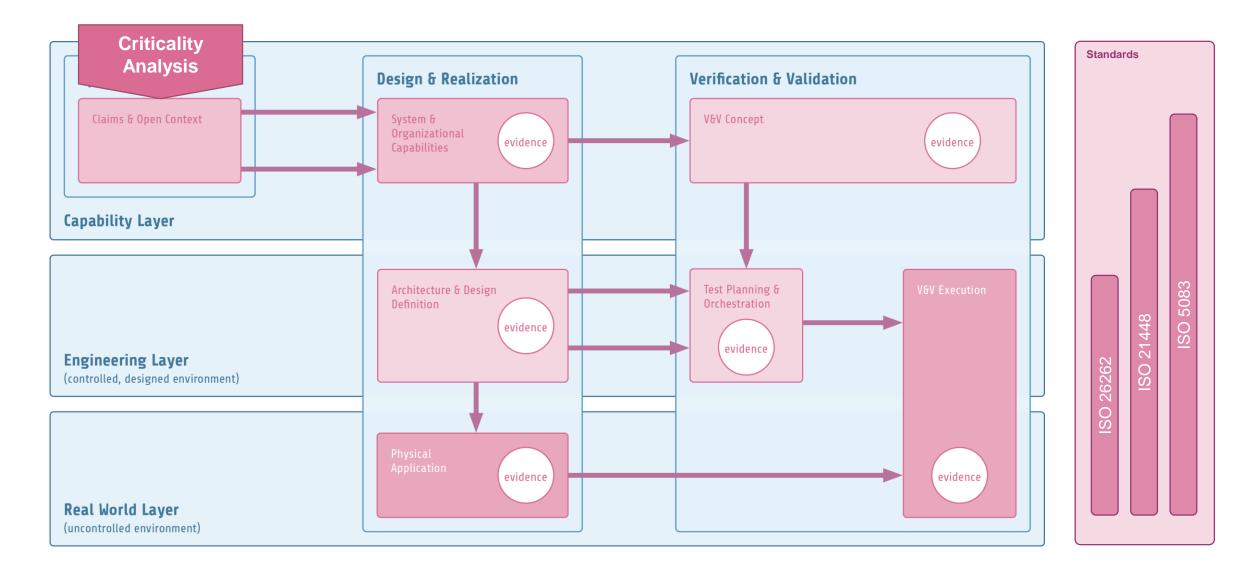


Mid-Term Presentation 15 / 16 March 2022

Criticality Analysis for the Verification & Validation of Automated Driving Systems

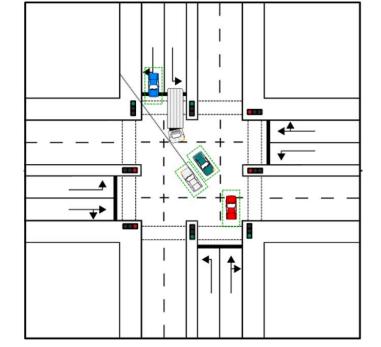
Christian Neurohr, German Aerospace Center (DLR)


Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

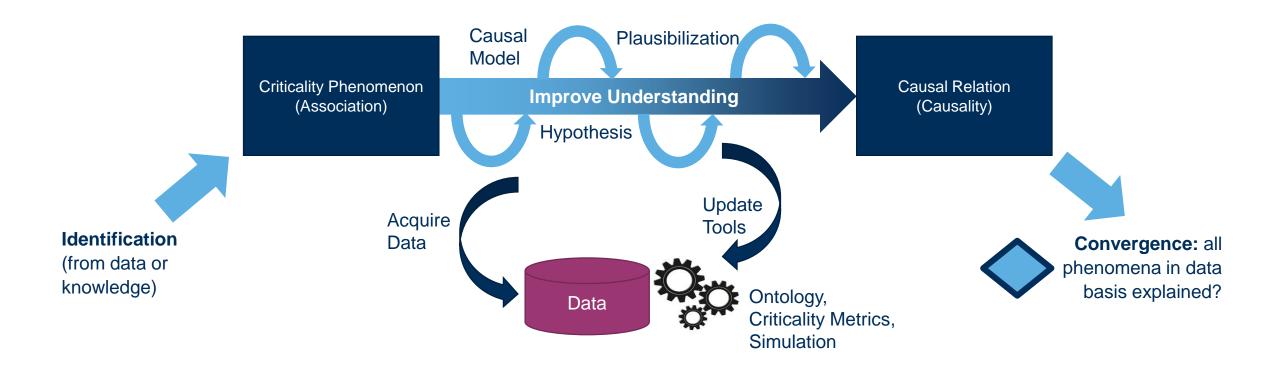
V&V Process in Assurance Framework



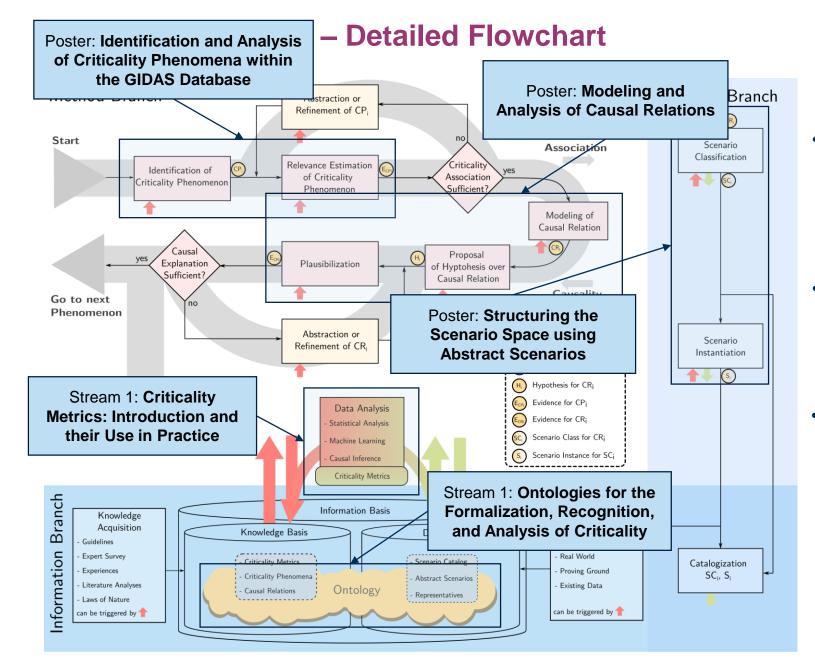
1

Criticality Analysis in VVM

- criticality (of a traffic situation) is the combined risk of the involved actors when the situation is continued
- ▶ main goal: gain knowledge on the open context w.r.t. the emergence of criticality and its conditions → structuring of the operational domain
 - identification of influencing factors associated with increased criticality
 → criticality phenomena
 - improve understanding of criticality phenomena by analysis of underlying causal relations → derivation of target behavior
 - abstraction leads to classification of scenarios
 - \rightarrow contribution to scenario-based verification & validation
- tools employed for criticality analysis:
 - > ontologies, criticality metrics, simulation
 - acquisition & management of knowledge and data
 - statistical analysis, machine learning, causal inference



use case "urban intersection"


Criticality Analysis – the Basic Concept

Assumptions:

- set of criticality phenomena is limited and manageable \rightarrow finiteness (of artefacts)
- relevant phenomena leave traces in growing data basis → completeness (of artefacts)

- Method Branch identification of criticality
 phenomena, modeling of causal relations,
 plausibilization of hypotheses, criticality
 metrics
- Information Branch knowledge and data management for the criticality analysis, ontologies.
- Scenario Branch use scenarios as the
 'substrate' of the criticality analysis, a
 means for structuring processes and
 description of reality

Example: the Criticality Phenomenon ,Occlusion'

- identify the criticality phenomen ,occlusion' (e.g. via expert knowledge)
 - find adequate level of abstraction and interesting concretizations
 - use ontological representation to organize knowledge

Absolute Cases	Relative Cases	Projection	Criticality Phenomenon	Ontological Classification	Estimated Criticality	
2978	22.9%	36746	Occlusion	Perception	Medium	
600	4.6%	7401	Occluded Pedestrian	Perception	High	
1076	8.3%	13280	Occluded Bicyclist	Perception	High	
844	6.5%	10413	Occluded Intersecting Vehicle	Perception	Medium	
0	0%	0	Occluded Obstacle	Perception	Medium	
-	-	-	Occluded Lane Markings	Perception	High	
313	2.4%	3865	Occluded Traffic Sign	Perception	Depends	
-	-	-	Occluded Traffic Light	Perception	High	

- > gather empirical evidence for the relevance of ,occlusion'
 - searching the GIDAS database yields

