
COAST - A SIMULATION AND CONTROL FRAMEWORK TO SUPPORT
MULTIDISCIPLINARY OPTIMIZATION AND AIRCRAFT DESIGN WITH

CPACS

Daniel Kiehn1, Johannes Autenrieb1 & Nicolas Fezans1

1DLR (German Aerospace Center), Institute of Flight Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany

Abstract

This paper describes COAST (CPACS-oriented aircraft simulation tool), a fixed-wing aircraft simulation frame-
work tailored to an XML-based open source common exchange format for multidisciplinary aircraft design,
called CPACS (Common Parametric Aircraft Configuration Schema). COAST enables designers to utilize flight
simulation on desktop computers or even on full motion simulators in early stages of aircraft design, which
facilitates the assessment of flight characteristics and handling qualities as well as early flight control design.
The core model of COAST is presented along with its interface to the data exchange format CPACS, which
is implemented via import functions based on XML parsers. Due to the necessity of generically working au-
topilot functionalities, a nonlinear flight control concept based on the idea of the nonlinear model following
control (NMFC) methodology is proposed. In order to handle novel aircraft configurations with a redundant set
of control effectors, an optimization-based control allocation module is integrated. The process of integrating
the model into the German Aerospace Center’s full motion flight simulator AVES (Air Vehicle Simulator) in
Braunschweig is discussed.

Keywords: CPACS, multidisciplinary optimization, full flight simulation, nonlinear model-following control

1. Introduction
Collaborative design and multidisciplinary optimization (MDO) are applied in an increasing number
of projects in the aerospace industry and academia [1, 2]. By connecting different knowledge disci-
plines and software tools, MDO holds the potential to significantly reduce aircraft development costs
and time to market, and it facilitates more innovative solutions and unconventional or disruptive con-
cepts by enabling an optimized integration on system level [2]. In the past decade, the German
Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) has been employing and con-
tinuously developing an integration environment to connect software tools of different disciplines into
more extensive, multidisciplinary process chains, called Remote Component Environment (RCE).
The individual tools available in the RCE framework are provided via servers located at different DLR
sites [3]. To simplify the exchange between the different MDO tools, DLR developed the common
exchange format CPACS (Common Parametric Aircraft Configuration Schema) [1, 4]. CPACS is an
open-source project which is freely available on www.cpacs.de under the Apache license 2.0. It is
primarily developed by DLR, but any interested party is welcome to use CPACS or to contribute to
its development. By using a common data exchange model such as CPACS, the number of required
interfaces between tools can be significantly reduced, as shown in Figure 1: if all N tools communi-
cate with each other via individual interfaces, the potential number of required interfaces is N(N−1),
whereas this number is only 2N if all tools use the same standard for data exchange. CPACS is
developed on the basis of the Extended Markup Language (XML) and is being used internationally
in multiple collaborative projects [2, 5]. CPACS files can generally be accessed with any XML parser,
but there are also two individual libraries specifically tailored to CPACS: TiXI (TIVA XML Interface)
[6], which is a generic XML parser extended by methods to account for CPACS specific conventions

https://www.cpacs.de


COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

(such as reading and writing vectors or multidimensional arrays), and TiGL (TIVA geometric library)
[7], which is designed to read and interpret geometric data of a CPACS file, for example to calculate
the surface area of a wing or the cross section of the fuselage. Another functionality of TiGL is the
export of the three-dimensional model geometry to IGES/STEP files, which can be interpreted with
most CAD (computer-aided design) software.

Figure 1 – Reduction of the possible number of interfaces by using a central data format [1]

The usefulness of stability and control analysis in early stages of aircraft design was shown in [8–11].
In [12], stability and control analyses were performed for two different aircraft configurations described
in the CPACS format. The next logical step for the evaluation of flying characteristics is the pilot-in-the-
loop flight simulation. Especially for unconventional aircraft configurations, flight simulation enables
the identification of potential controllability or stability issues already in early stages of aircraft design,
as was shown in various examples: in [13], flight simulation was used to assess the controllability of a
remotely piloted high-altitude platform. In [14], the flight characteristics of an aircraft configuration with
distributed electric propulsion were investigated. When flown in a full-motion flight simulator, severe
differences in its flying characteristics compared to conventional aircraft were noticeable, which were
caused by the propeller slipstream effects of the twelve electrical engines distributed along the wing.
The authors derived from their observations that the discovered problems for this kind of aircraft
could be mitigated with new specially tailored flight control laws [14]. The research showed again the
considerable benefit of stability and control investigations and piloted flight simulations in the early
stages of aircraft design.
To ease the generation of flight simulation software for aircraft configurations described in the CPACS
format, DLR developed the simulation framework COAST (CPACS-oriented Aircraft Simulation Tool).
COAST offers the potential to be used as the core flight mechanics model for stability and control
analysis, but can also be used for pilot-in-the-loop flight simulations due to its interface with DLR’s
full motion cockpit flight simulator platform AVES (Air Vehicle Simulator). Since a CPACS file can, in
principle, hold the definition of an aircraft with an arbitrary level of fidelity and complexity due to the
hierarchical data structure of CPACS [12], COAST can be used in different stages of aircraft design.
The usage of COAST to enhance a generalized MDO toolchain is shown in Figure 2.

COAST „desktop“COAST „model generation“

MATLAB/Simulink

template

Import functions

G
e
n
e
ra

ti
o
n

MDO tools

Automatic

design changes

Manual adaptions

Simulation model

FCS

Specific

aircraft model

Virtual flight

test (AVES)

CPACS file

Evaluation

MDO loop

Figure 2 – Enhancing an MDO toolchain with COAST

In order to enable controlled flight also for unstable aircraft configurations and to achieve a certain
degree of comparability between aircraft configurations, a flight control system with automatically

2



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

tuned gains and a central control allocation algorithm is developed.
The structure of the COAST model, including the import process of CPACS data, is introduced in
section 2. In section 3, the developed flight control system is presented, and section 4 discusses the
integration of COAST into the flight simulator AVES.

