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A B S T R A C T   

Multi-task learning techniques allow the beneficial joint estimation of multiple target variables. Here, we propose 
a novel multi-task regression (MTR) method called ensemble of regressor chains with repetitive permutation 
scheme. It belongs to the family of problem transformation-based MTR methods which foresee the creation of an 
individual model per target variable. Subsequently, the combination of the separate models allows obtaining an 
overall prediction. Our method builds upon the concept of so-called ensemble of regressor chains which align 
single-target models along a flexible permutation, i.e., chain. However, in order to particularly address situations 
with a small number of target variables, we equip ensemble of regressor chains with a repetitive permutation 
scheme. Thereby, estimates of the target variables are cascaded to subsequent models as additional features when 
learning along a chain, whereby one target variable can occupy multiple elements of the chain. We provide 
experimental evaluation of the method by jointly estimating built-up height and built-up density based on features 
derived from Sentinel-2 data for the four largest cities in Germany in a comparative setup. We also consider 
single-target stacking, multi-target stacking, and ensemble of regressor chains without repetitive permutation. 
Empirical results underline the beneficial performance properties of MTR methods. Our ensemble of regressor 
chain with repetitive permutation scheme approach achieved most frequently the highest accuracies compared to 
the other MTR methods, whereby mean improvements across the experiments of 14.5% compared to initial 
single-target models could be achieved.   

1. Introduction 

The automated extraction of thematic information from remote 
sensing (RS) data is frequently addressed by resorting to supervised 
learning techniques. Such techniques foresee assigning a thematic label 
to an instance given a sufficient amount of properly encoded prior 
knowledge, i.e., training data. The training data is deployed to infer a 
rule, e.g., a decision function, which aims to generalize well for unseen 
instances (Geiß et al., 2019a). 

In the context of RS, typical supervised models assign a single the
matic label such as a land use/land cover (LULC) class to an instance (e. 
g., an image pixel or object). It was shown that algorithms such as 
Support Vector Machines (Cortes & Vapnik, 1995; Camps-Valls & 
Bruzzone, 2005), Random Forest (RF) (Breimann, 2001; Pal, 2005), and 
Convolutional Neural Networks (CNN) (LeCun et al., 2015), among 

others, are able to efficiently address this task. 
Particular applications in RS require the assignment of multiple 

thematic labels to an instance (Geiß et al., 2017a). Such labels can be of 
discrete or continuous nature. Especially classification-related tasks (i. 
e., predicting multiple categorical labels simultaneously) have gained 
much attention in the past. Tailored techniques to address this task are 
called multi-label classification (MLC) methods (Tsoumakas & Katakis, 
2007; Read et al., 2011). However, in this paper we are interested in the 
case when the labels of the target variables are continuous. Conse
quently, we consider multi-target regression (MTR) methods (Borchani 
et al., 2015). The governing principle of MTR is to model the intrinsic 
correlation of the target variables, which can largely improve parameter 
estimation by sharing knowledge across correlated outputs. 

While MTR received increasing attention in the machine learning 
community in recent years (Li et al, 2021), only few authors have 
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focused on these methods within the RS domain to date: Kocev et al. 
(2009) deploy MTR trees (MTRTs) and ensembles of MTRTs to predict 
seven measures which characterize the condition of vegetation based on 
Landsat 7 data. Stojanova et al. (2010) generate training data from 
LiDAR measurements to estimate vegetation height and canopy cover 
with wide geospatial coverage also with MTRTs/ensembles of MTRTs 
and Landsat 7 data. Tuia et al. (2011) alter the cost function of a Support 
Vector Regression (SVR) model to simultaneously predict chlorophyll 
content, leaf area index, and fractional vegetation cover using hyper
spectral imagery. Subsequently, Rosentreter et al. (2017) deploy this 
MTR SVR model for subpixel analysis on a simulated environmental 
mapping and analysis program (EnMAP) scene. Hence, land cover 
fraction maps are derived for an extended so-called V-I-S mapping 
scheme, consisting of the target variables vegetation, impervious sur
face, soil, and water. Recently, Mandal et al. (2019) estimate plant area 
index (PAI) and wet biomass of soybean and wheat using a multi-target 
RF regression model learned on full-polarimetric RADARSAT-2 data. 
Dey, 2021 propose an encode-decoder regression network for simulta
neous estimation of PAI and wet biomass from SAR data. Pyo et al. 
(2019) establish an MTR CNN model with two branches for joint esti
mation of concentrations of phycocyanin and chlorophyll-a based on 
hyperspectral imagery. The mentioned studies report beneficial gener
alization capabilities of the MTR models with respect to individual 
models and achievement of less dependent residuals, while maintaining 
higher efficiency regarding costs for learning and inference. 

