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Abstract—Non-terrestrial networks (NTNs) such as satellite
constellations offer a large coverage area and the potential to
serve vast populations of devices, and they are hence a promising
solution for multiple Internet of Things (IoT) applications. Given
the power constraints of typical IoT devices, low earth orbit
(LEO) satellites have to be considered due to the improved
link budget. A common characteristic of such satellite links is
a large Doppler shift, which introduces additional challenges
to the problem of frame synchronization. In this work we
consider several frame synchronization algorithms, comparing
their robustness against frequency offsets in different scenarios.
The main finding of this paper is that a commonly considered
algorithm, which is derived as a low-complexity approximation
of the optimal likelihood-ratio test, exhibits a poor performance
for low signal-to-noise ratio (SNR) values typical of satellite
scenarios. In such realistic scenarios, a technique known as
bank of correlators reaches the best performance among the
considered algorithms but has a very high complexity. An FFT
based technique commonly known as swiveled correlation seems
to provide the best tradeoff between performance and complexity.

I. INTRODUCTION

The Internet of Things (IoT) has become a fundamental
technology for many next-generation networking applications,
driven by a growing amount of research and industrial
interest. Such applications include environmental monitoring
and asset tracking, as well as smart homes and factories,
where devices with sensors and actuators are interconnected
to monitor, supervise and control specific tasks. At a high
level of abstraction, the IoT aims at interconnecting vast
numbers of terminals, which are often constrained in power
and complexity. To enable this communications model, several
commercial solutions have been developed in the terrestrial
domain, epitomized by LoRa [1] and SigFox [2]. On the other
hand, the past few years have witnessed an increased attention
towards the use of non-terrestrial networks (NTNs), leveraging
on constellations of low earth orbit (LEO) satellites to provide
IoT connectivity over wide coverage areas in a cost-effective
manner. This is also emphasized by recent 3GPP releases
about the standardization of narrowband IoT (NB-IoT) for
NTNs, e.g. [3].

Although this provides a promising solution from an
architectural point of view, the nature of a satellite link with
IoT terminals poses new challenges that span all the layers
of the protocol stack. Among them, packet detection plays

an important role. Indeed, due to power limitations, most IoT
devices may be in sleep mode for most of the time and only
sporadically generate traffic in the form of short packets. At
the receiver, incoming messages have to be efficiently detected,
so as to trigger the decoding chain only when needed. This
task is commonly known as frame synchronization for bursty
transmissions or “one shot” frame synchronization [4], and it
is a challenging task in (LEO) satellite-based IoT systems due
to the severe power constraints of the transmitting devices and
the large Doppler shifts experienced.

One possible strategy to tackle this problem is to pre-
compensate for the expected frequency shift at the transmitter,
as envisioned in the 3GPP [3]. However, to compute the
expected Doppler shift, an accurate knowledge of the terminals
position and the satellite orbit, as well as a stable time
reference and large enough computational resources are
required. As these requirements may not all be fulfilled for
typical IoT devices, the Doppler shift has to be dealt with
when performing frame synchronization at the receiver.

Frame synchronization algorithms typically rely on a
likelihood function L(µ), that measures the probability that
the start of the frame is located at time µ. In this work,
we consider preamble-based frame synchronization, where a
known sequence of symbols is prepended to every packet to
assist synchronization. Hence, one could say that the goal of
the likelihood function is to only provide a large output when
presented with the preamble. To interpret the output of the
likelihood function and decide whether a packet was detected,
mainly two strategies have been used: maximum likelihood
and hypothesis testing. The essence of the former method is
to examine a window of P symbols, where P is typically
equal to the length of one frame, and select the time position
µ̂ which maximizes the likelihood function as the one at which
the preamble start can be found. The latter method compares
the output of the likelihood function to an adjustable threshold
for every sample, and declares the potential presence of a
preamble whenever the threshold is exceeded. In this work, we
consider only hypothesis testing, since it is more in accordance
with the unpredictable nature of IoT transmissions.

