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Abstract

The grounding line marks the transition between ice grounded at the bedrock and the floating

ice shelf. Its location is required for estimating ice sheet mass balance, modelling of ice

sheet dynamics and glaciers and for evaluating ice shelf stability, which merits its long-term

monitoring. The line migrates both due to short term influences such as ocean tides and

atmospheric pressure, and long-term effects such as changes of ice thickness, slope of bedrock

and variations in sea level.

Of the numerous in-situ and remote sensing methods currently in use to map the grounding

line, Differential Interferometric Synthetic Aperture Radar (DInSAR) is, by far, the most

accurate technique which produces spatially dense delineations. Tidal deformation at the ice

sheet-ice shelf boundary is visible as a dense fringe belt in DInSAR interferograms and its

landward limit is taken as a good approximation of the grounding line location (GLL). The

GLL is usually manually digitized on the interferograms by human operators. This is both

time consuming and introduces inconsistencies due to subjective interpretation especially in

low coherence interferograms. On a large scale and with increasing data availability a key

challenge is the automation of the delineation procedure.

So far, a limited amount of studies were published regarding the delineation processes of

typical features on the ice sheets using deep neural networks (DNNs). The objectives of

this thesis were to further explore the feasibility of using machine learning for mapping

the interferometric grounding line, as well as exploring the contributions of complementary

features such as coherence estimated from phase, Digital Elevation Model, ice velocity, tidal

displacement and atmospheric pressure, in addition to DInSAR interferograms. A dataset

composed of manually delineated GLLs generated within ESA’s Antarctic Ice Sheet Climate

Change Initiative project and corresponding DInSAR interferograms from ERS-1/2, Sentinel-

1 and TerraSAR-X missions over Antarctica together with the above mentioned features was

compiled and used for training two DNNs: Holistically-Nested Edge Detection (HED) and



UNet. The developed processing chain handles creation of the training feature stack, training

the DNNs and performing post processing functions on the resulting predictions.

HED outperformed UNet and was able to achieve a median deviation (from manual delin-

eations) of 209.23 m with a median absolute deviation of 152.91 m. Analysis of the individual

feature contributions revealed that only the phase and derived features (real and imaginary in-

terferogram components and coherence estimates) substantially influence the predicted GLLs.

This finding is advantageous in terms of saving time, computational effort and memory in

creating and storing the above mentioned feature stack.

Although the delineations generated from HED do not perfectly follow the true GLL in all

locations, the gains in efficiency and consistency are considerable, compared to the time and

effort spent for manual digitizations. This study shows the potential of DNNs for automating

the interferometric GLL delineation process.
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1. Introduction

1.1. Motivation

The Antarctic Ice Sheet (AIS) and Greenland Ice Sheet (GrIS) constitute the majority (99.5%)

of land ice and hold 70% of the Earth’s freshwater (Bamber et al. 2018). The volume of water

contained in the AIS converts to 58.3m sea level equivalent (SLE) (Vaughan et al. 2013),

making it one of the largest potential sources of sea level rise. The release of freshwater affects

circulation, seawater salinity and biogeochemistry of oceans. Sea level rise poses an imminent

danger to coastal communities via increased incidences of flooding, land submergence, coastal

erosion and salinization of soil, ground and surface water (Oppenheimer et al. 2019).

Recent studies summarised in the sixth assessment report of the Intergovernmental Panel on

Climate Change (IPCC) (Fox-Kemper et al. 2021) indicate an increase in the rate of ice mass

loss from the past decades, with major contributions from theWest Antarctic Ice Sheet (WAIS)

(Fig. 1.1)

Figure 1.1: Cumulative Ice Sheet mass change (results derived from several studies), 1992–2016
(Meredith et al. 2019). Uncertainties are 1 standard deviation.



While ice sheet mass is gained via snow accumulation, mass loss occurs, roughly, through

surface melt runoff and iceberg calving at outlet glaciers (Smith et al. 2020). The balance

between these competing processes is governed by complex interactions. Numerical models

aim to understand these dynamics and predict the evolution of ice sheets. An important

parameter of these models is the grounding line location.

The grounding line defines the boundary between the grounded ice sheet and floating ice

shelf. This transition zone, described in Section 2.2.1, plays an important role in controlling

ice sheet dynamics as it is the point where the ice sheet is first in contact with ocean water

and experiences oceanic forcing. The rate at which ice flows out from the grounded part of

the ice sheet is assessed as the ice flux through the grounding line and is dependent on the ice

thickness and velocity at this position. Besides its role in determining the rate of ice discharge,

the grounding line marks the geometrical bounds of an ice sheet, aiding in the calculation of

ice sheet area.

Grounding linesmigrate back and forth on short timescales as a consequence of the ice bending

due to ocean tides (Paterson 2016), as well as in the long term due to changes in ice thickness,

which can be caused by the accumulation of snowfall, topography of the bed, basal melting

from warm ocean water intrusion and basal shear stress (Schoof 2007).

Most of Antarctica‘s coastline ( 75%) is fringed by floating ice shelves and its grounding line

marks the landward limit of the grounding zone that is several kilometres wide, which can be

difficult to directly observe on the featureless ice surface. Fortunately, there are various remote

sensing techniques to detect the grounding line at large scales. Numerous satellite campaigns

and the availability of high resolution datasets containing large temporal and spatial extents is

a great advantage in favour of mapping the grounding line with satellite-based remote sensing

methods compared to in-situ methods.

The technique of interest for this thesis is the Differential Interferometric Synthetic Aperture

Radar (DInSAR) (explained in detail in Section 2.3.3). The required interferograms are



calculated from spaceborne SAR data with short repeat cycles, such as those acquired by the

ERS-1/2 tandem, TerraSAR-X or the Sentinel-1 missions. The grounding zone appears in the

differential interferograms as a distinct pattern - a dense fringe belt which can be used to map

the grounding line (Rignot 1996).

While there are several methods for extracting the grounding line position from the double

difference interferogram (Section 3.1.1), most often, human experts perform manual digiti-

zations. This is not just costly in terms of time, but also introduces inconsistencies due to

variable interpretations among operators. A further challenge is dealing with low coherence

interferograms, resulting in incomplete lines.

This thesis aims at automating the digitization process using machine learning techniques.

Being a relatively nascent area of research, existing literature does not fully cover the feasibility

of usingmachine learning for this problem. The results from the experiments carried outwithin

the study would shed some light on this in terms of features and architectures explored for this

task.

1.2. Thesis Objectives

This research aims to address the following questions:

1. Feasibility of using machine learning for delineating grounding lines

Traditional grounding line delineation methods found in literature (Section 3.1.1) often

involve unwrapping the phase of the double difference interferograms, whose quality

in turn is dependent on the interferometric phase coherence. This makes the digitiza-

tion process tedious. While phase unwrapping is a non-trivial problem, the heuristics

employed by human operators are considered to be within an acceptable range of error

(Rignot et al. 2011). In regards to automating this process with machine learning, an

attempt was made by (Mohajerani et al. 2021), wherein delineation is viewed as a se-

mantic segmentation problem. This thesis aims at tackling grounding line delineation as

an edge detection problem instead, and further tests the feasibility of detection by using



non-image data (vectorized grounding lines) with classic deep learning architectures

such as Holistically-Nested Edge Detection (HED) and UNet (Section 4.2).

2. Feature exploration

Grounding line locations do not just manifest as fringes in double difference interfero-

grams. They are sometimes also apparent as a break in slope on the surface or in regions

where there is a noticeable change in ice velocity and tidal displacements. Apart from

interferometric phase, the grounding line location could also be gleaned by tracking

changes in the coherence of the corresponding interferograms. Areas of low coherence

could be an indicator of a fast changing phase, implying the presence of the grounding

zone. Investigating the contribution of these features towards grounding line detection is

the second objective of the thesis. In this regard, nine features were investigated (Section

4.1.1).



2. Theoretical Overview

2.1. Antarctic Ice Sheet (AIS)

The Antarctic continent is covered by a continental ice sheet and is nearly completely sur-

rounded by ice shelves, with smaller topographic features such as crevasses, ice rises and ice

rumples scattered throughout. Ice rises and ice rumples are regions of grounded ice that are

either partially or completely surrounded by ice shelves. Ice rises have an elevation several

hundred metres above the enclosing ice shelf. Ice rumples on the other hand, are only tens of

metres high (Matsuoka et al. 2015).

The continental ice, referred to as the Antarctic Ice Sheet, has a 43,500 km long coastline

(Liu and Jezek 2004), spans an area of 14 × 106km2 (Fox et al. 1994) and has a grounding

line of 67,000 km length (estimated from the MEaSUREs dataset described in 3.1.2 (Rignot

et al. 2016)).

AIS is separated into the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet

(WAIS) by the Transantarctic Mountain Belt (Fig 2.1). Glaciers in theWAIS have experienced

drastic ice mass loss in the past four decades (Gardner et al. 2018), (Shepherd et al. 2018),

(Rignot et al. 2019). The ice mass loss is thought (arguably) to be exacerbated due to the

retrograde (landward sloping) bedrock of the WAIS (Pattyn 2018). Large uncertainties in the

mass balance computation for EAIS (Meredith et al. 2019) makes it difficult to comment on

its stability. However, several glaciers in the EAIS (Totten, Denman and Lambert) are thought

to be in a state of dynamic imbalance due to intermittent periods of ice mass loss(Meredith

et al. 2019).

2.2. Grounding line and grounding zone

2.2.1 Grounding zone configurations

Different forces act upon grounded ice and ice shelves. The grounding zone is an area of

varying width (2 km - 10 km) (Brunt et al. 2010) at the ice sheet - ice shelf boundary which,



Figure 2.1: The Antarctic Ice Sheet and its surrounding ice shelves, plotted on basemap from
Quantarctica 3 (Matsuoka et al. 2021), MEaSUREs (Rignot et al. 2016) grounding line in black.



Figure 2.2: Schematic showing grounding zone features, adapted from (Brunt et al. 2011). (a) no ice
plain and (b) with ice plain. Point F is the landward limit of ice flexure due to tides, G is the true

grounding line location, point Ib is the break-in-slope, point Im is the local minimum in topography,
and point H is the hydrostatic point where the ice first reaches approximate hydrostatic equilibrium.

The coupling line (C) is the first break in slope seen in ice plains.

in addition to containing the grounding line, also consists of several other features. Fig.

2.2 a shows the features of a typical grounding zone configuration. The grounding line G,

is the point where the ice shelf just lifts off the bedrock. Although only the ice shelf is

directly affected by the tides, elastic properties also cause the ice sheet to experience vertical

displacement extending from a fewmetres up to hundreds of metres inland from the grounding

point. This point (F) is termed as the hinge line (Rignot 1996), (Rignot et al. 2011).

In an idealised configuration, a break in the slope (Ib) is seen in between G and elevation

minimum (Im). However, in the presence of ice plains (grounded ice adjacent to the grounding

line with low surface slope (Brunt et al. 2011), (Corr et al. 2001)), ice rises and ice rumples

(Section 2.1), there can be several breaks in the slope either landward or far seaward of the



grounding line (Fricker et al. 2006), (Fricker et al. 2009), (Brunt et al. 2011) (Fig 2.2 b). In

such cases, the first break in slope occurs inland of the grounding line at the coupling point C.

H marks the hydrostatic point where the ice shelf is first in hydrostatic equilibrium with the

ocean. The grounding zone spans the F - H extent. The width is affected spatially by the slope

of bedrock, ice thickness [Schoof, 2007] and temporally by tides and the Inverse Barometric

Effect (IBE), which causes a change in the sea level due to variation in atmospheric pressure.

2.2.2 Significance of grounding line location

The stability of the grounding line location (GLL) is an indicator of the balance between ice

accumulation and ice discharge. Moreover, the GLL is related to the resistive force provided

by ice shelves against ice sheets (Haseloff and Sergienko 2018), (Pegler 2018). While the line

is stable against periodic, small-term perturbations due to seasonal effects and tidal forcing,

basal melting of ice shelves can trigger a positive feedback effect, causing further retreat

(Pattyn 2018). It is important to know the exact position of the grounding line because an

evaluation of ice fluxes at a mislocated grounding line could wrongly suggest either a reduced

melting rate of ice shelves or reduced ice flow from the interiors to the ocean [Rignot et al.,

2011].

