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Abstract— Trajectory data analysis is an essential component
for highly automated driving. Complex models developed
with these data predict other road users’ movement and
behavior patterns. Based on these predictions — and additional
contextual information such as the course of the road, (traffic)
rules, and interaction with other road users — the highly
automated vehicle (HAV) must be able to reliably and safely
perform the task assigned to it, e.g., moving from point A to
B. Ideally, the HAV moves safely through its environment, just
as we would expect a human driver to do. However, if unusual
trajectories occur, so-called trajectory corner cases, a human
driver can usually cope well, but an HAV can quickly get into
trouble. In the definition of trajectory corner cases, which we
provide in this work, we will consider the relevance of unusual
trajectories with respect to the task at hand. Based on this,
we will also present a taxonomy of different trajectory corner
cases. The categorization of corner cases into the taxonomy will
be shown with examples and is done by cause and required
data sources. To illustrate the complexity between the machine
learning (ML) model and the corner case cause, we present a
general processing chain underlying the taxonomy.

I. INTRODUCTION

A vehicle equipped with sensor-based assistance systems
is driving toward a sharp corner. Suddenly an oncoming
vehicle with increased speed appears and cuts the corner.
The car driver reduced his speed as a precaution because
this dangerous curve was well known to him, and the driver
was able to brake just in time to prevent worse. Situations
like this, or situations where road users disregard the right
of way, are known to every driver. Therefore HAVs must
be able to predict trajectories with high reliability. This
includes assessing the behavior of other road users and the
interaction between them to achieve action planning that
can handle such critical situations in the best possible way.
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Corner cases are usually extremely critical but (fortunately)
very rare situations, which makes them very important for
training and validating ML methods. As described in the
example, many drivers experience these critical situations,
but it is hard to fully define them due to their high variance
in appearance. The authors in [1] and [2] found definitions
mainly for the perception tasks, but the domain of action,
reaction, and interaction in the context of trajectories in space
and time is only marginally addressed by these works. This
article examines this domain and specifically trajectories in
more detail. The main contributions are:

• Systematization and definition of trajectory corner
cases,

• Breakdown for corner case situations for trajectory
datasets resulting in 31 categories,

• Application of proposed systematization on selected
use-cases for filtering of corner case and their targeted
synthetic generation.

In Sec. II, we introduce different terms regarding trajectories
and corner cases, from which we derive our definition of
trajectory corner cases. Sec. III contains a process pipeline
that may be used to classify corner cases for both human road
users and HAVs, considering examples related to trajectories.
Using the taxonomy explained in Sec. IV this work provides
a high-level approach to gain a better understanding of how
a system can deal with driving hazards. Sec. V shows the
application of the taxonomy on simulated and real data.

II. DEFINITIONS

Before discussing the definition of corner cases in
trajectories, we present the probabilistic and generative
trajectory model and how corner cases are defined in the
literature. We then merge these two substantive points,
trajectory model and corner cases, and present our definition
of trajectory corner cases.

A. Generative Probabilistic Trajectory Model

In the following, we introduce a probabilistic trajectory
model which is the basis of our corner case definition.
Environments and technical systems are often characterized
in terms of states x [3]. A trajectory is a time series of
states in some metric space which additionally possesses
an inherent spatial smoothness that directly links two
neighboring states xt−1 and xt in time [4]. Here, the
subscript t denotes the time dependency. A trajectory
displays the dynamics of a system under observation in
such a state space. Formally, we define a trajectory of
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Fig. 1: Probabilistic trajectory model characterized as
dynamic Bayes network [3]. The variable zt describes the
observable, noisy version of the underlying latent state xt,
which is influenced by a control-input ut.