Several works in literature have considered the problem
of frame synchronization with a frequency offset using
hypothesis testing. One line of research considers deriving



an optimal test and approximating it with a low-complexity
expression [5], [6], [7], [8]. Other works follow an algorithmic
approach [9], [10], [11], [12], building up on correlation
techniques, which are known to be the optimal solution to the
maximum likelihood frame synchronization problem without
carrier frequency uncertainty [4]. The simulations provided
in these works mostly focus on moderate SNRs of around
ES/N0 ≈ 0 dB.

The mentioned problem is rather well-studied in literature
for conventional communication systems, however, the
particular characteristics of novel satellite IoT scenarios
require a reassessment in the context of satellite IoT. We
contribute to the existing research mainly in two ways. First,
we present results that indicate that whereas for a moderate
SNR the schemes based on approximation of the optimal
test perform close to optimally, their performance degrades
strongly in the low SNR settings typical for satellite IoT
applications. Second, we include the effects of intersymbol
interference (ISI) due to imperfect receive filtering on the
detection algorithms. These two aspects are relevant for a
satellite IoT setting, and, as we will show in this paper, they
have a strong practical impact.

II. SIMPLIFIED BASEBAND SETTING

In the first part of this paper, we focus on a simplified signal
model for which it is possible to derive an upper bound on
the performance of any frame synchronization scheme.

In particular, following [7], we consider the transmission
of a packet consisting only of a preamble c[k], which is an
M -ary phase-shift keying (PSK) modulated symbol sequence
of length K. Furthermore, we assume that the signal is
transmitted over an additive white Gaussian noise (AWGN)
channel and that it is affected by a Doppler shift Fd and
an initial phase offset ϕ. Thus, the received signal can be
expressed as

r[k] = c[k] ej(θk+ϕ) + n[k], k ∈ {0,K − 1}.

Hereby, θ = 2πfd = 2πFdTS is the Doppler shift normalized
to the symbol rate in radians/sample, TS is the symbol
period, n[k] is zero-mean complex white Gaussian noise with
a variance of σ2

n = N0/2 in each dimension, and k is
the time index. We shall assume that the phase shift ϕ is
uniformly distributed on [−π, π] and that the Doppler shift
is also uniformly distributed on [−fmax, fmax].

Casting the detection problem as a hypothesis testing
problem, we define the following two hypotheses:

H0 : r[k] = n[k],

H1 : r[k] = c[k] ej(θk+ϕ) + n[k].

The null hypothesis H0 describes the case in which the
incoming signal does not contain the preamble and is only
defined by noise. The alternative hypothesis H1 accounts
for the cases in which the signal contains the Doppler
affected preamble and therefore stands for the location of
the start of the packet. Following [7], [13], [14], we focus
on distinguishing between H0 and H1, thereby ignoring all

those cases in which the preamble is only partly contained in
the received signal. As explained in [13], this simplification
is well justified provided that the chosen preamble has good
autocorrelation properties.

To decide between the two hypotheses, the Neyman-Pearson
(NP) lemma [15] states that the most powerful test, i.e., the
optimal decision rule, is given by a likelihood-ratio test (LRT),
where the ratio of the probability density functions (PDFs) of
the two hypotheses are compared to a threshold λ. If the ratio
stays below the threshold the null-hypothesis H0 is accepted,
whereas H1 is accepted if the threshold is exceeded. The
likelihood function corresponding to the optimal LRT can be
formulated as

LO(µ) =
fR(r|H1)

fR(r|H0)

H1

⋛
H0

λ,

where r = (r[µ+ 0], r[µ+ 1], ..., r[µ+K − 1]) is the vector
of incoming samples, and R = (R[µ+0], R[µ+1], ..., R[µ+
K − 1]) is its associated random variable.

For the simplified environment assumed in this section, it
is actually possible to find a closed form expression for the
optimal LRT, see [7] and [16]:

LO(µ) =

2πfmax∫
−2πfmax

I0

(
2

σ2
n

∣∣∣∣∣
K−1∑
k=0

r[µ+ k] c∗[k] e−jθk

∣∣∣∣∣
)

dθ
H1

⋛
H0

λ,

(1)
where I0(x) is the modified Bessel function of the first kind
and zeroth order, [17]:

I0(x) =
1

2π

∫ π

−π

ex cos(ϕ) dϕ.

Eq. (1) serves as an upper bound on the problem of frame
synchronization in the given setting, although it cannot be
implemented in practice (see [16] for details).