2.3. Synthetic Aperture Radar (SAR)

2.3.1 Working principle

The main components of a satellite based SAR instrument are a transmitting and a receiving

antenna. Complementary to a conventional Radar system, microwave pulses are transmitted

and the corresponding echoes scattered by objects on the ground are received. The distance

between the antenna and the scatterers is calculated by measuring the time taken for the

echoes to return. A frequency modulated carrier wave called the chirp signal is transmitted

with a frequency defined by the Pulse Repetition Frequency (PRF). The received echo is a

delayed and attenuated version of the transmitted pulse that is correlated with a replica of the

transmitted signal (Rosen et al. 2000), (Bamler 2000).



Due to its side looking geometry, the energy of the echoes maps to a two dimensional image of

complex numbers (Fig. 2.4). The dimensions are the along-track (flight direction or ‘azimuth’)

and the perpendicular to flight direction (‘slant range’). The area on the ground covered by

each pulse is referred to as the antenna footprint (shown in bright orange in Fig. 2.3). The

range resolution is given by:

δR =
c

2B
(2.1)

where c is the speed of light and B is the bandwidth of the transmitted chirp. The azimuth

resolution is a function of the antenna beamwidth, which, with the assumption of far-field

radiation is δx = Rβ = Rλ
L , where λ is the wavelength of the transmitted wavelength, L the

antenna length and R the range distance. In order to achieve a reasonable azimuth resolution

(few metres), for a fixed R (typical Low Earth Orbit (LEO) altitudes: 550 km - 850 km) and

λ ( 3 cm - 60 cm), the antenna would have be impractically large. The SAR system makes

use of ‘coherent’ processing, wherein the complex numbers in the generated data matrix are

combined in manner so as to build a ‘virtual’ aperture, having a length much greater than the

physical antenna length. This results in the azimuth resolution being equal to L
2 (accounting

for two-way travel) (Bamler 2000). This is referred to as synthetic aperture, indicated in Fig.

2.3 and Fig. 2.4.

The scattered energy captured by the SAR sensor is a summation of individual scatterers that

are present in a single resolution cell. This yields a noisy looking SAR image and is termed

as speckle. For a large number of scatterers, the response is described as a circular Gaussian

process (Bamler 2000).

SAR has several advantages over optical sensors. Operating in the microwave region of the

spectrum, SAR sensors are active sources (self illuminating) and can penetrate clouds and

(partially) soil, snow and canopy. The viewing geometry of SAR introduces distortions,

distinguished as foreshortening, layover and shadow effects (Bamler 2000). Foreshortening

causes steep terrain that is sloped towards the sensor to appear squeezed and slopes tilted away



Figure 2.3: Illustration of SAR geometry (Moreira et al. 2013)

Figure 2.4: Filling the data matrix (adapted from (Bamler 2000))

from the sensor to appear stretched. Layover occurs when the inclination of the observed

terrain is greater than the incidence angle of the SAR antenna, multiple regions get mapped

into the same pixel. A shadow is seen when steep terrain is imaged at shallow incidence

angles. Fig. 2.5 illustrates these effects.



Figure 2.5: Geometric distortions in SAR (Bamler 2000). All letters with ‘ in the superscript show
the mappings of the corresponding points on the ground in the SAR image a) shows squeezing of a

slope facing the sensor b) illustrates layover, wherein the slope tilted away from the sensor overlaps the
slope facing the sensor c) shadow effect as a result of imaging a steep slope from a low incidence angle

While the above mentioned effects are general limitations, they can be partially corrected by

using Digital Elevation Models (DEMs) (Shimada 2010). Furthermore, they do not impede

the application of SAR in grounding line detection which are usually situated in relatively flat

areas. Some specific issues can affect SAR data acquisitions over ice and snow. Dielectric

properties of ice and snow along with the wavelength of the SAR signal and the surface

roughness influence the extent of signal penetration (Mätzler 1987). However, this does not

adversely affect grounding line detection to a large extent either.

2.3.2 Interferometric SAR (InSAR)

SAR images can be interpreted as magnitude (or square of magnitude, intensity) and phase.

However, the phase of a single SAR image does not convey much information. In SAR

interferometry, the differential phase of two or more SAR images acquired with at least one

differing parameter (acquisition times, imaging positions, wavelength) provides additional

information to derive topography, subsidence and velocities of moving objects, ocean currents,

glaciers and lava flow (Bamler andHartl 1998), (Moreira et al. 2013). The InSARconfiguration



which measures displacement in the slant range of Line of Sight (LOS) is the focus of this

section.

Repeat-pass interferometry involves using two SAR images of the same region acquired at

different times to extract surface displacement. Ideally repeat tracks would overlap each other

exactly, however, there usually exists a separation in the flight paths termed as the baseline

(B) and its component perpendicular to the look (range) direction called the perpendicular

baseline (B⊥) (Bamler and Hartl 1998) (Fig. 2.6).

Figure 2.6: Repeat pass interferometry, satellite flight direction is into the plane of the figure
(adapted from (Bamler and Hartl 1998))

The LOS deformation is visible in the phase difference which is computed by a complex-

conjugate multiplication of the SAR image pair, called the interferogram. Before an inter-

ferogram can be formed, the image pair needs to be coregistered. Shift vectors are found

by performing patchwise cross-correlations between one of the images (secondary) and the

reference (primary) image. Correlation peaks are oversampled to achieve sub-pixel matching.

The secondary is then interpolated over the primary image.



The interferometric phase contains the following components:

φ2 − φ1 = ∆φ = ∆φ∆Rdisp
+ ∆φtopo + ∆φatmos + ∆φ f lat earth (2.2)

where φ1 and φ2 are the measured phases at t1 and t2 respectively. ∆φ∆Rdisp
is the change

in phase due to displacement of the observed surface element in LOS. In terms of range

difference, this is expressed as:

∆φ∆Rdisp
=

4π
λ
∆Rdisp (2.3)

λ is the wavelength of the transmitted pulse. The additional phase contributions are due to the

topography (∆φtopo), side looking geometry (∆φ f lat earth) and atmospheric effects (∆φatmos).

∆φtopo and∆φ f latearth can be removed using a DEM.∆φatmos introduces both phase delays and

advances and is a source of error (for differential InSAR applications). Methods of mitigation

are discussed in a later part of this section.

∆φ results in ‘wrapped’ phases because it is ambiguous within integer multiples of 2π.

Visually, this forms contour-like patterns called fringes. Absolute phase is determined using

phase unwrapping algorithms, detailed in (Rosen et al. 2000).

The quality of an interferogram is expressed in terms of its complex coherence:

|γ̂ | =
|(u1u∗2)|√
〈|u2

1 |〉〈|u
2
2 |〉

(2.4)

u1 and u2 represent the complex matrices of two SAR images and the angular brackets indicate

averaging over windows of specified size. γ̂ varies from 0 to 1, values close to 1 indicating

a temporal stable phase of the target and a visible fringe pattern can be expected in the

interferogram.



Phase decorrelation occurs due to several factors. Atmospheric pressure, temperature and

water vapour content variation in the troposphere cause phase delays which could lead to

measurement errors in the range of decimeters. The total electron content (TEC) in the

ionosphere is another influencing factor. These quantities vary at spatial scales (in the order of

kilometres) (Zebker 2021) that are larger than the width of the grounding zone and therefore

do not play a significant role in grounding line detection.

A major reason for low coherence interferograms is due to the changing position of scatterers

between acquisitions, known as temporal decorrelation. Snowfall, surface melt, snow drift

(due to wind erosion and deposition), and deformation (shear processes and large ice move-

ments) in regions of fast flowing ice can result in noisy fringes, making it difficult to unwrap

phases or even leading to complete decorrelation in some cases.

2.3.3 Grounding line detection with DInSAR

Differential Interferometric SAR detects tidal deformation which occurs at the hinge line

(Fig. 2.2 a). Two pairs of interferograms are subtracted to remove phase contributions from

topography and horizontal ice motion, assuming steady flow. The double difference can

either be formed using three or four SAR images of different epochs. Following Eqn. 2.2

(not accounting for atmospheric effects, IBE and sensor biases), two interferograms between

images 1, 2, 3 acquired at times t1 < t2 < t3 are:

φ12 = φ2 − φ1 = φ12, topo + φ12, ice velocity + φ12, tidal de f ormation (2.5)

φ32 = φ2 − φ3 = φ32, topo + φ32, ice velocity + φ32, tidal de f ormation (2.6)

The ice velocity and tidal deformation are the two components of LOS displacement. The

velocity and tidal components are expressed as (Rignot 1996):

φab, ice velocity =
4π
λ
(−Vxsinθ + Vzcosθ)(tb − ta) (2.7)



φab, tidal de f ormation =
4π
λ
(zb − za)cosθ (2.8)

where Vx and Vz are velocity components resolved along LOS. Vy is the azimuthal component

and therefore not captured. θ is the incidence angle with respect to the vertical. t and z

refer to acquisition time and elevation respectively. Removal of the horizontal deformation

component is dependent on the order in which the SAR images are acquired and the temporal

baseline. Fig. 2.7 a and Fig. 2.7 b show the possible combinations for images with the

constant temporal separation, i.e. t2 − t1 = t3 − t2.

Figure 2.7: Formation of double difference interferograms from a), b) three and c) four SAR
acquisitions. The data are acquired in sequence, t1 < t2 < t3 < t4



After removing topographic phase with a DEM, the double difference contains phase changes

due to tidal displacement (Rignot 1996):

φ12, tidal de f ormation + φ32, tidal de f ormation =
4π
λ
(2z2 − z3 − z1)cosθ (2.9)

Tidal deformation is seen as dense fringes in the double difference interferogram (Fig 2.8). The

most inland interferometric fringe of this belt marks the landward extent of the ice deformation

(bending) due to tidal motion and therefore the location of the hinge line. Many DInSAR

based GLL datasets (Section 3.1.2) employ this visual feature and manually digitise the GLL

on the double difference interferogram. In certain circumstances InSAR can also be used to

map the GLL (Rignot 1996), (Rignot 1998), (Rignot et al. 2011), (Rignot et al. 2014), (Milillo

et al. 2022). The elevation profile obtained after phase unwrapping is fitted to modelled tidal

displacements based on elastic beam theory (Holdsworth 1969). However, this process is

computationally intensive and requires high coherence interferograms.

Figure 2.8: Double difference interferogram formed from 3 consecutive Sentinel-1 SAR acquisitions,
with temporal baseline of six days. The red rectangle in the inset shows the location of the Amery Ice

Shelf. The grounding line (black) is from the AIS_cci project (Horwath and Groh 2018)

2.4. Machine Learning

Machine learning (ML) algorithms are a set of automated methods (with a basis in statistics)

that find patterns in data and use this information to make further predictions or decisions

(Murphy 2012, 1.1). Relative to non-ML techniques, ML methods find a representation for

large amounts of data without the need for programmed instructions or an explicit framework.



The task of extracting information from data by a ML algorithm is termed as ’learning’ and

the type of data used for this task defines the learning problem. While there are several

categorizations of learning problems (specified in Murphy 2012, 1.1.1), supervised learning

(learning the mapping from input data samples to their corresponding labels) is pertinent to

this study and is the basis for further content in this section.

The ability ofML algorithms to automate everyday tasks have led to them being integrated into

modern day technologies. They are also increasingly being used for processing voluminous

remote sensing data (Zhu et al. 2017). Deep learning (DL) networks (a subset of ML

algorithms) in particular have been gaining popularity since the last decade. These methods

have been applied to scene classification (Minetto et al. 2019), (He et al. 2019), object detection

(Deng et al. 2018) and semantic segmentation (Tasar et al. 2019) tasks and have been shown

to outperform conventional techniques.