2. Model structure
COAST is mainly implemented in MATLAB®/Simulink® R2007b and is upwards compatible up to the
most recent release (R2022a). In the initialization phase of COAST, all data required to run COAST
are imported from the CPACS file via so-called wrapper functions. Each field (e.g., propulsion, aero-
dynamics) has its own designated wrapper function to specifically parse and import the corresponding
data into MATLAB and bring it into the required format. The wrapper functions rely on the TiXI and
TiGL libraries and their respective MATLAB interfaces to read out the relevant information from the
CPACS file.
Since the Simulink model has to function for any given aircraft configuration, tailoring certain model
components to the aircraft configuration can be cumbersome (e.g., the number of aerodynamic con-
trol surfaces and corresponding actuators may generally vary between models), hence there would
be generally two main options for a pure Simulink implementation of COAST: in option 1, the model
would have a pre-defined structure and be designed for a fixed number of engines, control surfaces
etc., and unnecessary blocks would be filled with dummy data. This option has two drawbacks: the
model cannot be used if the aircraft exceeds the pre-defined structure (e.g., by exceeding the num-
ber of modeled engines), and the simulation of dummy devices such as superfluous control surfaces
would cause unnecessary computational load. In option 2, the Simulink model would be created
on-the-fly using MATLAB scripts, utilizing MATLAB’s ability to programmatically add/remove/change
blocks in Simulink models. This option provides more flexibility, but it makes the model creation com-
putationally more demanding and adds complexity due to the required signal routing (e.g., mapping
of bus creators and bus selectors). It was hence decided to not use a pure MATLAB/Simulink so-
lution, but to use an alternative option by implementing all model components whose structure is
directly dependent on CPACS (i.e. the aerodynamics module, the propulsion module, and the non-
linear dynamic inversion used for control allocation and controller design) in C++ with S-function
interfaces to the encompassing Simulink model.1 Using S-functions also yields a slight performance
gain compared to the pure Simulink implementation, at least on desktop computers.
In the following sections, the individual modules of the COAST model and their interactions with the
corresponding CPACS data content are described. CPACS is under constant development and the
stated information is hence partially dependent on the CPACS standard. In this paper, the most
recent CPACS standard (version 3.4) is used as a reference unless stated otherwise.

2.1 Common modules
While some components of the COAST model are specifically tailored to CPACS, several modules
are implemented generically and do not share any direct interface to the CPACS structure, as shown
in Figure 3. These CPACS-independent modules include the 6-degrees-of-freedom (6-DoF) equa-
tions of motion, an atmospheric model which is an implementation of the US Standard Atmosphere
model from 1976 [16], and the geodetic reference system which is modeled after the World Geodetic
System 1984 (WGS84) [17]. In the current version of COAST, the equations of motion assume a rigid
body, although they might be extended to include flexible degrees of freedom in a future update since
the required data can generally be provided via the CPACS standard [18].

The CPACS standard does not provide any means to specify sensors on the aircraft. In order to still
achieve a certain degree of realism, COAST relies on default models for an inertial navigation system,
an air data system (consisting of a pressure sensor, an altitude sensor, and angle of attack and angle
of sideslip sensors), and an altitude radar. These sensor models are implemented as second-order
systems with configurable gains, bandwidths and biases. Due to the lack of corresponding data in
CPACS, their respective positions on the aircraft follow standard positions on airliner aircraft. This

1An S-function is a computer language description of a Simulink block written in MATLAB®, C, C++, or Fortran [15].

3



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

Control devices Aerodynamics Weight & balance Propulsion

Equations of motion Geoid model Avionics Atmospheric model

CPACS

WrappersTiXI TiGL

CPACS-dependent modules

Independent simulation environment

Figure 3 – COAST model structure

coarse degree of realism is assumed to suffice for simulation in early stages of aircraft design and
can be enhanced manually by adding more sensors or tuning the sensor characteristics and adapting
the positions, if necessary.
COAST does not yet include a model for the landing gear, partially because the implementation of a
realistic gear model requires a high degree of detail which the CPACS format does not yet provide. If a
landing gear model is required, for example for simulated landings, a custom model for the individual
aircraft can be produced as discussed in [14].
Since the CPACS standard does not yet allow for the definition of actuator dynamics, COAST uses
second-order models with default values for damping and angular frequency for all aerodynamic
control surface actuators. The respective deflection limits are provided in the CPACS file, and default
values for rate and acceleration limits are used. As is the case for the sensors or the landing gear,
these default values can be tuned to more closely match an individual aircraft if a higher degree of
realism is needed.

2.2 Open-loop (direct law) control inputs
In CPACS, the chain of pilot control inputs to aerodynamic control surface deflections is defined via
a four-level control mixing hierarchy. The first level are the cockpitControls, which represent the con-
trols directly accessible by the pilot. Each cockpitControl is linked to a commandCase via an input
and an output vector, where linear interpolation is applied to obtain intermediate values. Each com-
mandCase is then connected to a controlDistributor via a multiplicative gain. The controlDistributor
describes an input/output relationship from the commandCase input to nondimensional deflections
of each connected aerodynamic control surface. Again, linear interpolation is used to determine
intermediate values.
The four-level control mixing hierarchy as defined in CPACS can be well explained using the example
of the UCAV (unmanned combat aerial vehicle) MULDICON (Multi-disciplinary configuration) which
was designed in the DLR research project Mephisto [19]. The control setup of this aircraft is shown
in Figure 4, and the specific control mixing hierarchy of the MULDICON aircraft is shown in Figure 5.
The exact mapping of control distributors to control surfaces is given in Table 1. Positive deflections
of the inner and outer flaps correspond to downward deflections, while a full positive deflection of the

4



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

splitFlapRH outerAileronRH

innerAileronRH

splitFlapLH

outerAileronLH

innerAileronLH

Figure 4 – Aerodynamic control surfaces of the MULDICON aircraft [19]

split flaps represents a fully split state. For example, a full deflection of the rollDistributor (indicated
by a deflection of “1”) corresponds to a deflection of -1 of the right outer aileron, 0.8 of the left outer
aileron, -0.5 of the right inner aileron, and 0.4 of the left inner aileron.

stickRoll dpCommand rollDistributor
Gain

stickPitch dqCommand pitchDistributor
Gain

pedals drCommand yawDistributor
Gain

cockpitControl commandCase controlDistributor

outerAileronRH

outerAileronLH

innerAileronRH

innerAileronLH

splitFlapRH

splitFlapLH

controlElement

Figure 5 – Mapping of open-loop controls from cockpit controls to aerodynamic control surfaces

Table 1 – Mapping of control distributors to aerodynamic control surfaces of the MULDICON

Control surface rollDistributor pitchDistributor yawDistributor
[−1,0,1] [−1,0,1] [−1,0,1]

outerAileronRH [0.8,0,−1] [−1,0,1] −
outerAileronLH [−1,0,0.8] [−1,0,1] −
innerAileronRH [0.4,0,−0.5] [−1,0,1] −
innerAileronLH [−0.5,0,0.4] [−1,0,1] −

splitFlapRH − − [0,0,1]
splitFlapLH − − [1,0,0]

In COAST, this chain of control inputs is only used when flying in direct law. The more complex control
laws, which are based on standard control laws as used by Airbus, are presented in section 3.2.