Abashata

Dalating

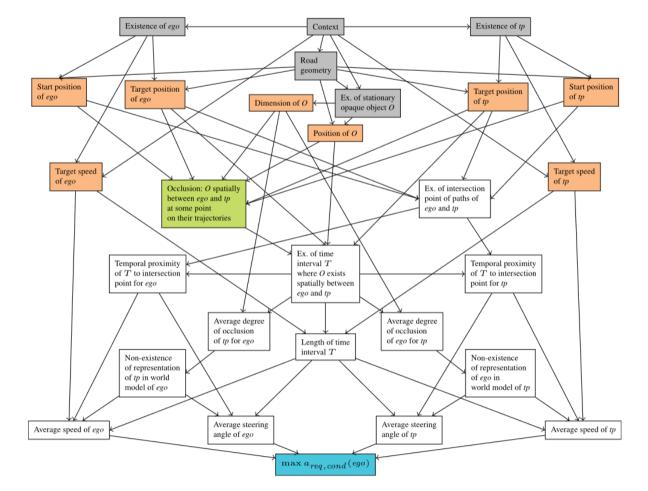
- $\frac{2978}{12997} \approx 22,9\%$ accidents associated with ,occlusion⁽⁾
- strong indication that "occlusion" is a relevant phenomenon in non-automated traffic

German In-Depth Accident Study

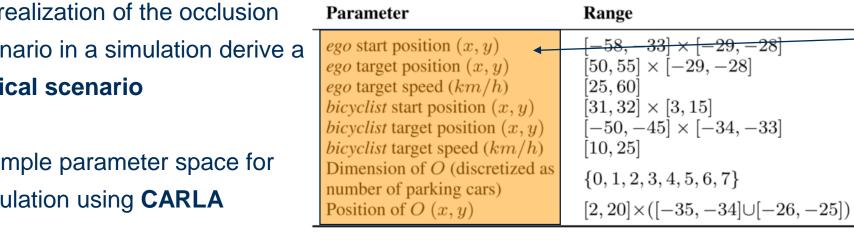
- since 1999 -

Estimation of Relevance for Criticality Phenomena

- > analysis of GIDAS accident database,
 - for relevant VVMethods subset N = 12997 accidents "cases" in urban areas involving a passenger car
 - Analysis of each case regarding the presence of **116** criticality phenomena identifiable in the database
- for each phenomenon, obtain absolute and
 relative frequencies of occurence
 - ranking phenomena according to frequency allows estimation of relevance
 - interesting cases appear as combinations of criticality phenomena

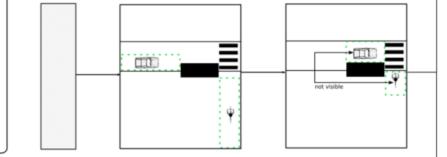

FALL 🔻	CP_40 🔻	CP_41 🔻	CP_44 💌	CP_45 💌	CP_46 💌	CP_47 🔻	CP_48 🔻	CP_50 🔻			
56810	0	1	0	0	0	0	0	0			
34320	0	1	0	0	0	0	0	0			
75142	1	1	0	0	0	1	0	0			
88195	0	0	0	0	0	1	0	0			
25900	0	0	0	0	0	0	0	0			
45624	0	1	0	0	0	1	0	0			
46218	1	1	0	0	0	0	1	0			
57032	0	1	0	0	0	0	0	0			
25736	0	0	0	0	1	0	0	0			
47414	0	1	0	0	0	0	1	0			
10412	0	0	0	0	0	0	1	0			
48849	0	1	0	0	0	1	0	0			
76273	0	0	0	0	0	0	0	0			
Non-Ego TP violating Right of Way n = 201 n = 1285 Intersecting planned Trajectories of TPs n = 3487											

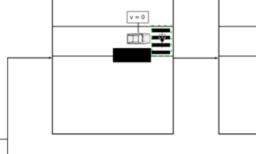
From Association to Causality:



Causal Effect Analysis of Criticality Phenomena

- use causal graphs to model assumptions about the underlying causal relations of criticality phenomena
- incorporate criticality metrics as to make the impact of phenomena measureable
- acquire data that enable the computation of the causal effect of the phenomenon on measured criticality, using either
 - real-world data or
 - synthetic data (simulation)
- iterative abstraction & refinement of causal assumptions during plausibilisation of the causal relation



