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Abstract. In flexible multibody dynamics elastic deformations due to thermal expansion
are generally omitted since thermal displacements are usually small compared to those
caused by mechanical loads. However, if a mechanical process is associated with a sub-
stantial heat generation or load. the validity of this approach has to be reviewed. In a wide
range of applications such as friction brakes. thermal buckling phenomena, machine tools
with thermal loads, micro-mechanical devices with resistive heating, the heat energy flow
and the thermoelastic coupling cannot be ignored.

In order to cope with those applications a consistent theoretical Jramework is introduced
by the present paper that enables a combined thermal and elastic analysis in multibody
dynamics. The theory is based on a linear material constitution that is inserted into the
weak field equations of a flexible and heat conducting body.

The technical relevance of thermoelastic effects like the Gough-Joule effect, thermoe-
lastic damping and thermally ezcited wave propagation is reviewed. As a consequence
appropriate modelling assumptions can be deduced that enable a low-dimensional formu-
lation of the displacement and temperature field by means of a modal multifield approach.

This approach is applied to a high-performance machine tool with thermal loads caused
by linear induction drives.
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1 MOTIVATION

From the thermodynamic point of view, the deformations of a flexible body in multi-
body simulation are usually assumed to proceed isothermally and adiabatically. Even
though this concept is thermodynamic contradictory, it proved to be an adequate descrip-
tion for most problems in multibody dynamics.

However, if a mechanical process is associated with a remarkable heat generation or
load, the validity of these premises has to be reviewed. In a wide range of applications such
as friction brakes, thermal buckling phenomena, machine tools with thermal loads, micro-
mechanical devices with resistive heating, the heat energy flow and the thermoelastic
coupling cannot be ignored or are even of major concern.

Additionally the complexity of technical systems tends to increase. In order to design
sophisticated systems and ensure reliable functionality, elaborate simulation environments
are required. Supplementary modelling capabilities like a multifield representation enrich
the application field of multibody dynamics and meet the demands of increasing complex-
ity.

The design of high performance machine tools is an appropriate example. Working
tasks in this field combine high speed motion with high demands on the accuracy. But
the unavoidable losses in power transmission and the heat generation due to the working
task necessarily lead to thermal loads. Industrial experience shows that beyond a specific
level additional quality improvements require a combined elastic and thermal description
of the system.

It is state-of-the-art to investigate the coupled thermal and thermoelastic behaviour in
elaborate finite element studies. These provide high resolution results and give essential
information on the design of machine components. However, the high computational effort
which is necessary to evaluate these results is a drawback. It inhibits the application of
the finite element method for a system dynamical analysis of the complete system. And
looking one step further, a control set-up which accounts for thermally induced tool center
point displacements can only be built up on an efficient multifield description.

With this background the present paper proposes a low-dimensional representation of
the distributed phenomenon thermoelasticity with just a few global modes. The exposition
covers theory, appropriate modelling assumptions and data provision and introduces an
advanced application example.

2 THEORETICAL FRAMEWORK
2.1 Material Constitution

This paper deals with two physical fields, each specified by a pair of field variable
terms. The mechanical state of a material particle is quantified by its stress tensor o and
its strain tensor € and the thermal state by its temperature © and entropy density 7).

In order to describe the properties and the influence of the material, it is presumed that
the thermodynamic state of the material only depends on the current values of the field
variables but not on their histories. The constitutive relation between the four field terms
is supposed to define the thermodynamic state of a material point uniquely, no matter
which process, which change of state variables has led to the current configuration.

Consequently it makes sense to base the material constitution on a thermodynamic
potential. If strain € and temperature © are chosen as independent variables, the free
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energy F arises as associate function (1, Ch. 24]:
dF = ode — ndo . (1)

In praxis the introduction of a new variable v, replacing the absolute temperature © by
the increment w.r.t. the linearisation temperature ©y proved to be advantageous:

1")'——(—)—@”. (2)

The free energy, approximated by its second order Taylor expansion at a natural state. in
which v and & vanish, enables the formulation of a linear constitutive equation in matrix

form:
oY . (Hy —HT ey €
(o) - (7). 0

The main diagonal elements of B specify the material properties of the mono-disciplinary
effects. H,. can be identified as the classical 6 by 6 elasticity tensor relating stress to
strain. H, = oc/O, involves the specific heat capacity ¢, the density o and ©, to relate
temperature and entropy density.