2.3 Aerodynamics
The aerodynamic data in CPACS is stored in multidimensional lookup tables, and intermediate values
can be determined via linear interpolation. The newer versions of the CPACS standard (3.0 and up-
wards) are able to support multiple aerodynamic data maps for the same aircraft. This feature adds
additional flexibility to the overall aircraft MDO design. However, COAST is not yet able to switch be-
tween different maps during a simulation, and therefore the model can only be compiled for a single
map at a time. When using COAST, the user has to define which aerodynamic data map is to be
imported using either the uID (unique identifier) of the map or its numerical index within the CPACS
file.

5



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

Each aerodynamic coefficient C(.) is calculated as a sum of three contributions: the basic coefficient
C(.),base which includes the aircraft with undeflected control surfaces and without dynamic motion, the
contributions of dynamic derivatives ∆C(.),dyn, and the contributions of the control surfaces ∆CCS:

C(.) =C(.),base +∆C(.),dyn +∆C(.),CS (1)

where the index (.) is a generic placeholder for the force or moment the coefficient designates: d
for the drag force, s for the side force, l for the lift force, and md/ms/ml for the moments about the
respective axes. The designations used here follow the convention of CPACS 3.4. All coefficients
are defined w.r.t. the moment reference point ~rrp and in a frame denoted here by ã, which is ro-
tated by 180° around the y-axis compared to the aerodynamic frame as defined in the ISO 1151-1
standard [20], denoted by a, in the x and z direction:xa

ya

za

=

−xã

yã

−zã

 (2)

The angle of attack α ∈ (−π,π] and the angle of sideslip β ∈ [−π

2 ,
π

2 ] used in COAST follow the
standard definition in flight mechanics:

α = atan2(wa,ua) (3)

β = arcsin
va

V
(4)

where atan2 : R2→ (−π,π] is the four-quadrant inverse tangent function.
The base coefficient C(.),base is a function of the angle of attack α, the angle of sideslip β , the altitude
H, and the Mach number Ma:

C(.),base = f (α,β ,H,Ma) (5)

The contributions of the dynamic derivatives ∆C(.),dyn can be expressed as

∆C(.),dyn =C(.),p p∗ã +C(.),qq∗ã +C(.),rr
∗
ã (6)

where (p∗ã,q
∗
ã,r
∗
ã)

T are the nondimensional rotational rates of the aircraft w.r.t. the ã frame:p∗ã
q∗ã
r∗ã

=
lµ

V

pã

qã

rã

 , (7)

with (pã,qã,rã)
T being the rotational rates of the aircraft w.r.t. the ã frame, and:

C(.),p =
∂C(.)

∂ pã
= g1(α,β ,H,Ma) (8)

C(.),q =
∂C(.)

∂qã
= g2(α,β ,H,Ma) (9)

C(.),r =
∂C(.)

∂ rã
= g3(α,β ,H,Ma) (10)

The structure of CPACS does not yet account for any cross-coupling effects between different con-
trol surfaces. The effect of the control surface deflections ∆C(.),CS is hence described as a sum of
contributions from each individual control surface i:

∆C(.),CS =
n

∑
i=1

∆C(.),CS,i (11)

where i is the control surface index, n is the total number of control surfaces, and ∆C(.),CS,i is defined
by

6



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

∆C(.),CS,i = h(δi,α,β ,H,Ma) (12)

with the deflection angle δi.
The vector of aerodynamic forces expressed in the body frame ~Rb

A is thus obtained via:

~Rb
A =

X
Y
Z

b

A

= q̄S

cosα cosβ −cosα sinβ −sinα

sinβ cosβ 0
sinα cosβ −sinα sinβ cosα


︸ ︷︷ ︸

Mba

−1 0 0
0 1 0
0 0 −1


︸ ︷︷ ︸

Maã

Cd
Cs

Cl

 (13)

where q̄ is the dynamic pressure, S is the reference area, and Mba is the transformation matrix from
the aerodynamic frame (index a) to the body frame (index b).
The vector of aerodynamic moments in the body frame w.r.t. the moment reference point ~rrp is ob-
tained via:

~Qb
A,rp =

L
M
N

b

A,rp

= q̄Slµ Mba Maã

Cmd
Cms

Cml

 (14)

where lµ is the reference length. The vector of aerodynamic moments in the center of gravity ~Qb
A,cg is

then calculated as:

~Qb
A,cg =

L
M
N

b

A,cg

= ~Qb
A,rp +(~rrp−~rcg)

b×~Rb
A (15)

2.4 Propulsion
CPACS provides the ability to store all relevant information about the engines in two distinct nodes. In
one node, the relevant information for each engine regarding the aircraft integration is stored, such as
the designated position, an optional rotation node to define tilt angles, and a reference to an engine
type via an engineUID identifier. More detailed information about the engines are further stored
in a separate node. In this node, detailed information about the thrust T and the corresponding
fuel mass flow of each engine type is stored in three-dimensional lookup tables as a function of
the Mach number, the altitude, and the throttle lever position. At the current point, CPACS does
not support any propeller-wing interactions or further moments due to the rotational inertia of the
engines. If the modeling of such effects is required, the implementation has to be made independent
of the CPACS standard: this was done for example in the DLR project SynergIE, where COAST was
enhanced by an aerodynamics/propulsion interaction module to account for the propeller slipstream
effect on the lift of the investigated aircraft [14]. Since CPACS does not include a way to define
engine dynamics, COAST uses second-order models for the thrust with default values for damping
and angular frequency which include limits for position, rate, and acceleration.
The combined vector of moments around the center of gravity produced by all engines is obtained
by:

~Qb
P,cg =

L
M
N

b

P,cg

=
nE

∑
i=1

(~ri−~rcg)
b×

XP,i

YP,i

ZP,i

b

(16)

where ~ri is the position vector of the i-th engine in body-fixed axes, ~rcg is the center of gravity, and
nE is the total number of engines. The forces X , Y , and Z represent the projection of the thrust force
T into the x/y/z axis, respectively. In case the thrust axis is aligned with the body-fixed x-axis of the
aircraft, these projections are simply XP,i = Ti and YP,i = ZP,i = 0.