From a model perspective, a dichotomy between problem trans
formation methods and algorithm adaptation methods can be drawn 
(Tsoumakas & Katakis, 2007; Borchani et al., 2015). The aforemen
tioned RS-based studies all utilize algorithm adaptation methods. Algo
rithm adaptation methods adapt a specific single-output method to 
directly handle multi-output problems and predict all targets at once by, 
e.g., imposing regularization terms on the regression weights to explore 
output relationships. It was argued, that algorithm adaptation methods 
are easier to interpret and more scalable to large output spaces 
compared to numerous problem transformation methods, as they only 
establish a single multi-target model. In this manner, dedicated MTR 
extensions for advanced regression algorithms such as SVR (Li et al., 
2020b; Sanchez-Fernandez et al., 2004), Decision Trees (Segal and Xiao, 
2011), Gaussian Process Regression (Liu et al., 2018), Neural Networks 
(Reyes and Ventura, 2019), and Outlier Extreme Learning Machine 
(Souza da Silva, 2020), among others, were proposed. 

However, in this paper we are interested in problem transformation 
methods. Such techniques foresee the creation of an individual model 
per target, and then the combination of the separate models in order to 
obtain an overall prediction. Problem transformation methods have 
been found superior to algorithm adaptation methods in terms of ac
curacy (Spyromitros-Xioufis et al., 2016). Moreover, the underlying 
principle renders problem transformation methods independent of the 
regression algorithm. Consequently, they can be easily adapted to the 
problem at hand by employing suitable base learners. This point is also 
of particular relevance for ensemble models which concatenate the es
timates from multiple possibly different regression algorithms into a 
final prediction. Such techniques were found to be beneficial in terms of 
accuracy and reliability properties of model estimates in the context of 
RS (Geiß et al., 2020; Feilhauer et al., 2015). 

A fundamental concept in problem transformation methods is to uti
lize preceding models for a new prediction via an extended feature space 
(Borchani et al., 2015). This concept is related to stacked generalization 
which was introduced by Wolpert (1992). Stacked generalization is a 
meta-learning approach which deploys the outputs of previously learned 
models for learning a new model. As such, the initial model outputs are 
treated as new features and are stacked to the initial feature vector 
before relearning. In the original formulation only a two-stage proced
ure was foreseen, i.e., the initial models learned from the initial feature 
vector correspond to level–0 models and data, respectively, and the 
enlarged feature vector and the relearned model are referred to as 

level–1 data and generalizer, respectively (Wolpert, 1992). However, 
reasonably, this single-target stacking (STS) process can also be carried 
out over multiple iterations. In order to deploy this principle for multi- 
target problems, where also possible correlations among the target 
variables are encoded, the idea of multi-target stacking (MTS) was 
introduced (Borchani et al., 2015; Spyromitros-Xioufis et al., 2016). 
Analogous to STS, training an MTS model can be regarded as a two-stage 
procedure. In the first stage, independent models for each target variable 
are learned. Subsequent to this, meta-models for each target variable are 
learned with expanded feature vectors, which contain the initial feature 
vectors and also the level–0 estimates of the residual target variables 
(Spyromitros-Xioufis et al., 2016). Likewise ideas were also followed in 
the context of ensemble models, i.e., learning several level–0 models for 
each target variable which are concatenated in a level–1 generalization 
procedure for multiple target variables (Santana et al., 2020). 

As an alternative strategy for MTR, the concept of regressor chains 
(RC) was introduced (Spyromitros-Xioufis et al., 2016). In the most basic 
formulation, RC foresee the linkage of single-target models according to 
a chain structure. First, a random chain (i.e., permutation) is drawn 
based on the set of target variables. Then, separate regression models are 
established for each target variable while following the order of the 
chain. Such a strategy was found beneficial in terms of accuracy prop
erties compared to other problem transformation-based MTR approaches 
(Spyromitros-Xioufis et al., 2016). At the same time RC were found to be 
sensitive to the ordering of the chain. Consequently, ensemble of RC 
were proposed where a set of regression chains with differing order of 
the chain elements is learned (Spyromitros-Xioufis et al., 2016). Sub
sequent works also aimed to optimize the ordering of the chain, e.g., by 
employing a correlation measure with respect to the target variables 
(Melki et al., 2017). 

Thereby, existing approaches foresee solely the singular occurrence 
of a target variable in a chain. Spyromitros-Xioufis et al. (2016) propose 
ensemble of RC where the number of elements in the chain is governed 
by the number of target variables. An ensemble of RC is established 
where each chain with length m consists of distinct permutations of the 
target variables. However, to keep computational complexity low, the 
number of chains and elements of a chain, respectively, is generally 
constrained to ten. 

Such a strategy discards the possibility to build chains which benefit 
from possibly enhanced estimates of the target variables while sequen
tially learning along the chain, especially when the number of target 
variables is small. Consequently, in contrast to existing approaches, we 
equip ensemble of RC with a repetitive permutation scheme with respect 
to the elements of the chain. Thus, chains with a larger number of ele
ments than the number of target variables can be established. This 
generates high level transformations of the original inputs and can lead 
to an improved performance of the chaining model (Read and Hollmen, 
2015). As such, we consider the main contributions of this paper as 
follows.  

