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Abstract—The competition for market entry in emerging
segments such as Urban Air Mobility highlights the need for
efficient and flexible development processes. This is accompa-
nied by the trend towards software-intensive avionics systems
due to the requirement for complex and computationally ex-
pensive algorithms. Considering the successful application of
agile developments in the software domain, one might conclude
that the agile paradigm would be the perfect fit to address
these issues. However, for highly safety-critical domains such
as aviation, multiple conflicts with the agile paradigm exist.
Especially the constraint to follow rigorous and well documented
processes contradicts the ideas of agile. To bridge this gap, a
comprehensive and well documented, but still flexible process is
necessary. Accordingly, this paper proposes a first step towards
such an agile safety-guided design, by combining Model-Based
Systems Engineering with the System-Theoretic Process Analysis.
Particularly, focus is placed on enabling an iterative safety-guided
design by providing functionality to track design changes to the
corresponding safety artifacts. This automated functionality is
enabled by a formalized execution of the safety analysis. At first
glance, formalization sounds like a contradiction to the agile
paradigm. However, we argue that formality and agility are not
necessarily contradicting each other. Our theory is that moving
the focus of formality from the human activities to the assisting
functionality even increases overall agility. The iterative safety-
guided design and resulting identification of safety improvements
is demonstrated with examples of a flight assistance system.

Index Terms—Safety, Agile, Formality, MBSE, STPA, SysML,
Design Changes, Tracing, UAM, CPS

I. INTRODUCTION

For the development of automated vehicles for Urban Air
Mobility (UAM), various potential solution concepts compete
for the market entry. Consequently, harsh time-to-market re-
quirements are influencing developments in the safety-critical
aviation sector. Simultaneously, the required automation of
UAM vehicles increases the shift towards software-intensive
airborne systems and introduces novel failure causes into
the development [1]. This necessitates a paradigm shift for
development approaches in safety-critical sectors. The goal
would be to establish an efficient and effective Safety-Guided
Design (SGD), where SGD stands for the proactive application
of a safety analysis technique to guide the system develop-
ment. A suitable safety analysis technique for establishing a
SGD is the System-Theoretic Process Analysis (STPA) [2].
In addition, the system-theoretic approach of STPA also suits
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the analysis of software-intensive airborne systems, since the
STPA was designed with the intention to identify novel failure
causes such specification or interaction issues besides typical
component failures.

Another interesting direction addressing the needs for
future-oriented system developments is the movement towards
agile and iterative Systems Engineering (SE) approaches [3].
At the same time, for safety-critical domains such as the
aviation sector, rigorous and well documented safety assess-
ments are unavoidable [4]. On the first glance, this seems
to contradict with the required iterative agility. For instance,
when iteratively changing the system, it is inefficient to repeat
the complete safety assessment over and over again. Hence, a
guidance is required indicating which safety artifacts have to
be updated when iteratively changing parts of the developed
system. To bridge this gap, a comprehensive safety traceability
between design changes and their impact on safety artifacts has
to be provided [5].

Definition 1. Safety traceability describes the ability to trace
the impact of design decisions towards safety artifacts.

Definition 2. Safety artifacts encompass all elements that are
either a part of the safety analysis execution or are created as
a result. Examples are elements of hazard analysis tables, but
also resulting requirements.

Subsequently, the main contribution of this paper is to
outline and demonstrate an approach that shows how tracing
and managing of design changes towards safety artifacts can
be established. Therefore, two complementary functions will
be explained and discussed. The first function informs the
analysts when and where an update in the safety assessments
is required by considering the recent design changes. The
second function enables the creation of the corresponding
safety artifacts that require an update. In the demonstration
Section V, it will be shown how both can be applied during
an iterative derivation of a simplified flight assistance system
modeled with the Systems Modeling Language (SysML).
Demonstration shows promising sings to enable efficient SGD
for future-oriented safety-critical systems.

One prerequisite to establish such a traceability of changes
is a firm linkage between the system development and the
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corresponding safety assessment. To outline how this can be
established, the previously introduced and model-based STPA
implementation of [6] is utilized. An important aspect is
the systematic integration of model-based design and safety
activities, since this lays the foundation for the envisioned
change impact traceability. Therefore, it will be explained how
safety analyses can be integrated into a systematic Model-
Based Systems Engineering (MBSE) framework.

In summary, automatically tracing design change impact
becomes necessary especially in agile and iterative develop-
ment processes for future-oriented safety-critical systems. By
laying the foundation for automatic change impact traceability,
a first step towards agile SGD is described in this paper. In
the following sections, the concept will be elaborated in more
detail. First, required background information is introduced
in Section II. Afterwards, the developed methodology will
be outlined in Section III and demonstrated in Section IV.
Then, related work will be described in Section V and the
overall concept discussed in Section VI. Finally, the paper is
concluded in Section VII.