7



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

2.5 Toolboxes and post-processing
COAST provides users with a broad set of flight dynamical and simulation-based analysis tools. For
example, a trimming function provides a simple way to trim the regarded vehicle at a user-defined
operating point while considering the desired flight conditions (such as steady, horizontal flight or a
constant turn). After the vehicle is trimmed, the provided linearization functionalities can be used
to linearize the trimmed system around the equilibrium point. Stability and control derivatives can
be extracted from the resulting linear system using designated functions. Among the obtainable
derivatives are, for example, classic stability derivatives such as Cmα and Cnβ , but also controllability
quantities such as the lateral control divergence parameter (LCDP) [21]. In order to enable easy
and unambiguous access of the model’s states, inputs, and outputs, COAST provides the user with
corresponding lists of names which allow direct access to each variable via its name: e.g., the user
can directly access the pitch angle via the state name Theta instead of having to use fixed indices
such as “x[2]”.

3. Control design
The design and validation of flight control systems for the full flight envelope of an aircraft is a time-
consuming task and, in the context of aircraft pre-design projects, controllers have to be constantly
adapted to each configuration change since the underlying algorithms are mostly based on linear
system assumptions and hence are only valid for specific operating points. This leads to the need
of control design workflows in which the system needs to be trimmed, linearized and tuned for each
operating point within the defined flight envelope. Later, the different control configurations needed
during the flight are connected by utilizing gain-scheduling approaches. Especially for the integration
of simulator capabilities into the multidisciplinary preliminary design workflow, a flight control system
is needed that is generic enough to allow early simulator test flights for knowledge acquisition. At the
same time, the flight control system needs to be customizable enough to be able to augment certain
desired system dynamics and response behaviors.
In order to perform pilot-in-the-loop scenarios, it is often required to include control laws or autopilot
functions. For instance, in the framework of the DLR project SynergIE an electrical distributed propul-
sion aircraft with twelve propellers, shown in Figure 6, was brought to AVES [14]. Such configurations
might exhibit uncommon flight characteristics, as was the case in this example: the pilot-in-the-loop
simulations conducted in the AVES revealed that the aircraft showed a very strong thrust/lift interac-
tion, which led the authors to conclude a potential need of completely new flight control laws for this
kind of aircraft [14].
Since the main use of the CPACS format is for preliminary design studies of possibly uncommon
configurations, COAST is currently being extended to ease as much as possible the design of such
flight control functions for the generated models. The currently considered flight control architecture
is discussed in the following subsections.

Figure 6 – Final configuration of the SynergIE aircraft as simulated in AVES [14]

3.1 Control allocation
The inner loop of the attitude controller controls the three rotational degrees of freedom of the aircraft
using only the aerodynamic control surfaces. If the number of available control surfaces n is equal to

8



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

the number of degrees of freedom to be controlled, there is only one combination of control surface
deflections which achieves the desired control effort (given it can be achieved at all). If the number of
available control surfaces is higher (i.e., n > 3), and if each degree of freedom is affected by at least
one independent control surface, the control surfaces are redundant and the desired control effort
can be achieved with an infinite number of control surface deflection combinations.
The main task of the control allocation module is to determine the optimal way of distributing the
control effort within the redundant set of control surfaces to produce the moments required to follow
the rotational accelerations (ṗ, q̇, ṙ)T

c commanded by the flight control system. The benefit of a central
control allocation module in COAST is that the encompassing flight controller can be implemented
generically and independently of the setup of control surfaces on the individual aircraft configuration
in the CPACS file. Using the desired angular accelerations of the aircraft (ṗ, q̇, ṙ)T as the input to
the control allocation enables the flight control design to focus purely on the control laws, while the
desired response of the aircraft can be shaped independently of the aircraft configuration via the
angular accelerations, which significantly simplifies the control design process.
The required deflections can be obtained by inverting the aerodynamic model and the rotational
equations of motion, as will be explained in the following. In the first step, the vector of required (i.e.,
commanded) total moments ~Qc is calculated from the angular accelerations (ṗ, q̇, ṙ)T

c commanded by
the flight control system:

~Qc =

L
M
N


c

=

 ṗ
q̇
ṙ


c

+

p
q
r

× I

p
q
r

 (17)

where (p,q,r)T are the rotational rates of the aircraft and I is the inertia matrix w.r.t. the center
of gravity in body axes. Since the control allocation uses only the aerodynamic control surfaces
to achieve the commanded moments, the required aerodynamic moments ~QA,req have to exactly
compensate the difference between the commanded moments and the contributions of the engines
(index P):

~QA,req =

L
M
N


A,req

=

L
M
N


c

−

L
M
N


P

(18)

Note that there is no contribution of gravitational forces because the formulation is defined in the
center of gravity. The goal of the control allocation is to find the set of deflections δ which achieves
~QA = ~QA,req, or in other terms, which minimizes the Euclidean norm of the residual vector r̃:

r̃ =

L
M
N


A

−

L
M
N


c

−

L
M
N


P

 (19)

As explained in section 2.3, the aerodynamic forces and moments are a function of the angle of attack
α, the sideslip angle β , the altitude H, the Mach number, the rotational rates (p,q,r)T , and the set of
control surface deflections δ . While δ is the free variable of the optimization, the other dependencies
are fixed parameters (from the perspective of the allocation module; they can still be used as control
variables by the encompassing flight controller) and are therefore summarized by the parameter set
P = {α,β ,H,Ma, p,q,r}. The resulting optimization problem is constrained, since the deflections δ

must be within their respective lower and upper deflection limits δ and δ . The resulting nonlinear
least-squares optimization problem hence can be written as:

δopt = argmin
δ

‖r̃(P,δ )‖= argmin
δ

(
3

∑
k=1

(r̃k(P,δ ))
2

)

such that: ∀i ∈ [1,n] , δi ≤ δi ≤ δi

(20)

9



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

where n is the number of control surfaces. Such an optimization problem can be solved with vari-
ous well-established methods. In the allocation module used in COAST, this optimization is solved
iteratively using an enhanced Gauss-Newton algorithm with the following iteration rule:

δ
(k+1) = δ

k−
(
JT J
)−1

JT︸ ︷︷ ︸
J+

r̃(P,δ k) (21)

where k is the iteration index and J is the Jacobian matrix, which describes the sensitivities of each
residual component w.r.t. all individual control surface deflections:

J =


∂

δ1
LA

∂

δ2
LA

∂

δ3
LA . . . ∂

δn
LA

∂

δ1
MA

∂

δ2
MA

∂

δ3
MA . . . ∂

δn
MA

∂

δ1
NA

∂

δ2
NA

∂

δ3
NA . . . ∂

δn
NA

 (22)

The presented form of the pseudoinverse J+ (also known as Moore-Penrose inverse) causes the
algorithm to find the solution with the smallest Euclidean norm out of all possible solutions (i.e., the
one with the smallest control surface deflections in total). The Jacobian matrix is determined via
numerical linearization of the aerodynamic model and has to be re-computed in every iteration, since
it is a function of the control surface deflections δ . The aforementioned enhancement of the Gauss-
Newton method is the implementation of an active set logic as described in [22]: If the limits of an
individual control surface are reached during the iteration, this element is taken out of the optimization
process until it can contribute to the control effort within its valid deflection range again.

