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Synopsis: The past decade saw the development of several data assimilation systems for the 
ionosphere, thermosphere, and mesosphere (ITM). To fully realize the capabilities of ITM data 
assimilation systems for both scientific investigations and operations, several critical advances 
are needed. This white paper outlines some of the outstanding challenges facing ITM data 
assimilation that need to be addressed in the coming decade in order to achieve robust, high-
quality, ITM data assimilation systems. Benefits to both the scientific and operational 
communities of advancing ITM data assimilation capabilities are also provided. These include, 
but are not limited to, providing the framework for investigating ITM predictability, scientific 
investigations into day-to-day ITM variability driven by the lower atmosphere and geomagnetic 
storms, as well as advancing space weather forecasting capabilities.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Background and Motivation 
 
Data assimilation refers to the process of optimally combining background model estimates with 
observations to produce the best possible estimate of the state. It provides a number of 
advantages compared to numerical models or observations alone and has proven to be 
fundamental for improving troposphere numerical weather prediction (NWP) and for producing 
atmospheric reanalyses (e.g., NASA MERRA) in the troposphere and stratosphere. Data 
assimilation provides an observational constraint to numerical models, removing biases and 
providing a better representation of the atmospheric state. The improved state estimate can serve 
as initial conditions for short- and medium-range forecasting using physics-based, first-principle, 
models. Data assimilation can also extend the utility of observations by providing information on 
quantities that are not directly observed. For example, ionosphere electron density observations 
can be used to better constrain the thermosphere neutral mass density, leading to improved 
estimates of satellite drag (Matsuo et al., 2013; Dietrich et al, 2022). 
 
There have been significant developments in the ionosphere, thermosphere, and mesosphere 
(ITM) data assimilation research in the past decade. This is especially true with regards to ITM 
data assimilation systems that use physics-based background models. In this context, data 
assimilation system refers to the combination of the background model and assimilation 
algorithm. Note that we focus on the use of physics-based, first-principle, models as they enable 
fundamental understanding of the coupled ITM system as well as initialized numerical 
forecasting of the ITM. Significant recent developments have occurred in ionosphere-
thermosphere (~90-500 km altitude domain) data assimilation systems that use both state and 
driver estimation (Lee et al., 2012; Morozov et al., 2013; Chartier et al., 2016; Chen et al., 
2016a; Codrescu et al., 2018; Sutton, 2018), and whole atmosphere (surface to ~500 km altitude 
domain) data assimilation systems (Pedatella et al., 2018; 2020) that represent the extension of 
NWP schemes into the ITM. The data assimilation systems developed for the ITM have been 
applied to study variability of the coupled atmosphere-ionosphere system forced by geomagnetic 
storms and lower atmosphere perturbations (e.g., Chen et al., 2016a; Rajesh et al., 2017; 
Pedatella et al., 2018). They have also been used for initialized forecast experiments, providing 
important understanding of the ITM predictability (Chartier et al., 2016; Chen et al., 2016b; 
Pedatella et al., 2018; 2019). In addition, ITM data assimilation systems have operational 
applications for nowcasting and forecasting the ITM variability. Continuing to advance ITM data 
assimilation capabilities would thus benefit both the scientific and operational communities.       
 
Despite the advantages afforded by data assimilation, the techniques and applications of data 
assimilation systems focused on the ITM remain in their infancy. This white paper outlines some 
of the outstanding challenges in ITM data assimilation, the scientific and operational advances 
that these would enable, and concludes with recommendations for advancing ITM data 
assimilation techniques and applications.           
 
Outstanding Challenges in ITM Data Assimilation 
 
Although there is a long history of developing data assimilation techniques for the lower 
atmosphere (troposphere-stratosphere), these techniques cannot be directly applied to the ITM 
due to important differences in chemistry, dynamics, and physics of these domains. For example, 



the ITM is a partly driven system due to forcing from solar and geomagnetic activity. The time 
scales of variability, especially in the ionosphere, also tend to be shorter than those in the lower 
atmosphere. It is thus necessary to develop data assimilation techniques that are tailored to the 
unique demands of the ITM. Below we outline some of the outstanding challenges in ITM data 
assimilation. 
 
There are two primary approaches currently taken for ITM data assimilation. The first approach 
aims to estimate the driver inputs (e.g., solar flux) to the background model (Morozov et al., 
2013; Codrescu et al., 2018; Sutton, 2018). This leverages the spatial correlations built into the 
physical model, providing global-scale corrections to the background state (i.e., not only at 
locations where observations are assimilated). The second approach adjusts the model state (e.g., 
temperature, electron density) directly from the observations (Lee et al., 2012; Hsu et al., 2014; 
Pedatella et al., 2020) without any adjustment to the global model drivers. This approach, as an 
extension of lower atmosphere NWP systems, is much more sensitive to the availability and 
location of the assimilated observations. It is, however, less reliant on the physical model being 
capable of fully capturing the dynamics of the ITM compared to only adjusting the global model 
drivers. At present, it remains unclear which of the two approaches is best suited for the ITM, 
and it may be that each approach is best suited for different applications. Combining the two 
approaches of driver and state estimation may also prove useful, though this is something that 
has yet to be fully explored. It is thus critical to understand the capabilities, including their 
advantages and disadvantages, of these two different approaches in order to understand how they 
can be used to advance ITM data assimilation capabilities in the future.  
 