If the influence of the mechanical on the thermal state, the so-called Gough-Joule effect
[2], is not considered, the first row of (3) may be rewritten to extract the isotropic thermal
strain &y [3, Vol. 1,(4.26)] (o denotes the thermal expansion coefficient):

o=H(e—-ey) with e=H'H'YW=(aaa00 0)79 . (4)

2.2 Weak Field Equations

The weak equation for the absolute position of a particle r(c,t) as function of the
Lagrange co-ordinate ¢ and time ¢ may be deduced from d’Alembert’s principle, see e.g.
[3, Vol. 2,(1.6)]:

/[—967*7'1?‘ —o’ée + flor] AV + jﬁ fiordB = 0. (5a)
v JB

Jv and fp denote external forces acting on the volume element dV or boundary element
dB respectively.

The weak equation of the temperature field results from the principle of virtual tem-
perature [4, Sec. 7.2.1]:

/ [=(VéO) q + (05 — $)50] dV + j{ gsnpé® dB = 0, (5b)
JV B

where g denotes the heat low, S symbolises the heat source density and gp represents
the heat flow at the boundary element dB with the outer unit normal vector ng. BioT
referred to (5b) as the complementary variational principle in heat transfer [5, Ch. 8,
App. §3].

On first sight the equations (5a) and (5b) look like two un-coupled field descriptions
from mono-disciplinary engineering textbooks. But the coupling becomes obvious by
eliminating the dependent field variables using (3).
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2.3 Modal Multifield Approach

The kinematics bases on a floating frame of reference formulation [6, Ch. 5] and gets
the form:
r=rp+ctu, (6)

where the position vector r is decomposed into the absolute position vector of the floating
frame of reference rg, the Lagrange co-ordinate of a particle ¢ and its displacement w.
All vectors in (6) are resolved w.r.t. the body’s frame of reference.

The displacement u = u(e, t) will be described with separated variables as product of
time independent modal functions @, (¢) and coefficients z,(t). Within this approximation
the evaluation of the strain field is feasible by means of the differential operator V, [3,
Vo. 1,(6.9)]:

u=g = e=Vu=(V,®,)z, = B,z, . (7)

The analogous approach is chosen for the scalar temperature field. According to Fourier’s
law of heat conduction [7, (1.12.16)], a V-operation multiplied by the thermal conductivity
matrix A leads to the heat flux vector gq:

= sﬁ,;zﬂ v Vi = (V@g)zﬁ = Bgzg — q= —-ABIJZI; . (8)
2.4 Equations of Motion

Now the matrices K, and K,y are introduced for volume dependent integrals which
can be preprocessed and accessed during the time integration of the multibody system:

K,, = / B'H.B, dV . K= / B'H!®,dv . (9)
Vv JV

From the mechanical point of view the thermal field generates internal, distributed me-
chanical loads. Obviously there is no direct influence on the inertia properties of the body.
That is why the mass, gyroscopic and centripetal terms within the equations of motion
can be adopted from literature.

SHABANA in [6, (5.140)] and SCHWERTASSEK and WALLRAPP in 8. (6.308)] specified
the generalised Newton-Euler equations for the unconstrained motion of a deformable
body that undergoes large reference displacements.

A comparison of (5a) with these references yields the extended equations of motion:

Mrm Marr Mm.- ap h(] U
me Mm Gp o h’n o 0 e (10)
sy Mu-u i-u hm —Ku.n.zu =+ Kur)zd

The mass matrix on the left hand side of (10) is formulated as 3 x 3 block matrix such
that the sub-matrices specify the inertia coupling between translational acceleration of
the body’s reference frame ap, the angular acceleration of the reference frame ap and the
second time derivative of elastic co-ordinates Z,. The right hand side terms h,, h, and
h, summarise all inertia. damping and external forces.

The added term K,yzy represents the influence of the thermal field on the equations
of motion. It may be interpreted as modal force acting on the elastic body.

Although the thermal loads do not influence the inertia quantities in (10), the displace-
ments caused by these loads do, since the mass matrix and the vectors h, and h, depend
on the deformation state of the body.
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2.5 Thermal Equation

In (5b) the natural boundary conditions are represented by the heat flux through
the boundary surface. It depends on the physical circumstances how this term has to
be introduced into the thermal equation. For Neumann conditions the boundary heat
flux gp is given explicitly. If convection occurs on the boundary surface a Robin or
mixed boundary condition is imposed, specified by the film coefficient h 7 and the bulk
temperature v, of the fluid [7, Sec. 5.6]. Although this list is not complete, we confine
ourselves to these two cases:

gpnp = —qp — hi(Vp — V) . (11)

Besides the thermal-mechanical coupling matrix Cy, = OuK!,, the following notations
are used for geometric integrals:

C,;,j = f (;)(]dsgﬂa@g dVv ) K!-}R = % hf@g‘ég dB , QUR = f qs’ghf dB ,
V J B B

(12)
Ky = / BIAB;dV, Qgus:= / & dv | Qun = }( o] dB .
v v B
Finally, the coupled, linearised thermal equation can be stated:
Ciwzy + Couzy + (Koy + Kor)zg = Qus Su+ Qun 45 + Qor s . (13)

The generalised velocities 2, in (13) indicate that the temperature field depends on the
displacements and the strains. Whereas the thermal effect on the displacements is well-
established and widely accounted for in finite element analysis, the feedback from dis-
placements on temperatures, called the Gough-Joule effect [2]. is relatively unknown and
very frequently neglected. This issue will be discussed in Sec. 3.