length N ∈ N in a state space as the set X =
(xt | t ∈ [1, . . . , N ]). Without loss of generality, we consider
trajectories in state spaces comprising 3D-poses xt ∈ SE(3)
in the special Euclidean group consisting of position and
the orientation of the system under observation. Note that
in many applications in highly automated driving the state
space often also comprise single- or multi-order derivatives,
e.g., the velocity and acceleration. We model the dynamics
of the system under observation probabilistically defined as
p (xt+1 | xt, . . . ,x1,ut, Cd). The evolution of the state xt+1

may depend on former states xt, . . . ,x1 as well as optional
control-inputs ut, e.g., acceleration, braking, or steering
input variables. Moreover, Cd denotes additional context, e.g.,
road- and weather-conditions, (traffic) rules, age of driver,
or the intentions of the driver and the desired target. In
general, we do not have access to the true model underlying
the actual trajectory nor do we have knowledge about all
context variables. Instead, in practice, we approximate the
model as well as the influencing parameters directly in
terms of a parametric model or indirectly in terms of a
dataset. Furthermore, in most case we cannot observe the
true state xt directly, but instead often measure a noise
version zt of the actual underlying state. Without loss of
generality, we assume a simple probabilistic measurement
model p(zt |xt, Cm), where Cm denotes the context relevant
for the measurement model. The latter could for example be
a potential obstruction. A graphical model of our generative
probabilistic trajectory model is depicted in Fig. 1. As before,
we do not have access to the exact model governing the
measurement generation process. We define an observed
trajectory Z = (zt | t ∈ [1, . . . , N ]). A trajectory dataset D
consists of multiple observed trajectories. Note that we do
not know the true trajectory model nor the actual context
involved. However, we can see observed trajectories as
samples from this probabilistic trajectory model.

B. Corner Case Definition

In the following, we first review different approaches
and perspectives to define the term corner case before
introducing our definition for trajectory corner cases.

1) Corner Case Definitions in Literature:
Koopman et al. [5] look at edge and corner cases from
the ML testing and validation perspective. Both edge and
corner cases are rare cases, e.g., driving or traffic situations,
that will occur only occasionally, wherein rare means that
these cases often occur at large-scale deployed systems,

e.g., full-scale deployed vehicle fleet. An edge case is a
situation that requires specific attention during the design
time of the system at hand; e.g., these may be sensor values
that are out of the predefined bounds or missing values.
In contrast, a corner case results from the combination of
several “normal” input parameters or situations that coincide
simultaneously, thus representing a rare or never considered
case or scene [5]. This definition is the basis of many test
frameworks, such as DeepXplore [6] or DeepRoad [7].
These methods use differential testing to generate synthetic
test cases systematically, also referred to as corner cases.
They define corner cases as those in which neural network
predictions are indecisive. Hence, the network predicts
“I don’t know” [8]. Houben et al. [9] give a general
definition of corner cases stating that “inputs that result
in unexpected or incorrect behaviour of the AI [artificial
intelligence] function are defined as corner cases.” This
defines corner cases as situations where the ML model is
unable to understand the situation correctly. Others consider
mere erroneous or incorrect behavior as corner cases [10].
From the perspective of model training, especially active
learning [11], corner cases are the instances, e.g., trajectories
that yield the greatest possible learning progress. Following
this definition, an instance identified as a corner case and
subsequently used for model (re-)training is no longer a
corner case. According to Bolte et al. a corner case in the
context of automated driving and computer vision is given
“if there is a relevant object (class) in a relevant location
that a modern automated vehicle cannot predict” [12].