(1) From a methodological point of view, we propose multi-target 
regressor chains with repetitive permutation scheme, where es
timates of the target variables are cascaded to subsequent models 
as additional features when learning along the chain. Thereby, 
chains with a larger number of elements than the number of 
target variables are established, i.e., one target variable can 
occupy multiple elements of the chain. 

(2) We carry out a systematic analysis where we decompose the in
fluence of the subcomponents of the method on the prediction 
accuracy. This analysis comprises the systematic disentanglement 
with respect to model accuracy according to the considered MTR 
method (i.e., STS, MTS, ensemble of RC with and without re
petitive permutation), regression algorithm (i.e., Random Forest 
Regression, Support Vector Regression, Gaussian Process 
Regression, and Neural Network Regression are evaluated), 
augmentation strategy for the feature vector (i.e., including 
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previous model predictions in a cumulative and non-cumulative 
way), and composition of the feature space (i.e., deploying 
target variable-specific features or a set of features which is 
shared over all target variables for prediction).  

(3) We provide an exhaustive experimental evaluation of the 
methods in the context of an innovative application domain. 
Multi-target models are deployed to simultaneously estimate 
built-up density and height based on Sentinel-2 data. Recently, ef
forts were carried out to derive constituting properties of the 
urban morphology for large areas based on supervised learning 
techniques using Sentinel data (Geiß et al., 2020; Frantz et al., 
2021). In this context, we learn models from training data sets 
created with Level of Detail 1 (LoD-1) building models, whereby 
buildings are represented by extruded footprints, and jointly 
regress the two target variables for spatial processing units which 
correspond to urban neighborhood scales for the four largest 
German cities (i.e., Berlin, Hamburg, Munich, and Cologne) using 
features calculated from ubiquitously available multispectral 
Sentinel-2 imagery. 

The remainder of the paper is organized as follows. Section 2 gives an 
overview of the MTR methods and Section 3 is used to present the 
deployed data sets and explain the experimental setup. Section 4 pro
vides experimental results and validation efforts. Concluding remarks 
are given in Section 5. 

2. Multi-task regression methods 

Let us consider a training data set D =
{(

x(1), y(1) ),⋯,
(
x(N), y(N)

) }

composed of N instances, i.e., labeled samples, with a value assignment 
for each variable X1,⋯,Xm,Y1,⋯,Yd. Thus, each instance is represented 
by an input vector of m predictive variables x(l) = (x(l)

1 ,⋯, x(l)
j ,⋯, x(l)

m )

and corresponding output vector with multiple d target variables y(l) =

(y(l)1 ,⋯,y(l)i ,⋯,y(l)d ), with l ∈ {1,⋯,N},j ∈ {1,⋯,m}, and i ∈ {1,⋯, d}. In 
MTR, the goal is to draw a hypothesis h from D, which predicts an output 
vector y of d target values to an instance, given an input vector x: 

h : ΩX1 × ⋯ × ΩXm →ΩY1 × ⋯ × ΩYd (1)  

x = (x1,⋯, xm) ↤ y = (y1,⋯, yd), (2)  

where ΩXj and ΩYi represent the sample spaces of an individual pre
dictive variable Xj, for all j ∈ {1,⋯,m}, and an individual target variable 
Yi, for all i ∈ {1,⋯, d}, respectively (Borchani et al., 2015). 

2.1. Single-target stacking 

STS predicts all target variables independently with respect to each 
other. Nevertheless, an MTR STS model comprises d single-target 
models, whereby the value of an individual target variable Yi is pre
dicted. After initial training, a meta-model is learned from a transformed 
training data set D’

i whereby the initial training data set Di was 
augmented by previous model estimates with respect to Yi, i.e., D’

i =
{(

x’(1), y(1)i

)
,⋯,

(
x’(N), y(N)

i

)}
, where x’(l) = (x(l)

1 ,⋯, x(l)
N , ŷ(l)

i ) (Fig. 1a). 

We implement the case where the transformed training data set is 
compiled in a cumulative and non-cumulative way when training the 
models over multiple iterations. A cumulative augmentation strategy for 
the feature vector foresees the inclusion of the estimates of all preceding 
models, i.e., the training data set is constructed as follows after the 

second iteration: D
’’
i =

{(
x’’(1), y(1)i

)
,⋯,

(
x’’(N), y(N)

i

)}
, where x’’(l) =

(
x(l)

1 ,⋯, x(l)
N , ŷ(l)

i , ŷ’(l)i

)
. In contrast, a non-cumulative augmentation 

strategy for the feature vector foresees solely the inclusion of the esti
mates of the preceding model, i.e., the training data set is constructed as 

follows after the second iteration: D’’
i =

{(
x’’(1), y(1)i

)
,⋯,

(
x’’(N), y(N)

i

)}
, where x’’(l) =

(
x(l)

1 ,⋯, x(l)
N , ŷ’(l)i

)
. 