A major challenge in atmospheric data assimilation is the treatment of small-scale waves, which 
can be artificially introduced by unbalanced data assimilation adjustments. Small-scale waves are 
often removed in lower atmosphere data assimilation through various filtering techniques (e.g., 
Lynch and Huang, 1992; Bloom et al., 1996). However, wave-driven variability is an important 
source of ITM variability, and the filtering method can significantly impact the dynamics of the 
mesosphere and thermosphere (Sankey et al., 2007). It is thus critical to develop techniques that 
minimize the introduction of artificial small-scale waves due to the data assimilation adjustments 
while preserving the physical waves that are present and cause ITM variability. Minimizing the 
introduction of artificial small-scale waves is particularly crucial for whole atmosphere data 
assimilation systems due to the fact that certain small waves introduced in the troposphere-
stratosphere can grow exponentially with altitude and obtain large amplitudes by the time they 
reach the ITM.   
 
Despite increases in the number of observations, the ITM system remains relatively poorly 
observed. This is especially the case in the mesosphere and thermosphere. Developing 
techniques to best use the sparse mesosphere and thermosphere observations is therefore critical. 
For example, assimilation of radiance observations greatly enhanced the impact of satellite 
observations in NWP compared to retrieved parameters (Eyre et al., 2020). Similarly, 
assimilating radiance observations directly in the ITM may lead to greater impact of the sparse 
available observations (Cantrall et al., 2019). Furthermore, the observations that do exist are 
available from different sources, in different file formats, and often do not include realistic 
specification of uncertainties. This presents a challenge for using all of the available observations 
within ITM data assimilation systems and the appropriate data quality control measures of 



diverse measurements needs to be rigorously developed. The development of centralized 
databases containing all observations with standard file-formats and uncertainty information 
would improve usage of all observations in ITM data assimilation systems, as well as be 
beneficial to the broader community. It should also be noted that although the ionosphere is 
generally well observed, it is important to continue to develop techniques to maximize the 
impact of ionosphere observations to constrain the state of the thermosphere. As the ionosphere 
and thermosphere are a highly coupled system, ionosphere observations can effectively constrain 
the thermosphere if the appropriate correlations are established between the ionosphere and 
thermosphere (Matsuo et al., 2013; Hsu et al., 2014). Using ionosphere observations to constrain 
the thermosphere is important not only due to the deficiency of thermospheric observations, but 
also since the thermosphere is critical for driving ionosphere variability and improving forecast 
skill.    

Currently, the ensemble Kalman filter is arguably the most used technique for performing ITM 
data assimilation using physics-based background models. Ensuring that the ensemble spread is 
representative of the model uncertainty is fundamental for the ensemble Kalman filter technique 
to perform correctly. Generating ensemble spread in ITM models is, however, complicated by 
the fact that the ITM is a partly driven system, and the ensemble spread will tend to be too small 
when all ensemble members are subject to identical external forcing. To overcome this obstacle, 
ITM ensemble data assimilation models have typically relied on perturbing the external forcing 
parameters, such as the solar flux at 10.7 cm (F10.7), to generate ensemble spread (e.g., Lee et 
al., 2012). The perturbations are typically done in an ad-hoc manner, and are not representative 
of the forcing uncertainty. Development of new methodologies for generating ensemble spread 
such as perturbations to model physics parameterizations that are currently used in modern NWP 
systems (Buizza et al., 1999; Berner et al., 2009) are an alternative approach for generating 
ensemble spread that is more reflective of the model uncertainty. Accurate representation of the 
ensemble spread is also critical for space weather forecasts and enables reliable probabilistic 
forecasts if the uncertainty in the ensemble predictions is reflective of the actual uncertainty 
(Lewis, 2005).  

In addition to the ensemble Kalman filter, there are several alternative techniques for data 
assimilation, such as variational (3D-Var and 4D-Var) as well as hybrid approaches (Rabier et 
al., 2000; Hamill and Snyder, 2000; Clayton et al., 2013). Despite their potential advantages, the 
current state-of-the-art NWP data assimilation approaches have yet to be adopted for use in the 
ITM. This is, at least in part, due to the relative complexity of implementing these techniques 
compared to the ensemble Kalman filter. It is critical that the community pursue the development 
and implementation of advanced data assimilation techniques for the ITM. This will ensure the 
continued advancement of ITM data assimilation systems. Implementation of alternative 
methods will further enable data assimilation using high-resolution background models, 
something that is currently inhibited by the computational cost of the ensemble Kalman filter. 