2.6 Multibody System Equations

Egs. (10) and (13) are to be posted for each body of the articulated mechanism under
consideration. For a global representation these equations are rewritten in condensed form
for a general elastic and heat conducting body ( )@:

MO = ) + h) (2. 20) , (142)
2y = 2)(2,20) . (14b)

Besides the mechanical description (14a) the set-up of a thermoelastic body requires
the definition of one additional, uniquely assigned element. The thermal element reflects
(14b) and evalnates the thermal state of the body presuming that the thermal field of
body ()@ does not interfere with those of other bodies. If the thermal field of two bodies
interact, the mutual influence has to be modelled explicitly defining appropriate boundary
conditions (11). Mechanical interactions between separated bodies of a mechanism are to
be modelled either as applied forces or by kinematical constraints.

The model equations of a general elastic body with thermal features have been im-
plemented in a developer version of the industrial multibody code SIMPACK. This code
uses relative joint co-ordinates to enable an efficient recursive assembly of the equations

5
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of motion for the complete multibody system by an explicit O(N)-formalism [9]. The rel-
ative joint co-ordinates together with the elastic co-ordinates of all bodies constitute the
vector p. For tree-like structures p is defined as minimum set of generalised mechanical
co-ordinates.

The thermal equations of the complete system can be arranged as follows:

% = ( 2 )I . (15)

The pure mechanical part of the equations of motion of the complete multibody systems
reads [10]:

A S N S s
Z[Tﬁ] [MY® — A —p@)] = Mp—-h = 0. (16)
(1)

M (p,t) represents the symmetric inertia matrix of the complete multibody system. The
generalised Coriolis and applied forces together with the generalised loads due to thermal
influences are summarised in h(p.p. z,. t).

For closed loop systems, Egs. (16) are extended by kinematical constraints and the
associated passive forces, see [6, Sec. 5.9]. Consequently the model equations of the
complete system in its most general form are given by:

M (p. tp = h(p.?, _Zd, t)— GT(p.t)A.

Zy = ¢(p.p, 2y, t), (17)
0 = g(pt)

Ny —

with the constraint matrix G := ( gg) (p,t) and Lagrangian multipliers \.

3 BASIC MODELLING ASSUMPTIONS

The theoretical framework which has been developed in Sec. 2 has led to (10) and (13),
where a bi-directional coupling of the thermal and mechanical problem is given. Fortu-
nately in most of the usual engineering applications it is possible to simplify the coupled
problem. Firstly, the mechanical coupling term in the thermal equation, i.e. the Gough-
Joule effect, is very frequently neglected. Secondly, it is possible to apply the so-called
Duhamel assumption that states that the inertia terms associated with thermally induced
displacements in the equations of motion are negligible. The following two sections are
supposed to justify these simplifications.

3.1 The Coupled Thermoelastic Beam

LirsHITZ and ROUKES [11] discussed the influence of full thermoelastic coupling on a
beam structure. They considered a rectangular Euler-Bernoulli beam according to Fig. 1
with bending deflection u(x) in the x-z-plane, which leads to a uni-directional strain field
in z-direction z,,(x, z).

The thermal description presumes linear 1sotropic material with thermal conductivity
A and only accounts for thermal gradients in z-direction. Eq. (18) summarises the mod-
elling assumptions adapting tensorial index notation. i.e. ().er denotes the second partial
derivative w.r.t. z:

o | I W =1 Erz = —2Ugy . Iy = /z-@) dydz . (18)
!
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N z
U (x,2) ¥ E.(x,2)
— — —
_-:"'r"':-—— e m—"
h u(x)
B . =

Figure 1: Co-ordinate definitions, temperature field v(z,z), displacement field u(x) and strain field
£ee (T, 2) at a beam section

where the cross section integral I, represents the thermal load of the beam. see 7,
(10.11.2)]. Furthermore, E denotes Young’s modulus, I represents the beam’s geomet-
rical moment of inertia, h its height and A its cross section area. The coupled partial
differential equations of the beam therefore get the form

A J.:+ 2 EaOq tipp = V. (19a)
oc
QA i+ (Bl uyze+ Ealy) .. =0. (19b)

For the solution of (19) harmonic vibrations of the beam are considered with geo-
metrical shape functions u,(z) and 9,(z, z), that align with the geometrical boundary
conditions:

w(Z,t) = uy(x) et d(z, 2,t) = Doz, 2) €7, weC. (20)