Consequently, after the second iteration, the dimensionality of the 
training data set remains constant for the non-cumulative procedure. In 
contrast, the dimensionality of the training data set linearly increases in 
the cumulative case as a function of the number of iterations. In the 
context of so-called relearning procedures, which compute new features 
in the geospatial domain based on preliminary model estimates, it was 
shown that both a non-cumulative and cumulative augmentation of the 
feature vector can yield competitive predictions (Geiß, et al., in press). 
We implement both strategies for all considered MTR methods and 
evaluate their potential effect on the prediction accuracy later on. 

The training set is altered after each iteration where Yi remains the 
same, while the feature vector is transformed and extended for the non- 
cumulative and the cumulative case, respectively. Thereby, the number 
of iterations can be set according to a stopping criterion. Finally, as it is 
done with all MTR methods in this work, the model which maximizes a 
defined accuracy measure among all learned models is selected. As such, 
we treat the number of iterations as a hyperparameter which needs to be 
optimized in a data-driven way without prior constraints. 

2.2. Multi-target stacking 

In contrast to STS, MTS is designed to actually share knowledge 
across correlated target variables within a stacking procedure. Likewise, 
d single-target models are learned first. Subsequently, a set of meta- 
models is established which include a model for each target variable Yi, 
i ∈ {1,⋯, d}. Thereby, estimates regarding the residual target variables 
from the first stage are included, i.e., a model is learned from a trans

formed data set D’
i =

{(
x’(1), y(1)i

)
,⋯,

(
x’(N), y(N)

i

)}
, where x’(l) = (x(l)

1 ,

⋯, x(l)
N , ŷ(l)

1 ,⋯, ŷ(l)
d ) (Fig. 1b). Also here, we distinguish the cumulative 

and non-cumulative training strategy after the second iteration where 

D
’’
i and D’’

i contain x’’(l) =
(

x(l)
1 ,⋯, x(l)

N , ŷ(l)
1 ,⋯, ŷ(l)

d , ŷ’(l)
1 ,⋯, ŷ’(l)

d

)
and 

x’’(l) =
(

x(l)
1 ,⋯, x(l)

N , ŷ’(l)
1 ,⋯, ŷ’(l)

d

)
, respectively. 

In order to be able to obtain predictions with stacking methods for an 
unseen instance, i.e., unlabeled sample x(N+1), estimates based on initial 
models are generated first, i.e., inducing the estimated output vector 
ŷ(N+1)

= (ŷ(N+1)
1 , ⋯, ŷ(N+1)

d ). Then, the meta-models are applied on the 

transformed input vector x’(N+1)
=

(
x(N+1)

1 ,⋯, x(N+1)
m , ŷ(N+1)

1 ,⋯, ŷ(N+1)
d

)

to produce new predictions for the target variables. 

2.3. Regressor chains 

RC are based on the idea of aligning single-target models along a 
flexible permutation, i.e., chain. First, a permutation with respect to the 
target variables is drawn. This process can be carried out in a random (e. 
g., Spyromitros-Xioufis et al., 2016) or directed (e.g., Melki et al., 2017) 
manner. The selected permutation is deployed to build a separate 
regression model for the target variables following the order of the 
permutation. To exploit this structure for MTR, actual values of the 
target variables are provided to subsequent models when learning along 
the chain. Based on the full chain or a selected set C = (Y1,Y2,⋯,Yd), the 
first model is constrained to establish estimates for Y1. Subsequently, 
models for Yi,s.t.i>1 are learned from a transformed data set D’

i =
{(

x’(1)
i , y(1)i

)
,⋯,

(
x’(N)

i , y(N)

i

)}
, where x’(l)

i = (x(l)
1 ,⋯, x(l)

m , y(l)1 ,⋯, y(l)i− 1)

(Borchani et al., 2015). Given such a chain of models, the output vector 
ŷ(N+1) for an unseen instance x(N+1) is obtained by sequentially applying 
the models hi to establish the estimates since, naturally, the actual values 
of the target variables are not available at prediction time. 

The concept of RC was extended by establishing so-called ensemble 
of RC (Spyromitros-Xioufis et al., 2016) to account for the sensivity of 
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Fig. 1. Illustration of the training procedures of (a) STS, (b) MTS, and (c) ensemble of RC with repetitive permutation based on a non-cumulative and cumulative 
augmentation strategy of the feature vector, respectively. 

C. Geiß et al.                                                                                                                                                                                                                                     



International Journal of Applied Earth Observation and Geoinformation 106 (2022) 102657

5

the predictions with respect to the ordering of the target variables within 
the chain structure. Thereby, an ensemble of RC comprises multiple 
chains where each chain with length m consists of different and distinct 
permutations of the target variables. However, to keep computational 
complexity of building m! distinct chains and learning (m!)*m models 
low, the number of chains and elements of a chain, respectively, is 
constrained to 10 unless the number of target variables is equal or 
smaller than 3, i.e., m! < 10. In the latter case, all m! random chains are 
constructed. Generally, it can be noted that out-of-sample estimates of 
the target variables are deployed based on an internal f -fold cross- 
validation procedure to avoid overfitting during training. 