III. DETECTORS

In this section, we present several detection schemes,
which in contrast to the optimal LRT presented in the
previous section, have low complexity and thus offer practical
implementations.

A. Approximation of the Optimal LRT

A straightforward approach to finding a lower complexity
detector with good performance is to approximate the
optimal LRT by replacing the Bessel function with a low
complexity Taylor polynomial [5], [6], [7]. In particular, if
one approximates it by x4 and sets the maximum Doppler
shift to fmax = 0.5, the likelihood function simplifies to [7],
[16]:

LA(µ) =

K−1∑
m=1

∣∣∣∣∣
K−1∑
k=m

r∗[µ+ k] c[k] r[µ+ k −m] c∗[k −m]

∣∣∣∣∣
2
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Fig. 1. Block diagram of the bank of correlators. Each branch is shifted by
a different frequency fi = fmax − (i − 1)∆f , where i is the index of the
branch.

B. Simple Correlator

The simple correlator, which is widely used in practice,
simply computes the correlation between the incoming sample
stream and the preamble. Relying on good autocorrelation
properties of the preamble, the receiver can detect the start of
the frame by the peak in the correlation. The corresponding
likelihood function is given by

LC(µ) =

∣∣∣∣∣
K−1∑
k=0

r[µ+ k] c∗[k]

∣∣∣∣∣ .
Despite its simplicity, the simple correlator is very robust
against noise for long preambles. However, its performance
quickly degrades when a Doppler shift is present, which is
elaborated in the Appendix.

C. Bank of Correlators

The bank of correlators aims at improving the detection
performance for large Doppler shifts by operating multiple
simple correlators at different center frequencies, see Fig. 1.
Hereby, the number of parallel correlators NB , or branches,
can be varied according to the requirements of the system. This
is reflected in the resolution of the bank of correlators, which
describes the frequency difference between two branches and
is given as

∆f = 2
fmax

NB − 1
.

Its likelihood function is given by

LB(µ) = max
i

(∣∣∣∣∣
K−1∑
k=0

e−j2πk(fmax−(i−1)∆f) r[µ+ k] c∗[k]

∣∣∣∣∣
)
,

where i ∈ {1, NB}.
The main idea of the algorithm is to differently shift the

frequency of the input signal in order to counteract the Doppler
shift in one of the branches. In the correct branch, i.e., the
branch corresponding to the frequency shift closest to the
actual Doppler shift, the remaining residual frequency offset fr
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Fig. 2. Block diagram of the swiveled correlator.

is expected to only have a minor influence on the output of the
succeeding correlation. To ensure this behaviour, the maximum
residual frequency offset f̂r in the correct branch can be
controlled by the number of parallel correlators, as it is directly
proportional to the resolution of the bank of correlators, i.e.,
f̂r = ∆f/2. Thereby, an arbitrary small maximum residual
frequency offset could be guaranteed by choosing a very large
number of branches, effectively resulting in a Doppler-free
scenario. This, however, results in an increased complexity,
see Section VI. One of the advantages of this technique is that
it can provide a (coarse) frequency estimate f̃ at its output.
In particular, the frequency estimate corresponds to the center
frequency of the branch which produced the largest output.

D. Swiveled Correlator

The swiveled correlator was first presented in [9] and it is
practically used in the S-MIM system [18]. Its performance,
neglecting ISI, was analyzed in [10]. In the swiveled correlator,
the preamble is first split into Nf segments of length M =
K/Nf symbols, where we assume that K is divisible by Nf .
Hence, the n-th preamble segment cn, n ∈ {1, Nf}, is given
by

cn = (c[(n− 1)M ], c[(n− 1)M + 1], ..., c[nM − 1]).

As it can be observed in Fig. 2, the swiveled correlator
processes the signal on Nf parallel branches, where each
branch is associated to a different preamble segment cn.
The incoming signal r is then correlated with the respective
preamble segment in each branch. The correlator outputs are
then aligned in time by means of a delay. In particular, the
n-th branch is delayed by M(Nf −n) symbols and then used
as input to a fast Fourier transform (FFT) block. Finally, the
detection metric is obtained by taking the maximum among
the NS outputs of the FFT block. Intuitively, the FFT block
is an efficient way of finding the frequency shift which results
in a constructive addition of the signals in the Nf branches.