If (20) is inserted in (19a), a particular solution of the thermal field may be obtained
that satisfies the boundary condition of vanishing heat fluxes on the lateral surfaces of
the beam, ¥, .(z = £h/2) = 0:

EaB, sin(kz) _ . oc
)o = oz |8 — 57 g = W— .
1 % Wi [ Fcos(kh/2) with k=/jw A (21)

With the temperature solution (21), I, from (18) can be integrated and inserted into
(19b), which yields the following eigenvalue equation:

QANU w'z - F l:l &

L —

Ea*© 24 rkh kh
0 (1 T (—2— - tan(;)))] I B =0 . (22)

E(w)

oc

Eq. (22) may be compared to the equation for wo, the eigenvalue of the correspond-
ing classical Euler-Bernoulli beam, which may be deduced from (19b) setting the linear
expansion coefficient o to 0, cf. [12, (6.120)].
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It is obvious to introduce a frequency-dependent Young’s modulus Ew)=FE-(w/w,)?,
which gives the following expressions in the limit cases Rew — 0 and Rew — oo

lim Ew)=FE, lim Ew)=E (I + %) . (23)
Rew—0 Rew—aoc oc

For a stiff beam with very high eigenfrequencies, the imaginary part of £ (w) vanishes and
the real part can be identified as the adiabatic Young’s modulus. That means, a high fre-
quency vibration occurs as a adiabatic process since the thermal field, which is comparable
“slow” with large time constants, cannot follow the fast displacement variations.

On contrary, for weak beams with very low eigenfrequencies, E(w) recovers the isother-
mal value of Young’s modulus. The displacements change very slowly, the thermal field
is balanced almost all the time.

For intermediate frequencies E(w) and consequently w are complex quantities. The
vibration according to (20) is damped although no damping force was defined explicitly
in (19b). This phenomenon is called thermoelastic damping, see [7, Ch. 2] and [1, Ch. 8].

The significance of thermoelastic damping for practical engineering problems is demon-
strated in Fig. 2, which shows frequency shift s and attenuation a of a steel beam due to
thermoelastic coupling. The parameter § combines a number of geometrical and physical
parameters and is defined together with s(¢) and a(&) as follows:

W,0C Imw Rew — w,
E:=kh=h 2;: A==, s =2 (24)

The attennation reaches its maximum value @ = 5.5 - 10~ at € = 2.23. The maximum
frequency shift is 0.1 %. The design parameter value £=223 specifies e.g. a steel beam,
h = 2mm high, with the first eigenfrequency w,/(27) = 4.8 Hz (1m long, both ends
fixed).

These results clarify that for conventional structures in mechanical engineering the
eigenvalues are changed only very slightly due to thermoelastic damping. From the system

x107°
—— attenuation: a [-] i e
1t L~ frequency shift: s [-] o anitl B —
il B EEEe
| : s B R SN SN £
e R
R TR EoL
QI Siesgonr e prit s i s bl ot et
0.4f ]
0.2f ]
0 i IR ERT
107" 10° 10'

S [-]

Figure 2: Attenuation and frequency shift of a rectangular steel beam due to thermoelastic coupling.
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dynamical point of view the mechanical eigenvalue problem may be considered separately
from the thermal eigenvalue problem. This is an important conclusion which will be
exploited for the modal approach.

3.2 Duhamel’s Assumption

In 1837, Duhamel noted that the mechanical inertia terms are not significant in the
equations of thermoelasticity, since the time rate of temperature change is sufficiently slow
(Duhamel’s assumption). In 1950, this question was examined by Danilovskaya in more
detail [7, Sec. 2.5]. Her argumentation supports the selection of modes which are capable
to describe thermal influences on the displacement field and is therefore presented briefly
in what follows.

Consider an elastic half space, r > 0, which is constrained in such a way that only
displacements in z-direction occur. The plane r = 0 is suddenly exposed to a heat flux
according to a Robin boundary condition with a finite film coefficient / - In the thermal
description (19a), the mechanical coupling term is neglected. The mechanical equation is
formulated in terms of stress components:

A .
== (25a)
oc
E(l -v) 3 Ea .
e g = ) 25t
ol +v) (1=0g) “=are % = Tt (25h)
The initial and boundary conditions are
J(x,0) =0, Oez(2,0) = 622(2,0) =0,
AV L(0,8) = hy [9(0,t) — I |5 Ol Us )y =0, (25¢)
lim J(z,t) =0, lim o, (z,t) =0.

I—00 L=

The analytical solution of (25) via Laplace transformation vields an expression that
is somewhat cumbersome to interpret. That is why the discussion here is based on the
graphical presentation of the analytical solution in F ig. 3.