Existing RC methods foresee the singular occurrence of a target 
variable within a chain. At this point, we propose an extension of the 
existing methods: we equip ensembles of RC with a repetitive permu

tation scheme and hence allow the multiple occurrence of target vari
ables within a chain. Thus, chains with a larger number of elements than 
the number of target variables can be established. To do so, first, mul
tiple permutations with length m are drawn randomly where one target 
variable can occupy multiple elements of an individual chain. As such, 
identical objects, i.e., target variables, in the chain occur. These can be 
interchanged without the need to determine a new permutation. 
Consequently, the number of distinct permutations which can be created 
from m elements of the chain, whereby k are identical, is determined by 
m!/k!. Based on such a chain, estimates of the target variables are 
cascaded to subsequent models as additional features when learning 
along the chain. Consequently, a training data set is sequentially 
augmented by the estimates of previous target variables in the chain 
when learning a new model. Here, we also implement the cumulative 

Fig. 2. Experimental setup. (a) The methods are deployed to estimate built-up density and height based on features from Sentinel-2 imagery. The target variables are 
created from LoD-1 building models and are regressed for spatial processing units which correspond to urban neighborhood scales, i.e., grid cells with an extent of 
500*500 m, for the four largest German cities, i.e., Berlin, Hamburg, Munich, and Cologne. The Global Urban Footprint data set is deployed to constrain the analysis 
to relevant settlement areas. (b) Model accuracy is evaluated according to the considered MTR method (i.e., STS, MTS, ensemble of RC without and with repetitive 
permutation), composition of the feature space (i.e., deploying target variable-specific features or a set of features which is shared across all target variables), 
augmentation strategy for the feature vector (i.e., including previous model predictions in a non-cumulative and cumulative way), and regression algorithm (i.e., 
Random Forest Regression, Support Vector Regression, Gaussian Process Regression, and Neural Network Regression). 
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and non-cumulative case where the training data set is augmented by all 
and solely preceding model estimates of target variables when learning 
along the chain, respectively (Fig. 1c). 

We followed this principle to enable a large variety of possibilities to 
establish a chain since it is crucial which composition of the target 
variables provides additional input for the prediction of Yi. This strategy 
goes along with the idea of an ensemble of RC, however, by allowing 
repetitive permutations, we enable variable models for prediction 
problems with a small number of target variables. As such, the ensemble 
of RC with repetitive permutation scheme can be interpreted as a hybrid 
structure which internalizes the principles of both ensemble of RC, i.e., 
exploiting a chain structure with respect to the target variables, and 
MTS, i.e., using estimates of the target variables for new predictions. 

3. Experimental setup 

As can be seen from the introduction, a very relevant application 
field of MTR methods is the estimation of vegetation parameters with RS 
data. Thereby, authors exploit (potentially nonlinear) cross relations 
among biophysical parameters (Dey, 2021; Mandal et al., 2019; Pyo, 
2019; Stojanova et al., 2010; Tuia et al., 2011). However, here, we 
evaluate the described methods in the context of predicting built-up 
density and height using features from Sentinel-2 optical satellite data. 
Estimating constituting variables of the urban morphology with indi
vidually learned supervised models and various geospatial data sets 
gained popularity recently (Geiß et al., 2020; Li et al., 2020a; Corbane, 
2020; Frantz et al., 2021). Thereby, it was found that those variables can 
feature a certain level of correlation, also when approximated with 
remote sensing data (Geiß et al., 2019; Li et al., 2020a). This motivated 
us to exploit potential helpful dependencies of the target variables built- 
up density and height. 

An overview on the input data and processing steps to compile the 
training data sets is provided by Fig. 2a. We limit the data processing to 
settlement areas indicated by the so-called Global Urban Footprint 
(GUF) layer (Esch et al., 2012). This is a binary mapping scheme which 
discriminates “built-up” and “non built-up” areas globally with a high 
spatial resolution of 12 m and classification accuracy beyond 85% (Klotz 
et al., 2016). Generally, the spatial resolution properties of the data 
hamper analyses on individual building level. The pixel spacing of ten 
meters of the R-G-B-NIR bands of Sentinel-2 (Drusch et al., 2012) can 
exceed the extent of the objects of interest (i.e., buildings). As a conse
quence, we work on an aggregated spatial level, i.e., we establish spatial 
processing units in terms of rectangular grid cells to compute built-up 
density and height thereof. In this study, we consider a side length of the 
grid cells of 500 m to reflect areas of homogeneous urban morphology 
(Taubenböck et al., 2016). To derive the target variables, we incorpo
rated LoD-1 building geometries and affiliated height measurements, 
which are based on cadastral information (Geiß et al., 2020). Buildings 
are represented by extruded footprints in LoD-1 resolution (Luebke 
et al., 2002). Built-up density per grid cell is computed by establishing the 
ratio between the area of elevated pixels according to LoD-1 footprints 
and the whole settlement area as indicated by the GUF data set. Built-up 
height per grid cell is computed by extracting the median height value 
according to the LoD-1-based height values within a grid cell. 