The FFT block generates NS outputs, each of them
associated to a discrete frequency, or frequency bin. If the
Doppler frequency falls between two frequency bins, the



energy is shared and the amplitude in both bins is much
lower than in the case of a frequency match. This reduces
the potential to detect a peak in one of the output bins. In
literature, this is also referred to as scalloping loss [19]. A
common method to counter this issue is to employ zero-
padding, i.e., extending the input to the FFT with Z zeros,
which effectively adds more bins in the same frequency range,
resulting in a total of NS = Nf + Z output bins.

The likelihood function of the swiveled correlator with zero-
padding is given by

LS(µ) = max
i∈I

(∣∣∣∣∣
Nf∑
n=1

nM−1∑
k=(n−1)M

r[µ+ k] c∗[k] e
−j2π n

Nf+Z i

∣∣∣∣∣
)
,

where I is the set of possible frequency bins, i.e., those that
satisfy | − 0.5 + i/(Nf + Z)| ≤ fmax. Similarly to the bank
of correlators, the swiveled correlator also provides a (coarse)
estimate of the frequency shift at its output, which simply
corresponds to the frequency associated to the bin which yields
the maximum output.

Let us now analyze the algorithm more closely by assuming
that the preamble is fully contained in the input signal. In
particular, let us assume that a preamble starts at sample µ = 0.
The correlation output in the n-th branch can be expressed as:

wn[0] =

nM−1∑
k=(n−1)M

ej(2πkfd+ϕ) c[k] c∗[k] +

nM−1∑
k=(n−1)M

n[k] c∗[k]

= ej2πfd(n−1)M
M−1∑
k=0

ej(2πkfd+ϕ) +

nM−1∑
k=(n−1)M

n[k] c∗[k].

Hereby, we can observe that the Doppler induced phase
difference between the output of adjacent branches wn

and wn+1 is ej2πfdM . Thus, we will only be able to
unequivocally detect normalized frequency shifts in the range
fd ∈ (−1/2M, 1/2M ]. To optimally cope with the Doppler
shift, for the remainder of this work we choose M = 1.

IV. SIMULATIONS IN THE SIMPLIFIED BASEBAND SETTING

In this section, we compare the performance of the different
detection algorithms in two different settings.

First we consider a moderate SNR setting with ES/N0 =
0dB, a maximum Doppler shift fmax = 0.5 and a preamble
length of K = 15 symbols. Fig. 3 plots the simulation results
of the receiver operating characteristic (ROC) for the different
detectors and the upper bound. The curves show that the
performance of the lower complexity detectors almost reach
the upper bound, which is given by the optimal LRT in this
setting.

The second setting considers parameters that are typical for
satellite-based IoT applications. In particular, we consider an
SNR of ES/N0 = −9 dB and a preamble length of K = 150
symbols. The simulation results are given in Fig. 4. It can
be observed how the bank of correlators LB and the swiveled
correlator LS show close to optimal performance. However,
the approximation of the optimal LRT LA significantly drops
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in performance compared to the moderate SNR scenario.
We speculate that this performance degradation, which had
not yet been observed in literature, can be attributed to the
approximation of the Bessel function, and leave a detailed
analysis for further investigation.

Since a Doppler shift of fmax = 0.5 can be considered very
extreme, we provide further simulation results for a smaller
Doppler range with fmax = 0.2 and a preamble length of
K = 130 in Fig. 5. The results show that the bank of
correlators and the swiveled correlator again reach close to
optimal performance, while the approximation of the optimal
test performs poorly.

V. SIMULATIONS IN A REALISTIC SATELLITE SETTING

A. Signal Model

In the simplified baseband setting in Section II several
processing steps were omitted, which have to be considered in
a practical communication system. In particular, the modulated
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sequence has to undergo pulse shaping in order to generate a
(bandlimited) waveform, which is then upconverted to carrier
frequency and transmitted by an antenna. For the sake of
simplicity, we assume that the channel applies a Doppler shift
to the transmitted signal, as well as an attenuation and the
addition of white Gaussian noise. After travelling through the
channel, the signal is downconverted at the receiver. Hereby,
the Doppler shift will remain as residual frequency offset in
the downconverted signal. At this point, the signal can be
expressed as

r(t) =

K−1∑
m=0

c[m] p(t−mTS) e
j
(
2πfd

t
TS

+ϕ
)
+ ν(t),

where p(t) is the impulse response of the pulse shaping filter
and the noise ν(t) has a constant power spectral density (PSD)
of N0/2.

