid Ky uniform grid on [−8, 8] with 64 grid points

number of FISTA iterations niter 100

stepsize τ of gradient step 0.99 ·
 sup

x∈RN ,x,0

‖T ∗T (x)‖2
‖x‖2

−1

L1 regularization parameter α1 10−3 ·
∥∥∥Cobs

∥∥∥2

F

L2 regularization parameter α2 10−4 ·
∥∥∥Cobs

∥∥∥2

F

Table 1: Parameter settings for the numerical example.
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Figure 1: Array sensor positions (left) and spatial sensor separations (right).
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Figure 2: True solution

The computations were carried out on a standard notebook. Figure 4 compares the computational
effort of the vectorized FISTA formulation (Algorithm 1) and the convolutional formulation
(Algorithm 2). We observe that in the chosen parameter range, the convolutional implementation is
about a factor 4 faster than the vectorized method.

5. CONCLUSIONS

We presented a computational framework that computes an estimator of the frequency wavenumber
spectrum of pressure fluctuation measurements on a microphone array. The algorithm employed the
setup of the well-known FISTA optimization scheme. For this particular problem, the computationally
most expensive step has a convolutional structure. Therefore, it is strongly beneficial in terms of
efficiency, to use fast convolutions for the implementation.
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Figure 3: FISTA results for the parameter setup from Table 1.
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Figure 4: Computational cost for Algorithm 1 and 2.
For the time measurements, a quadratic wavenumber grid was used (i.e.|Kx| = |Kx|). The number of
grid points for each direction x, y was increased gradually from 8 (i.e. a 8 × 8 grid) to 120 (i.e. a
120 × 120 grid).
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