We implemented an exhaustive feature calculation module. Previous 
studies already underlined the capability of multispectral imagery to 
sophistically describe built-up structures (Zhang et al., 2017). The 
deployed optical Sentinel-2 data were subject to atmospheric correc
tions within the Sentinel Application Platform using the Sen2Cor mod
ule to provide level 2A products. The imagery used for feature 
calculation for the four cities under investigation was acquired in 
autumn and winter of the years 2015–2016. The dates were chosen to 
reduce the influence of photosynthetically active vegetation on the 
analysis since intra-urban vegetation frequently obscures underlying 
built-up structures, which then remain undetectable in the corre
sponding imagery. Beyond, the acquisition periods offer the possibility 

to exploit shadow information, which in turn encodes helpful discrimi
native properties of built environments. In a comparable data setup and 
supervised learning context, it was recently shown that building height 
estimations can profit more from optical than from SAR data, although a 
joint exploitation of both data sources can be expected to enable a 
further increase of prediction accuracy (Frantz et al., 2021). In order to 
exhaustively exploit the multispectral imagery, we compute a large 
number of spectral features, features related to mathematical 
morphology (Soille, 2004), as well as texture measures derived from the 
gray–level co–occurrence matrix (GLCM) (Haralick, 1979) from 
Sentinel-2 imagery. We deploy the same features as described in detail in 
(Geiß et al., 2020). Given the different feature categories and system
atically varied window sizes of the deployed spatial features, overall, 
each spatial processing unit is represented by a 663-dimensional feature 
vector. 

Experimental results are provided from computations regarding the 
settlement areas of the four largest German cities: Berlin, Hamburg, 
Munich, and Cologne (Fig. 2b). The processed settlement areas comprise 
513 km2 for Berlin, 577 km2 for Hamburg, 535 km2 for Munich, and 508 
km2 for Cologne. 

The MTR methods as described in Section 2, i.e., STS, MTS, ensemble 
of RC with and without repetitive permutation, are evaluated. Thereby 
STS, MTS, and the ensemble of RC with repetitive permutation are 
learned over ten iterations, i.e., feature ten elements each. Regarding the 
latter, we draw randomly five distinct permutations. Furthermore, we 
evaluate two strategies regarding the composition of the feature vector. 
The first strategy foresees the compilation of a tailored feature vector for 
each target variable. We were motivated to do so since feature selection 
can have a valuable effect on prediction accuracy especially when 
dealing with feature vectors with a high dimensionality (Hughes, 1968). 
Consequently, we apply the filter-based correlation-based feature se
lection (CFS) approach (Hall, 2000; Aravena Pelizari et al., 2018) to the 
initial feature vector. However, in order to gain insights whether solely 
target variable-specific features are beneficial with respect to prediction 
accuracy, as an alternative, we also employ the union set of the specific 
features of each target variable as identified with the CFS approach and 
share those features across all target variables. Besides, as described in 
Section 2, we evaluate the results as a function of a non-cumulative and 
a cumulative augmentation strategy of the feature vector, respectively. 

In the experiments, we considered four advanced machine learning- 
based regression algorithms, i.e., Random Forest Regression, Support 
Vector Regression, Gaussian Process Regression, and Neural Network 
Regression. For the Random Forest Regression models (Liaw and 
Wiener, 2002) we tuned the hyperparameters as follows: ntree = 500 and 
mtry = 1,2,⋯,51. For the Support Vector Regression models (Smola and 
Schölkopf, 2001) we deployed Gaussian RBF kernels, which take the 
form K

(
xixj

)
= exp − ‖xi − xj‖

2
/2σ2. Learning the most appropriate SVR 

model in conjunction with an RBF kernel requires the definition of the 
regularization parameter C, the tolerance value ε, and the kernel 
parameter σ. Parameters were optimized according to σ = {0.01,0.02,⋯,

0.1}, C = {5, 6,⋯, 15}, and ε = {0.05, 0.06,⋯, 0.15}. Learning of the 
deployed Gaussian Process Regression models (Rasmussen and Wil
liams, 2006) required tuning of hyperparameters related to the covari
ance or kernel functions. This includes for an RBF kernel the magnitude 
as well as characteristic expressions of length and noise variance. 
Consequently, we optimized the model according to σ = {0.01,0.02,⋯,

0.1} and ε = {0.001, 0.002, ⋯, 0.1}. Optimization of Neural Network 
models required proper regularization of the weights, shape of the 
nonlinear function, learning rate, as well as model regularization to 
prevent overfitting. Moreover, the training algorithm and loss function 
will impact the model. In this manner, the NN models were learned 
based on the RSNNS hyperparameter optimization module (Bergmeier 
and Benitez, 2012). Model selection was carried out using the root- 
mean-squared error (RMSE) for all algorithms. The model which mini
mized RMSE within a set of iterations was selected for final prediction. 
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Regarding learning of regression models, training and test data were 
strictly spatially separated to avoid biased estimates, which can partic
ularly occur when using spatial features due to the encoding of extrinsic 
spatial autocorrelation (Geiß et al., 2017). Thereby, models with 
randomly drawn samples, i.e., labeled grid cells, from the pool of labeled 
samples are learned for each city. We used 1847 training and 205 test 
samples for Berlin, 2079 training and 231 test samples for Hamburg, 
1926 training and 214 test samples for Munich, and 1827 training and 
203 test samples for Cologne, respectively. Estimated generalization 
capabilities of the models in the subsequent section were computed from 
the test samples. 