In order to fulfill the Nyquist criterion and ensure ISI-
free transmission, the received signal is then filtered using a
matched receive filter. However, at the time of receive filtering,
the Doppler shift of the incoming signal is unknown, and thus
receive filtering introduces ISI.

The receive filtered signal can be represented as [20]:

z[k] =
(
c[k]I0(fd)+

K−1∑
m=0
m̸=k

c[m]Ik−m(fd)
)
ej(2πkfd+ϕ)+n[k],

where

In(fd) =
∞∫

−∞

G(f +
fd
TS

)P (f) ej2πfnTSdf.

Hereby, P (f) is the frequency response of the pulse shaping
filter and G(f + fd/TS) is the frequency response of the
receive filter, shifted in frequency. The terms In(fd) account
for the ISI due to the Doppler shift fd. In particular, I0(fd)
represents the amplitude of the target symbol, while In(fd)
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for n ̸= 0 corresponds to the amplitude of the n-th adjacent
symbol.

The terms I0, I1, I2 and I3 are plotted in Fig. 6 as a
function of the normalized Doppler shift fd, for a matched
filter pair of square-root raised cosine (SRRC) pulses with a
roll-off factor of β = 0.5. We can observe how for small
Doppler shifts the effect of ISI is negligible since we have
I0 ≃ 1 and In ≃ 0, for n > 0. However, as the Doppler shift
increases the ISI becomes stronger. Regarding the impact of
the roll-off factor, as one could expect, the lower the roll-
off factor, the stronger the ISI (Ii, i ≥ 1), and the weaker
the amplitude of the target symbol (I0) across the range of
Doppler shifts, resulting in an even quicker decline of signal
quality for a growing Doppler shift.

From this discussion, it is obvious that the appearance of ISI
will negatively impact the performance of any frame detection
algorithm which is applied after (imperfect) receive filtering.
However, for the bank of correlators, it is actually possible to
avoid this problem. In particular, since each of the branches
of the bank of correlators is processed independently, it is
possible to apply receive filtering in each branch after the
initial frequency shifting. This strategy, which unfortunately
cannot be applied to any of the other detection algorithms,
results in a slight increase in complexity, but can effectively
mitigate ISI, provided that a sufficient number of branches is
used.

B. Results

We consider a setting in which a LEO satellite at an altitude
of 575 km services an area corresponding to a maximum slant
range of 1300 km. The symbol rate is set to 250 kHz at a
carrier frequency of 2GHz. We expect the SNR to amount
to −6 dB at the center of coverage and −13 dB at the edge
of coverage. Pulse-shaping and receive filtering is performed
with SRRC filters with a roll-off factor of 0.22. We consider
a preamble length of K = 350 symbols. The simulation
parameters are summarized in Table I.



TABLE I
PARAMETERS OF THE CONSIDERED LEO

SATELLITE LINK

Description Symbol Value

Carrier frequency fc 2 GHz

Symbol rate 1
TS

250 kHz

Satellite altitude h 575 km

Maximum slant range dmax 1300 km

SNR at CoC Es
N0

∣∣
CoC −6dB

SNR at EoC Es
N0

∣∣
EoC −13dB

SRRC roll-off factor β 0.22
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Fig. 7. Simulated ROC in realistic satellite setting following the parameters
given in Table I for a preamble length K = 350.

To simulate the transmission for any given terminal, we
choose the terminal locations by uniformly sampling a point
in the coverage area of the satellite, and then computing the
corresponding Doppler shift and link budget. The results of
the simulation are shown in Fig. 7. The approximation of
the optimal LRT LA again performs poorly, owing to the low
SNR. The swiveled correlator shows a better performance, but
it does not reach the performance of the bank of correlators,
which performs best. The good performance of the bank of
correlators can be attributed to the integration of a receive
filter in each of its branches, which effectively mitigates ISI.
In contrast, the approximation of the optimal LRT and the
swiveled correlator operate with a single receive filter and
suffer from ISI, which leads to a performance degradation.