2) Corner Case in Trajectory Datasets: Assume we are
given a trajectory dataset D, e.g., of pedestrian trajectories.
Let us imagine, we are given a new trajectory Zped of a
pedestrian intending to cross a street and a vehicle Zveh
approaches from far away. Based on the dataset D (in the
case of humans, these are years of life experience) and other
available contextual information, e.g., the environmental
circumstances such as zebra crossings and (traffic) rules
to be obeyed, we as humans have an expectation of how
a pedestrian trajectory should look like. In other words,
we have an estimate of the pedestrian’s dynamics and
the measurement model (cf. Sec. II-A). However, if a
pedestrian stops in the middle of the road to tie her shoes,
the pedestrian’s trajectory deviates from the expected
trajectory of a pedestrian crossing the road. This suggests
that our estimated trajectory model is not explaining the
observed trajectory correctly, as something anomalous
and unpredictable happened. To what extent a trajectory is
unexpected depends strongly on the existing prior knowledge
and available context, e.g., in our dataset D, we have seen
kneeling pedestrians frequently, but not yet in combination
with the context of kneeling in the middle of the road. Two
common circumstances might lead to an extremely unusual
trajectory (since rare). If our task is to train an ML model
to predict a pedestrian trajectory as good as possible [4],
then such a trajectory can be considered highly relevant
and thus a corner case. However, this is rather irrelevant
from the perspective of save automated driving as the HAV



is still far away, and there is no interaction between the
two. Depending on our task not every anomalous trajectory
Zped has to be a corner case. Imagine the vehicle is close
by, then due to the interaction of the two road users
(given already by the mere presence of the two), such a
scene and thus the trajectories of the involved road users
experience a completely new assessment. A correct model
of the pedestrian’s (future) trajectory is now also highly
relevant for avoiding an accident. Another example of such
a corner case is a vehicle that passes a red traffic light.
The plain trajectory of such a vehicle will not differ from
a rule-compliantly driving vehicle. It becomes a corner
case only if the context (here the red traffic light) and
the disregard of the traffic rules are taken into account.
To capture such a corner case, additional information is
needed. We conclude that to assess whether a trajectory is
a corner case, we must consider the interaction with other
objects and agents, i.e., road users, (traffic) rules, and its
relevance for the task at hand. Likewise, noisy trajectories
with outliers or missing values do not necessarily have
to be a corner case. Besides studying relevance, missed
measurements, outliers, and missing values can be modeled
by an appropriate probabilistic measurement model so that
they do not necessarily have to be unexpected nor abnormal.
Concluding this into the definition of trajectory corner case
within a trajectory dataset D as follows:

Definition Corner Case Trajectory: A corner case in a
trajectory dataset D is a highly relevant but mostly very rare
and anomalous trajectory. The relevance of a trajectory is
mainly determined by the interaction with other agents (e.g.,
road users), the surrounding environment, norms and (traffic)
rules, and most importantly, by the task at hand.

C. Anomalous Trajectories

The terms outlier, anomaly, and novelty are often used
interchangeably and are all strongly related to corner
cases [1]. In the case of trajectories, we speak of an outlier
when one or more measurements deviate so strongly that
we assume they were generated by a different underlying
process [13]. An anomaly is something that deviates from
the standard, average, or expected, whereas an anomalous
trajectory refers to the trajectory with local or global
differences from most other average trajectories when
measured by some similarity metrics [14]. Hence, by
definition, an anomalous trajectory is rarely represented
within the trajectory dataset at hand. An agglomeration of
anomalies as clusters is called novelty [15]. The challenge of
detecting anomalous trajectories is referred to as anomalous
trajectory detection [14]. Among others, we can distinguish
between the following approaches to detect anomalous
trajectories: clustering- [16], distance-, density-based [17],
and deep-learning-based [18] anomalous trajectory detection.

D. Interaction

Markkula et al. [19] defines interaction as a situation in
road traffic in which the behavior of at least two road users

can be interpreted in such a way that both may occupy
the same spatial region at the same time. The interaction
of road users is the precondition for traffic conflicts, e.g.,
situations that can potentially lead to an accident [20]
and hence a basic building block for determining the
relevancy of trajectories. Moreover, modeling the interaction
of road users is essential to understand the behavior,
e.g., their trajectory, of individual road users in traffic.
An example of these are the Gipps or intelligent driver
model [21], which describes the “following” behavior of
individual vehicles in traffic. There are also numerous
interaction models for persons, e.g., the social force model
for modeling pedestrian dynamics [22]. Recently, data-
driven approaches also explicitly learn interaction patterns to
improve prediction, e.g., the social long short-term memory
approach [23]. Understanding and modeling the interaction
with the environment and between the individual road users
is crucial to judge whether a trajectory is anomalous, i.e.,
contains unexpected interaction patterns, and relevant, i.e.,
due to a potential conflict, hence, a corner case.