Section 2.4.1 provides an overview of deep learning. The specific problem of semantic

segmentation or pixel wise classification and the popular solution to it, Convolutional Neural

Networks (CNN) are discussed in Section 2.4.2.

2.4.1 Deep Learning

Deep learning methods (or deep neural networks (DNN)) are characterised by several layers

of representations of the input data. Each data representation is obtained by mathematical

transformation of the input by a collection of basic units called neurons (Fig. 2.9). The

concept of the neuron was derived from a mathematical interpretation of human brain cells

(McCulloch and Pitts 1943). The neuron performs a nonlinear transformation (via activation

function) on a weighted linear combination of the inputs and a constant bias:

a = σ(
n∑

i=1
wi xi + b) (2.10)

The activation function constrains the output to a desired range of values. Fig. 2.12

illustrates commonly used activation functions. (Lederer 2021) provides an overview of



Figure 2.9: Artificial neuron, the basic unit of every DNN. Inputs xi to an ANN are weighted (with
weight wi), summed and nonlinearly transformed (via activation function σ), following Eqn. (2.10)

different activation functions and their applications. A DNN typically contains two or more

collections of stacked neurons (in ‘hidden’ layers) between the inputs and outputs (Fig. 2.11).

Theweights and biases of all the neurons are adjusted simultaneously during training. Training

involves allowing the network to inspect the data multiple times, with small adjustments being

made to the network parameters by an optimization algorithm after every iteration. These

adjustments are made with the aim to reduce the error or loss (quantified by means of a ‘loss

function’) between network predictions and expected outcomes (Fig. 2.10).

Figure 2.10: Training workflow for supervised learning tasks aiming at reducing errors by
minimizing the loss function (adapted from (Chollet 2021))



Figure 2.11: Structure of a simple deep neural network with three hidden layers. ai
l represents one

neuron with l referring to the layer index and i the neuron index (Dong et al. 2020)

Figure 2.12: Popular activation functions a) Sigmoid b) Rectified Linear Unit (ReLU) c) Parametric
or leaky ReLU (PReLU) ((Pang et al. 2018))

The optimizer essentially computed the gradient of the loss functionwith respect to the weights

and uses them to adjust the weights vector in a direction opposite to the gradient vector (LeCun

et al. 2015). The gradients are calculated using a method called backpropagation (Rumelhart

et al. 1986). There are several optimization techniques used for loss minimization (Choi et al.

2019).

Unlike traditional ML techniques which contain relatively few representation layers, tens or

hundreds of successive data transformations in multilayer DNNs yields a variety of features,

enhancing their ability to learn complex functions. Additionally, these networks are end-to-end

models, i.e., they do not require a handcrafted feature extractor (LeCun et al. 2015).



2.4.2 Convolutional Neural Networks

ConvolutionalNeuralNetworks (CNN) are a variant ofDNNs that are primarily used to process

multi dimensional data (LeCun et al. 2015). The architecture is characterised by convolutional

layers. Convolution here refers to the dot product between a convolution kernel and inputs,

which occurs patchwise as the kernel moves across the input tensor with a defined stride

(Fig. 2.13). This provides the advantages of having fewer trainable weights (in comparison

to standard fully connected layers of a DNN) and exploitation of local, translation invariant

patterns (Chollet 2021 8.1.1).

Figure 2.13: An example of convolution operation with a 3x3 kernel, no padding and stride of 1
(adapted from (Yamashita et al. 2018))

Convolutional layers are typically followed by a dimensionality reduction operation known as

pooling (Fig. 2.14). The aim of pooling is to merge semantically similar features (LeCun et al.

2015). A typical CNN architecture consists of several blocks of convolutions, nonlinearity

and pooling or subsampling followed by a final fully connected layer (Fig. 2.15). Features

learnt by the convolutional layers essentially form a feature hierarchy, enabling the network to

learn complex and abstract patterns (Chollet 2021, 8.1.1), (LeCun et al. 2015). These aspects

have led to extensive and successful usage of CNNs for several tasks.



Figure 2.14: Schematic illustrating 3 different pooling operations which are typically used after
convolution operation (Figure 2.13) in order to reduce the dimensionality.

Figure 2.15: Example of a typical CNN architecture a) LeNet-5 (LeCun et al. 1989) used for
handwritten digit recognition b) visualisation of features extracted by intermediate convolutional

layers. Figure adapted from (Gu et al. 2018).

3. State of the art

This chapter outlines state of the art techniques in detecting grounding lines and existing

grounding line datasets (Section 3.1) and machine learning architectures typically used both

for grounding line delineation and similar tasks such as calving front detection (Section 3.2).



3.1. Overview of grounding line detection techniques

3.1.1 Detection methods

The techniques mentioned here follow the classification specified in the review paper from

(Friedl et al. 2020). The purpose of this section is to provide an overview of existing methods

and hence does not discuss equations, minute details or all available literature connected to

them. Fig. 3.1 shows an overview of the methods. Only in-situ and remote sensing techniques

are discussed in this section.

Figure 3.1: Classification of grounding line detection techniques (adapted from (Friedl et al. 2020))

1. In-situ techniques

Field measurements involve using a variety of instruments to derive geophysical param-

eters such as ice velocity, tidal displacement, surface and bedrock elevation. (Smith

1991) used tiltmeters to determine change in surface slope due to tidal displacement.

Along with ice velocity information, surface and bedrock elevation derived from optical

levelling and seismic sounding equipment, respectively, was used to model a part of the

Ronne Ice Shelf’s bending as a two dimensional elastic beam. Tidal components were

extracted from tilt measurements using Fourier analysis. The landward limit of ice sheet

flexure (F in Fig. 2.2) was obtained from the model.



In addition to tiltmeters, (Riedel et al. 1999) used gravity metres to measure vertical

deflection due to ocean and earth tides. Kinematic Global Positioning Systems (GPS)

were used to measure overall ice motion, fromwhich ice velocities were derived. Similar

to (Smith 1991), Fast Fourier Transform (FFT) was applied to obtain phases, amplitudes

and frequencies of tides. While the above mentioned instruments are accurate and are

able to locate F within 500m or better (Smith 1991), data gaps occurred due to power

failure and downloading errors (Riedel et al. 1999). Model assumptions do not hold in

all locations due to different grounding zone configurations.

Using a processing method similar to InSAR (Section 2.3.2), LOS velocities and an

elevation time series were generated using Terrestrial RADAR Interferometry (TRI) by

(Xie et al. 2018). These parameters were used to find tidal components and hence find

the boundary between grounded and floating ice. TRI is sensitive to displacements of 1

mm in LOS (Ku band) and is independent of weather and lighting conditions. Setting

up the radar is, however, a difficult task and could introduce errors due to mistakes in

positioning the equipment.

Ice trajectory vectors in the study from (Rosenau et al. 2013) were computed by pho-

togrammetrically combining terrestrial imagery. Surface features such crevasses were

tracked in the images and coregistered using cross correlation. The vertical components

of the trajectory were cross correlated with tidal amplitudes derived from tide models.

Free float values (ratio between tidal amplitude and vertical component of the trajectory

at an epoch) were used to delineate the grounding line, with values close to 1 indicating

a good coincidence of vertical ice movement and tides. The delineation had an accuracy

of 100m.

Apart from the expense, logistical difficulties and risks involved in collecting measure-

ments in polar environments, in-situ techniques are also limited in terms of spatial and



temporal resolution. Still, such field campaigns are very useful when focused on valida-

tion of ice deformation models because the temporal resolution of such measurements is

comparable to that of the tide models and thus they can capture entire tidal cycles (Wild

et al. 2019).

2. Remote Sensing techniques

a) Tidal/Dynamic methods

Tidal methods detect the vertical deformation that occurs at the hinge line due to

tidal forcing.

Extraction of grounding line location from one single interferogram is limited to

regions where ice movement is sufficiently slow, i.e., contribution from horizontal

ice movement is negligible compared to vertical deformation from tides. This also

implies that the fringe pattern characteristic to vertical deformation at the flexure

point, similar to the one visible in Fig. 2.8, is distinguishable in high coherence

interferograms. This was demonstrated in the study from (Goldstein et al. 1993)

using ERS-1 interferograms with a 6 day temporal baseline. Horizontal velocity

components were accounted for by using velocity estimated from ground based

observations.

As explained in Section 2.3.3, F is detectable in double difference interferograms

formed with Differential Interferometric SAR (DInSAR) under the assumption of

constant horizontal ice velocity. While DInSAR is advantageous with respect to

spatial coverage, accuracy ( <1cm) (Goldstein et al. 1993), (Rignot et al. 2011),

capturing short term grounding line variation and independence to weather and

illumination conditions, acquiring interferograms with high coherence is impeded

by decorrelating factors such as snow accumulation, snow drift, melting events and

fast glacier flow. The assumption of steady ice flow does not hold true for outlet

glaciers where changes in ice velocity induced by tides results in an additional range



component. The grounding lines manually delineated on double difference inter-

ferograms have a reported positioning accuracy of 100 m in the study of (Rignot

et al. 2011) and 250 m in dataset compiled by (Horwath and Groh 2018).

The SAR Differential Range Offset Tracking (DROT) method overcomes the need

for high coherence interferograms. Sub-pixel offsets in azimuth and range directions

are estimated in a pair of coregistered SAR intensity images by cross correlating

with speckle patterns, also known as speckle tracking (Joughin 2002). Similar to

DInSAR, a double difference of (triple or quadruple) offsets is generated. Range

displacements contain real horizontal motion and a bias from tidal displacement

which is introduced due to the side looking geometry of SAR. The horizontal

components (assuming steady flow) and equal vertical biases are cancelled in the

double differenced fields. The remaining displacement associated with tidal flexure

is a function of the incidence angle (Marsh et al. 2013). Although independent of

coherence, DROT is less sensitive to vertical displacement and hinge lines derived

using DROT are 2 km inland of those derived using DInSAR (Joughin et al. 2016).

Since the tidal bias is only present in the range offsets, glaciers that flow in the

azimuth direction cannot be considered. Additionally, the technique cannot differ-

entiate between displacement caused by tidal and non tidal ocean processes such as

storm surges, ocean eddies and Inverse Barometric Effect (Rignot et al. 2000).

Another method that detects the hinge line is repeat track laser-altimetry (RTLA).

A mean elevation profile is computed from several repeat pass measurements.

Temporal changes in elevation (‘elevation anomalies’) are tracked by differencing

each elevation profile from a mean elevation. F, H and Ib are determined from

visual inspection of the profiles. The elevation changes are validated with tidal

models (Brunt et al. 2010), (Fricker et al. 2009), (Brunt et al. 2011). The standard

deviation between RTLA based grounding line delineation from Ice, Cloud and



land Elevation Satellite (ICESat) and DInSAR measurements was measured to be

0.9 km (Dawson and Bamber 2017). However, the spatial resolution is poor due

to large distances (5-20 km) between ground tracks. Noise introduced by surface

roughness and attenuation from cloud cover limit the number of validmeasurements

(Brunt et al. 2010).

The study from (Dawson and Bamber 2017) adapts the Pseudo Crossover Radar

Altimetry (PCRA) technique from (Wouters et al. 2015) to find F and H. The

method uses radar altimetry measurements and modelled tidal amplitudes to fit

a bilinear equation that describes the elevation at each point. The equations are

solved simultaneously for topography and tidal contribution, which is represented

by a dimensionless quantity called Td , which varies from 0 (no correlation) to 1

(complete match to modelled tides). Given the spatial coverage of CryoSat-2 mea-

surements, the PCRA method could potentially estimate nearly all the grounding

lines in Antarctica. The standard deviation between grounding lines derived from

CryoSat-2 and DInSAR (derived from AIS-cci and MEaSUREs datasets 3.1.2) is

1.1 km. While computationally effective, PCRA is less sensitive to small tidal

amplitudes. Measurements are limited in areas of steep slope and lower latitudes

due to large track spacing.

b) Static methods

Static methods are based on a single gridded field, either a satellite image product

or a DEM (Brunt et al. 2010).

i. Hydrostatic methods

Hydrostatic methods estimate the position of H. The technique determines the

ice thickness required for an ice shelf to be in hydrostatic equilibrium with the

ocean. Ice thickness is estimated from ice surface and ice bed elevations above

mean sea level (orthometric elevation or freeboard height) (Fricker et al. 2002).