The results shown in Fig. 7 are average results for the
whole coverage area of the satellite. In the following, we
have a closer look into the performance of the different
detectors as a function of the exact terminal position within
the coverage area. For illustration, we will place terminals on a
line traversing the center of the coverage area in the direction
of movement of the satellite. The presented discussion will
also be indicative of the behaviour a terminal will experience

−1,000 −500 0 500 1,000

−14

−12

−10

−8

−6

Distance from CoC [km]

SN
R

[d
B

]

−0.2

0

0.2

D
op

pl
er

sh
if

t
f d

Fig. 8. SNR in dB and normalized Doppler shift fd as a function of the
distance from the center of coverage in km.

−1,000 −500 0 500 1,000

0.7

0.8

0.9

1.0

Distance from CoC [km]

Pr
ob

ab
ili

ty
of

de
te

ct
io

n
P

d

LA

LS : NS = 2K

LB : NB = 2K

Fig. 9. Probability of detection Pd as a function of the distance from the
center of coverage in km.

when a satellite passes above it.
The resulting SNR and Doppler shift depending on the

distance to the center of the coverage area are shown in
Fig. 8, whereas Fig. 9 shows the probability of detection of
the different schemes, assuming a fixed false alarm probability
Pfa of 5%. It becomes apparent that, for all detectors,
the performance is very good for points near the center
of the coverage area, but degrades as the distance to the
center increases, due to the increasing Doppler shift and
decreasing SNR. However, this degradation is different for the
different detectors. As expected, the degradation is strongest
for the approximation of the optimal LRT, less severe for the
swiveled correlator and the best performance with only a small
degradation is achieved by the bank of correlators, which is
only affected by the decreasing SNR, and not by the increasing
Doppler shift due to the use of a receive filter on each branch.

VI. COMPUTATIONAL COMPLEXITY

In this section, we analyze and compare the complexity
of the different frame detection algorithms. In particular, we



TABLE II
COMPUTATIONAL COMPLEXITY OF THE DIFFERENT DETECTORS

Scheme Operation Count #Ops. for considered setting

LC 2L′ + 2K + 2 716

LB NB(2L′ + 2K + 3) 501,900

LS
2L′ + 2K −Nf − 1 29,627
+4NS(log2(NS) + 1)

LA 2L′ + 2K2 +K − 5 245,359

provide a count of the number of operations, and we define
as one operation a complex multiplication, complex addition,
or the computation of the square root. Furthermore, we shall
assume that the receive filter is implemented as a finite impulse
response filter of length L′. A similar analysis was carried
out in [11], however without considering receive filtering and
assuming a suboptimal fixed configuration (NS = Nf = K)
for the swiveled correlator.

The operation counts were derived as follows. The simple
correlator LC first carries out receive filtering, corresponding
to L′ multiplications and L′− 1 additions, and then computes
the correlation with the length K preamble, which requires K
multiplications, K−1 additions and 4 additional operations to
compute the absolute value (|z| =

√
x2 + y2, for z = x+ iy).

This yields a total of 2L′ + 2K + 2 operations.
Similarly, the bank of correlators LB simply consists of NB

simple correlators applied in parallel, and additionally needs
one operation to shift the frequency of the input signal in each
branch. This yields a total of NB(2L

′ + 2K + 3) operations.
The swiveled correlator first carries out receive filtering,

which requires 2L′ − 1 operations, and then computes Nf

correlations of length M = K/Nf , which requires 2K −
Nf operations. The subsequent FFT requires 4NS log2(NS)
operations1 and an additional 4NS operations to compute
the absolute value of each output. This yields a total of
2L′ + 2K −Nf + 4NS (log2(NS) + 1)− 1 operations.

Also for the approximation of the optimal LRT the first step
is receive filtering, yielding 2L′−1 operations. The likelihood
function then consists of a double sum. The inner sum requires
3(K −m) multiplications and K −m − 1 additions, and an
additional 3 operations to compute the absolute square. The
outer sum requires K − 2 additions to add the results of the
inner sum, thus the operation count is

2L′−1+K−2+

K−1∑
m=1

4(K−m)+2 = 2L′+2K2+K−5.