E. Relevancy

Following our corner case definition, we might be tempted
to ask what is relevant and how we can measure the
relevance to a given trajectory dataset. Whether a trajectory
is relevant strongly depends on the task at hand. Therefore,
relevance must be defined on a task-specific basis, making
a general definition difficult. In this section, we review
different perspectives in the realm of highly automated
driving regarding how relevance is defined and measured.

1) Traffic-Safety Perspective: Intuition tells us that the
relevancy is related to the hazard or risk of a perceived
trajectory. Hence, to assess the relevancy of a trajectory and
thus identify corner cases, we must inspect the spatial and
temporal context of objects in the vicinity of automated
vehicles. In other words, the relevancy of trajectories in
the highly automated driving domain is correlated with
the chance of a crash or near-crash. Therefore, we must
also take the interaction of trajectories into account. From
the perspective of traffic safety, a trajectory is relevant
if it is critical, i.e., the trajectory or multiple trajectories
need explicit consideration of potential (crash) mitigation
strategies [24]. Many other measures aim to quantify
the relevancy of trajectories in terms of criticality or
proxy measures such as maximum relative speed, time-to-
X, e.g., time-to-break, time-to-collision, time-to-touch [25],
the distance of closest encounter [26], time-to-closest
encounter [26], and threat-assessment [27]. Kamran et al.
define relevant objects in automated driving, which can be
transferred to trajectory datasets. According to them, relevant
objects are defined by their possible conflict zone with an
(automated) ego vehicle. The relevance of trajectories is
directly derived from the possible conflict between them [28].
The authors in [14] define a metric to measure the relevance
by combining an interaction and anomaly score. However,
again which measure is best suited for the detection and
quantification of relevant trajectories depends on the precise



objective.
2) Machine-Learning Perspective: The prediction is

the base of the environment abstraction which is used
for decision-making and trajectory planning. The entire
processing pipeline consists of many smaller and bigger tasks
while every one of them holds their own relevancy. The
relevance of individual sensor data, e.g., trajectories and all
knowledge abstracted from them are already determined at
this point since the selected methodology, model architecture,
parameters and hyperparameters for each task have been
trained or adjusted accordingly. In self-learning systems such
as active learning, the situation is somewhat different. The
chosen hyperparameters also determine whether the model
classifies the trajectory as relevant for further training or not.
Whereas the choice of methodology — choosing between
autoencoder and GAN (generative adversarial network) [29]
or deciding between a simple detector and a classifier —
essentially depends on the task. However, at the end the
implemented model architecture determines how the data
is processed. For example, the choice of the autoencoder
latency directly impacts which information is retained or
irretrievably lost. Nevertheless, other design decisions like
convolutional layer, fully connected layer, or pooling layer
also influence which data is considered relevant. This
behavior is also reinforced by the fact that specific feature are
weighted more strongly by optimization or model training.
For example, if we look at the loss function, which has a
direct impact on the model weights during training, the mean
squared error loss ensures that outliers are taken into account
to a much greater extent than by the Huber loss, which is
less sensitive to outliers.

3) Rule-Compliance: The goal of rules is to ensure
that processes always follow the same pattern and that no
participant is put in danger. They provide predictability
about the behavior of others. This is particularly essential
in road traffic where the violation of traffic rules may result
in a dangerous situation. Hence, rule violation within a
trajectory is directly coupled with the relevancy of that
trajectory; for example, a violation of the right of way
may result in dangerous situations. Even the fine catalog
offers a possibility to quantify the relevancy of non-rule-
compliant trajectories. However, there are indeed situations
where an automated vehicle has to perform a “controlled”-
rule exception. Imagine an automated vehicle on the street
with a solid center stripe waiting behind a parked ambulance
due to a rescue mission. In this case, the following vehicles
need to enter the oncoming lane, even if the road marking
forbids that. This is an easy task for a human driver but a
challenging and relevant corner case for the development of
HAVs.

