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Motivation
Full aircraft crash simulation as a research goal at DLR

Development of numerical methods for full aircraft crash simulation

▪ Understanding the aircraft response and crash performance during a crash landing

▪ How is the aircraft crash performance affected by

▪ Impact conditions, impact surface, occupant and cargo loading

▪ Derivation of local loads from full aircraft crash simulation to be applied on a fuselage section simulation

▪ Including effects such as pre-loading from aircraft rotation, combined horizontal/vertical loads, etc.

▪ Analysis and evaluation of future aircraft configurations

▪ Need to consider full aircraft to understand and assess crash effects

▪ E.g. hydrogen propulsion and LH2 tank integration

3 DLR project HYTAZER

LH2 tanks

Emergency landing

DHL Aero Expreso Flight 7216

7 April 2022

https://aviation-safety.net/database/record.php?id=20220407-0
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1 Method development
Generic single-aisle aircraft design



1 Method development
Approach
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Process chain tool for full aircraft crash simulation

[1] K. Drechsler, P. Eyerer, and H. Dörner, "Fertigungstechnik und Bauweisen für Leichtbaukonstruktionen," Lecture material WS05/06, 2005.

[2] M. Alder, E. Moerland, J. Jepsen, and B. Nagel, "Recent Advances in Establishing a Common Language for Aircraft Design with CPACS," presented at the Aerospace Europe Conference 2020, Bordeaux, Frankreich, 2020. Available: https://elib.dlr.de/134341/

[3] M. Petsch, D. Kohlgrüber, and J. Heubischl, "PANDORA - A python based framework for modelling and structural sizing of transport aircraft," presented at the 8th EASN-CEAS International Workshop, Glasgow, Schottland, 2018. Available: https://elib.dlr.de/124181/
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1 Method development
Approach

A) Aircraft structure description by CPACS [2]

▪ CPACS: Common Parametric Aircraft Configuration Schema (https://cpacs.de/)

▪ Enables parameterized and automated FE mesh generation of different aircraft configurations
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Regional aircraft

Single-aisle aircraft

Wide-body aircraft

[2] M. Alder, E. Moerland, J. Jepsen, and B. Nagel, "Recent Advances in Establishing a Common Language for Aircraft Design with CPACS," presented at the Aerospace Europe Conference 2020, Bordeaux, Frankreich, 2020. Available: https://elib.dlr.de/134341/

https://cpacs.de/
https://elib.dlr.de/134341/


B) Aircraft structure discretization by PANDORA tool [3], [4]

▪ Generation of full aircraft models

▪ Generation of individual fuselage section models

▪ Low and high fidelity modelling for different

applications: static analysis, ditching, crash

▪ Global FEM (GFEM)

▪ Detailed FEM

1 Method development
Approach
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[3] M. Petsch, D. Kohlgrüber, and J. Heubischl, "PANDORA - A python based framework for modelling and structural sizing of transport aircraft," presented at the 8th EASN-CEAS International Workshop, Glasgow, Schottland, 2018. Available: https://elib.dlr.de/124181/

[4] C. Leon Muñoz and D. Kohlgrüber, "High Fidelity Simulations of Flexible Aircraft Structures Under Ditching Loads," presented at the Dynamic Modeling and Simulation (M&S) in Aircraft Ditching and Cabin Evacuation, FAA Virtual Workshop, 2022. 

https://elib.dlr.de/124181/


1 Method development
Approach

C) Occupant module [5], [6]

▪ Development according to the building block approach
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LSTC Hybrid 3 ATD FAST model

Test 1 Test 2

[5] T. Lehmann, "Entwicklung von Passagier-Sitz-Modellen für die Simulation von Flugzeugbruchlandungen," DLR-IB-BT-ST-2018-159, 2018

[6] N. Wegener, P. Schatrow, and M. Waimer, "Development of occupant-seat models for Fokker F28 crash test simulations," DLR-IB-BT-ST-2021-176, 2021.



1 Method development
Approach

D) Cargo module [7], [8]

▪ Development according to the building block approach
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Container model validation in progress

AKE without cargo

(Wide-body)

AKH with cargo

(Single-aisle)

[7] M. Waimer and P. Schatrow, "Cargo Container Characterization for Airplane Crash Applications – Experimental Tests and Validation of Simulation Models," in Aerospace Structural Impact Dynamics International Conference, Madrid, Spain, 2019.