It is interesting to study the behaviour for a film coefficient h; tending towards infinity.
An infinite boundary conductance means, that the boundary temperature at z = 0. ¢ = 0
discontinuously jumps to the environmental temperature v, (thermal shock load). The
structural response consists of a compressive wave propagating with sonic speed through
the elastic body. Fig. 3 visualises the pressure as function of time at an exemplary point.

From a practical viewpoint it is even more interesting to study the behaviour for smaller
film coefficients h f- The maximum pressure decreases very rapidly for finite boundary
conductances. Even in heat exchanger design real film coefficients beyond 10° W/(m2K)
cannot be reached.

As a consequence for real load cases the wave propagation of thermoelastic loads may be
disregarded without introducing a substantial error. Since wave propagation is a genuine
inertia effect it may be concluded that the inertia terms are negligible in the equations of
thermoelasticity. This conjecture was considered at the very beginning when the theory
of thermoelasticity was developed by Duhamel in 1837.
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Figure 3: Propagating pressure waves due to thermal shock for various film coefficients hy. The results are
based on the analytical solution of (25), evaluated for the material GG20HC at the position r = 1/10 mm.

3.3 Thermal Response Modes

The just introduced analytical models motivate simplifications. Firstly they allow to
deal with the thermal eigenvalue problem and the mechanical eigenvalue problem sepa-
rately. Secondly they justify to neglect inertia terms regarding deflections due to thermal
loads.

These considerations lead to a specific modal reduction scheme that organises the access
to existing finite element data and its transfer into the modal representation. This scheme
consists of four steps. In order to illustrate these reduction steps, the finite element model
of a circular disc shown in Fig. 4 has been selected as sample structure.

Figure 4: Finite element model illust rating the steps of the modal reduction scheme.

L. Firstly. the thermal finite element description has to be reduced. The modal ap-
proach in (7) is rewritten in discretised form for the temperature v at a specific
node k. located at ¢;,: 1) = U(ex). The number of thermal degrees of freedom of the

10
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finite element system is denoted by ny and of the modal system by m,:

I}(Cg) = Spg(Ck)Z,} = 1 < k < nyg. (26&)
@,)(Ck) = [ o 'l),' S ] s 1< < my . (26]3)

The temperatures of all nodes k. assigned to a specific mode i constitute one modal
temperature field 19; and one column of the thermal modal matrix @, in the finite
element discretisation!:

Oi=(...0%...)7, 9; € R™ | (26¢)

Sy=[...0; ... &, € Rmo (26d)

Hence, each vector 9, represents a discrete thermal mode. L.e. assigns one temper-
ature to each node or finite element degree of freedom respectively. A mode may
be e.g. a solution of the thermal eigenvalue problem [éd.dh'.?- + 1:{90]19,- = 0. Fig. 5
visualises three thermal eigenvectors of the sample structure by colour. The selec-
tion of specific modes may also be motivated by given load distributions, as it is
demonstrated in Sec. 4.

The following modal reduction of the finite element equations is a standard reduction
approach and yields the matrices of the thermal system according to (13):

Cyy = ‘-is?;c'rm éu ; Kyy = fﬁ;ﬁ‘K-ru éu . (26e)

2. The second step consists of a static analysis of the mechanical system. Each thermal
mode 9; constitutes one mechanical load vector h; and results in one corresponding
static displacement solution w,;, further on called a thermal response mode:

h’f = f(ﬁ:) 3 IA{m.-.'u'r' = f]'é s u; & R™ | (27)

Fig. 5 shows the thermal response modes by the deformed mesh compared to the
undeformed outer circle contour. Since the thermal response modes turned out
to be orthogonal regarding the sample structure, a mechanical frequency could be
assigned to each thermal response mode.

3. In the third step additional displacement modes have to be evaluated and selected
that represent the native mechanical behaviour of the system, see [13] and [14] for
appropriate mode selection techniques.

These purely mechanical modes w; together with the thermal response modes con-
stitute the mechanical modal matrix ®, in finite element discretised form:

D, =[...u ... w - my <l <m,, 43“ € R"w™mu (28a)

If the column vectors of &, are linearly dependent, a maximum subset of linearly
independent column vectors is selected to meet the demands of the Ritz approach.

"The accent ( ) indicates finite element quantities if they might be mixed up with the corresponding
modal terms.

11
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Mode 2 Mode 4
ke = —0.0010 1/s Ky = —0.0038 1/s ke = —0.0081 1/s
wy = 18740 Hz wy = 21340 Hz we = 25230 Hz

Figure 5: Thermal modes and thermal eigenvalues r;, thermal response modes and associated mechanical
frequencies w; of the sa mple structure in Fig. 4.

4. The definition (28a) enables the transformation of the mechanical system from the
finite element to the multibody description that is based on the modal approach.
The modal reduction of the finite element mass and stiffness matrix, M, and K,,,.
exemplifies this transformation, which is presented in detail in [8. Ch. 6]

Muu — é;{‘Mu.u. éu, 1 Kuu — gﬁ;{‘kuu én . (2%]!)