III. PROCESS PIPELINE FOR ROAD USERS

A trajectory corner case taxonomy is helpful to understand
critical situations better and consider the reasons leading
to the incident. If the taxonomy is used to analyze the
misbehavior of an HAV in a specific situation, the first
question that arises will be: which part of the system

malfunctioned? If on the other hand, the performance of
such a system has to be evaluated more generally in rare
and unusual traffic situations, the actual behavior of the
other road users is the center of attention. But even then,
it is obvious that errors in different parts of the human
or machine driver’s information processing system will
result in completely different behaviors and trajectories.
Therefore, it makes intuitive sense to categorize corner
cases by the origin in the driver’s information processing
system, whether this is the human brain or the software
of an HAV. A unified model of the information processing
pipeline for automated vehicles, human drivers, and VRUs
(e.g. pedestrians, motorcyclists, and cyclists) leads to a
more comprehensive taxonomy while at the same time
allowing analysis or classification independent of the level
of automation of the road user under consideration.

The task of highly automated driving is typically
accomplished by dividing it into sub-problems and
corresponding software modules. On the coarsest scale,
we can distinguish between perception, decision making,
trajectory planning, and control. The Main Information
Processing Pipeline in Fig. 2 mirrors this partition.
Trajectory planning and control are here combined in
the Execution module. Published system architectures are
compatible with this processing pipeline model, cf. [30],
[31], [32], [33], although the names of the modules vary.

On this high level of abstraction, the stages of information
processing in humans bear many similarities to the ones in
highly automated driving software. We use the model of
human information processing stages by Wickens [34] as
reference for human road users. This very general model
is widely used and generally accepted in traffic psychology
and traffic safety research [35]. We picked this model over
other well-established models from traffic psychology and
human factors as many models presume specific cognitive
mechanisms that are not applicable to HAVs [36], [37], [38]
(e.g. schema activation) in addition to the core components
described by Wickens.

The Main Information Processing Pipeline (highlighted in
Fig. 2) consists of five components:

1) Perception: Processes sensor or sensory organ data to
generate an (explicit or implicit) scene representation.
This includes the recognition and interpretation of road
boundaries and street signs as well as the detection and
behavior prediction of other road users.

2) Decision Making: Given the scene representation, this
component decides which actions to take. The outputs
are not motor commands, but high-level driving intents,
e.g. whether to stop or not, whether to overtake, to yield,
which road or lane to follow and at which speed.

3) Goal and Risk Tolerance: The decisions depend on the
goals of the human or machine driver and the level of
risk they are willing to take to achieve these goals.

4) Execution: The translation of the driving intent to
motor commands. For an HAV, this encompasses local
trajectory optimization and control.

5) Body: The physical entity of the road user, e.g. the body
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Fig. 2: Schematic of the processing pipeline for both a human road user or an automated vehicle

of a pedestrian or vehicle. The body also includes the
actuation, i.e. the muscles or motors that translate motor
commands to movements.

Two additional components that act on all main components
complete the road user model:

6) Computational/Attentional Resources: The information
processing capacity of both human brains as well as
computers is limited. In psychology, these resources are
termed attention resources (or simply attention) [34].
These resources can be redistributed within certain
limits in both humans and computers to adapt to rapidly
changing demands. In humans, this happens through a
mechanism which is also just termed attention [34],
[39], and in HAV through scheduling and attention
mechanisms in deep neural networks.

7) Knowledge: All information processing stages require
(a priori) knowledge about traffic rules, the behavior of
other road users, and the physical environment (e.g. map
data for localization or navigation). This knowledge can
be explicitly stored in databases or long-term memory;
or it can be implicit in algorithms, parameters, ML
models and the datasets they are trained with, and
(human) learned behaviors and experiences.