The observed ice thickness and assumed densities of ice, water and firn are used

to determine the theoretical freeboard height of ice in hydrostatic equilibrium.



Where the difference between the two heights is close to zero, ice is considered

to be floating. The first location where there is a deviation between the values

would be slightly landward of the hydrostatic point. The elevation measure-

ments are obtained from DEMs or interpolated from ice thickness maps. Some

studies also used airborne radio-echo sounding and LiDAR measurements for

specific regions in Antarctica and Greenland, enabling the capture of temporal

variation of the grounding line (Friedl et al. 2020).

This method is computationally efficient. However, the accuracy of locating H

is dependent on the variables in the buoyancy equation which vary locally (e.g.

ice and firn density). Since H can be kilometres away from the grounding line,

a small error in these input variables can greatly affect the estimated location.

The spatial resolution is limited to that of the available datasets.

ii. Surface slope methods

One way to identify the break in slope is to derive it from elevation data mea-

sured using satellite or airborne radar or laser altimetry. While the elevation

profiles provide location estimates for single timestamps, a more continuous

coverage can be obtained using DEMs. If DEMs are a compilation of data from

different years they cannot be used to detect fast moving variations. A major

advantage of this technique is the speed and relative ease of computation. Using

the break in slope as a proxy for grounding line location is not always viable,

especially in fast flowing regions, where the grounding line positions can vary

by more than 100 km from DInSAR estimates (Friedl et al. 2020). Where ice

plains are present, the coupling line C (Fig. 2.2 b) could be misinterpreted as

a break in slope.

Break in slope is also identifiable from optical imagery by a technique known

as photoclinometry. The photoclinometric equation relates imaging geometry,

surface illumination, radiance captured by the sensor and reflectance properties



of the surface to surface slopes (Bindschadler and Vornberger 1994). This

relation shows the break in slope as a change in shading in optical images. The

derived grounding line locations agree well with DinSAR locations where the

slope is sufficiently steep and ice is slow moving. Similar to the break in slope

method based on elevation data, for gentle slopes or fast moving glaciers, the

optical data based estimates differ up to 150 km from DInSAR measurements

(Rignot et al. 2011). Cloud cover and illumination conditions limit the use of

optical imagery in general.

3.1.2 Grounding Line Datasets over Antarctica

This section discusses existing datasets, primarily those that cover a major part of the Antarctic

continent.

The Making Earth System Data Records for Use in Research Environments (MEaSUREs)

Antarctic grounding line (Rignot et al. 2016) is a dataset based on DInSAR measurements,

distributed by NASA National Snow and Ice Data Center (NSIDC). It consists of mapped

upper limit of tidal flexure (F) over a long period (1992-2014) from several SAR missions:

ERS-1/2 (1992, 1994-1996, 1999, 2000), RADARSAT-1 (2000), ALOS Palsar (2007, 2008),

RADARSAT-2 (2009), COSMO SkyMed (2013) and Sentinel-1 (2014). Different operating

frequencies, interferometric baselines and revisit frequencies of the missions affect the quality

and accuracy of the generated lines. The lines were manually digitized on the interferograms,

with an overall standard error of 100 m when validated against multiple mappings, epochs and

datasets such as MODIS Mosaic of Antarctica (MOA) (Rignot et al. 2011).

The Antarctic Ice Sheets Climate Change Initiative (AIS_cci) project from ESA develops

several datasets related to measuring different climate relevant parameters of Antarctica.

Similar to the MEaSUREs product the AIS_cci Grounding Line Location (GLL) product

contains DInSAR derived upper limit of tidal flexure (F) derived from ERS-1/2, Sentinel-1

A/B and TerraSAR-X data. The dataset has a temporal coverage from 1992-2021. While



a data gap exists between 2000-2011 (due to lack of missions with appropriate temporal

baseline), spatially about 75% of the continent is covered. The AIS_cci GLLs were validated

against MEaSUREs, Antarctic Surface Accumulation and Ice Discharge (ASAID) and MOA

datasets on selected areas and revealed an average deviation of 0.57 km , 1.2 km and 1.8 km

respectively (Horwath and Groh 2018).

MOA (Scambos et al. 2007) and ASAID (Bindschadler et al. 2011) are datasets derived from

identifying break in slope (Ib) from optical images. MOA lines were generated by using

surface morphology from 260 Moderate-resolution Imaging Spectroradiometer (MODIS)

images acquired between November 2003 and February 2004. The grounding lines were

manually digitized by following the seaward-most continuous slope break on the permanent

coastline in images of the surface morphologies. The spatial resolution is 250 m and the

standard error is 250 m. The MOA dataset covers the whole continent and all islands.

Generated using a similar procedure, the ASAID product contains both Ib and hydrostatic

point locations (H). Landsat 7 imagery acquired between 1999 and 2003 and ICESat/GLAS

laser altimetry from 2003 and 2008 were used. The spatial resolution is 15 m. The positional

accuracies of the lines vary from ±52 m to ±502 m. The hydrostatic line is positioned with

errors of over 2 km. The ASAID dataset covers the whole continent and three islands.

The ICESat-Derived Grounding Zone for Antarctic Ice shelves contains F, H and Ib, mea-

surements obtained for a period between 2003 and 2009 (Brunt et al. 2010). The dataset

contains 1497 Point F, 1470 Point H, and 1493 Point Ib locations. Recently, a newer version

of the dataset from ICESat2 measurements with a much higher point density (21346 Point F,

18149 Point H , and 36765 Point Ib) and almost complete coverage was made freely avail-

able by NSIDC (Li et al. 2021). Repeat track measurements between 30 March 2019 and

30 September 2020 were used. The processing chain is automated and uses tidal methods

(elevation anomalies) to estimate the positions of F and H and break in slope technique to

estimate the location of Ib. The F points agree well with DInSAR derived lines (Sentinel-1



data from 2018), with a mean absolute separation and standard deviation of 0.02 and 0.02 km,

respectively (Li et al. 2022). Fig. 3.2 shows the spatial distribution of the datasets mentioned

above.





Figure 3.2: Temporal and spatial distributions of grounding line datasets a) MEaSUREs V2 (Rignot
et al. 2016) b) Antarctic Ice Sheets climate change initiative (AIS_cci) (Horwath and Groh 2018) c)
Antarctic Surface Accumulation and Ice Discharge (ASAID) (Bindschadler et al. 2011) d) Mosaic Of
Antarctica (MOA) (Scambos et al. 2007) e) ICESat 2 - Derived Grounding Zone for Antarctic Ice

shelves (Li et al. 2021). Plot was made using Quantarctica 3 (Matsuoka et al. 2021)

3.2. Automatic delineation methods

The spatial and temporal extent, number of satellite missions and variety of sensors and

volume of data measuring geophysical parameters of polar regions has urged the automation

of processing chains. The simultaneous advancements in machine learning algorithms, deep



learning in particular, makes it possible to analyse and process such large datasets. Section

3.2.2 discusses some of the architectures that have been used for grounding line detection.

The automation of coastline and calving front (CF) detection is better explored compared to

grounding line delineation due to their visibility in optical as well as SAR images. There

exists both classical image processing and, more recently, machine learning techniques for the

fast changing calving front. Section 3.2.1 describes the identification issues in brief, remote

sensing based detection techniques and enumerates automatic delineation methods.

Coastline and calving front detection could be seen as analogous tasks to grounding line

delineation due to their appearance as a thin edge at the borders between large areas of land

or grounded ice and open sea or floating ice. In satellite images very few pixels belong to

the coastline or calving front or grounding line in comparison to the rest and therefore can be

solved using similar solutions.

3.2.1 Calving front (CF) detection

The calving front refers to the boundary between a mass of ice that is either grounded or

physically bound to an ice shelf and its environment (open water, sea ice, calved icebergs).

In addition to changing the shape of the coastline, ice shelf calving also directly impacts its

mass, thereby changing buttressing forces and affecting glacier dynamics terminating into the

ice shelf in a significant way (Baumhoer et al. 2018), (Wuite et al. 2019).

Calving fronts are detectable in optical imagery, SAR imagery and DEMs. Image process-

ing based methods exploit the reflective properties of ice and water, identifiable either in

multispectral images or backscattering characteristics. (Sohn and Jezek 1999) applied edge

enhancement and local thresholding for optical images and found regions of drastic contrast

difference in SAR images (texture features), followed by edge detection. The Canny edge

detector was applied to SAR intensity images in (Krieger and Floricioiu 2017) to estimate the

calving front location between a start and end point. Djikstra’s algorithm is then used to find

the optimal delineation. Both methods showed good performance (mean difference between



automatic delineation and manual delineation of 200 m and 246 m for Sentinel-1 and 159m

for TerraSAR-X respectively), but both were tested on small study areas only.

Similarly, (Seale et al. 2011) used the Sobel operator and a brightness gradient to find edges

on cloud free MODIS images. Although the method was applicable to large scale datasets, a

manual orientation of images in the direction of glacier flow was required.

Active contours method was used in (Klinger et al. 2011) to iteratively find the best line, given

initial calving front locations. This is also one of the drawbacks of the method and required

post processing corrections. (Baumhoer et al. 2018) reviews several other semi-automatic and

automatic delineation methods.

(Dong et al. 2022) developed an algorithm to automatically delineate calving fronts from

DEMs through elevation and roughness based features which enhances the contrast between

the ice sheet and the ocean. The method performed well with the TanDEM-X DEM at

two posting sizes and with the optical photogrammetry based Reference Elevation Model

of Antarctica (REMA), but is limited by the availability and quality of DEMs. The mean

deviation from the manually delineated CFs was 14 m with REMA, 20 m with the 12 m and

70 m with the 90 m TanDEM-X DEMs respectively.

Machine learning algorithms for delineation are generally seen as a segmentation problem.

Convolutional Neural Networks are widely used due to their ability to glean contextual in-

formation from images at various scales. The UNet network was used by (Mohajerani et al.

2019) with preprocessed images from Landsat 5, Landsat 7 and Landsat 8 to delineate glacier

fronts in Greenland. The resultant deviations were very close to the manual lines (1.97 pixels

on average).

A modified version of the UNet was developed by (Baumhoer et al. 2019) to delineate CFs in

Sentinel-1 intensity images that were stacked as four channels: HH and HV polarizations, ratio

of HH/HV polarizations and TanDEM-X DEM at 90 m posting. The training images were



manually preprocessed, followed by segmentation into land ice and ocean classes, followed

by rasterization of the outputs. They were able to achieve a mean difference of 154 m.

The study by (Cheng et al. 2021) incorporates multi sensor (Landsat 7, Sentinel-1 and

TerraSAR-X) data covering glaciers both in Greenland and Antarctica. Called the Calv-

ing Front Machine neural network (CALFIN-NN), the network segments pixels into ice and

ocean. The delineations deviate on average by 86.76 ± 1.43 m from the measured front.

(Heidler et al. 2021) aimed to reduce misclassification at the boundary between land and

ocean by merging an edge detection architecture, HED with UNet (see Section 4.2). Deep

supervision and hierarchical attention mechanisms are implemented to merge intermediate,

multiscale outputs into a final prediction. Sentinel-1 images of the Antarctic coast were used

for training. A mean deviation of 345 ± 24 m was achieved for a test site in the Antarctic

Peninsula. In general, the model outperformed several edge detection methods and other deep

learning architectures.

3.2.2 Machine learning for grounding line detection

Automatic grounding line delineation is impeded by several obstacles which are absent from

calving front delineation. The grounding line is not a surface feature and is instead detected

by measuring proxies (Section 3.1). Edge detection algorithms have, so far, not been explored

for delineation on either interferograms or optical images.