3.2 Control laws
As previously discussed, automated simulation-based analysis methods are a practical approach
for evaluating the stability and control properties in the early design stages. This approach helps
identify wrong design decisions in the early development phases and consequently minimizes overall
development costs. Especially for novel aircraft configurations, additional flight control systems are
sometimes needed because the open-loop characteristics show poor handling qualities and stability
attributes. Further, these systems are occasionally needed to provide certain autopilot modes to allow
early-stage evaluations of specific parameters during certain flight operational procedures, such as
the noise emission during the approach or landing of an aircraft. Nevertheless, developing suitable
flight control systems can often be tedious work and would conflict with the idea of easily performable
virtual flight tests. In order to cope with this problem, it was decided to facilitate the implementation
of generalized autopilot modes based on automatically generated flight control laws. Figure 7 shows
the overall conceptual architecture of the currently partially integrated flight control system concept
and its interface to the pilot via the autopilot cockpit interface.

Sensors

Plant
Control 

allocation

Attitude control

Speed control

A/THR

(OP) CLB

(OP) DS

V/S

⋮

FCU

FMA

MCDU

⋮

Autopilot/AutothrustAutopilot cockpit interface

NMFC system

AVES infrastructure COAST environment

Figure 7 – Overview of the COAST flight control system

The autopilot cockpit interface is provided by the AVES infrastructure and contains the flight control
unit (FCU), multipurpose control and display unit (MCDU), and the flight mode annunciator (FMA).
The integrated autopilot functionalities, such as the autothrust ("A/THR"), (open) climb ("(OP) CLB"),
(open) descent ("(OP) DS"), and vertical speed mode ("V/S"), match with the autopilot modes known
from civil Airbus aircraft [23, ch. DSC-22_30]. The given autopilot functions can be developed so

10



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

that mostly no explicit model knowledge is needed beforehand. This simplifies the development of
the functionalities and generalizes the developed modules for a broad set of different aircraft. For
example, most autopilot modes only depend on kinematic relationships, which are identical for all
airplanes. For cases where explicit model knowledge is needed, relevant information can usually be
either directly accessed over the CPACS interfaces or by using additional pre-processing routines
within the COAST framework. Using such a generalized autopilot approach allows centralizing the
use of model knowledge for the derivation of the inner-loop flight control laws.
The control strategy is based on the idea of nonlinear model-following control (NMFC) and is dis-
played in Figure 8. The NMFC controller is designed to allow the tracking and regulation of the bank
angle Φc, the body-fixed acceleration in z-direction nz,c and the body-fixed acceleration in y-direction
ny,c.

Attitude 

Controller

Reference 

Model (Lim. 

Second Order)
Inversion 

of Attitude 

Kinematics

Body-

Rate 

Controller

Inversion 

of Attitude 

Dynamics

Plant & 

Sensors

Nonlinear Model Following Controller

+ −

Kinematic Transformation of the 

Reference Accelerations

− + +

+

+

+

Φ
𝑛𝑦
𝑛𝑧 c

ሷΦr, ሷ𝑛𝑦,𝑟 , ሷ𝑛𝑧,𝑟

ሶ𝑝
ሶ𝑞
ሶ𝑟 𝑐

Ԧ𝛿𝑐

𝑝
𝑞
𝑟 c

ሶΦr, ሶ𝑛𝑦,𝑟 , ሶ𝑛𝑧,𝑟

Φr, 𝑛𝑦,𝑟 , 𝑛𝑧,𝑟

ሶpr, ሶqr, ሶrr

𝑝, 𝑞, 𝑟

Ԧ𝑥

Ԧ𝑥

Ԧ𝑥

Control 

Allocation

𝐿
𝑀
𝑁 𝑐

ො𝑥

Φ, 𝑛𝑌, 𝑛𝑧

Figure 8 – Overview of the integrated nonlinear model following control architecture [24]

The illustration indicates the interface to the control allocation module, which was presented in sec-
tion 3.1. The use of a control allocation system drastically simplifies the automized flight control
system (FCS) design, since no further emphasis has to be given to the control effector properties of
the regarded vehicle. Applying an NMFC-based methodology allows using a model-based approach
to address flight control considerations such as stability and control augmentation. At its core, the
established NMFC architecture is quite similar to the architecture of nowadays often used time-scale
separated NDI feedback control systems, as described, for instance, in [25]. Therefore, no further
considerations concerning gain scheduling are explicitly needed.
The proposed system uses a two-loop control approach with a distinct cascaded outer-loop controller
("Attitude Controller") and an inner-loop controller ("Body-Rate Controller") to handle the slow and fast
dynamics of the aircraft. In addition, a second-order reference model is used to generate reference
signals. The generated reference commands are the low-pass filtered reference signal (Φr,nz,r,ny,r)

T

and the signals of the corresponding first and second-order time derivatives of the desired model
response ((Φ̈r, n̈y,r, n̈z,r)

T and (Φ̇r, ṅy,r, ṅz,r)
T , respectively). The two higher-order signals are utilized

as feedforward signals to augment the inner- and outer-loop controller signals, while the low-pass
filtered signal is used for regulating the error terms of the controlled bank angle and accelerations.
The desired handling characteristics for each controlled state can be shaped by adjusting the ref-
erence model. The desired response may vary depending on the considered aircraft but must be
consistent with the relevant standard and certification specifications to provide appropriate handling
qualities for the pilots. The gains for the feedback controllers can be derived automatically from the
COAST aircraft model by using a pole placement-based approach. To do so, COAST provides de-
fault pole locations, which can offer acceptable and robust control performance for most conventional
aircraft. In cases where the default pole locations are seen as inappropriate, better suitable pole
locations can be found experimentally by analyzing specific aircraft characteristics during virtual flight
tests and adjusting the pole locations until acceptable behavior is achieved.