Even though more than 90% of all traffic accidents are
caused by human error [40], the behavior of the road
users still cannot be analyzed independently of their
Environment. The road users sense the Environment through
their sensors or sensory organs, but the Environment can
also impair the observability of other road users through
occlusions or adverse weather conditions. Road conditions
can fundamentally change the relationship between the
motor inputs and the resulting road user trajectories. Road
markings, street signs, and obstructions determine which
trajectories are legal and which trajectories are possible.

IV. TAXONOMY FOR CORNER CASES IN TRAJECTORY
DATA FOR AUTOMATED DRIVING

Based on the process pipeline defined in Fig. 2, a
taxonomy is developed that categorizes trajectory corner
cases according to two criteria: what data is required to detect
the corner case and which system component caused the
corner case. Together, these two criteria span Tab. I resulting
in 31 categories. The columns correspond to the four classes
which describe the data required for recognition and the rows
where in the system the corner case originated.

A. Columns

If we want to detect trajectory corner cases, we have to
first consider what data is available and also what kind of
data is required to classify specific kinds of corner cases we
might be interested in. This might also restrict which datasets
are suitable for training and has implications on the hard- and
software required to detect corner cases in the wild.

Some corner cases are detectable from just the trajectory
of the road user who is responsible for the corner case
(subsequently termed ego). These corner cases fall into
the first class Ego Trajectory. Corner cases of this class
are typically characterized by unusual speed or acceleration
values. An example of this is a car that drives at high
velocity in a sharp corner, resulting in an unusually
high lateral acceleration. Collisions and near-collisions with
violent evasive maneuvers are also detectable by the unusual
acceleration values alone and therefore also fall into this
category. Inertial sensors are often sufficient to detect corner
cases of this class.

Corner cases that result from the interaction of multiple
road users, but do not result in a collision or an evasive
maneuver, require more than one trajectory for classification.
These corner cases fall into the second column of our
taxonomy.

Many trajectory corner cases however can only be
identified if additional environmental context is available.
These corner cases fall into the third and fourth columns.
Environmental context refers to any kind of information
beyond the trajectory data, e.g. lane topology, obstacles,
and traffic rules per lane (e.g. speed limit). Most traffic
rule violations are only detectable with proper environmental
context. If the ego trajectory and the environmental context
are enough to detect the corner case, it is assigned to the third
column. If both environmental context and the trajectories of
other road users are required to detect the corner case, it is
assigned to the fourth class. This is the case for violations
of more complex traffic regulations like priority rules.

B. Rows

The rows of our taxonomy specify which system
component of the ego-vehicle failed or is the cause of the
unpredictable behavior, where each row in Tab. I corresponds
to one of the system components described in Sec. III.
This aspect of our taxonomy is similar to some previous



stage Ego Trajectory Ego Trajectory &
Other Road Users

Ego Trajectory &
Environment

Ego Trajectory & Other Road
Users & Environment

1) Perception Emergency break, because
deceleration of the car

ahead was not registered

Near collision because
of overlooked crossing

traffic

Driving wrong direction
in one-way street because

of overlooked sign

Taken right of way because of
overlooked sign

2) Decision
Making

High velocity in sharp
corner

Near collision in merge
scenario due to time

pressure

Planned disregard for a
puddle that covers a

large hole

Failure to understand precedence at a
complex crossing

3) Goal and
Risk Tolerance

Kick-down start Tail gating Cutting corners Willingly taken right of way

4) Execution Stall engine Near rear-end collision
because of insufficient

braking

Scrape obstacle when
parking

Rolling too far into an intersection due
to insufficient braking while yielding

5) Body Tire burst Near rear-end collision
due to brake failure

Near collision due to
failing headlights

Taken right of way due to bad
visibility of other vehicle because of
broken windshield or camera optics

6) Computational
and Attentional
Resources

Any of the examples from stages 1 – 5

7) Knowledge High velocity in
surprisingly sharp corner

Pedestrian at crosswalk
looking away is

interpreted as yielding

U-turn in no passing area Slow approach of crossing interpreted
as giving right of way