4. Experimental results and discussion 

To provide a first comparative overview, Fig. 3a and b show the 
estimations of the models over all cities and with all regressors obtained 
with an MTR strategy and also the estimations of the corresponding 
model configuration without an MTR strategy, which we refer to as 
initial models, for built-up height and density, respectively. The scatter 
plots reveal that the MTR approaches STS, MTS, and our method feature 
a better concentration of the density along the one-to-one line, as well as 
an increase in regression slope compared to the initial estimates. 
Thereby, the uncertainty in terms of RMSE could be reduced from 4.44 
m to 3.47–3.53 m and from 7.6% to 6.11–6.42%, respectively. Typically, 
the models overestimate areas of low built-up height and density and 
underestimate areas of high built-up height and density, respectively. 

More differentiated results are compiled in Fig. 4a regarding esti
mated built-up height and in Fig. 4b regarding estimated built-up density, 
respectively. Estimation accuracies are presented in terms of mean ab
solute error (MAE) according to the multi-target regression method, the 
augmentation strategy for the feature vector, the composition of the 
feature space, the regression algorithm, and the application domain, i.e., 
city. 

With regard to the estimation of built-up height, it can be stated that 
generally viable accuracy levels can be achieved with the presented data 
setup and methodology, as the MAEs hardly exceed 3 m deviation, i.e., 
approximately one floor, even when solely relying on the initial model. 
Thereby, it can be noted that the deviation levels follow the size of a city, 
i.e., the deviation levels decrease from Berlin to Cologne, which follows 
the decreasing range of numerical height values of built-up structures of 
those cities. 

Notably, estimates can frequently be substantially enhanced when 
deploying an MTR method. From a comparative model perspective, our 
proposed method allows lowest numerical MAE values regarding 6 out 
of 16 configurations and being on par 3 times with other methods. STS 
allows 4 times lowest MAE values while being on par 1 time, MTS allows 
3 times lowest MAE values while being on par 1 time, and regressor 
chains without repetitive permutation are solely on par 1 time. This 
underlines the beneficial accuracy properties of our method. The level of 
achieved performance improvement is strongly related to the deployed 
regression algorithm. In this manner, Gaussian Process Regression and 
Support Vector Regression benefit most and also provide the most ac
curate final estimates: the best estimate for Berlin features an MAE of 
1.99 m (27.3% improvement compared to the initial model) based on 
STS and Support Vector Regression; an MAE of 1.95 m (17% improve
ment) based on STS/our method and Support Vector Regression for 
Hamburg; an MAE of 1.36 m (32.7% improvement) based on STS and 
Gaussian Process Regression for Munich; and an MAE of 0.91 m (37.7% 
improvement) based on our method and Gaussian Process Regression for 
Cologne. Thereby, it also becomes traceable that the margin difference 
of increased accuracies between STS, MTS, and our method is frequently 
rather small since they all can enable a beneficial mean percentage 
improvement across the experiments of 14.48, 13.75, and 15.73, 
respectively. Nevertheless, it can be noted that other RS studies report 
mean percentage improvements of e.g., up to 8.63 (Stojanova et al., 
2010), or 13.64 (Tuia et al., 2011), respectively, regarding their 

deployed algorithm adaptation-based MTR approaches and experi
mental setting. Hence, a substantial increase in performance can be 
achieved with the presented problem transformation-based methods. 
Solely regressors chains without repetitive permutation can hardly 
induce accuracy improvements in this empirical setting. This indicates 
that the strategy of only including a residual target variable for model 
learning without incorporating estimates of the actual target variable 
can induce model divergence in an MTR context. On the contrary, the 
good performance of STS suggests that the principle of utilizing pre
ceding model outcomes of a target variable for a new prediction over 
multiple iterations is the main source of performance improvement here. 
However, the hybrid and flexible structure of ensemble of regressor 
chains with repetitive permutation is able to encode helpful information 
from both the inclusions of preceding model outcomes and a residual 
target variable to obtain beneficial accuracy properties of the estimates. 