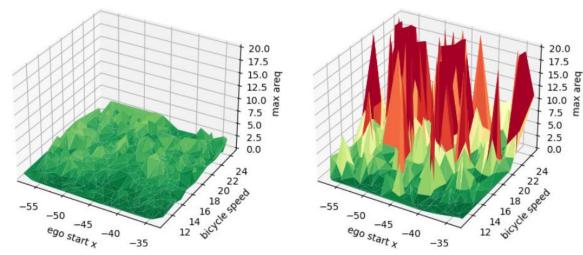

Figure: causal graph for evaluating the causal effect of "occlusion" on the criticality metric $a_{req,cond}(ego)$.

Plausibilization of Causal Relations

bulletin board road pedestrian crossing obstructing object bicyclist

include **parameters** \succ necessary to estimate causal effects in a logical scenario minimal adjustment set of variables from causal graph analysis

- for plausibilization of the causal relation ,occlusion' consider an abstract scenario (e.g. as Traffic Sequence Chart) with a potential occlusion
 - for realization of the occlusion scenario in a simulation derive a logical scenario
 - > example parameter space for simulation using CARLA



Video: showing four instantiations of an occlusion scenario with varying critcality using the CARLA simulator.

Generate and Evaluate Synthetic Data for Plausibilization



- stochastic variation of adjustment variables to obtain concrete scenarios for simulation
- evaluate for each simulation run
 - criticality metric(s) from the causal model
 - the presence of the criticality phenomenon

Group A: no occlusion present

Group B: occlusion present

perform analysis of the resulting data set, computing quantities of interest, e.g.

 $\mathbb{E}(a_{\text{req,cond}}(ego)|occlusion = 1) = 3.15 \ (\pm 3.10)m/s^2 =: E_1$ $\mathbb{E}(a_{\text{req,cond}}(ego)|occlusion = 0) = 1.10 \ (\pm 0.75)m/s^2 =: E_2$ $E_1 - E_2 = 2.05 \quad E_1/E_2 = 2.86$

Summary

- > a methodical criticality analysis contributes to structuring the open context
 - decomposition of the operatonal domain according to emergence of criticality
 - > exemplary conduction within VVMethods for complex urban environments
- finitely many artifacts result from the criticality analysis, namely
 - criticality phenomena
 - causal relations
 - abstract scenarios

Criticality Analysis $\infty \mapsto n$

Automated Driving Systems operating in Open Context

- basic concept of the criticality analysis: move from associations (criticality phenomena) to causality (causal relations)
- > the criticality analysis is sub-divided into three branches, namely
 - > method branch, information branch, scenario branch

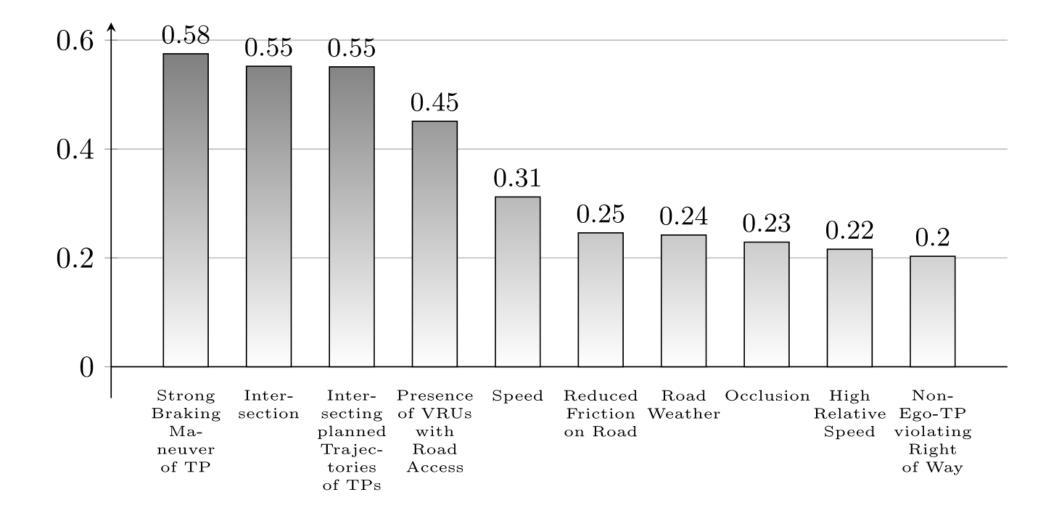
Thank you!