[8] M. Waimer and P. Schatrow, "Full-Scale Crash Testing of Cargo Containers - Experimental Characterization for Transport Airplane Crash Applications," in The Tenth Triennial International Fire & Cabin Safety Research Conference, Atlantic City, New Jersey, USA, 2022.
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1 Method development
Approach

Process chain output

▪ Application-driven: suitable model fidelity for given application (global FEM, detailed FEM)
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High fidelity model
CPU time: ≈ 6 days for 350 ms

Low fidelity model [9]
CPU time: ≈ 6 hours for 350 ms

[9] P. Schatrow, M. Waimer, M. Petsch, C. Leon Muñoz, and D. Kohlgrüber, "Method development for full aircraft crash simulation at different levels of modeling detail," presented at the The Ninth Triennial International Fire & Cabin Safety Research Conference, Atlantic City, New Jersey, USA, 2019. Available: https://elib.dlr.de/130176/

https://elib.dlr.de/130176/


1 Method development
Current status of high fidelity full aircraft crash simulation

FE model overview (exemplary)

▪ Potential applications: configuration assessment, conceptual & preliminary design, determination of local loads, etc.
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Linux cluster

LS-Dyna 13.1.0

16 core processor

Number of nodes: 95,000

CPU time: ≈ 50 min for 250 ms

Number of nodes: 3.3 M

CPU time: ≈ 8 days for 350 ms
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2 Method validation
Specific aircraft design Fokker F28



2 Method validation
Current status

FE model generation
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[10] [11]

Design data provided 

by Fokker Services 

[10] J. D. Littell, "A summary of results from two full-scale Fokker F28 fuselage section drop tests," NASA/TM–2018-219829, 2018.

[11] E. Wegener, "Numerical Simulation of a Crash Test on a Fokker F28 Center Fuselage Section with Wing Box and Oblique Impact Surface," DLR-IB-BT-ST-2021-148, 2021.
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FE model
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2 Method validation
Current status

Definition of F28 CPACS data set and generation of two fuselage section models with PANDORA
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Low-Fidelity

High-Fidelity

FAA/NASA Test 1: 
F28 fuselage section with cargo door and luggage

FAA/NASA Test 2: 
F28 fuselage section with wingbox

[10] [10][12] [11]

[12] J. Birk, "Numerical Simulation of a Crash Test on a Fokker F28 Typical Fuselage Section with Cargo Door and Bulk Loading," DLR-IB-BT-ST-2021-147, 2021.



2 Method validation
Current status

Partial validation of simulation methods on the basis Fokker F28 full scale crash test data
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3 Method application
Examples (generic single-aisle aircraft)
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3 Method application (examples)
I) Vertical drop of full aircraft model

Crash kinematics
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▪ vx = 0 m/s

▪ 0° pitch angle
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Row 1-2 Row 11-12 Row 21-22

Von Mises stress

[Gpa]

3 Method application (examples)
II) Vertical drop with pitch angle

Crash kinematics

▪ vz = 7.6 m/s (25 ft/s)

▪ vx = 0 m/s

▪ 5° pitch angle

24
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In view A and view B

seats A-C displayed,

seats D-F hidden
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3 Method application (examples)
III) Vertical drop with pitch angle and cargo loading
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Crash kinematics

▪ vz = 7.6 m/s (25 ft/s)

▪ vx = 60 m/s

▪ 5° pitch angle

▪ Cargo loading
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3 Method application (examples)
IV) Full aircraft xz-crash

39

Seat foot local velocity

Row 1, Row 11, Row 21

Left side in flight direction
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Crash kinematics
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3 Method application (examples)
V) Crashworthiness assessment of novel aircraft configurations

Crashworthy LH2 tank integration

▪ Assessment of LH2 tank installation locations with respect to real-world crash loads and effects

▪ Fuselage break

▪ Retention of tank mass

▪ Assessment of LH2 tank integration with respect to real-world crash loads and effects

▪ Crashworthy tank mounts

▪ Determination of local crash loads from full aircraft crash simulation

▪ Detailed development of crashworthy LH2 tank integration

▪ Iteration of full aircraft crash simulation and more detailed local analysis (e.g. fuselage section or structural detail)

46

[13] DLR project HYTAZER

Rear integrated 

LH2 tanks

[13] D. Silberhorn, G. Atanasov, J.-N. Walther, and T. Zill, "Assessment of Hydrogen Fuel Tank Integration at Aircraft Level," presented at the Deutscher Luft- und Raumfahrtkongress 2019, Darmstadt, Deutschland, 2019. Available: https://elib.dlr.de/129643/

Emergency landing

DHL Aero Expreso Flight 7216

7 April 2022

https://aviation-safety.net/database/record.php?id=20220407-0



Summary

Motivation: Full aircraft crash simulation as a research goal at DLR

1 Method development

▪ Aircraft structure description by CPACS file format (https://cpacs.de/) [2]

▪ Aircraft structure generation at different levels of model fidelity by PANDORA tool [3]

▪ Development of individual modules for occupants [5], [6] , cargo [7], [8], masses, impact terrains, etc.

2 Method validation

▪ Ongoing method validation based on available experimental data [11], [12]

3 Method application

▪ Crash simulation of a generic single-aisle aircraft at different levels of 

model fidelity: low fidelity modeling [9] and high fidelity modeling

▪ Future work: Assessment of new aircraft configurations such as aircraft 

with rear integrated LH2 tanks
47

[10] [11]

DLR project HYTAZER

LH2 tanks

https://cpacs.de/
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Thank you for your attention!
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