II. BACKGROUND
A. Challenges and Requirements for Agile Safety

Current developments in the aviation domain follow strict
safety-driven processes with guidance documents such as
ARP4754A [7] and ARP4761 [8]. In addition, standards that
are specific to the developed system have to be considered.
For software-intensive systems, especially DO-178C [9] de-
scribes the typical aspects that need to be addressed to get
a certification. When trying to integrate the concepts of agile
in such processes, multiple challenges have to be dealt with
[4]. For instance, traditional aviation processes require a strict
documentation that on a first glance contradicts with the values
of the agile manifesto’.

To overcome these challenges and enable an agile SGD,
we argue that a systematic but flexible development process
is required. Accordingly, the concepts of agile SE provide
a promising foundation. Simultaneously, the ability to use
safety as one of the main design drivers will be important to
subsequent certification of the developed systems. To achieve
this, a tight integration of safety and development tasks will be
required. Finally, we argue that although the agile principles
shift the focus towards humans instead of tools, an increasing
formality and automation in the tools has the ability to
also facilitate the overall agility of the development. This
specifically manifests in the supporting ability to allow shorter
feedback cycles within a SGD. For the safety traceability
concept presented in this paper, the previous statements are
the main drivers of the corresponding implementation.

B. Model-Based STPA

As introduced, an important part for an agile SGD of future
safety-critical systems is the usage of a suitable safety analysis.
With its control-oriented and model-based approach, the STPA
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enables to identify complex accident causes related to the
specification and interaction of software-intensive systems [2].
At the same time, the STPA provides a formal basis, allowing
to automate parts of the process. For instance, [10] demon-
strated the ability to automatically generate requirements from
the analysis. This concept inspired the implementation of
the customized SysML profile explained in [6] that allows
to execute the STPA within an MBSE environment, while
providing the ability to automate parts. Using this profile, it
was explained in [11] how the integration of STPA and MBSE
has the ability to assist in evaluating system architecture safety
in early phases of development.

Considering the analysis execution, the STPA follows four
main steps [12] that are also represented in the model-based
SysML implementation of [6]. First, the analysis purpose
is specified by defining hazards, losses, and the system to
consider. In the second step, a control structure of the system
is modeled including the subsystems with their internal and
external interactions as well as important process variables
of subsystems. Due to the control-based approach of the
STPA, these subsystems are referred to as controllers while
the interactions are split into control actions and feedback. In
the third step, control actions are analyzed in specific context
situations to identify unsafe control actions. Therefore, it has
to be specified in which contexts the control actions shall
be analyzed. Considering the model-based implementation
of [6], this step is represented by the linking of contexts
elements with one or more context values to the corresponding
control actions. When the links are established, instances of
the AnalysisBlockSTPA of Fig. 1 can be created automatically
by calculating the cross product of all context values.

«stereotype» E «stereotype» E
AnalysisBlock STPA UnsafeControlActionSTPA
[Class]

[Class]
attributes t
+Action : Signal [1]
+Context : ContextSTPA [*]
+Context Value : EnumerationLiteral [*]
+Source : ControllerSTPA [1]
+Receiver : ControllerSTPA [1]
+Not provided in this context : HazardSTPA [*]
+Provided in this context : HazardSTPA [*]
+Provided, but too early : HazardSTPA [*]
+Provided, but too late : HazardSTPA [*]
+Provided, but out of order : HazardSTPA [*]
+Provided, but stopped too soon : HazardSTPA [*]
+Provided, but applied too long : HazardSTPA [*]
+Analyst : String
+Assessed : Boolean
+AnalysisID : Real

+UCA Description : St g [1]
+Context : ContextSTPA [*]
+Context Value : EnumerationLiteral [*]

+Source : ControllerSTPA [1]

+Action : Signal [1]

+Receiver : ControllerSTPA [1]

+Hazard Reference : HazardSTPA [*]
+Feedback Variables : FeedbackSTPA [*]
+Command Variables : ControlActionSTPA [*]
+Process Variables : ProcessVariableSTPA [*]
+Causal Factor Category : EnumerationLiteral [*]
+Loss Scenarios : LossScenarioSTPA [*]
+Analyst : String