8) Environment Crash into blown over tree Near collision due
skidding on ice

Leaving the road due to
Aquaplaning

Taken right of way due to view
obstruction

9) Trajectory
Recording

Noisy IMU measurements or failed tracking of ego road user in camera image

10) Static
Environment
Information

Missing priority sign in dataset

TABLE I: Trajectory corner case taxonomy with example situations. The rows describe the system component in which
the corner case originates. The columns identify the trajectory corner case class describing the kind of data required to
detect the corner case. Ego refers to the road user that causes the corner case (multiple ego vehicles are possible if multiple
trajectories are anomalous, resulting in multiple assigned categories for one corner case situation). The colors and stage
number correspond to those of the components in the processing pipeline in Fig. 2.

taxonomies from traffic safety research [41], [42], [43].
These previous taxonomies are, however, strictly human
driver error taxonomies as they include mechanisms or
information processing stages that have no equivalent in
HAVs which is comparable in terms of the behavior in case
of a fault (e.g. “memory and recall” [42], “fatigue” [41],
“experience” [43]). Depending on the use case, a further
breakdown into subcategories can make sense. Beneficial is
the distinction between Computational/Attentional Resources
and their allocation and between different types of
Knowledge, e.g., a priori knowledge about the behavior of
other road users, the environment, and traffic rules.

It is in general not possible to unequivocally assign a
single category to all situations, as multiple anomalies with
distinct origins in the information processing pipelines can
appear at different points of the trajectory. These anomalies
often are also dependent on each other, further complicating
a consistent categorization: If a driver takes another car’s
right of way because they are blinded by the low winter sun,
is this an Environment corner case due to the unfavorable
lighting conditions? Or a Perception corner case, as a more
observant driver might have been able to see the other vehicle
in time? Or even a Goal and Risk Tolerance corner case, as
a more careful driver might have approached the intersection
more carefully given the environmental conditions? This is,
however, not an issue specific to our corner case taxonomy.
This problem was first pointed out by Senders and Moray
in the context of human error taxonomies [44]. In analogy,

it also applies to human and HAV corner case taxonomies:
Causal chains make selecting a single cause of the corner
case context-dependent, i.e., on the application or the user’s
judgment. It, therefore, can be preferable to not assign a
single, but multiple categories to each corner case situation.

Another issue of attributability arises if the taxonomy
is used for the classification of corner cases in trajectory
datasets. The Computational/Attentional Resources and
Knowledge components are frequent error sources and
therefore important categories if a specific road user system
is analyzed, but are not useful for the classification of corner
cases in black box systems. Errors in these two components
can manifest in any of the Main Information Processing
Pipeline components. It is, therefore, often impossible to
determine if the Computational/Attentional Resources or
Knowledge components are the error source if only the
trajectory (and environmental context) are available. Instead,
for classification tasks errors in these categories have to be
assigned to the components in which they manifest.

On the other hand, two additional categories become
relevant for dataset classification tasks: Firstly, measurement
errors like excessive noise might corrupt the trajectories
during Trajectory Recording; secondly, mistakes could creep
into the Static Environment Information or metadata the
dataset might be enriched with. In these cases, the trajectories
in the dataset could be considered corner case trajectories,
although the actual ground truth trajectories might not
represent corner cases at all.



(a) Cutting corners. (b) Covering and increased speed. (c) U-turn situation.

Fig. 3: Applications of the taxonomy on simulated and real world data. (a) Shows an accident event due to crossing the
oncoming traffic which is classified as goal and risk tolerance with environmental reference. (b) Accident event between ego
vehicle and cyclist caused by a third road user obstructing the view and the increased speed of the ego vehicle. (c) U-turn
trajectory from the recordings of the KI Data Tooling project. At the last data point of the trajectory, the bounding box of
the object is shown. The background image is an excerpt from the geodata of the State Office for Geoinformation and Land
Surveying Lower Saxony (www.lgln.de), ©2022.