To date, only one study (Mohajerani et al. 2021) explores extracting grounding line locations

from Sentinel-1 double difference interferograms. The architecture was adopted from (Cheng

et al. 2021), with real and imaginary components of the interferograms forming the two

channels of each input. The network differentiates between grounding line and non grounding

line pixels. The network was trained on DInSAR interferograms (with temporal baselines of

six and twelve days) of Sentinel-1 scenes for the period of 2018, covering the Getz Ice Shelf.

DInSAR interferograms covering the AIS were used to validate the model.



The model was able to achieve a mean deviation of 232 m and a median absolute deviation

of 101 m in comparison to manual delineations. They also concluded that the predicted lines

are consistent and reproducible, unlike human drawn lines. Overall, the predictions follow the

ground truth well, although spurious branches were generated in some regions.



4. Data and methods

This chapter describes the grounding line product, associated features that form the dataset

and chosen machine learning architectures.

4.1. Dataset

4.1.1 The AIS_cci Grounding Line Location

The Grounding Line Location (GLL) product of the AIS_cci dataset was used as ground

truth in this study. The spatial and temporal extent are mentioned in Section 3.1.2 and

pictorially represented in Fig. 3.2. The grounding lines were delineated on double difference

interferograms formed from Sentinel-1A/B, ERS-1/2 and TerraSAR-X images.

Sentinel-1A and Sentinel-1B are polar orbiting satellites with SAR payloads which operate

in the C-band. For the GLL product, SAR images acquired in the Interferometric Wide

Swath (IW) mode with Terrain Observation by Progressive Scans (TOPS) were used. TOPS

involves scanning along elevation while also rotating the antenna forward in azimuth. This

achieves a wide swath coverage at nearly uniform Signal-to-Noise Ratio (SNR). The burst-wise

processing of the images is described in (Yagüe- Martınez et al. 2016). Three consecutive

repeat pass acquisitions with a temporal baseline of both 6 days and 12 days were used to

generate interferograms.

The European Remote Sensing satellites (ERS) 1 and 2 were also operating at C-band and

shared the same polar orbit. Two and three image interferograms with temporal baselines

of 1 day and 3 days respectively acquired during the tandem mission were used. X-band

data from TerraSAR-X with 11 days temporal baseline were also used. Both ERS-1/2 and

TerraSAR-X images were acquired in Stripmap mode. Using interferograms from different

satellite missions provides the advantages of a long time series and filling in spatial gaps, as

in the case of TerraSAR-X which covers the polar hole not covered by Sentinel-1.



Figure 4.1: TOPS scan pattern for Sentinel-1 (Yagüe- Martınez et al. 2016). The antenna rotation in
azimuth is indicated by the red arrows. For burst 1, subswath 1 is acquired first (blue), followed by the
second (green) and the third (orange). The antenna steers back to the first subswath and the process

repeats for the subsequent bursts.

The AIS_cci GLL dataset contains 11,506 lines delineated on 478 double difference inter-

ferograms. Although coherent, not all interferograms were usable either due to missing or

corrupted data. For this study, grounding lines from 340 interferograms were used. Table.4.1

shows the distribution of interferograms within the 3 satellite missions.

Table 4.1: Overview of satellite missions. IW - Interferometric Wide Swath, TOPS - Terrain
Observations by Progressive Scans, SM - Stripmap. The last column shows the number of double
difference interferograms used for this study versus the total processed in the AIS_cci project.

Satellite SAR wavelength Repeat cycle Imaging mode DInSAR
[cm] [days] interferograms

(used/dataset)
Sentinel 1A/B C-band (∼ 5.5 cm) 6/12 IW, TOPS 199/201
TerraSAR-X X-band (∼ 3.1 cm) 11 SM 13/129
ERS 1/2 C-band (∼ 5.6 cm) 1, 3 SM 119/148

Fig. 4.2 shows the simplified processing chain used for the generation of the GLL product

(Muir 2021). Following data ordering and download, the images are sorted based on orbit and

look direction to determine the repeat pass pairs or triplets that can be formed based on the



required temporal baseline. The interferograms are computed by the established Integrated

Wide Area Processor (IWAP) (Gonzalez et al. 2013). The double difference interferograms

are generated by the GL preprocessor, followed by the time-consumingmanual delineation and

creation of ESRI Shapefiles. Metadata such as orbit information, acquisition times, modelled

tidal displacement and atmospheric pressure are added as attributes. Detailed list of attributes

is available in the product user guide (Groh 2021).

Figure 4.2: Simplified AIS_cci GLL processing chain (Muir 2021). Manual functions shown in grey,
intermediate outputs in green, input data/additional information in blue, processors in purple and final

product in yellow. Databases not shown.

4.1.2 Training feature stack

In addition to using wrapped phases of the double difference interferograms, in this study six

other features are stacked to form the training dataset of the DNN. The grounding line location

could potentially also be expressed in these features. They contain information about phase

quality, other grounding zone features (break in slope) or physical phenomenon that causes

the deformation at the hinge line (tidal amplitudes and atmospheric pressure). Table 4.2 lists

the attributes of the selected features.

1. Wrapped phase and pseudo coherence

These are the double difference interferograms on which the grounding lines were

manually delineated. The interferograms were resampled to a specific pixel size and

reprojected to Polar Stereographic projection (EPSG:3031). In order to preserve cyclic

phase variations, the interpolation has to be performed on the real and imaginary compo-

nents separately. However, due to the absence of corresponding magnitude components,



unit magnitude was added to obtain the complete, complex polar representation of the

interferograms. Complex matrices were transformed to their rectangular equivalents on

which the resampling operations were performed. The resultant matrices were trans-

formed back to polar form to retrieve the resampled and reprojected phase. This process

is illustrated for a sample interferogram in Fig. 4.3. As a consequence of resampling,

the resultant magnitude reflects phase stability. As shown in Fig 4.3 g, the magnitude is

closer to 1 for slow varying phase and tends to 0 where the fringe frequency is high. A

similar quality measure can also be obtained by applying a boxcar filter to the phase or

using measured interferometric coherence if available.

Figure 4.3: Phase preserving reprojection and resampling scheme a) phase with b) added unit
magnitude in original projection (EPSG:4326). Complex transformation to c) real and d) imaginary
components. This is followed by resampling and reprojection to EPSG:3031 e) real and f) imaginary
components. These are transformed back to polar form g) magnitude h) phase. A cyclic colorbar is
used for the phase plots to represent -π to π variation. Plot created using Matplotlib version 3.5.0.

2. DEM

The 90 m resolution TanDEM-X PolarDEM (Huber 2020) of Antarctica (derived from

the global TanDEM-X DEM) was used as a proxy for break in elevation. Acquisitions

from April 2013-October 2014 and July 2016-September 2017 were used to compile the

DEM.



3. Ice velocity

The ice velocity product from ENVEO IT, generated also within the AIS_cci project,

was used to augment the feature stack. Sentinel-1 acquisitions from 2014-2021 were

used to create a multi-year averaged ice velocity map in Polar stereographic projection at

200 m resolution. Offset tracking was applied to SAR images to derive velocities along

azimuth and LOS. The complete algorithm is detailed in (Nagler et al. 2015).

4. Tidal displacement

Tidal amplitudes at the time of acquisition of the interferogram pairs and triplets were

derived from the Circum-Antarctic Tidal Simulation (CATS2008) model (Padman et

al. 2008). The model uses assimilated data from several sources, namely tide gauge,

GPS, TOPEX/Poseidon radar altimetry measurements, ICESat derived grounding line

locations and MOA grounding lines. While the model is gridded at 4 km, pixel-wise

interpolated tidal amplitudes were extracted via python APIs provided in the pyTMD

module developed by (Alley et al. 2017).

5. Atmospheric pressure

Surface level atmospheric pressure data provided by the National Centers for Environ-

mental Prediction and the National Center for Atmospheric Research, NCEP/NCAR

Reanalysis dataset (Kalnay et al. 1996) was used. The dataset was created using a

technique called reanalysis which incorporates historical measurements with current ob-

servations. The dataset is available as daily values averaged over an year in EPSG:4326

projection with a resolution of 2.5° x 2.5°.

4.2. Methods

Two deep learning models were considered for this study. One is the Holistically-Nested Edge

Detection (HED) (Xie and Tu 2015), an architecture that was specifically created to learn

boundaries and edges. The model integrates a VGG-Net based fully convolutional neural

network (FCN) with deep supervision, wherein intermediate outputs at multiple scales are

combined to obtain an edge map. The rationale behind deep supervision is that different con-



Table 4.2: Attributes of input features. CATS2008 assimilates several measurements across various
time periods and provides predictions for the required epoch

Feature Dataset Projection Resolution Temporal coverage
[years]

AIS_cci EPSG:4326 S1A/B: 0.00043° S1 A/B: 2014 - 2021
Phase ERS 1/2:0.00055° ERS 1/2: 1992-1999

TSX: 0.00016° TSX: 2011-2018
Pseudo

Derived from EPSG:4326 S1A/B: 0.00043° S1 A/B: 2014 - 2021
coherence/ AIS_cci ERS 1/2:0.00055° ERS 1/2: 1992-1999

Noise TSX: 0.00016° TSX: 2011-2018
DEM TanDEM-X PolarDEM EPSG:3031 90 m April 2013-Oct 2014

July 2016-Sept 2017
Ice velocity ENVEO IT EPSG:3031 200 m 2014-2021

(Vx)
Ice velocity ENVEO IT EPSG:3031 200 m 2014-2021

(Vy)
Tidal amplitudes CATS2008 EPSG:3031 4000 m -
Atmospheric NCEP/NCAR EPSG:4236 2.5° x 2.5° 1948 -
pressure

textual information is captured at different scales, potentially correcting or filling in structures

that are missed by successive convolutions.

The second network is UNet (Ronneberger et al. 2015), a popular and ‘generic’ semantic

segmentation approach. It was chosen to compare with the specialised HED network men-

tioned above, as well as with the existing study of (Mohajerani et al. 2021) that utilised a

different semantic segmentation DNN. The network consists of contracting (downsampling)

and expansive (upsampling) paths as the left and right arms of the ‘U’ respectively. Similar

to HED, outputs from the convolutional layers of the downsampling path are concatenated to

the results of convolutional layers one level below in the upsampling path and fed as inputs

to the following layer. The purpose behind this architectural design is that features that were

recognised earlier are not lost with progressive convolutions.



4.2.1 Architecture details

The HED network consists of five convolutional blocks with a max pool layer in between.

3x3, padded convolution is applied to all layers. A downsampling by a factor 2 occurs at

each maximum pool layer due to the use of a 2 x 2 filter with stride 2. The side outputs

are converted to edge maps with a 1x1 convolution and scaled up to the input scale via a

deconvolution operation. The side outputs are concatenated and finally fused together by a

1x1 convolution to obtain an array with values ranging from 0 to 1, indicating the probability

of each pixel being a grounding line pixel. ReLU activation (Fig. 2.12 b) was applied after

each convolution and a sigmoid function (Fig. 2.12 a) was used for the side outputs and final

fused output. Fig. 4.4 shows a pictorial representation of the network, with different numbers

of convolutional filters for different datasets to overcome memory constraints.

Fig 4.5 illustrates the downsampling/encoder and upsampling/decoder arms of the modified

UNet network. Unlike the original network, padded 3 x 3 convolutions are performed to

avoid cropping and padding the side outputs. Each encoder block contains two convolutional

layers with the same number of filters and a max pooling layer which performs a factor 2

downsampling. The decoder block contains two convolutional layers followed by a decon-

volutional layer which performs a factor 2 upsampling. The outputs of convolutional layers

of the encoder blocks are appended to the input of the corresponding decoder block. The

convolutional layers are ReLU activated, with sigmoid activation for the last 1x1 convolution

layer which yields the prediction probabilities.