The load vectors h; describe the influence of the thermal modes on the displacement
field. Therefore the thermal-mechanical coupling matrix Ky, of (9) can be provided
as the reorganisation of the thermal load vectors:

The crucial step of this scheme is the first one. i.e. the modal reduction of the tempera-
ture field. The approach used for this step has to be tailored to the modelling task. If this
is accomplished the further Steps 2. to 4. concerning the definition of thermal response
modes and the corresponding modal reduction of the mechanical field are straightforward
and may even be organised as an automated process. The accuracy or the convergence
properties respectively of the modal multifield representation rely on an appropriate ther-
mal field description. On the other hand, a substantial reduction of the number of degrees
of freedom may be achieved that way. See [15] for more details on the definition of thermal
response modes and some verification examples that demonstrate their application.

4 A MACHINE TOOL WITH THERMOELASTIC DEFORMATIONS
4.1 Motivation

Modern machine tool drives show excellent dynamical properties and allow high ac-
celerations of slides and tool heads. However. for point-to-point working tasks the accu-
mulation of high power inputs near frequently used start and stop positions cannot be
avoided for physical reasons. Due to performance losses localised thermal loads may be
generated and result in an inhomogeneous temperature field of the machine base or other
machine components.

The corresponding inhomogeneous thermal expansion causes tool centre point displace-
ments that are difficult to be measured. In industrial applications these thermally induced

12
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displacements are either accepted to be unavoidable or costly cooling devices are designed
to ensure a homogeneous thermal state of the machine. However, with increasing demands
on the economic efficiency and the accuracy there is a necessity for smart, mechatronic
concepts to handle this problem for future generations of high accuracy machine tools.

As a first step towards such a mechatronic concept, an industrial multibody simulation
environment has been is extended to deal with the thermoelastic deformation of machine
tools. Therefore, the methodological base is provided to develop new measurement and
control strategies that account for thermally induced displacements.

4.2 Simulation Scenario

The feasibility study was defined in cooperation with an industrial partner who pro-
vided a finite element model of the machine base. The welded construction of the machine
is sketched in the SIMPACK model in Fig. 6.

The machine is symmetric w.r.t. a vertical plane and is assembled with two cantilever
arms, one at each side. Each cantilever arm is driven by a linear induction device and
moves along a magnet liner which is parallel to the y-axis of the machine. The cantilever
carries z- and z-drives and the tool head with the tool centre point (TCP) at its tip. The
flat workpiece on the machine table in Fig. 6 demonstrates the position of the work-plane.

magnet liner P2 cantilever arm

'e—TcP

work-plane

Figure 6: Principle lay-out of the machine tool in SIMPACK.
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Figure 7: Predefined positioning loop # = g(t) and its time derivatives in normalised representation.

This study is based on the assumption that the working task of the machine is repeated
very often and varies periodically. The objective of the study is to reproduce a constant
thermal operating state of the machine that is reached after a sufficiently large time span.
This is a frequently observed operating coudition in the industrial use of machine tools.

Fig. 7 shows the positioning loop of the cantilever arm along the y-axis that was
predefined and taken as the starting point of the feasibility study.

In order to model the thermal behaviour. a heat source of intensity q at the position
g = y(t) is considered to move along an isotropic one-dimensional continuum, described by
the co-ordinate y. For mathematical representation. the formulation of a point source by
means of the Dirac function d(y — ), see [1, (19.28)]. is extended by a term that accounts
for the geometrical dimensions of the heat source, i.e. the drive head on the cantilever
arm. The heat flux is assumed to be distributed as a Gaussian bell-shaped curve with a
parameter a that reflects the length of the drive head:

AY i = ¢ qo(y —7) point source.,
MWy + 00V = Qt,y,7) = : 9
£ Eh e o69:9) q % exp(—a(y — 7)?) distributed source. (29)

For stationary hot runnin conditions the time dependent terms in 29) have to vanish.
) g

The localised heat supply ¢ = ¢(y) is obtained as time average over one positioning loop
with period T

q(t) = q(t+nT) 1 4
y(t) = gt+nT) ) = —Ad . = ?/ Qt.y.g) dt = q(y). (30)
n — 00 0

Since the specific design of the cantilever suspension involves only very small frictional
forces, the mechanical power is almost completely invested into the kinetic energy of the
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Figure 8: Mechanical power consumption and quasi-stationary heat flux.

cantilever arm and may be easily described based on the predefined kinematic scenario
in Fig. 7. If it is assumed, that a constant share of the consumed electrical power is
transformed into heat energy and conducted to the surface of the machine base. Then.
the localised heat supply ¢ = ¢( y) is completely defined by (30).

