
The Influence of Architectural Design Decisions on the Formulation of MDAO Problems
Jasper H. Bussemaker, Sparsh Garg and Luca Boggero

Institute of System Architectures in Aeronautics, German Aerospace Center (DLR), Hamburg, Germany
Contact: jasper.bussemaker@dlr.de

Mitigation II: Tool Flexibility
Increasing the area of validity of a tool (e.g. the range of Mach numbers
producing valid aerodynamics results) might make the tool more robust to changes
in input values (L1; data values), especially when the same tool is reused for
different parts of the architecture (L5; tool configuration).

Another aspect is related to input parsing. If a tool is agnostic with respect to
data repetition and robust to changes in the subtree data structures, it can deal
with L2 (flat data structure) and L3 (subtree data structure), respectively. An
example of this would be a flight dynamics tool that can deal with different wing
control surface configurations. Robustness to data structure can also aid in
supporting L4 (data connections), by adding or removing data variables related to
different connections.

The reuse of tools for different parts of the architecture can be implemented using
a tool-level global-to-local data wrapper (see L5; tool configuration). The
conversion logic can either result in multiple tool definitions, or be implemented in
the MDAO problem itself.

Finally, a shift of tool purpose from component- (e.g. propeller, fuel tank) to
discipline-oriented (e.g. aerodynamics, mission analysis) can make the tool more
robust to data structures changes (L2 and L3) and aid in reusability (L5). However, it
needs to be ensured that the discipline-oriented tool itself is flexible enough to be
able to construct internal models of (parts of) the architecture to be analyzed.

Background
Architecture Optimization Problems
Formulating the system architecting process as an optimization problem brings
several challenges. Architectural choices are often of discrete nature (e.g. the
selection of aircraft engine type). Combined with continuous sizing parameters,
this makes it a problem of mixed-discrete nature. Different architectural choices
might lead to the inclusion or exclusion of other choices (e.g. the number of
propeller blades is only relevant as a design variable if a propeller is chosen as
propulsion instead of a turbofan): a hierarchy exists between design variables.
Finally, the optimization problem can be multi-objective due to conflicting
stakeholder needs.

Multidisciplinary Design Optimization (MDAO)
In MDAO problems, the inputs and outputs of different disciplinary tools are
connected together and subsequently solved to end up with a dataset that is
consistent between these tools. Two approaches to connecting data between tools
in an MDAO problem can be distinguished [4]. In the decentralized approach,
each tool follows their own naming convention for the data connections, and
therefore it is the responsibility of the person setting up the MDAO problem to
define connections between inputs and outputs of tools. This is the approach
taken by MDAO platforms like OpenMDAO (not using data promotion) [5], and
ModelCenter1.

In centralized approaches, data connections can be discovered automatically
because tools adhere to some centralized data protocol [6], either tailor-made or
predefined. GEMSEO [7], WhatsOpt [8] and OpenMDAO (using data promotion)
use tailor-made data mapping approaches. KADMOS [6] and MDAx [9] are based
on the use of a centralized predefined data format. In aircraft design, an example
of a predefined data format is CPACS [10].

1 https://www.phoenix-int.com/product/modelcenter-integrate/, accessed September 2022.

Architecture-to-MDAO Influence Vectors
The MDAO problem can be influenced by generated architecture alternatives through various levels of influence vectors (see Figure 2).

L1

L2

L3

Data values: input values might be changed, for example
when choices are represented using enumerations (e.g.
choose between “turboprop” or “turbofan” propulsion) or
integers (e.g. the number of ribs in a wing, the number of
engines). No MDAO problem modification is needed.

Data structure (flat): the multiplicity of elements can be
affected, thereby influencing the length of data vectors to
be communicated between tools (e.g. each rib might have
a thickness and the number of ribs is a design variable). In
this case the MDAO problem needs to support changing
vector lengths or ignore parts of vectors that are not active.

Data structure (subtree): more influential architecture
choices might also influence the existence of certain data
structure somewhere in the data hierarchy (e.g. the choice
between a fixed- or rotary-wing aircraft might greatly
influence what data is relevant for analysis: wing vs rotor
attachment, flight controls assignment, etc.). In this case
the MDAO problem needs to support changing data
subtrees or ignoring larger subparts of the data structure.

Note: L = level

L4

L5

L6

Data connections: component connection choices can
influence the data flow between MDAO tools (e.g. landing
forces are either an input to the wing- or fuselage-sizing
tool, depending on their attachment). The MDAO problem
needs to either support dynamically activating connections,
or reformulation is needed.

Tool configuration: disciplinary tools might be reused for
analysis of different components (e.g. a structural sizing
tool might be reused for wing and tailplane sizing). In this
case the MDAO problem needs to support selecting
different parts of the data structure for different uses of
the same tool, or it should support automated redefinition
of the input and output declaration of the tool.

Tool selection: different technologies with different
design procedures and engineering disciplines might be
selected (e.g. designing composites or metallic structure
might need different simulation tools). In this case the
MDAO problem needs to either support dynamically
skipping tools that are not needed for a given architecture,
or it should be reformulated.