11



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

3.3 Handling of unusual or non-CPACS-supported aircraft behaviors
The CPACS file format allows the definition of a large variety of configurations in a quite generic and
flexible way. However, there are some implicit assumptions in the format which limit the capability
to express certain effects. For instance, no cross-coupling between the aerodynamic effectiveness
of control surfaces is foreseen, so if control surfaces have significant interactions, these cannot be
represented. This limitation is not really a problem for typical airliner configurations, but can be limit-
ing for other configurations (e.g., UCAV). Some extensions of the format have been tested and used
in specific projects, but they have not been integrated to the CPACS standard yet. Another limita-
tion applies to the interaction between aerodynamics and propulsion, which cannot be represented
yet. This limitation results from the fact that CPACS has originally been used for investigating aircraft
configurations powered by turbofan engines (e.g., classical tube-and-wing or blended-wing-body con-
figurations).
For such cases, data or models are exchanged aside of the main CPACS file. The usual process
would be to use COAST to generate a model for all components that are described in the CPACS
file and to augment it in a second step to include the other components, as shown in Figure 9.
Depending on the case considered, the second step might be more or less automated and generic.
Such cases may also cause additional work for the controller design, as each model augmentation
may cause different problems (e.g., introducing couplings that were not present before) or change the
objectives and constraints of the control design problem (e.g., having to consider differential thrust
for yaw control or to couple thrust variations with pitching behavior, as described in [14]).
The 12-propeller configuration of the SynergIE project (cf. Figure 6) is an example of a configuration
for which specific add-ons had to be used [14]. Such configurations do require some manual work, as
COAST can hardly automatize the model generation and controller design that cannot be described
in CPACS file. By handling all the CPACS-compliant parts of the model, COAST still eases the work
of the flight dynamics specialists and control designers, who can focus on the less common parts
of the model. Configurations requiring unusual model structures may often be the ones exhibiting
rather unusual flying characteristics and for which it is worth investigating their handling qualities,
controllability, and testing control laws/autopilot functions as early as possible in the MDO process.

Non-CPACS

data/model

CPACS
COAST 

model

Augmented

model

Specific control

function

Final closed-

loop model++ + +

Figure 9 – Model augmentation for non-CPACS-conform configurations

4. AVES integration
The simulation center AVES (Air Vehicle Simulator) consists of a fixed-based and a motion-based
simulator with exchangeable cockpits of the Airbus A320 and the Airbus Helicopters EC135. It is
operated by the DLR Institute of Flight Systems in Braunschweig since 2013 [26]. An electropneu-
matic hexapod system reproduces the motion sensation and thereby increases the immersion. The
hexapod system is shown in Figure 10a. A large dome provides a visual projection field of 240° in
horizontal and 95° in vertical direction [27]. The AVES A320 cockpit shown in Figure 10b is a highly
detailed replica of the original A320 cockpit, combined with an operator station for simulator control
in the rear (not shown in Figure 10b). With the exception of the software for the motion platform, all
AVES software was developed in-house [27], which enables a high level of flexibility and simplifies
the implementation of custom systems and interfaces as well as the integration of all kinds of flight
simulation models and scenarios. AVES was, for instance, used for developing and testing of airline-
oriented training scenarios and techniques [28, 29], for investigating the impact of spoofing attacks
on GNSS systems [30], simulating air-to-air refueling scenarios [31, 32], investigating performance-

12



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

based ice detection systems [33], or developing an energy-management/noise abatement assistance
system and training the flight crews how to use it [34]. For these these simulator campaigns a variety
of different models were implemented and integrated into the AVES infrastructure. The integration of
dynamic models generated by COAST is not much different. The main challenges are to deal with the
large input/output interfaces to and from the cockpit, to map them to the model internal variables, and
to implement widely automated processes to permit regular updates during the MDO design loop.

(a) Simulator cabin on the motion system (b) Cockpit view in the A320 simulator cabin

Figure 10 – The AVES motion simulator with the A320 cockpit

The A320 simulator cockpit provides typical Airbus-like cockpit hardware such as side sticks, thrust
levers, pedals, flight control unit, multi-purpose control and display unit, and displays. In pre-design
stages however the data required to simulate such functionalities are limited, and the cockpit functions
have to be restricted to relatively generic functions. The cockpit interface with COAST is presently
limited to the side sticks and the pedals, the thrust levers, the gear and flap levers, and a simplified
version of the primary flight display and navigational display. All other cockpit controls are currently
inoperative.
A minimum implementation of a CPACS-defined model via COAST would typically only include sim-
ple manual control modes, such as a direct law and a normal law similar to those used in Airbus
aircraft. Thanks to model-based techniques described in section 3, it would be possible, with a rea-
sonable amount of additional work, to adapt a complete autopilot and autothrust (similar to those of
Airbus aircraft, with all managed and unmanaged modes) permitting to design and evaluate specific
flight procedures. Such investigations are relevant for aircraft configurations with flight performance
characteristics that deviate from the usual ones. This might, for instance, be the case for short-take-
off-and-landing (STOL) aircraft, for aircraft of unusual size (e.g., very large blended wing bodies), or
for aircraft approaching and departing with unusual speeds (e.g., supersonic aircraft). This would
also be required for assessing the noise of a new aircraft type with regular procedures or with specific
assistance functions as in [34]. Simulating an aircraft with a cockpit that was not specifically designed
for it, might bring some limitations. For instance, the two thrust levers of the A320 cockpit are con-
figured to control the left and right engines, respectively, even if the considered aircraft has more
engines on each side. The mapping of engines to their respective sides (respective throttle levers)
is done automatically in the initialization phase of COAST. Keeping these limitations in mind, being
able to adapt fairly quickly a full flight simulator to assess an aircraft described in CPACS, including
adaptations for scenarios which require operation-relevant procedures, is a pretty unique capability
offered by combining COAST with the flexibility of the AVES simulation framework.

5. Conclusions
This paper presented COAST, a 6-DoF flight simulation tool for aircraft configurations described in
the CPACS standard. It can be used to enhance multidisciplinary preliminary aircraft design pro-
cesses by providing information about stability and controllability of the configurations early in the
design process, thereby accelerating the design process and mitigating risks. The structure of the
model including its interface to CPACS was outlined, and the aspects of its integration with the AVES

13



COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

full flight simulator was shown. The developed flight control laws were presented, which use pole
placement and a control allocation algorithm to ensure a consistent control behavior independent of
the individual aircraft configuration.