V. APPLICATION ON DATA

After having defined the taxonomy, this chapter shows
how to record and classify corner cases in real or simulation
scenarios. The taxonomy is applied on several scenes with
varying setups to demonstrate the generalization of the
method.

A. Application on Simulation Data

This section is about the generation of corner cases in
the autonomous driving simulation software CARLA [45].
The software is an open source software for data generation
and testing of ML algorithms and provides various sensor
data to describe the simulated scenario, such as camera,
LiDAR, and RADAR. Moreover, the software also delivers
ground truth data that is cost-intensive and time-consuming
to generate with real data. In addition, it offers the possibility
of creating safety-critical situations in the virtual world so
as not to endanger road users. In [46], a human-in-the-
loop approach for generating safety-critical synthetic corner
cases is presented. For this purpose, the authors have set
up a test rig with two control units so that the same
vehicle can be controlled by two human drivers in CARLA.
Here, a semantic segmentation network is integrated into
CARLA so that one of the drivers (semantic driver) only
sees the networks output and thus has to control the vehicle
in the CARLA world. The other driver (safety driver)
monitors the situation and is supposed to intervene as soon
as the semantic driver shows dangerous driving behavior.
Interventions by the safety driver indicate poor situational
awareness by the segmentation network and provide a safety-
critical corner case. During the experiments in [46], several
corner cases were recorded from which the trajectory data
could subsequently be obtained. Two of them are now
classified based on the categories defined in Sec. IV.

In the first scene, an accident occurs even though the ego
vehicle is obeying the traffic rules due to the fact that the
road user in the opposite lane is driving too fast around the
curve and crosses the lane of the ego vehicle, see Fig. 3a. Due
to the increased speed, the road user crosses the oncoming
lane, so this situation would be classified as Goal and Risk
Tolerance related to the environmental trajectory.

In the second scene, a vehicle is driving towards a two-lane
traffic circle. Next to this vehicle is a bus, which somewhat
obscures the view of the road. While the bus driver allows
a cyclist to pass, the vehicle owner collides with him due
to impaired visibility, see Fig. 3b. This situation is not
classified as a Perception error, because the cyclist was not
perceivable behind the bus. Instead, as the Decision Making
should account for the possibility of occluded road users with
priority, the error is attributed to this category.

B. Application on Real Infrastructural Data

This section is about the detection of corner cases in
real trajectory data. The investigated trajectory data were
extracted from the recordings of a 14 video camera setup
from the Application Platform for Intelligent Mobility (AIM)
Research Intersection of the German Aerospace Center,
located in Braunschweig [47]. The dataset was collected
as part of the project KI Data Tooling [48] and consists
of recordings with a total length of 13 hours. As for the
simulation data, multiple corner cases are included in the
dataset, and one of them is exemplary described in the
following.

The corner case U-turn in no-passing area is part of
the stage Knowledge in the class Ego Trajectory and
Environment. Although a no-turning sign was installed
in the west of the signalized research intersection, road
users keep executing U-turns there. The KI Data Tooling
dataset contains several U-turns, from which one of them is
visualized in Fig. 3c.

The U-turn trajectory was identified by employing virtual
loops as in [49]. Therefore the loops were placed manually at
the entry and exit of the junction. Afterward, all intersections
between the trajectories of the dataset and the virtual loops
were calculated. Finally, the U-turn trajectory can be detected
because, compared to other trajectories, it intersects both
virtual loops.

VI. CONCLUSION

In this article we proposed a definition of corner case
trajectories in the context of automated driving and described
its reference to related terms like anomalous, interaction,
and relevance. Furthermore, we presented a model of a



processing pipeline, which is applicable to a human or
automated vehicles and can be employed to categorize the
causes of corner cases. Finally, we defined our taxonomy for
corner case trajectories by combining the presented model
with the different types of data sources that are required
to detect the corner case. To demonstrate the use of the
taxonomy, we gave examples of corner case trajectories in
real and synthetic data.
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