L5

L6

L4

L3 L2

L1

Figure 2: an example MDAO problem showing the different levels of architecture-to-MDAO influence vectors.

Introduction
A system architecture defines how a system achieves its top-level functions, meets
its requirements, and satisfies the stakeholder needs. The architecture design
space, that is the space spanning all possible system architectures for a given
design problem, suffers from a combinatorial explosion of alternatives, thereby
making it infeasible to exhaustively search the complete design space to find the
best architecture [1]. System architecture optimization techniques are currently
being developed that enable the formulation of the design problem as a numerical
optimization problem to enable design space exploration [2].

In an optimization process, architecture alternatives are compared using
performance metrics, see Figure 1. To calculate these metrics, relevant engineering
disciplines should be included, to prevent designs that favor one discipline (e.g.
aerodynamics), and the behavior should be optimized at the system-level instead of
the component-level. To achieve this, Multidisciplinary Design Analysis and
Optimization (MDAO) techniques are used [3].

Figure 1: architecture optimization concept. Figure reproduced from [2].

This research has received funding from the European Union Horizon 2020 Programme under grant agreement n. 815122.

Mitigation I: Data Mapping Approach
A decentralized data mapping approach can work for dealing with L1 (values) and L2 (flat data structure) influence vectors, as these do
not directly influence the MDAO problem formulation. Dealing with L3 (subtree data structure) is more challenging, because it requires
relevant subtrees to be removable in the data model, which means that data connections can only be defined up to the root of the
subtree and the MDAO problem needs to be agnostic to the contents of the subtree. Any higher-level influence vectors cannot be dealt
with by a decentralized data mapping approach, as it prevents the automated redefinition of connections and tool inclusion.

Using centralized data mapping facilitates automatically establishing data connections between tools, and therefore allows any level of
influence vector to be supported. For example, data connections can be automatically reestablished, and disciplinary tools can be
automatically selected based on the availability of certain data elements.

Mitigation III: Problem Flexibility
Problem-level flexibility can be implemented in a single MDAO problem. An
advantage is that this can be done before running the optimization, thereby giving
the user more control over problem execution. If tools are robust enough, the
single problem can deal with L1 to L4 influence vectors. Support for L5 (tool
configuration) and L6 (tool selection) can be enabled using skipping logic: the
problem itself contains the union of all available tools, which are then selectively
skipped based on data values and availability. For example, if aluminum is chosen
as the material, the composites tool is skipped. The single problem approach,
however, cannot deal with changing optimal tool sequences or MDAO
architectures.

Another way is by defining multiple MDAO problems and then delegating analysis
of architecture alternatives to the corresponding problem. The advantage over the
single MDAO problem approach is that here each problem definition can have
different tool sequences or MDAO architectures applied for dealing with L5 and L6
influence vectors.

Finally, the most flexible approach is automatically creating MDAO problems
for each new architecture alternative within the optimization loop. This ensures
that each MDAO problem is optimally configured to analyze each specific
architecture. To use the automated approach, there should be no additional user
interaction needed for problem formulation and execution. This means it will be
difficult to use GUI-based integration platforms like RCE2. Scripting-based
frameworks like OpenMDAO [5] can alleviate this.

2 https://rcenvironment.de/, accessed September 2022.

Bibliography
[1] J.H. Bussemaker, et al., "System Architecture Design Space Exploration: An Approach to Modeling and Optimization," in AIAA Aviation 2020 Forum.
[2] J.H. Bussemaker and P.D. Ciampa, "MBSE in Architecture Design Space Exploration," in Handbook of Model-Based Systems Engineering, Springer, 2022.
[3] P.D. Ciampa and B. Nagel, "Accelerating the Development of Complex Systems in Aeronautics via MBSE and MDAO: a Roadmap to Agility," in AIAA Aviation 2021
Forum.
[4] I. van Gent, "Agile MDAO Systems: A Graph-based Methodology to Enhance Collaborative Multidisciplinary Design," 2019.
[5] J.S. Gray, et al., "OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization," Structural and Multidisciplinary Optimization,
March 2019.
[6] I. van Gent, et al., "Composing MDAO symphonies: graph-based generation and manipulation of large multidisciplinary systems," 18th AIAA/ISSMO MDAO
Conference, 2017.
[7] F. Gallard, et al., "GEMS, a Generic Engine for MDO Scenarios : Key Features in Application," in AIAA Aviation 2019 Forum.
[8] R. Lafage, et al., "WhatsOpt: a web application for multidisciplinary design analysis and optimization," in AIAA Aviation 2019 Forum.
[9] A. Page-Risueño, et al., "MDAx: Agile Generation of Collaborative MDAO Workflows for Complex Systems," in AIAA Aviation 2020 Forum.
[10] M. Alder, et al., "Recent Advances in Establishing a Common Language for Aircraft Design with CPACS," in Aerospace Europe Conference, 2020.

3rd European Workshop on MDO
20-21 September 2022, Paris, FR