+Assessed : Boolean

+Analysis ID : Real

Fig. 1: Central Stereotypes of Model-Based STPA

Therefore, each AnalysisBlockSTPA instance represents one
concrete context in which a control action shall be analyzed.
Similar to the typical STPA execution, guiding sentences are
used in the AnalysisBlockSTPA to identify and link hazards
that can occur in the analyzed situation. Therefore, each
AnalysisBlockSTPA instance essentially represents one row of
a hazard analysis table. For instance, executing a control action
in a context where it is dangerous would be an unsafe control
action. Such an identification would be documented by linking
the resulting hazard in the Provided in this context variable



of a AnalysisBlockSTPA instance. Within the model-based
implementation of [6], UnsafeControlActionSTPA instances
can be generated automatically using the inserted entries of the
AnalysisBlockSTPA instances. During an automated creation,
a lot of entries of the UnsafeControlActionSTPA instances
can be pre-filled with the information available from the
modeled control structure. Examplary, incoming Feedback
Variables, Command Variables, and Process Variables of the
analyzed controller can be inserted automatically. This pre-
filled information assists the analyst in the identification of
causal factor combinations that can lead to the execution of the
analyzed unsafe control action. Essentially, this is the fourth
and last step of the STPA, where loss scenarios are identified
and mitigating safety requirements are derived to address the
identified issues.

Since instances of the AnalysisBlockSTPA and UnsafeCon-
trolActionSTPA stereotypes can be created automatically under
consideration of all relationships within the model, potential
exists to trace the impact of related design changes. This
potential is exactly what will be used in this paper to establish
an important step towards an agile SGD.

C. Flight Assistance Use Case

For demonstration purposes, an example system is utilized
that was developed within the XANDAR [13] EU project. To
be more precise, a high-level SysML model of a Flight As-
sistance System will be considered. The corresponding STPA
control structure is displayed in Fig. 2.

It is visible how the logical subsystems of the architecture in
form of the: Data Acquisition System, Avionic Computer and
Pilot Assistance HMI are represented as controllers while the
controllers process variables are displayed as values. More-
over, the internal and external interactions help to understand
the control flow within the system as follows. The Data Acqui-
sition System receives information, processes it, and forwards
it to the Avionic Computer. The Avionic Computer computes
advisories from this information, which are then displayed on
the Pilot Assistance HMI to the Pilot. For simplicity, only the
Pilot is further considered as an outside interaction. In the
demonstration Section IV, this Flight Assistance System and
the corresponding control structure are used to demonstrate
the concepts proposed in this paper.

III. AGILE SAFETY-GUIDED DESIGN

In this section, the envisioned concept will be introduced
that lays the foundation for an agile SGD. The concept
is divided into two main parts. The first part covers the
integration of the safety and development activities into a
cohesive modeling framework, allowing for a SGD approach.
The second introduces concepts enabling to trace the impact of
design changes towards safety artifacts by utilizing the model-
based links established in the STPA execution.

A. Safety-Guided Design Framework

To establish a safety-guided decision making within the
model-based system development, a thoughtful coupling of the

«Logical tem»
«ControllerSTPA»

Flight Assistance System [P]

th
GNSS Signal GNSS [
«Logical tem» P ~
«ControllerAutomationSTPA » N
Data Acquisition System ADS-B‘Data

~J

values .4
Integrity of Underyling Components OtherVehicle [l]
Model of Incoming Data

Model of Information Distribution

Model of Required Performance

+ Intruder State + Aircraft State

«Logical tem»
«ControllerAutomationSTPA »

Avionic Computer A

Electric Energy

Vehicle [l]

< | 3 ]
< =
Electric Energy

N

values
Integrity of Underlying Components [
Model of Aircraft Motion

Model of Aircraft Performance

Model of Pilot Response Time

Model of Required Performance

Electric Energy []
Model of Terrain

Environment [I]

+ Calculated Advisories [

| 4

Change Settings
) d
J -

«Logical tem» Engineer [[]
«ControllerAutomationSTPA»

Pilot Assistance HMI

values
Integrity of Underlying Components
Model of Advisory Priority
Model of Human Controller
Model of Pilot Information Processing
Operational Mode
Softw are Version

Terrain Advisories,
Traffic Advisories,
Navigation Advisories

«block»
«ControllerHumanSTPA»

Pilot

Change Settingi Pilot 1]
Ll

-
Navigation Advisories,
Terrain Advisories,
Traffic Advisories

values
Model of Assistance System Usage
Mood of Pilot
Trust in Assistance System

Fig. 2: Flight Assistance System Control Structure

safety and design activities has to be established. This can be
achieved with the integration of the STPA as part of a suitable
MBSE framework. Overall, MBSE frameworks provide a
systematic layout of how the system design can be executed. In
this paper, the MagicGrid [14] MBSE framework was selected
due to its systematic but lean approach to system development.
It divides the design into two main development phases where
the system design is executed using the four pillars of SysML.
The first Problem phase is a specification phase, where the
system concept is modeled. In the second Solution phase,
systems variants are designed that fit the specification and
can be evaluated against each other. In Fig. 3, the framework
is visualized and the different steps are displayed for each
part of the two phases. Interestingly, the newest version of
MagicGrid already includes a placeholder for a safety analysis
in the framework structure that allows for a SGD [14].
Moreover, considering the parts that need to be modeled
from MBSE and STPA side, multiple overlapping activities
exist. For instance, the STPA requires a control structure
model where the system boundary and outside interactions
are clearly defined. Such a specification is already part of the
modeling of the system context within the selected MBSE
framework. Another overlap can be identified at the modeling
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Fig. 3: Safety Analysis Integrated into MBSE Framework

of the architecture, because this can be used as a foundation to
define the controllers and internal interactions of the STPA’s
control structure. As visible with these examples, an efficient
integration of the STPA within a MBSE framework is possible.