5.1 Future Work
As mentioned in section 2.1, CPACS does not yet provide possibilities to define landing gear or ac-
tuator characteristics in a level of detail which could be sufficient for a 6-DoF flight simulation. Devel-
opments to enhance CPACS in those aspects are currently in progress, and the authors are involved
to help finding a compromise between the required flexibility of the data structure and the practicality
and feasibility of the resulting implementation. Once these changes are fixed in the CPACS standard,
the corresponding models and wrapper functions for the landing gear and control surface actuators
will be implemented.
In section 2 it was explained that the CPACS-dependent modules of COAST are already implemented
in C++ S-function. It is planned to implement the non-CPACS-related model components in C++, too,
in order to obtain a closed S-function containing the full model, which will bring a performance gain
for application on desktop configurations.
Regarding the flight control laws (subject of section 3.2), some of the desired autopilot functionalities
are yet not fully implemented. It is planned to implement further A320-like autopilot functionalities in
future development efforts. Additionally, it is planned to analyze the possibility of further automizing
the current flight control design with methodologies which mitigate the problem that manual adjust-
ment steps are still needed for some aircraft, for the case that the default closed-loop pole locations
are in conflict with the flight physical properties of the regarded vehicle. This problem might be solved
with the extended use of further model knowledge available in the CPACS files, which allows the a
priori consideration of the physical limitation of an aircraft.

6. Contact Author Email Address
daniel.kiehn@dlr.de

7. Copyright Statement
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References
[1] Alder, M., Moerland, E., Jepsen, J., and Nagel, B., “Recent Advances in Establishing a Common Lan-

guage for Aircraft Design with CPACS,” in Aerospace Europe Conference, 25–28 February 2020, Bor-
deaux, France, Feb. 2020.

[2] Ciampa, P. D. and Nagel, B., “AGILE Paradigm: The Next Generation Collaborative MDO for the De-
velopment of Aeronautical Systems,” Progress in Aerospace Sciences, vol. 119, Nov. 2020. DOI: 10.
1016/j.paerosci.2020.100643.

[3] Boden, B. et al., “Distributed Multidisciplinary Optimization and Collaborative Process Development us-
ing RCE,” in AIAA Aviation Forum 17–21 June 2019, Dallas, Texas, Jun. 2019. DOI: 10.2514/6.2019-
2989.

[4] Nagel, B. et al., “Communication in Aircraft Design: Can we establish a Common Language?” In 28th

Congress of the International Council of Aeronautical Sciences (ICAS), 23-28 September, 2012, Bris-
bane, Australia, Sep. 2012.

[5] Moerland, E. et al., “On the Design of a Strut-Braced Wing Configuration in a Collaborative Design En-
vironment,” in AIAA Aviation Forum 2017 – 17th AIAA Aviation Technology, Integration, and Operations
Conference, Jun. 2017. DOI: 10.2514/6.2017-4397.

[6] DLR (German Aerospace Center) Institute for Software Technology, TIVA XML interface (TiXI), URL:
https://github.com/DLR-SC/tixi, Accessed: 03.05.2022.

14

mailto:daniel.kiehn@dlr.de
https://doi.org/10.1016/j.paerosci.2020.100643
https://doi.org/10.1016/j.paerosci.2020.100643
https://doi.org/10.2514/6.2019-2989
https://doi.org/10.2514/6.2019-2989
https://doi.org/10.2514/6.2017-4397
https://github.com/DLR-SC/tixi


COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

[7] DLR (German Aerospace Center) Institute for Software Technology, TIVA Geometry Library (TiGL),
URL: https://dlr-sc.github.io/tigl/, Accessed: 03.05.2022.

[8] Kaenel, R. von et al., “CEASIOM: Simulating stability & control with CFD/CSM in Aircraft Conceptual De-
sign,” in 26th Congress of International Council of the Aeronautical Sciences (ICAS), 14–19 September
2008, Anchorage, Alaska, Sep. 2008.

[9] Rizzi, A., Eliasson, P., McFarlane, C., Goetzendorf-Grabowski, T., and Vos, J., “Virtual Aircraft Design
and Control of TransCruiser - A Canard Configuration,” in AIAA Atmospheric Flight Mechanics Confer-
ence, 2–5 August 2010, Toronto, Ontario, Canada, Aug. 2010. DOI: 10.2514/6.2010-8245.

[10] Rizzi, A., “Modeling and simulating aircraft stability and control – the SimSAC project,” Progress in
Aerospace Sciences, vol. 47, no. 8, pp. 573–588, 2011, Special Issue – Modeling and Simulating Aircraft
Stability and Control. DOI: 10.1016/j.paerosci.2011.08.004.

[11] Rizzi, A., Zhang, M., Nagel, B., Böhnke, D., and Saquet, P, “Towards a Unified Framework using CPACS
for Geometry Management in Aircraft Design,” in 50th AIAA Aerospace Sciences Meeting, 09–12 Jan-
uary 2012, Nashville, Tennessee, Jan. 2012. DOI: 10.2514/6.2012-549.

[12] Hasan, Y. J. et al., “Stability and Control Investigations in Early Stages of Aircraft Design,” in 36th AIAA
Applied Aerodynamics Conference 2018, June 25–29, 2018, Atlanta, Georgia, Jun. 2018. DOI: 10.
2514/6.2018-2996.

[13] Hasan, Y. J., Roeser, M. S., and Voigt, A., “Evaluation of the Controllability of a High-Altitude Plat-
form in Atmospheric Disturbances Based on Pilot-in-the-loop Simulations,” in 70th German Aerospace
Congress, 31.08.–02.09.2021, Bremen, Germany and online, 2021.

[14] Vechtel, D. and Buch, J.-P., “Aspects of Yaw Control Design of an Aircraft with Distributed Electric Propul-
sion,” in 70th German Aerospace Congress, 31.08.–02.09.2021, Bremen, Germany and online, 2021.

[15] The MathWorks, Matlab Documentation: What Is an S-Function? URL: https://www.mathworks.
com/help/simulink/sfg/what-is-an-s-function.html, Accessed: 03.05.2022.

[16] National Oceanic and Atmospheric Administration, U.S. Standard Atmosphere, 1976 (NASA TM-X-
74335), 1976.

[17] US Government, Department of Defense, World Geodetic System 1984. Its definition and relationships
with local geodetic systems, Rockville, MD, 1991.

[18] Klimmek, T., Schulze, M., Abu-Zurayk, M., Ilic, C., and Merle, A., “cpacs-MONA – an independent and
in high fidelity based MDO tasks integrated process for the structural and aeroelastic design for aircraft
configurations,” in IFASD 2019 - International Forum on Aeroelasticity and Structural Dynamics, Jun.
2019.