Fig. 8 presents the mechanical power consumption versus the relative position of the
cantilever arm on the magnet liner with the time as curve parameter. The start and stop
positions are denoted by the relative position 0 and 1 respectively.

The power consumption. specified by the instantaneous product of mass m. velocity
and acceleration § from Fig. 7. has distinct maxima in the neighbourhood of start and
stop positions. Therefore, the quasi-stationary heat flux accumulates at specific positions
on the magnet liner. On the other hand. there are no heat loads at those parts of the
magnet liner at which the cantilever arm moves with constant velocity.

4.3 Finite Element Analysis

The thermal finite element model of the machine base consists of 20641 tetrahedral
shaped elements of type Solid90 [16] with 40471 nodes or thermal degrees of freedom
respectively.

A steady state heat transfer FE analysis has been performed using the analytical heat
source introduced above as quasi-stationary load. The solid curve in Fig. 8 is taken as
heat flux distribution in y-direction along the upper surface of the magnet liner, which
is visualised in Fig. 9. In the &-direction on the upper surface, the heat flux is modelled
to be constant. Robin boundary conditions are defined on the complete surface of the
machine base with two different film coefficients to reflect different cooling conditions due
to the air-stream forced by the moving cantilever.

The heat transfer analysis is performed separately for each cantilever drive at both
sides of the machine. Since the thermal as well as the subsequent mechanical structural
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Figure 9: Temperature field at the magnet liner, obtained by finite element analysis,

analysis are linear, the solutions may be superimposed. That way the model definition
is open to consider any linear load combination caused by the two cantilever drives. For
ease of interpretation the results to present from now on refer to a single load scenario.
Le. the second cantilever drive on the backside of the machine is assumed to be out of
use.

Fig. 9 presents the results of one heat transfer FE analysis. Since the temperatures
mainly vary on the magnet liner while the other elements of the machine base show only
small temperature differences. Fig. 9 only visualises the temperature field of the magnet
liner. Two distinct temperature maxima on the magnet liner are clearly visible.

The two FE temperature field solutions of the complete machine base have been applied
as separate thermal loads on the mechanical finite element model of the base structure.
which uses the same mesh as the thermal FE-model. However, the mesh now specifies
20641 elements of type Solid95 [16] with 121413 mechanical degrees of freedom. The
solutions of these steady state FE analysis yield the displacement fields of the machine
base caused by the temperature fields and are interpreted as thermal response modes
according to Sec. 3.3.

Fig. 10 plots the thermal displacements of a reference point on the deformed surface of
the magnet liner, which moves along the motion path of the cantilever arm with constant
velocity from its start to its stop position. The FE results along the motion path are
compared with the corresponding multibody deformations modelled by thermal response
mocdes.

In addition to the steady state analysis, a finite element eigenvalue analysis is performed
and 27 eigenmodes of the machine base are obtained. That way. the dynamical properties
of the mechanical structure up to the frequency of 400 Hz are considered.

A unified set of modes consisting of 27 mechanical eigenmodes and two thermal response
modes has been used to reduce the finite element description of the machine base and get
a modal multifield representation according to Sec. 3.3. Eigenmodes and thermal response
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modes are only weakly coupled, but the unified set of modes is not orthogonal with respect
to the mass and the stiffness matrix. In view of the fact that both groups of modes contain
a different physical information which is worth to be retained, the unified set of modes
has not been orthogonalised for the multibody simulation.

On a trial basis a supplementary orthogonalisation of the 29 modes has been performed
yielding 1694 Hz and 2368 Hz as additional frequencies due to the thermal response
modes.

4.4 Multibody Simulation

Fig. 6 shows the principle structure of the multibody model and the FE mesh of the
magnet liner. Also the complete machine base originates from the FE model and is
mechanically represented as flexible body in modal representation.

Since the machine base rests on six feet, which are not fixed to the foundation. its
reference frame has three degrees of freedom that allow a plane motion of the machine
base frame w.r.t the inertial frame. Six stick-slip force elements reflect the dry friction
conditions between machine base and ground.

The suspension of the cantilever arm is modelled by spring-damper elements. which
connect the deformed magnet liner and the base of the cantilever arm. The cantilever
arm itself is assumed to be rigid. Since the arm moves along the liner, so called moved
markers [17] have been defined that represent the working points of the suspension forces
at the machine base. A moved marker is used as well to model the reference point for
Fig. 10.

[n order to simulate the working task of the machine tool a controller for the y-drive
is modelled. The kinematic scenario from Fig. 7 serves as target specification of the

3 T T T T
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displacements [1/100 mm]
|
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-3t - v FEM . !
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-4 — MBS Ay -
— MBS Az :
=5 - - : i
0 0.2 0.4 0.6 0.8 1

relative position [-]

Figure 10: Kinematic comparison of the thermal displacements as evaluated by FEM and the correspond-
ing thermal response mode used for multibody simulation (MBS).
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control loop, which is adjusted in such a way that the positioning error induced by the
drive control is at least one order of magnitude smaller than the other displacements and
cannot falsify the results.