A likewise picture can be drawn for built-up density estimations. 
Generally, also for this target variable viable accuracy levels can be 
achieved since MAEs hardly indicate more than 7% deviation. The es
timations can also be substantially enhanced when deploying an MTR 
method. From a comparative model perspective, here, our method al
lows lowest numerical MAE values regarding 9 out of 16 configurations 
and being on par 1 time with another method. In contrast, STS allows 2 
times lowest MAE values while being on par 1 time, MTS allows 1 times 
lowest MAE values while being on par 2 times, and regressor chains 
without repetitive permutation allow 1 times lowest MAE values while 
being on par 2 times. Again, this underlines the beneficial accuracy 
properties of our method and also here Gaussian Process Regression and 
Support Vector Regression benefit most and also provide the most ac
curate final estimates: the best estimate for Berlin features an MAE of 
3.9% (32.8% improvement compared to initial model) based on our 
method and Gaussian Process Regression; an MAE of 3.2% (23.8% 
improvement) based on our method and Support Vector Regression for 
Hamburg; an MAE of 4.2% (32.3% improvement) based on STS/our 
method and Gaussian Process Regression for Munich; and an MAE of 
3.8% (32.1% improvement) based on our method and Gaussian Process 
Regression for Cologne. Likewise, it becomes traceable that the margin 
of increased accuracies between STS, MTS, and our method is frequently 
rather small since the corresponding mean percentage improvements 
across the experiments are 13.11, 12.56, and 13.33, respectively. 
Analogous to previous results, regressor chains without repetitive per
mutation do not provide substantial improvements of predictions in this 
experimental setting. 

Regarding the augmentation strategy for the feature vector, overall, 
it turned out that a cumulative strategy allowed larger improvements 
than a non-cumulative strategy in 18 out of 32 configurations while 
being on par 13 times. The mean increase in accuracy of the cumulative 
strategy is 14.85%, while it is 12.38% for the non-cumulative strategy. 
Correspondingly, this favors to deploy a cumulative augmentation 
strategy when aiming to obtain most favorable accuracy levels. 
Regarding the composition of the feature space, we observed a less clear 
pattern. Nevertheless, a shared set of features allowed larger improve
ments than using solely target variable-specific features in 14 out of 32 
configurations while being on par 9 times. The mean increase in accu
racy with the shared set of features is 15.04%, while it is 15.01% for the 
target variable-specific features. Correspondingly, using a shared feature 
set for the target variables represented a slightly better strategy for 
achieving highest accuracy levels. 

5. Conclusion 

In this paper we have proposed the MTR method ensemble of re
gressor chains with repetitive permutation. We applied this method to 
estimate built-up height and density with features derived from Sentinel-2 
data. Experimental results uncovered the beneficial performance prop
erties of the method, since it provided most frequently the most accurate 
model predictions in a comparative setup. The mains findings comprise: 
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Fig. 3. Scatter plots depicting estimates of (a) built-up height and (b) built-up density obtained with the different MTR strategies including all four cities and regressors. 
Estimations of the corresponding model configuration without an MTR strategy, i.e., initial models, are also presented. 
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• STS, MTS, and our method turned out to be useful for substantially 
improving accuracy levels of initial predictions. Overall, STS, MTS, 
and our method could enable a mean improvement of prediction 
accuracy of 13,79%, 13,15%, and 14,53%, respectively.  

• Gaussian Process Regression and Support Vector Regression could 
benefit most from the inclusion of an MTR method.  

• Most accurate built-up height estimates feature an MAE of 2 m (27.3% 
improvement; STS) for Berlin, an MAE of 1.95 m (17% improvement; 
STS/our method) for Hamburg, an MAE of 1.36 m (32.7% 
improvement; STS) for Munich, and an MAE of 0.91 m (37.7% 
improvement; our method) for Cologne, respectively. Most accurate 
built-up density estimates feature an MAE of 3.9% (32.8% improve
ment; our method) for Berlin, an MAE of 3.2% (23.8% improvement; 
our method) for Hamburg, an MAE of 4.2% (32.3% improvement; 
STS/ our method) for Munich, and an MAE of 3.8% (32.1% 
improvement; our method) for Cologne.  

• The cumulative augmentation strategy for the feature vector, which 
foresees the inclusion of the estimates of all preceding models, 
turned out to be a better strategy than including solely the estimates 
of the preceding model (i.e., non-cumulative strategy). 

• The composition of the feature space appeared to have a less sub
stantial effect on the accuracy levels, however, sharing a set of fea
tures across the target variables provided slightly better performance 
properties than using solely target variable-specific features in our 
experimental setup. 

Overall, the beneficial accuracy properties of the considered problem 
transformation-based MTR methods encourage further deployment for 
remote sensing data analysis. Thereby, we aim to integrate ensemble of 
regressor chains with repetitive permutation scheme in multi-target 
ensemble regression models in the future. 

Fig. 4. MAE values regarding estimates of (a) built-up height and (b) built-up density as a function of multi-target regression method, augmentation strategy for the 
feature vector, composition of the feature space, regression algorithm, and application domain, i.e., city. The non-transparent bars show the estimation accuracies 
with an MTR method, and the semi-transparent bars show the estimation accuracies of the corresponding model configuration without an MTR strategy, i.e., 
initial model. 
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review & editing. Hannes Taubenböck: Conceptualization, Methodol
ogy, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The work of Christian Geiß was supported by the Helmholtz Asso
ciation under the grant “pre_DICT” (PD-305). Additionally, this research 
was funded in part by the German Federal Ministry of Education and 
Research (BMBF) under grant no. 03G0876 (project RIESGOS). We 
thank the two anonymous reviewers for the helpful comments on the 
initial version of the paper. 

References 
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