[19] Liersch, C. M., Schütte, A., Siggel, M., and Dornwald, J., “Design studies and multi-disciplinary assess-
ment of agile and highly swept flying wing configurations,” CEAS Aeronautical Journal, vol. 11, no. 3,
pp. 781–802, May 2020. DOI: 10.1007/s13272-020-00453-y.

[20] International Organization for Standardization, Flight dynamics – Concepts, quantities and symbols –
part 1: Aircraft motion relative to the air (ISO 1151-1:1988), Geneva, Switzerland, Apr. 1988.

[21] Nguyen, L. T., Gilbert, W. P., and Ogburn, M. E., Control-System Techniques for Improved Depar-
ture/Spin Resistance for Fighter Aircraft (NASA Technical Paper 1689). Hampton, VA, USA: National
Aeronautics and Space Administration, 1980.

[22] Härkegård, O., “Dynamic Control Allocation Using Constrained Quadratic Programming,” Journal of
Guidance, Control, and Dynamics, vol. 27, no. 6, pp. 1028–1034, May 2004. DOI: 10.2514/1.11607.

[23] Airbus S.A.S. Flight Operations Support and Services, A318/A319/A320/A321 Flight Crew Operating
Manual (FCOM), 1 rond point Maurice Bellonte, 31707 Blagnac Cédex, France, Sep. 2012.

[24] Autenrieb, J. and Fezans, N., “Nonlinear Model Following Control Design for a Hypersonic Waverider
Configuration,” in CEAS EuroGNC "Conference on Guidance, Navigation and Control", 3–5 May 2022,
TU Berlin, Germany, May 2022.

[25] Snell, S. A., Enns, F. D., and Garrard, W. L., “Nonlinear Inversion Flight Control for a Supermaneuverable
Aircraft,” Journal of Guidance, Control, and Dynamics, vol. 15, no. 4, pp. 976–984, May 1992. DOI:
10.2514/3.20932.

[26] Duda, H., Gerlach, T., Advani, S., and Potter, M., “Design of the DLR AVES Research Flight Simulator,”
in AIAA Modeling and Simulation Technologies (MST) Conference, Boston, MA, May 2013. DOI: 10.
2514/6.2013-4737.

15

https://dlr-sc.github.io/tigl/
https://doi.org/10.2514/6.2010-8245
https://doi.org/10.1016/j.paerosci.2011.08.004
https://doi.org/10.2514/6.2012-549
https://doi.org/10.2514/6.2018-2996
https://doi.org/10.2514/6.2018-2996
https://www.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
https://www.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
https://doi.org/10.1007/s13272-020-00453-y
https://doi.org/10.2514/1.11607
https://doi.org/10.2514/3.20932
https://doi.org/10.2514/6.2013-4737
https://doi.org/10.2514/6.2013-4737


COAST - A SIMULATION AND CONTROL FRAMEWORK FOR MDO AND AIRCRAFT DESIGN WITH CPACS

[27] Gerlach, T. and Durak, U., “AVES SDK: Bridging the Gap between Simulator and Flight Systems De-
signer,” in AIAA Modeling and Simulation Technologies Conference, 22–26 June 2015, Dallas, Texas,
USA, Jun. 2015. DOI: 10.2514/6.2015-2947.

[28] Buch, J.-P., Niedermeier, D., and Stepniczka, I., “Managing the Unexpected – Human-in-the-Loop Simu-
lation as Effective Tool for the Assessment of the Risk Information System in an Operationally Relevant
Context,” in AIAA Modeling and Simulation Technologies Conference 5–9 June 2017, Denver, Colorado.
DOI: 10.2514/6.2017-4155.

[29] Niedermeier, D., Buch, J.-P., Mohrmann, F., and Durak, U., “Simulating the Unexpected: Challenge-
Centric Simulator Scenario Design for Advanced Flight Crew Training,” in AIAA Modeling and Simulation
Technologies Conference, 8–12 January 2018, Kissimmee, Florida, Jan. 2018. DOI: 10.2514/6.2018-
1397.

[30] Buch, J.-P., Geister, R., Canzian, L., Gamba, G., and Pozzobon, O., “What the Hack Happened to the
Flight Deck: Analyzing the Impact of Cyber Attacks on Commercial Flight Crews,” in AIAA Science and
Technology Forum, 7–11 January 2019, San Diego, California, Jan. 2019. DOI: 10.2514/6.2019-
0060.

[31] Fezans, N. and Jann, T., “Modeling and Simulation for the Automation of Aerial Refueling of Military
Transport Aircraft with the Probe-and-Drogue System,” in AIAA Modeling and Simulation Technologies
Conference, 5–9 June 2017, Denver, Colorado, Jan. 2017. DOI: 10.2514/6.2017-4008.

[32] Fezans, N. and Koloschin, A., “Extending Simulink with Blocks Managing Complex Objects Collabora-
tively — Application to Air-to-air Refueling Simulation,” in AIAA Science and Technology Forum, January
3–7, 2022 San Diego, CA & Virtual, Jan. 2022. DOI: 10.2514/6.2022-0808.

[33] Deiler, C. and Fezans, N., “Performance-Based Ice Detection Methodology,” Journal of Aircraft, vol. 57,
no. 2, pp. 209–223, Jan. 2020. DOI: 10.2514/1.C034828.

[34] Abdelmoula, F. and Scholz, M., “LNAS – a pilot assistance system for low-noise approaches with minimal
fuel consumption,” in 31st Congress of the International Council of Aeronautical Sciences (ICAS), 09–14
September, 2012, Belo Horizonte, Brazil, 2018.

16

https://doi.org/10.2514/6.2015-2947
https://doi.org/10.2514/6.2017-4155
https://doi.org/10.2514/6.2018-1397
https://doi.org/10.2514/6.2018-1397
https://doi.org/10.2514/6.2019-0060
https://doi.org/10.2514/6.2019-0060
https://doi.org/10.2514/6.2017-4008
https://doi.org/10.2514/6.2022-0808
https://doi.org/10.2514/1.C034828

	Introduction
	Model structure
	Common modules
	Open-loop (direct law) control inputs
	Aerodynamics
	Propulsion
	Toolboxes and post-processing

	Control design
	Control allocation
	Control laws
	Handling of unusual or non-CPACS-supported aircraft behaviors

	AVES integration
	Conclusions
	Future Work

	Contact Author Email Address
	Copyright Statement