4.2.2 Loss function

Due to the highly disproportionate distribution of grounding line to non grounding line pixels,

the weighted binary cross entropy function [Scott, 2012] was used to compute the loss for

both networks. Each class is weighted by the fraction of the other class. With ygl representing



Figure 4.4: Holistically-Nested Edge Detection architecture (Xie and Tu 2015). The superscripts
show the dimensions of the resulting tensor after convolution. n is the height/width of the input and m

is the number of convolution filters.

grounding line pixels, yngl non grounding line pixels and operator indicating the number of

pixels, the loss for prediction y is:

L(ŷ) =
−|yngl |

∑
j∈ygl log ŷ j

|y |
−
−|ygl |

∑
j∈yngl log 1 − ŷ j

|y |
(4.1)



Figure 4.5: UNet architecture (Ronneberger et al. 2015). The superscripts show the dimensions of
the resulting tensor after convolution, n being the dimensions of the input and m is the number of

convolution filters

5. Experimental design

5.1. Grounding line delineation workflow

Fig. 5.1 shows the processing schematic for automatic grounding line delineation. While

the whole chain has the capability of running seamlessly without any intervention, the main

components (preprocessing, training and post-processing) were carried out separately due to

constraints on memory and computing resources.

1. Preprocessing

Double difference interferograms are resampled and reprojected to EPSG:3031. As

mentioned in Section 4.1.1, this process generates the proxy coherence or noise feature.

Along with the rasterized grounding lines (ground truth labels), they are divided into

overlapping square tiles. A 20% overlap in four directions was used for all datasets in

this study. This augments the dataset as well as facilitates merging of predictions later

in the processing chain.



Figure 5.1: Automatic grounding line delineation flowchart. Data blocks are shown in blue,
intermediate outputs in green, optional functions in grey, fixed operations in pink and

flexible/configurable operations in yellow.

The rest of the features are stacked behind phase and pseudo coherence features and

stored as tensors. Interpolation of missing values and removal of invalid tiles are

handled simultaneously. This is followed by feature normalisation and division into

training, validation and test sets (Section 5.2). An optional augmentation of the training

set (random flipping along horizontal and vertical axes) is also possible.

2. Training and validation

Model training and validation are handled by the neural networkmodule. The component

is configurable and provides generic functionalities applicable to both networks. The

input tiles are run through the trained model to generate arrays of the same dimensions

(height and width), each pixel value representing the probability of the pixel belonging

to the grounding line class.

3. Post processing

The probability maps are filtered to remove uncertain predictions. The threshold value

is computed as the probability at which the maximum Optimal Dataset Scale (ODS) F1

score is obtained. The formulation of ODS F1 score is discussed in Section 5.4. The



predictions are binarized by converting all pixels with values lesser than the threshold to

0 and those equal to or greater than the threshold to 1. Spurious branches are removed

by applying a median filter.

Thick and blurry lines are filtered out using a skeletonization algorithm (Zhang and Suen

1984), wherein pixels are iteratively removed until only connected pixels that represent

the skeleton of the original pattern remain. Using the affine transform matrix of the

ground truth rasters as reference, the skeletonized prediction rasters are converted to

vectors and subsequently saved in the ESRI Shapefile format. Post-processing stages for

a sample prediction are shown in Fig. 5.2.

Figure 5.2: Post-processing steps a) probability map b) after thresholding + median filtering c)
skeletonized + vectorized prediction. Plotted using Matplotlib version 3.5.0

5.2. Dataset variants

Several versions of the stacked features were created to explore the performance of the deep

learning networks. Due to the large variation in the numerical ranges of the features, nor-

malisation is necessary to prevent invalid or Not-a-Number (NaN) predictions. All features

except phase (to preserve −π to π variation), pseudo coherence (already in range 0 - 1), real

and imaginary components of phase were normalised. The rest of the features were scaled to

0 - 1 range across the dataset. The goal of further experiments was to examine three different

aspects:



1. Feature importance

As explained in Section 1.2, one of the objectives of this study is to investigate the

contributions of additional features to grounding line delineation. Two feature stacks

with tiles dimension 256 x 256 pixels and pixel size of 100 m were used for training the

HED network. The first dataset variant contained all the features described in Section

4.1.1. In the second variant, the phase and pseudo coherence were replaced by real and

imaginary components of the phase obtained during the resampling process (Fig. 4.3).

Importance of individual features was gauged by training several models for which one

feature was excluded from the feature stack (Table 6.1). The contribution of each feature

was determined indirectly by comparing metrics and visual inspections of predictions.

2. Effect of tile size and pixel size

Due to the localised operating extent of convolutional layers, not all the pixels of the

input have the same influence on each output pixel. The number of input pixels that

contribute to one output pixel is called the receptive field (RF) of the CNN (Araujo et al.

2019), (Luo et al. 2016). The RF is a critical parameter for semantic segmentation, even

more so in the case of extreme class imbalance because there is a limited number of

informative pixels. Fig. 5.3 shows the receptive field for a four layer CNN given a one

dimensional input.

Pixels near the centre of the input tensor influence nearly all output pixels. This means

that the DNN does not learn much from the pixels near the edges. An example of such a

case is illustrated in Fig. 5.4 (a) which shows the RF (white rectangle) for HED. A 256

x 256 pixels tile of random numbers was used as the input. The gradients of the central

pixel of the prediction (red cross) with respect to all input pixels was calculated. Pixels

with non zero gradients were counted in the RF. The advantage of a large tile is apparent

when considering the RF for a corner pixel of the 256 x 256 pixels tile (Fig. 5.4 (b)).

Such a pixel would only affect a few of the output pixels. Therefore it was of interest

to see if the performance of the networks improve when they are trained on large tiles.

In this view, the networks were trained on two dataset variants that contain tiles with



extents 256 x 256 pixels and 1024 x 1024 pixels. The pixel spacing for both variants is

100 m.

A variant with tiles of 1024 x 1024 pixels and 50 m pixel size was created to check

if the predictions improve when the networks are trained on higher resolution data.

Additionally, HED and UNet were trained on a feature stack that contained only two

features, the phase and the pseudo coherence.

Figure 5.3: Receptive field (highlighted in blue) for a four layer CNN. f0 is the input layer followed
by a convolutional layer ( f1), ReLU activation function ( f2), a second convolutional layer ( f3) and a
max pooling layer ( f4). The convolutional layers have a kernel size = 3, padding = 1, stride = 1 and
the max pooling layer has a kernel size = 2, stride = 2. Figure adapted from (Araujo et al. 2019).

3. Augmentation schemes

The larger the number of training samples, the greater is the generalising capability



Figure 5.4: Receptive field (white rectangle, 212 x 212 pixels) for HED a) computed for the centre
pixel (red cross) for an input tile of size 256 x 256 pixels b) computed for a corner pixel of the 256 x
256 tile (represented as an orange outline). The same pixel in a 1024 x 1024 tile is much closer to the

centre of the tile and therefore exerts more influence on the output pixel.

of a DNN, with model performance increasing logarithmically with the volume of

training data (Sun et al. 2017). Data augmentation refers to introducing additional

training samples by applying label preserving transformations. Techniques range from

applying simple geometric or affine transformations (random rotations, flips, cropping

and scaling), oversampling minority class labels (Synthetic Minority Oversampling

Technique (SMOTE)), to using neural networks that can generate ‘believable’ samples

by learning the distribution of the original dataset (Generative Adversarial Networks

(GANs))(Shorten and Khoshgoftaar 2019).

Two types of augmentation were considered: random flipping of ‘valid’ tiles and inclu-

sion of ‘non-valid’ tiles, with tiles being referred to as non-valid if they do not contain

any grounding line pixels. Both augmentation schemes were applied to UNet and HED

networks trained on the full feature stack with tiles of 256 x 256 pixels, 100 m pixel size.

The augmentation doubled the number of training samples for each variant.

5.3. Training details
All dataset versions were split into training and test sets in the ratio 90:10 (Table 5.1). All

models were trained on aGeForce RTX 3090GPUwith 24GBVRAM for amaximum of

30 epochs. Early stopping was implemented to prevent overfitting (Chollet 2021 5.4.3).



Adam optimizer was used for both models, with learning rates mentioned in Table 5.1

and default values for the parameters β1 = 0.9, β2 = 0.999 and ε = 10−8 as specified in

(Kingma and Ba 2014). Convolution kernel weights were initialised with the uniform

Xavier initializer (Glorot and Bengio 2010). Fig. 5.5 shows the spatial distribution of

training (lines from 296 double difference interferograms) and test set (lines from 35

double difference interferograms) used for all dataset variants. Due to unavailability of

a few interferograms some GLLs (black) were not used.

Table 5.1: Training details. The split shows numbers before augmentation

Dataset # Train/test Neural network hyperparameters
(n x n), pixel tiles

size HED UNet
# Filters Batch Learning # Filters Batch Learning

256 x 256, 4142/558 64 128 10−03 8 16 10−05

100 m
1024 x 1024, 788/110 32 16 10−03 8 4 10−05

100 m
1024 x 1024, 1762/246 32 16 10−03 8 4 10−05

50 m

5.4. Metrics

The predictions were quantified using twometrics. F1 score at the optimal dataset scale (ODS)

was used to measure the pixel wise accuracy of the models. The F1 score is defined as the

harmonic mean of precision and recall:

F1 = 2
precision ∗ recall
precision + recall

(5.1)

with precision = true positives
true positives+ f alse positives and recall = true positives

true positives+ f alse negatives



Figure 5.5: Spatial distributions of train (red) and test (blue) split for all dataset variants. Black lines
are present in the AIS_cci dataset but are not used in the experiments. Plot created using Quantarctica

3 (Matsuoka et al. 2021).

Precision quantifies the proportion of pixels identified as grounding line to actually be ground-

ing line pixels. Recall shows the proportion of correctly identified grounding line pixels. The

ODS F1 score was calculated for a range of thresholds to find the optimum threshold (at

maximum ODS F1 score) for binarization of the probability maps.

Additionally, the deviation between predictions and ground truth was computed using the

metric for polygons and line segments (PoLiS) (Avbelj et al. 2014). For two line segments A

and B with point sets a j ∈ A, j = 1, 2, ... j and bk ∈ B, k = 1, 2....r respectively (Fig. 5.6), the

PoLiS distance is calculated as:

p(A, B) =
®p(A, B)

2q
+
®p(B, A)

2r
(5.2)

with ®p(A, B) =
∑q

aj∈A
min

bk∈∂B
| |a − b| | being the PoLiS distance from line A to B. ∂B are points

on B closest to a j .



Figure 5.6: PoLiS metric calculation (adapted from (Avbelj et al. 2014)) a) from polygon A (blue) to
line segment B (orange) b) from line segment B to polygon A c) symmetric distance. Black arrows
show direction in which the distance is calculated, black lines show point to line measurements.



6. Results and discussion

The outcomes of experiments described in Section 5.2 are enumerated in this chapter in

terms of numerical results (with the metrics described in Section 5.4) and visualisations

of the predicted GLLs. The median values of prediction to ground truth, ground truth to

prediction and overall PoLiS distances are reported. While the overall deviation provides an

overview of the prediction quality, the one way distances provide an insight into the geometry

of the predictions. Fig 6.2 shows examples of ground truth and predicted GLL position

configurations. When the prediction follows the GLL in length and shape, the one-way

distances are similar (Fig. 6.2 a). Prediction to ground truth deviation is smaller when the

predicted line is either fragmented (Fig. 6.2 b) or shorter (Fig. 6.2 c) than the ground truth.

Ground truth to prediction distance is smaller when the predicted line is longer (Fig. 6.2 d) or

contains branches that are close or cross the ground truth (Fig. 6.2 e).

Median Absolute Deviation (MAD) is used as a measure of dispersion due to the right skew

in the distributions of the deviations (A.1). The ODS F1 scores (A.3) for all experiments are

fairly low due to the large class imbalance and therefore are not used to evaluate the quality of

the predictions.





Figure 6.2: Computation of PoLiS for several ground truth (black) and prediction (blue)
configurations. Column 2 visualises the ground truth to prediction distance and column 3 shows the
prediction to ground truth distance. The distances are measured from red points on one line to its
closest point on the other line (Section 5.4). Respective distances (metres) are shown in the legend.