Table II summarizes the operation counts for the different
schemes and provides the number of operations considering
the parameters in Section V, i.e., K = 350 and NB = NS =
2K, and assuming an impulse response of length L′ = 7 for
the receive filter.

The operation counts presented in this section are not to be
taken as an exact measure of complexity, since this will depend

1We consider here the well-known Cooley-Tukey FFT implementation [21]

strongly on multiple practical aspects. Nevertheless, they do
allow us to order the algorithms in terms of complexity,
and to conclude that the swiveled correlator has much lower
complexity than the bank of correlators and the approximation
of the optimal LRT.

VII. DISCUSSION & CONCLUSION

In this paper we have considered different frame detection
algorithms both in an idealized setting, which disregards
receive filtering, and in a more realistic setting that considers
also the ISI due to imperfect receive filtering. The two main
findings of this paper are the following. The first is that
although the approximation of the optimal LRT provides
promising results in moderate SNR values, its performance
at low SNR, which is the expected regime of operation in
satellite-based IoT, is very poor. This was confirmed for the
simplified and realistic settings. The second finding is that in
a realistic satellite IoT setting, the swiveled correlator exhibits
both good performance and low complexity, and is thus a
promising solution, although its performance degrades for
large Doppler shifts due to ISI.

Due to space limitations, some interesting aspects could
not be analyzed in detail in this paper. A first one would be
deriving strategies to better cope with very large Doppler shifts
in the swiveled correlator. Here, one option could be operating
multiple swiveled correlators in parallel (and centered at
different frequencies). This would improve performance at the
cost of some additional complexity. However, we expect such
a solution to still be less complex than the bank of correlators.

A further interesting research direction is evaluating the
performance of the different algorithms in a more complete
setting, considering the transmission of preambles followed
by modulated data symbols, as well as the presence of
transmissions from multiple users. Another aspect that is left
for further study is operating the detection algorithms on an
oversampled waveform since timing synchronization can only
take place after successful frame synchronization.

While we do expect the trends identified in this paper to hold
in full-scale implementation both in terms of performance and
complexity, some interesting new aspects may emerge, such as,
for example, the possibility to dynamically adapt the detection
threshold λ depending on the load of the channel.

APPENDIX
CORRELATION LOSS R0

This appendix analyzes the effect of a Doppler shift on the
output of a correlator. A similar analysis can be found in [22].
For simplicity, we consider a noiseless scenario, where the
input signal only contains the frequency shifted preamble, i.e.

r[µ+ k] = c[k] ej(2πkfd+ϕ).

Thus, we have that the (absolute value of the) correlator output
corresponds to:

|R0(fd)| =

∣∣∣∣∣
K−1∑
k=0

ej(2πkfd+ϕ) c[k] c∗[k]

∣∣∣∣∣ , (2)
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Fig. 10. Magnitude of R0(fd) for different preamble lengths K = 10 and
K = 20 in a noiseless scenario. Restricted to positive frequencies as function
is symmetric.

Since we consider PSK modulation, we have c[k] c∗[k] = ES .
Choosing ES = 1, without loss of generality, we can rewrite
Eq. (2) as

|R0(fd)| =
∣∣∣∣ sin(Kπfd)

sin(πfd)
ej((K−1)πfd+ϕ)

∣∣∣∣ .
This function is plotted for different preamble lengths in
Fig. 10. It can be observed that the shape depends on the
preamble length K. Hereby, mainly two characteristics can be
established from the plot:

• For a normalized Doppler shift of fd = 0, the amplitude
of the output corresponds to the preamble length K.
Therefore, longer preambles induce a larger correlation
output and thus show an improved performance against
noise.

• The amplitude of the output rapidly decreases for growing
Doppler shifts. This effect depends on the preamble
length. More precisely, we have that the longer the
preamble, the more severe the degradation becomes.

Thus, we can conclude that in low SNR scenarios, where
long preambles are needed to increase correlation output
against the noise, the performance of the simple correlator
will be very poor already for small Doppler shifts.
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