Dr. Christian Neurohr Researcher DLR SE – Institute of System Engineering for Future Mobility christian.neurohr@dlr.de

A project developed by the VDA Leitinitiative autonomous and connected driving Supported by:

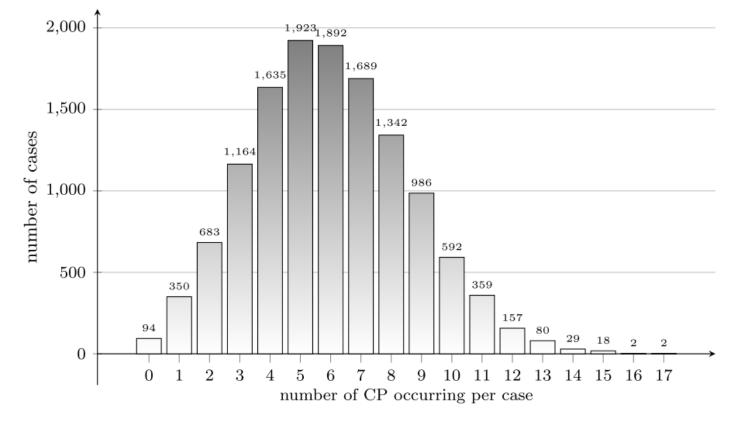
Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag


Publications for Further Reading

- "Criticality Analysis for the Verification and Validation of Automated Vehicles"
 - IEEE Access (Journal),
 - > VVM Partners: DLR (formerly OFFIS), Bosch, ZF, Stellantis
 - Links: <u>ResearchGate</u>, <u>IEEExplore</u>
- > "Criticality Metrics for Automated Driving: A Review and Suitability Analysis of the State of the Art"
 - Preprint (submitted to Journal)
 - > VVM / SET Level Partners: DLR (formerly OFFIS), Bosch, FZI, DLR, AVL
 - ResearchGate, arXiv
- > "6-Layer Model for a Structured Description and Categorization of Urban Traffic and Environment"
 - IEEE Access (Journal)
 - VVM Partners: ika, DLR (formerly OFFIS), ZF
 - Links: <u>ResearchGate</u>, <u>IEEExplore</u>

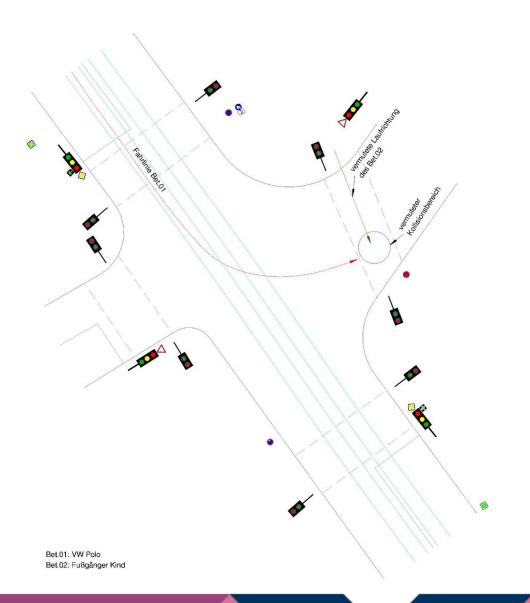
Top Ten Criticality Phenomena in GIDAS



Edge Cases as Combinations of Criticality Phenomena

- > Accidents in (human) traffic are multi-causal.
- After filtering out abstraction/refinement relations ...
 - most accidents (~55%) in urban areas feature between 4 and 7 criticality phenomena per case
 - 94 accidents feature no CP; either not relevant for AVs or due to incompleteness of CP collection
 - 4 special "loaded" cases with more than 15 CP will be <u>discussed in the</u> <u>afternoon session</u>

Edge Case #1: Car vs. Pedestrian (featuring 16 CP)