Configuration a) ideal case where prediction follows the ground truth closely b) prediction is
fragmented but still within the length of ground truth c) prediction is far away and shorter than the
ground truth, d) prediction length exceeds ground truth distance and e) spurious branches on the

prediction. Plotted using Matplotlib version 3.5.0.

6.1. Feature exploration

This section presents the results from training several HED networks on the 256 x 256 pixels,

100 m pixel size dataset variant, following the experimental design described in Section 5.2.

The dataset was augmented by training samples that were randomly flipped along either their

horizontal or vertical axis.

6.1.1 Deviation from AIS_cci

Table 6.1 summarises the metrics computed on the test set (Fig. 5.5) (Table 5.1, row 1) for

the feature exploration experiments. The experiments revealed that the model trained on the

feature stack with real and imaginary components (Section 5.2) results in the least overall

deviation. HED has the worst performance when either DEM features, phase or pseudo

coherence are absent.



Table 6.1: Metrics for the test set (Fig. 5.5) of feature exclusion experiments. Model IDs are
mentioned in brackets in the first column.

Experiment Prediction to Ground truth to Overall False
HED (256 x 256), ground truth prediction deviation negatives

100 m [m] [m] [m] (lines/1232)
All features 202.83 541.77 328.06 0

(hed_256_100_flipped) MAD = 147.19 MAD = 477.72 MAD = 270.63
Phase and 219.84 554.28 337.92 0

pseudo coherence only MAD = 165.8 MAD = 483.77 MAD = 280.44
(hed_256_100_phase_noise)

Pseudo coherence 201.16 735.98 437.04 0
absent MAD = 143.96 MAD = 666.42 MAD = 376.58

(hed_256_100_no_noise)
Phase absent 248.68 908.49 539.39 0

(hed_256_100_no_phase) MAD = 183.35 MAD = 810.22 MAD = 462.45
DEM absent 205.77 862.65 519.33 0

(hed_256_100_no_dem) MAD = 150.89 MAD = 779.82 MAD = 452.79
Vx absent 198.7 464.89 302.99 0

(hed_256_100_no_vx) MAD = 143.99 MAD = 404.95 MAD = 247.45
Vy absent 201.10 422.69 276.59 0

(hed_256_100_no_vy) MAD = 145.95 MAD = 360.82 MAD = 221.12
Tidal displacement 202.66 413.89 273.5 1

absent MAD = 145.50 MAD = 347.5 MAD = 214.69
(hed_256_100_no_td)
Air pressure absent 190.47 560.91 356.23 1
(hed_256_100_no_ap) MAD = 135.03 MAD = 498.83 MAD = 299.67

Real and 194.09 323.03 209.23 0
imaginary components MAD = 136.49 MAD = 258.01 MAD = 152.91

(hed_256_100_real_imaginary_all)
Real and 276.69 371.59 241.50 0

imaginary components only MAD = 223.52 MAD = 310.35 MAD = 186.14
(hed_256_100_ real_imaginary)

Generally, the GLL appears as an edge in the DEM and pseudo coherence features. An

example of this can be seen in the feature stack for a test sample from the Abbot Ice Shelf

(Fig. 6.3). Consequently, these two features might help in fine tuning the position of overall

predicted GLL. The exclusion of DEM and pseudo coherence from the experiments results

in deviations >1 km (Fig. 6.4). Even the prediction from the best model (hed_256_100_-

real_imaginary_all) has a deviation of 1.8 km due to a labelling error for the part of the GLL

enclosed in the red rectangle. Here the AIS_cci GLL was incorrectly mapped on the seaward



extent of the grounding zone fringe belt. This example shows the robustness of HED against

labelling errors.

In contrast, the GLL is almost never visible in the ice velocity, tidal displacement and air

pressure features. Although it is unclear the degree to which they influence the predictions,

the lack of strong gradients in these features (Fig. 6.3) and the deviations from hed_256_-

100_no_vx, hed_256_100_vy, hed_256_100_no_ap and hed_256_no_td models for the test

sample from Abbot Ice Shelf (Fig. 6.5) suggest that these features seem to have an overall

negative impact on the predictions.

Figure 6.3: Feature stack of the test sample shown in Fig. 6.5. The GLL is not expressed as an edge
in the ice velocity, tidal displacement and air pressure features.



Figure 6.4: Predictions for test sample taken from Abbot Ice Shelf. The red rectangle shows an
example of incorrect manual delineation. The predictions are plotted on the RAMP backscatter scatter

mosaic (in greyscale) (Jezek 2002) and the corresponding DInSAR interferogram (formed from
Sentinel-1 scenes). Numbers in the legend show the average overall deviations. The plot was created
using A Python interface for the Generic Mapping Tools (PyGMT) (Uieda et al. 2021) version 0.5.0.



Figure 6.5: Predictions for test sample taken from Abbot Ice Shelf, from experiments in which
velocity components, tidal displacement and air pressure were withheld from the training stack,

implying negligible contribution from the above mentioned features.



Deviations computed for predictions from hed_256_100_flipped do not differ greatly from

hed_256_100_phase_noise, suggesting that the contributions from the rest of the features

cancel each other out. A similar behaviour is also exhibited by hed_256_100_real_imaginary_-

all and hed_256_100_real_imaginary experiments. Visual inspection of predicted GLLs for

test samples from Getz Ice Shelf (Fig. 6.6), Totten Ice Shelf (Fig. 6.7), echo the metrics

specified in Table 6.1. The abovementionedmodels seem to fail in areas where theGLL curves

around loose fringes (enclosed by the red rectangles in Fig. 6.6 and Fig. 6.7). Additionally,

false positives and spurious branches (enclosed by black rectangles in Fig. 6.6, and Fig. 6.7)

bias the overall deviation by hundreds of metres. hed_256_100_real_imaginary and hed_-

256_100_real_imaginary_all do not seem to generate spurious branches. The models seem to

perform well on Getz Ice Shelf, which could be attributed to the relatively high coherence of

the training samples in this region.



Figure 6.6: Predictions for a test sample from Getz Ice Shelf.Area enclosed in the black rectangle
shows spurious predictions, area enclosed by the red rectangle show parts of GLL where the models

fail to make a prediction.



Figure 6.7: Predictions for a test sample from Totten Ice Shelf. Large portions of the GLL were
missed by the models (red rectangles). There are also more false positives (black rectangles) for this

sample, compared to Fig 6.6



Nearly all GLLs were predicted except for one that was missed by the models that excluded

tidal displacement and air pressure. A buffer was created around all the predictions to calculate

the percentage of ground truth area covered by them on the whole. About 75% of the GLLs

are covered by most models within 2 km (Fig. 6.8), 80% is covered by predictions from

hed_256_100_real_imaginary_all. The predictions from hed_256_100_no_dem only cover

65% of the ground truth pixels, implying that most of the predictions are fragmented. This is

also reflected by the large difference in the one way distances (Table 6.1) for this model.

Figure 6.8: Cumulative ratio showing the ground truth coverage by model predictions



6.1.2 Time series analysis

The hed_256_100_real_imaginary model was used to generate predictions for a set of un-

labelled DInSAR interferograms over the Totten Ice Shelf. Sentinel-1 triplets with a 6 day

temporal baseline were used to generate 57 DInSAR interferograms spanning from January

2019 to December 2019. The processing chain specified in Section 4.1.1 was used to generate

the double differences.

Real and imaginary components from theDInSAR phases were generated according to the pro-

cedure shown in Fig. 4.3. The interferograms were tiled and resampled into 8200 overlapping

tiles following the preprocessing procedure detailed in Section 5.1.

Although there is a significant number of false detections landwards of the GLL (Fig. 6.9), the

DNN is able to identify large portions of the grounding line for the parts of the ice shelf without

or slow moving tributaries (enclosed by the blue rectangles in Fig. 6.10). However, the model

still fails to predict the GLL in some regions where dense fringes due to tidal displacement

are clearly visible (marked by red rectangles in Fig. 6.10). Fig 6.11 shows an example of

a strongly decorrelated interferogram for which the model generated a large number of false

positives. A similar pattern of false and fragmented predictions resulted for most of the highly

decorrelated interferograms acquired between January and mid October (Fig. 6.9).



Figure 6.9: Predictions generated from the hed_256_100_real_imaginary model spanning January
2019 - December 2019



Figure 6.10: Example of a good prediction (primary acquisition at the beginning of November 2019)
from the time series generated for the Totten Ice Shelf. Blue rectangles show regions where the GLL
is predicted consistently for all DInSAR interferograms. Red rectangles show areas where the model

fails, despite the presence of coherent fringes.



Figure 6.11: Example of a poor prediction (primary acquisition at the end June 2019) from the time
series generated for the Totten Ice Shelf. The interferogram is highly decorrelated, even in the stable

regions indicated in Fig. 6.10



6.2. Comparing networks

This section presents the results from the experiments which explored different augmentation

techniques (Section 5.2, Augmentation Schemes) and the impact of tile and pixel size (Section

5.2, Effect of tile size and pixel size). The test sites for the metrics were computed are

visualised in Fig. 5.5, with the dataset split shown in Table 5.4.

6.2.1 Effect of augmentation

Augmentation of the training set with flipped training samples results in a greater overall

deviation for HED, while adding tiles that do not contain grounding line pixels yields better

results for both networks (Table 6.2). For HED, augmentation with empty tiles yields long

spurious branches that cross the ground truth (Fig. 6.12 a), which could bias the deviation as

demonstrated in Fig 6.2 e. For UNet however, the effect of augmentation is not clear due to

the highly fragmented predictions (Fig. 6.12 b) generated by all the UNet models.

Table 6.2: Metrics (computed for test samples) for experiments that used different augmentation
schemes.

Experiment HED UNet
(256 x 256), Prediction Ground Overall Prediction Ground Overall

100m, to ground truth to [m] to ground truth to [m]
truth prediction truth prediction

deviation deviation truth deviation
[m] [m] [m] [m]

All features 213.32 455.04 288.99 1955.91 2186.67 1400
(256_100) MAD = MAD = MAD = MAD = MAD = MAD =

152.53 382.12 225.56 1474.94 1609.00 1040.14
All features, 202.83 541.77 328.06 1814.27 1930.77 1217.25
random flips MAD = MAD = MAD = MAD = MAD = MAD =

(256_100_flipped) 147.19 477.72 270.63 1539.49 1585 1005.39
All features, 327.24 336.91 225.91 2098.96 1358.65 973.69
empty tiles MAD = MAD = MAD = MAD = MAD = MAD =

(256_100_empties) 265.51 260.08 161.22 1447.27 744.65 563.66

The predictions shown in Fig 6.12 demonstrate a potential weakness of the PoLiS metric.

Although the deviations for both the networks are considerably large (5 km-6 km), the quality



of the predicted GLLs in terms of completion and continuity of the lines is not reflected in

the numbers. Overall, the predictions from the HED models are visibly closer to the ground

truth (AIS_cci GLL) and less fragmented when compared to those from the UNet models.

Spurious branches are not completely avoidable for HED either.



6.2.2 Effect of tile size and pixel size

Training on larger tiles produces results in smaller overall deviations (Table 6.3) for both

networks. The large difference between the one direction distances, however, suggests that the

corresponding predictions would be fragmented (refer Fig. 6.2 b). An example of this can be

seen in the predictions for a test sample from George IV Ice Shelf (Fig 6.13 and Fig. 6.14).

Predictions from the models trained on the larger tiles tend to follow the seaward extent of the

fringe belt (black rectangles in Fig. 6.13 and Fig 6.14) for both networks.

Table 6.3: Metrics (computed for the test set) for the experiments exploring the effects of tile size and
pixel size.