Scientific and Operational Advances Enabled by Enhanced Data Assimilation 
 
Advances in data assimilation techniques, such as those outlined in the previous section, would 
lead to significant advances in both ITM science as well as for space weather operational 



forecasts and applications. Below we outline some of the key areas that would benefit from 
advances in ITM data assimilation. 
 
Data assimilation systems provide the best estimate of the current state of the ITM, which can be 
used as initial conditions for physics-based model forecasts. Data assimilation algorithm 
improvements have a significant role in enhancement of NWP forecast skill (Bauer et al., 2015). 
Advances in the data assimilation techniques for the ITM, including making optimal use of 
observations, are therefore considered as highly likely to lead to improved space weather 
forecasts.  
 
The continued development of ITM data assimilation systems also provides the opportunity to 
perform initialized forecast/hindcast experiments to investigate the predictability of the ITM. 
There is currently only a rudimentary understanding of the ITM predictability, with little 
understanding of how it may vary with, for example, local time, season, and solar activity. 
Initialized forecast/hindcast experiments using ITM data assimilation systems can be used to 
improve knowledge of the ITM predictability. Additionally, they can be applied to develop 
insight into how ITM predictability can be improved. For example, Observing System 
Simulation Experiments can be used to investigate future observing systems and how they may 
impact the ITM forecast skill. 
 
Atmospheric reanalyses (e.g., NASA MERRA2, ECMWF ERA5) are widely used in the 
troposphere-stratosphere communities due to the fact that they provide the best available 
estimate of the atmospheric state globally. No such product currently exists for the ITM. 
Investment in ITM data assimilation systems in the next decade would enable them to reach the 
level of maturity where a reliable ITM reanalysis product could be developed and made available 
to the scientific community. By providing the best estimate of the ITM state, such a reanalysis 
product would enable significant advances in a broad range of ITM science, such as day-to-day 
variability driven by the lower atmosphere and storm time variations in the ionosphere-
thermosphere.  
 
Data assimilation can also be a powerful tool for model development. The data assimilation 
increments provide information on the locations of large model-observation discrepancies, 
guiding where to focus efforts during the model development process. Data assimilation 
techniques can also be used for parameter estimation, potentially accelerating the model tuning 
and development process. Model parameterizations, such as, for example, gravity wave drag and 
eddy diffusion, remain significant sources of uncertainty in ITM models (Qian et al, 2009; 
Pedatella et al., 2014; Siskind et al, 2014; Pilinski and Crowley, 2015). Data assimilation would 
provide an observationally informed estimate of these parameters, which are currently often 
adjusted as model tuning parameters.     
 
Conclusions and Recommendations  
 
The past decade has seen the advancement of data assimilation systems for the ITM. However, 
as outlined in this white paper, there remain several challenges when it comes to ITM data 
assimilation systems. It is recommended that ITM data assimilation systems be considered as a 



critical component for performing ITM research in the coming decade. To realize the full 
potential of ITM data assimilation systems for ITM research, we recommend the following: 
 

- The 2023 Solar and Space Physics Decadal Survey should recognize the important 
role that ITM data assimilation systems will have in the coming decade. As ITM data 
assimilation systems continue to develop, they will be fundamental for advancing both 
scientific understanding of the ITM as well as space weather forecasts.  

 
- Prioritize the development of fundamental techniques for performing data 

assimilation in the ITM. Current efforts are typically single PI led, limiting the rate of 
ITM data assimilation development. Moving beyond the single PI led approach requires 
investment in the development of community ITM data assimilation systems and would 
serve to accelerate their development. Interdisciplinary proposal opportunities to support 
a broader collaboration between the ITM and NWP data assimilation communities would 
also enhance ITM data assimilation capabilities. 
 

- Develop more transparent and robust O2R/R2O research pipelines by creating open 
solicitations to participate in operational data assimilation efforts. There is currently 
a gap between the ITM data assimilation systems developed in the research community 
and those developed and used operationally. This limits the impact of the efforts in the 
research community on operational systems, while also inhibiting the research 
community from focusing efforts where they may be most useful operationally.  
 

- Establish quantifiable metrics to track improvements in ITM data assimilation 
system nowcasts and forecasts. The ITM community currently lacks accepted metrics 
for quantifying the performance of ITM data assimilation systems. This makes comparing 
results from different data assimilation systems difficult, and also inhibits quantification 
of nowcasting and forecasting improvements over time.  
 

- Incorporate research into ITM predictability into existing research programs. 
Current knowledge of the ITM predictability is extremely poor, with little knowledge of 
how it varies on different spatial scales, seasons, and levels of solar and geomagnetic 
activity. The sources of predictability and how it can be improved are also unknown. 
Targeted research programs into ITM predictability will eliminate the gaps in our current 
understanding. 
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