Hydrophobic Organic Aerogels and Xerogels Based on a Phloroglucinol Ether

Thomas Anklam^{*1}, Christophe Farès², René Tannert¹,

¹German Aerospace Center, Institute for Materials Research, Department of Aerogels and Aerogel Composites, Linder Höhe, 51147 Cologne, Germany ²Max-Planck-Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mühlheim an der Ruhr, Germany ^{*}Thomas.Anklam@dlr.de

Motivation

Aerogels are open-porous nanostructured solids obtained by a sol-gel process followed by drying of the wet gel. The most prominent example of an organic aerogel is the resorcinol-formaldehyde (RF) aerogel.^[1] The phenolic nature of RF renders the material hydrophilic, a factor that partly limits its commercial use.^[2] In order to address this issue, we report on the condensation of the phenolic ether 1,3,5-trimethoxybenzene (TMB) with formaldehyde (F) yielding inherently hydrophobic aerogels and xerogels.

Density-, Surface- and Pore Characteristics

Sample	Radial Shrinkage [%]	Envelope Density [g/cm ³]	Skeletal Density [g/cm ³]	Porosity [%]	BET Surface Area [m ² /g]	¹²⁰⁰ T المي 1000 T	220 200 180 160	A1 A2 A3 A4	3.5 0.4 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1	
A1	29	0.30 ± 0.00	1.28 ± 0.01	77	260.0	b 800 -	120	— A5		
A2	14	0.14 ± 0.00	1.32 ± 0.01	89	0.8		100 -	$\begin{vmatrix} & X_1 \\ & X_2 \end{vmatrix}$	5 2.0 - _{0.1} - ~~	

Results

Microstructure

Contact Angles

In summary, we have established an acid-catalyzed synthesis of 1,3,5-trimethoxybenzene formaldehyde (TMBF) aerogels and xerogels in organic solvents. The morphologies, densities, porosities, surface characteristics and contact angles can be tuned by variation of the synthesis temperature, solid- and catalyst concentration and the solvent. Furthermore, the chemical structure of the aerogels was investigated. The resulting materials can be considered as the (super-)hydrophobic analog to the well-studied resorcinol-formaldehyde (RF) aerogels. TMBF aerogels and xerogels are therefore a promising candidate to address the disadvantages caused by the intrinsic hydrophilicity of RF aerogels.

[1]: a) R. W. Pekala, J. Mater. Sci. 1989, 24, 3221-3227. b) S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 2007, 19, 6138-6144. c) A. M. ElKhatat, S. A. Al-Muhtaseb, Adv. Mater. 2011, 23, 2887-2903.
[2]: A. V. Rao, G. M. Pajonk, D. Y. Nadargi, M. M. Koebel, in Aerogels Handbook (Eds.: M. A. Aegerter, N. Leventis, M. M. Koebel), Springer New York, New York, NY, 2011, pp. 79-101.

Supported by:

on the basis of a decision by the German Bundestag