Dataset HED UNet
Pseudo, Prediction Ground Overall Prediction Ground Overall

Coherence to ground truth to deviation to ground truth to deviation
and Phase truth prediction [m] truth prediction [m]

deviation deviation truth deviation
[m] [m] [m] [m]

256 x 256, 202.83 541.77 328.06 1845.99 2100.53 1386.21
100 m MAD = MAD = MAD = MAD = MAD = MAD =

(256_100_phase_noise) 147.19 477.72 270.63 1567.41 1764.21 1186.87
1024 x 1024, 655.59 267.33 193.65 8289.4 1529.07 1342.95

100 m MAD = MAD = MAD = MAD = MAD = MAD =
(1024_100_phase_noise) 597.54 161.02 110.08 6200.91 749.28 753.52

1024 x 1024, 538.63 291.82 190.52 3359.68 1094.76 718.95
50 m MAD = MAD = MAD = MAD = MAD = MAD =

(1024_50_phase_noise) 500.25 203.38 130.60 2786.83 744.95 484.15



Figure 6.12: GLL predictions for a sample near Dronning Maud Land from models trained on
datasets without augmented samples (yellow), augmented with random flips of training samples

(orange) and augmented with empty tiles (red). a) shows predictions from HED, the black rectangle
highlighting spurious branches b) predictions from UNet, nearly all of which are fragmented.



Figure 6.13: Predictions from HED tile extent experiments for a sample from George IV Ice Shelf.
The black rectangles show regions where the seaward extent of the grounding zone was predicted.

Figure 6.14: Predictions from UNet tile extent experiments for a sample from George IV Ice Shelf.
The black rectangles show regions where the seaward extent of the grounding zone was predicted.



Fragmented and false positive detections from hed_1024_100_phase_noise, hed_1024_50_-

phase_noise, unet_1024_100_phase_noise and unet_1024_50_phase_noise models seem to

contradict the initial hypothesis stated in Section 5.2 on the effect of tile size and pixel size. In

order to gain a deeper understanding of the behaviour of the networks, predictions for sample

tiles containing a part of the same GLL in all three datasets were generated. This chosen part

(dark patches in row 1 of Fig 6.15 and Fig. 6.16) of the grounding line is situated in the corner

for the sample with an extent 256 x 256 pixels, 100 m pixel size whereas it is closer to the

centre for the larger tile samples. The last rows of Fig. 6.15 and Fig. 6.16 show calculated

gradients of the patch with respect to the input sample tiles during backpropagation. These

gradients are used to adjust the weights for the same small patch of the grounding line. The

light patches in row two of Fig. 6.15 and Fig. 6.16 show the receptive fields (Section 5.2) of

the networks.

Pixels in the RF with large gradient magnitudes push the prediction probabilities towards

either 0 or 1 and are considered to be more important relative to pixels for which the gradients

are close to 0.

Although the RF far exceeds the extent of the considered output patch, only pixels within the

patch seem to have a strong influence on the predictions, for both networks. For the 256 x 256,

pixel, 100 m pixel size sample, there is a clear separation between the blue and red pixels,

indicating a ‘line-like’ prediction. Interestingly, this behaviour is also seen for the larger tiles

for UNet. However the corresponding predictions still contain branches. For HED, most of

the pixels are red for the 1024 x 1024 pixels, 100 m sample, which indicates a large number of

false positives. This would result in a thicker blob-like prediction, which leads to a branch-like

prediction after post processing (Section 5.1). It is not clear why the higher resolution of the

1024 x 1024 pixels, 50 m pixel size sample does not improve the overall prediction.



Figure 6.15: Impact of the RF of HED on predictions for different sample tile and pixel sizes. Row 1
shows the sample phases which contain the same part of a GLL indicated by the dark rectangle and

the corresponding RF (light yellow rectangle) that influence this patch. Row 2 shows the
corresponding predictions plotted on the phase. Row 3 shows the pixel wise gradients computed for

the pixels in the highlighted rectangle in row 1.



Figure 6.16: Impact of the RF of UNet on predictions for different sample tile and pixel sizes. Row 1
shows the sample phases which contain the same part of a GLL indicated by the dark rectangle and
the corresponding RF (light yellow rectangle). Row 2 shows the corresponding predictions plotted on
the phase. Row 3 shows the pixel wise gradients computed for the pixels in the highlighted rectangle

in row 1.



7. Conclusion

7.1. Summary and conclusion

The grounding line location (GLL) is an important parameter for ice sheet mass balance and

indicator of ice thickness change. Satellite based remote sensing methods provide spatially

extended and temporally dense data over the margins of the Antarctic Ice Sheet. With the

exception of the study from (Mohajerani et al. 2021), none of the other current grounding

line detection and delineation techniques (Section 3.1) are able to delineate spatially detailed,

continent-wide GLLs in a reasonable time frame. Hence there is a need to develop new

techniques for efficient processing of these large datasets.

The aim of this study was to explore the potential of machine learning algorithms in achieving

this task and simultaneously investigating the importance of several variables that directly or

indirectly influence the GLL.

GLLs from the AIS_cci project (Section 4.1.1) with corresponding DInSAR interferograms

from ERS-1/2, Sentinel-1 and TerraSAR-X missions formed the basis of the dataset on which

the DNNs were trained on. An end-to-end pipeline was developed during the course of the

thesis, which is capable ofmodifyingDInSAR interferograms to be suitable for training aDNN

and appending additional features to create a feature stack. Training the DNN and processing

the resulting predictions are also handled by the pipeline. Two neural networks (Section 4.2)

were explored for automatic delineation. The performance of the networks were quantified by

means of several metrics (Section 5.4) in addition to visual inspection of predicted GLLs.

Considering the research objectives (Section 1.2) and results obtained from the conducted

experiments (Chapter 6), the following conclusions can be drawn:

• In terms of feasibility, HED is able to predict complex GLL geometries reasonably

well, with the best performing model achieving a median deviation of 2.1 pixels (on



interferograms of 100 m pixel size) from the ground truth. This is comparable to the

results obtained in the study of (Mohajerani et al. 2021). Notwithstanding the time

taken to train the DNN, generation of predictions with the developed pipeline takes a

fraction of the time required for manual delineation. Even if the effort to clean up false

predictions is considered, the speed up gained from automation is beneficial.

• A key finding in this work is that the DEM, ice velocity, tidal displacement and air

pressure features do not significantly impact the prediction quality. In fact, the results

summarised in Section 6.1.1 suggest that including some of these features might even

confound the network, resulting in poor predictions. This is significant in terms of saving

time and effort spent on creating the feature stack for future DInSAR interferograms. I

suggest to avoid using time-invariant features and improve the perfomance of HED with

a focus on phase and coherence which are provided directly by the InSAR processing.

• Computed metrics, visual inspection of test samples (Section 6.2) and the trends of

training set and validation set losses (A.2) clearly show that HED outperforms UNet,

despite the reported robustness and accurate classification capability of the latter. One

explanation for this could be the large class imbalance (grounding line vs. non grounding

line pixels) inherent in the GLL detection problem. This supports the cause for choosing

DNNs that are specifically designed to deal with such issues.

• Predictions generated for a set of unlabelled DInSAR interferograms (Section 6.1.2)

legitimises the feasibility of DNNs for GLL delineation. These results reinforce the

results obtained in Section 6.1.1, proving that HED did not overfit to the selected test

set (Fig. 5.5) and can provide useful delineations for large stacks of double difference

interferograms.

7.2. Outlook

Although the experiments conducted during the course of this work have shown promis-

ing results, they provide only a glimpse into the numerous possibilities for automatic GLL



delineation on DInSAR interferograms. Enumerated below are some interesting research

directions:

1. Dataset variants

An advantage of the Fully Convolutional Neural Networks (FCNs) is their invariance to

input tile dimensions. The training samples used in this studywere resampled and tiled in

order to augment the dataset. Using the training samples at their original resolution was

not possible in this study due to memory constraints. In the absence of such restrictions,

it would be interesting to see if the DNNs capture the intricate GLL geometries when

trained on high resolution DInSAR interferograms. Additionally, this would save time

spent on resampling the interferograms.

A three class labelling system consisiting of grounded ice, grounding line and ocean in

favour of the current grounding line and non grounding line classes could help reduce

the number of false detections offsides (inland and seawards) of the GLL. Although it

requires a one-time manual effort, the clear boundaries between land and sea that result

from this kind of labelling could also yield sharper predictions, maybe even remove the

need for post processing. This might be essential to improving the performance of UNet,

given its prior success with similar three class problems (Section 3.2.1).

2. Model optimization

Default configurations of both networks were used in this work. Rigorous hyperparame-

ter tuning could yield better results (Chollet 2021, 5.2.1). Another aspect of optimising

model performance is the choice of loss function. Experiments from (Zhang et al. 2020)

and (Abraham and Khan 2019) have shown that the performance of DNNs on datasets

with large class imbalance improved when using loss functions that were designed to

appropriately weight labels of the minority class. These loss functions could drastically

improve the performance of HED and UNet.

3. Transfer learning

Given that the DNNs used in this study were trained on a dataset that spans most of



Antarctica, there are only few other regions where model transferability could be tested.

Although Greenland contains only a very limited number of sites with identifiable GLLs

(Hill et al. 2018, Fig.1), it would nevertheless be interesting to see if themodels developed

in this study are capable of predicting GLLs on these glaciers.

4. Model explainability

Although the results of the feature exploration experiments revealed that the networks

seem to extract the most information from pseudo coherence and wrapped phases, it

was not possible to numerically quantify the contributions of individual features. Model

interpretation techniques discussed in (Lundberg and Lee 2017) aim to find the influence

exerted by each feature towards each prediction. These tools could provide insight into

the function that is approximated by DNNs.

5. Predicting the evolution of the grounding line position

Several studies have attempted to use DNNs in modelling various aspects of the

cryosphere (Jouvet et al. 2021), (Hu et al. 2021), (Bolibar et al. 2020), (Leong and

Horgan 2020). In a similar vein, training models to identify trends in the GLL and

model ice sheet dynamics could help in understanding short term and potentially pre-

dicting long term GLL migration.
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A. Appendix

A.1. Distribution of PoLiS distances

The figures below show the distribution of prediction to ground truth, ground truth to prediction

and overall deviations. In general, all the distributions are right skewed.



Figure A.1: Distribution of PoLiS deviations for feature exploration experiments.



Figure A.2: Distribution of PoLiS deviations for feature exploration experiments.



Figure A.3: Distribution of PoLiS deviations for augmentation experiments.



Figure A.4: Distribution of PoLiS deviations for tile extent experiments.



A.2. Training and validation loss curves

The figures below show the trend of model loss during training and validation phases, The

differences in the between the training and validation loss indicates that the model does not

generalise to the test set samples.

Figure A.5: Training and validation loss curves for feature exploration experiments



Figure A.6: Training and validation loss curves for augmentation experiments



Figure A.7: Training and validation loss curves for tile extent experiments



A.3. ODS F1 scores

The below tables list the ODS F1 scores and false negatives for all experiments (section 5.2)

Table A.1: ODS F1 scores for feature exploration experiments

Experiment ID ODS F1 score False negatives (lines/1232)
hed_256_100_flipped 0.19 0

hed_256_100_phase_noise 0.19 0
hed_256_100_no_noise 0.2 0
hed_256_100_no_phase 0.17 0
hed_256_100_no_dem 0.19 0
hed_256_100_no_vx 0.19 0
hed_256_100_no_vy 0.19 0
hed_256_100_no_td 0.19 1
hed_256_100_no_ap 0.2 1

hed_256_100_real_imaginary 0.15 0
hed_256_100_real_imaginary_all 0.2 0

Table A.2: ODS F1 scores for augmentation experiments

Experiment ID ODS F1 score False negatives (lines/1232)
hed_256_100 0.19 0

hed_256_100_flipped 0.19 0
hed_256_100_empties 0.13 0

unet_256_100 0.0359 1
unet_256_100_flipped 0.054 1
unet_256_100_empties 0.032 0



Table A.3: ODS F1 scores for tile extent experiments

Experiment ID ODS F1 score False negatives (lines/1232)
hed_256_100_phase_noise 0.19 0
hed_1024_100_phase_noise 0.10 0
hed_1024_50_phase_noise 0.069 1
unet_256_100_phase_noise 0.065 0
unet_1024_100_phase_noise 0.011 0
unet_1024_50_phase_noise 0.016 1



A.4. Implementation

The implementation is available within the DLR Gitlab network. Access can be provided on

request.
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