Environment

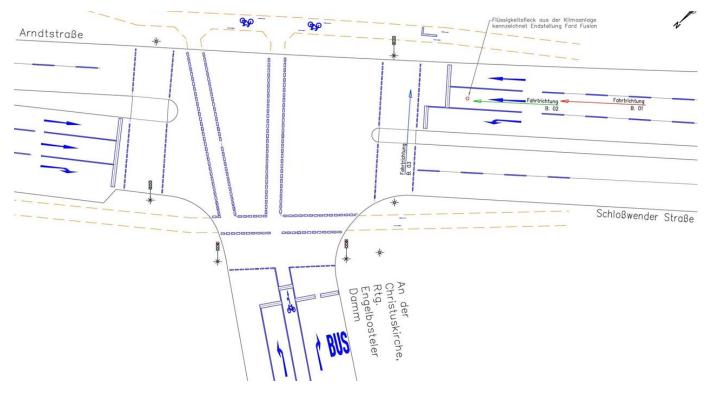
- Rain
- Reduced Friction on Road
- Limited Global Light Source

Infrastructure

- Intersection
- Pedestrian Crossing
- Degraded Road Quality
- Degraded Lane Markings
- Intersecting Tram Rails

- Intersecting Planned Trajectories of TPs
- Presence of VRUs with Road Access
- Presence of URUs with Road Access
- Dark Clothing of VRU
- Pedestrian crossing Road directly
- Non-Ego-TP running a Red Traffic Light
- Non-Ego-TP violating Right of Way
- Strong Braking Maneuver of Ego/Non-Ego-TP

Edge Case #2: Car vs. Car vs. Pedestrian (featuring 17 CP)



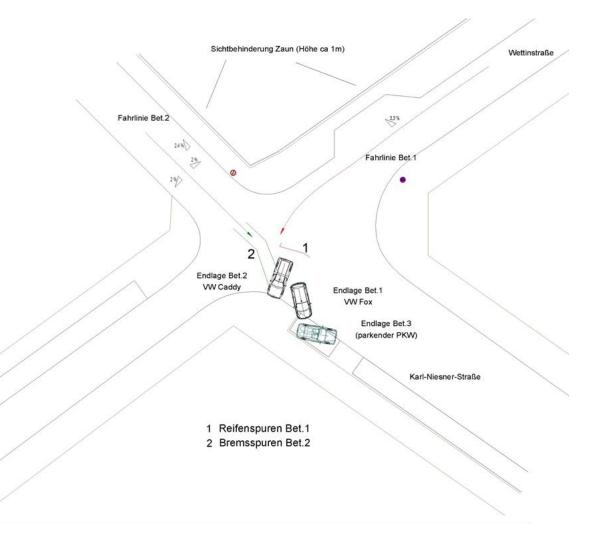
- Environment
 - Wind

Infrastructure

- Intersection
- Pedestrian Crossing
- Degraded Road Quality

- Intersecting Planned Trajectories of TPs
- Presence of VRUs with Road Access
- Impaired VRU with Road Access
- Presence of URUs with Road Access
- Occluded Pedestrian
- Pedestrian crossing Road directly
- Dark Clothing of VRU
- Non-Ego-TP running a Red Traffic Light
- Non-Ego-TP violating Right of Way
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Strong initial Braking Maneuver of Ego/Non-Ego-TP
- Small Distance to Front
- Small Distance to Back

Edge Case #3: Car vs. Car vs. Parking Car (featuring 17 CP)



- Environment
 - Extreme (change in) Temperature
- Infrastructure
 - Intersection
 - Bad Road Surface

Perception

- Occluded Traffic Sign
- Occluded Intersecting Vehicle
- Occluded Vehicle

- Intersecting Planned Trajectories of TPs
- Non-Ego-TP violating Right of Way
- Non-Ego-TP aggressive driving
- Passing of Parking Vehicle
- Non-Ego-TP impaired driving ability
- Excessive Speed of Non-Ego-TP
- High Relative Speed
- Presence of URUs with Road Access
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Interaction with Emergency Vehicles

Edge Case #4: Car vs. Bicyclist (featuring 16 CP)

- Environment
 - Extreme (change in) Temperature

Infrastructure

- Intersection
- Bad Road Surface
- Degraded Road Quality

Perception

Occluded Bicyclist

- Intersecting Planned Trajectories of TPs
- High Relative Speed
- Non-Ego-TP violating Right of Way
- Lane Closure
- Passing of Parking Vehicle
- Risky Lane Change of Non-Ego-TP
- Bicycle Lane Change onto Road
- Wrong-Way Bicyclist
- Strong Braking Maneuver of Ego/Non-Ego-TP
- Presence of VRUs with Road Access
- Dark Clothing of VRU
- Non-Ego-TP on Wrong Non-Driveable Lane