In Fig. 11 three different measurements are compared. where all results concern the
displacements w.r.t. the workpiece on the table of the machine tool.

The dotted curves give the tool centre point (TCP) displacements of a multibody
simulation without any thermal loads and serve as a reference. These displacements are
only caused by the response of the machine base structure and the cantilever suspension
to the dynamical loads given by the predefined kinematic scenario.

The other two measurement types in Fig. 11 additionally involve the displacements
which are induced by the temperature field of the machine base.

The dashed curves plot the displacements of the reference point P2 on the magnet
liner, which moves with the cantilever arm. The solid curves again give the displacements
of the TCP at the tip of the cantilever arm. The difference between the P9- and TCP-
displacements are caused by the kinematic amplification of the cantilever arm.

The thermally induced displacements influence the motion of the TCP mostly in the
neighbourhood of the start position at the beginning and at the end of the simulation.
However, since the working task consists of a point-to-point job, these deviations are not
crucial in this case. More important are the deflections at the stop position. which is
reached several times in the time interval between 0.4s and 0.9s. The dotted and the

— Ar1: TCP :
8t — AZz1: TCP .
Art -~ Ar2: P2
= - - Az2: P2
£ 6 Ao Ar3: TCP9 =0
S i AZ3:TCP9=0
= \ : €
— 4t £
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% 2 o3 AR D\ e -y 3 E
g I = SEiTy 3
8 | T2 ¥ ia TiEd
) 0F G SRR 12
© Az1
1
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0 0.2 04 0.6 0.8 1 1.2 1

time [s]

Figure 11: MBS displacement results at the tool center point (TCP) in solid lines and at the reference
point P2 on the magnet liner in dashed lines. Ar . denotes the absolute displacement parallel to the
work plane, while Az is measured normal to the work-plane. The third couple of curves in dotted lines
visualises the TCP-displacements in a simulation without any thermal loads (¢ = 0).
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solid curves differ here by about 10 pm to 20 gm, which is a relevant error concerning the
accuracy requirements of machine tools.

Besides the thermal deflection. the response of the machine base structure corresponds
mainly to the acceleration curve in Fig. 7 and is of static nature. The vibrations in Fig. 11
primarily originate from the compliance of the cantilever suspension. This statement could
be verified by an accompanying simulation, for which the compliance of the cantilever
suspension is neglected. The structural damping of the machine base has also 1o significant
influence (Lehr’s damping coefficient d = 0.004).

The time integration has spent 3580 CPU-s on a HP 9000/785 workstation with 3 GB
memory. This high computational effort is caused by the high frequency band width of
the MBS model. Since the inertia terms that correspond to the thermal response modes
have not been neglected for this simulation. frequencies up to 2.400 Hz are present. which
leads to a very stiff system, cf. [18].

5 CONCLUSIONS AND OUTLOOK

The approximately 160000 degrees of freedom that are defined by the finite element
model of the machine base have been reduced to only 29 degrees of freedom in order to
simulate the working task of the machine tool. This modal multifield representation of
the structure is therefore suited for controller design as well.

Temperature sensors may be used to observe the thermal state of the real machine
base. This thermal state drives the thermal displacement state. With a discretisation by
appropriate thermal response modes. it is possible to compensate the thermal displace-
ments by the control law. Thus. the feasibility of the approach which provides a method
to improve the accuracy of the machine is demonst rated.

The upgrade of the specific machine tool model from Sec. 4 will include the development
of an appropriate approach to discretise the temperature distribution on the magnet
liner in space in order to deal with continuously varying working tasks. The trausient
temperature behaviour of the machine base during the warm-up phase is another point
of interest.

Neglecting the inertia terms that correspond to the thermal induced deflections is not
only useful to justify the definition of thermal response modes but also improves the nu-
merical properties of a thermoelastic mult ibody system. Therefore, the consistent transfer
of the modal multifield approach into an industrial multibody simulation environment has
to exploit this fact and neglect specific mass terms associated to thermal response modes.
The discretised equations of motion are then treated as differential algebraic equations
(DAE) in a way which was already proposed by SACHAU [19] in order to process modes
related to very high stiffuess values.

As a final conclusion it may be stated that the presented low-dimensional representation
of the distributed phenomenon thermoelasticity opens new chances for system dynamical
engineering issues. Complex applications. which could be analysed so far either in detail
using the finite element method or only roughly neglecting important influences. may now
be modelled more comprehensively from a system dynamical point of view.
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