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Overview

▪ The CPACS data exchange standard

▪ COAST: an aircraft simulation tailored to CPACS

▪ Full flight simulator AVES and its interface to COAST

▪ Flight control system design

▪ Application example
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Daniel Kiehn, DLR Institute of Flight Systems, September 5th 2022
2



What is CPACS?

▪ Common Parametric Aircraft Configuration Schema

▪ Standardized data exchange format for MDO and 

aircraft design toolchains

▪ Focus on aircraft pre-design

▪ Based on XML (Extensible Markup Language) 

▪ Developed mainly by DLR, but also international 

contributions

▪ Open source: www.cpacs.de

▪ Used internationally in the industry and in research

Tool to tool

(decentralized)

With CPACS

(centralized)
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Aircraft simulation in MDO toolchains

▪ Aircraft simulation in early design stages allows analysis of aircraft properties:

▪ Stability and controllability

▪ Flight performance, determination of the flight envelope

▪ Handling qualities (MIL-STD-1797A, Cooper-Harper ratings via simulated flight tests)

▪ Implications for flight control system design

▪ …

▪ Results and insights can be fed back to the MDO design loop

▪ Changes of the aircraft configuration can be made (semi-) automatically

▪ DLR design projects also deal with unconventional aircraft and use CPACS

➔ Need for a CPACS-compatible aircraft simulation
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COAST: an aircraft simulation tailored to CPACS

▪ CPACS-Oriented Aircraft Simulation Tool

▪ Aircraft simulation for configurations modelled in CPACS

▪ Three major components:

1) Import functions (“wrappers”): read data from CPACS, bring into required form

2) Core: 6-DoF rigid-body aircraft model

3) Toolboxes (e.g. for linearization) and interface to full flight simulator AVES

▪ Implementation: MATLAB/Simulink
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Simulink implementation

▪ Aircraft configurations might generally differ very significantly

▪ E.g. different number of engines, number of control surfaces, …

▪ Implementation options in Simulink

1) Use model with fixed structure, use available data and fill the rest with dummy data

▪ No flexibility (upper limits are set), suboptimal computational performance

2) Create model on-the-fly containing only the required components

▪ Long and complex model creation process

3) Use Simulink‘s capability to provide user-written functions (so-called S-functions), in 

the case of COAST written in C++

▪ Higher development effort, but very good flexibility and computational performance
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COAST: structure and overview
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TiXI/TiGL: XML parsers enhanced

with CPACS-specific functionalities
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COAST in an MDO toolchain
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Flight control system

▪ COAST has to function for any given fixed-wing aircraft configuration

▪ DLR design projects typically consider more unconventional configurations

▪ Configurations generally differ significantly

➔
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A universally applicable flight control system is needed to ensure 

basic stability and comparable handling characteristics for the pilot
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Flight control system

▪ FCS design is based on the Normal Law of modern Airbus aircraft

▪ Nonlinear model following controller: response is shaped by 2nd order 

reference models → desired dynamics can be specified

▪ Pilot input commands

▪ Roll axis: rate command/attitude hold (RCAH)

▪ Pitch axis: vertical load factor nz

▪ Yaw axis: sideslip angle β

▪ Thrust lever: speed command

▪ Control surface deflections are obtained by a control allocation module

▪ Inversion of the nonlinear aircraft dynamics

▪ Individual control characteristics are fully compensated for by the control allocation

→ Control system can be implemented almost independently of aircraft configuration
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DLR’s full flight simulator AVES

▪ AVES = Air Vehicle Simulator

▪ Full flight simulator

▪ Electropneumatic hexapod motion system

▪ Motion and fixed platform with exchangeable cockpits

▪ Available cockpits: Airbus A320, Eurocopter EC135

▪ Visual dome with 240° x 95° field of view

▪ Located at DLR Braunschweig

▪ Essential platform for simulated flight tests
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COAST interface to A320 cockpit

▪ Interface has been established between COAST and AVES with A320 cockpit

▪ This allows simulated flight tests of configurations in early design stages

▪ CPACS configurations may represent very different aircraft, but simulator 

cockpit represents the A320

▪ Limited representation/compatibility of the pilot interface:

▪ Simplified Primary Flight Display (PFD)

▪ Simplified navigation page

▪ Thrust levers control all left/right engines respectively (in direct law)

▪ …
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Example: simulated flight tests in the SynergIE project

▪ DLR project SynergIE: distributed electric propulsion

▪ Model based on COAST, slightly extended

▪ Simulated flight tests in AVES revealed [2]:

▪ Strong effects of propeller slipstream on the lift distribution

▪ Some “helicopter-like” flying characteristics: thrust increase 

leads to strong lift increase → to accelerate, thrust increase 

and significant pitch down (lower AoA) are needed

▪ Effects were so severe that the aircraft was deemed almost 

uncontrollable without FCS, at least with full flaps

[2]

[2] D. Vechtel and J.-P. Buch: Aspects of Yaw Control Design of an Aircraft with Distributed Electric Propulsion.

CEAS Aeronaut J (2022). doi: 10.1007/s13272-022-00595-1
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Outlook

▪ Implementation of a generic but realistic landing gear model

▪ Required for take-off and landing simulations

▪ Trade-off: flexibility of implementation vs. degree of realism

▪ Improvement of the flight control system

▪ More automatic tuning of gains

▪ Better transition between Normal Law and Direct Law

▪ Implementation of the non-CPACS-dependent model components in C++ S-

functions → performance gain on desktop computers
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