Since the premise was to establish a SGD with the described
coupling, it is important to consider how this can be achieved.
Due to the safety analysis being a part of the MBSE framework
in every level of design, the results of the safety analysis can
influence the system design. On the one hand, the results can
be directly incorporated to improve the system design on the
same level. On the other hand, the derived mitigations can also
influence the design decisions for the following more detailed
design levels. The described process even facilitates an itera-
tive SGD, where each time a safety analysis is executed, the
design can be adapted accordingly untill the safety and design
goals are sufficiently aligned. A prerequisite for the feasibility
of this agile decision making is the ability to track the impact
of design changes towards the safety artifacts. Otherwise, all
safety activities would have to be executed from scratch in
every iteration cycle, which would be a barrier for real-world
adoption. This is why the next section will lay out a process
allowing to track the design decisions to the safety artifacts of
the model-based STPA.

B. Safety Traceability Foundation & Implementation

As introduced, a traceability of design decisions towards
safety artifacts is targeted in this paper. Considering the
model-based STPA implementation introduced in Section II-B,
examples of safety artifacts are instances of the AnalysisBlock-
STPA and UnsafeControlActionSTPA stereotypes of Fig. 1. For
all parts of the model-based STPA that can be created or
inserted automatically, the foundation to trace related changes
is available. In the model-based STPA of Section II-B, this
encompasses both AnalysisBlockSTPA instances that are used
to identify unsafe control actions and UnsafeControlAction-
STPA instances that document the identified unsafe control
actions and assist in identifying and linking reasons for their
occurrence (loss scenarios). Therefore, the sets of required and
current elements can be calculated at every point in time for
each of the two safety artifacts.

Definition 3. The set of required elements a € A encom-
passes all safety artifact elements a that are required at the
moment of calculation.

Definition 4. The set of current elements 6 € B encom-
passes all safety artifact elements 6 that are present at the
moment of calculation.

These two sets already build the foundation to trace the
impact of design changes in the following ways. First, by
calculating the difference between the required and current
element sets, the set of new and changed elements can be
calculated.

Definition 5. The set of new and changed elements x € XC
encompasses all safety artifact elements x that are calculated
with the difference of the required and current element sets:
X =A\B.

Second, the set of stable (unchanged) elements can be
calculated with the intersection of the required and current
element sets.

Definition 6. The set of stable elements y € Y encompasses
all safety artifact elements y that are calculated with the inter-
section of the required and current element sets: Y = A NA.

Finally, the set of outdated elements can be calculated with
the difference between the current and required element sets.

Definition 7. The set of outdated elements 5 € Z encom-
passes all safety artifact elements 3 that are calculated with the
difference of the current and required element sets: Z = B\ A.

The relationships between the calculated sets can also be
visualized as shown in Fig. 4. It is visible how the different
sets can be extracted from the current and required elements.
Using the defined sets, different supporting functionality can
be implemented for the analysis. For instance, when a change
in a model occurs, the analyst can be notified about the safety
artifacts that are new/changed, stable, or outdated as a result.
Moreover, functionality can be implemented that executes the
updates in the safety artifacts while also notifying the analyst.

Fig. 4: Set-Relationships for Safety Traceability

After abstractly defining how the different sets can be calcu-
lated, the algorithm will be outlined for the AnalysisBlockSTPA
safety artifact. In the model-based STPA, the AnalysisBlock-
STPA instances are calculated considering the contexts that
are linked to the control actions. These links specify in which
situations the control actions shall be analyzed. Each context
contains a list of related states that essentially can be viewed
as a vector of context variables. When linking more than one
context, the cross product of the context vectors is calculated
and used to create all context combinations in which the
control action shall be analyzed. This means that the set of



required AnalysisBlockSTPA instances can be calculated at
every point in time under consideration of the links established
within the model. Subsequently, it is therefore possible to
calculate all sets introduced beforehand as shown in Alg. 1 and
implement the envisioned change impact traceability functions.

Definition 8. The set of control action elements ca € CA
encompasses all control actions that shall be analyzed within
the safety analysis.

Definition 9. The set of context elements co € Co encom-
passes all context elements that are linked to control actions
within the model.

Algorithm 1: Calculating Sets for AnalysisBlockSTPA
Input: B, CA, Co
Output: X, Y, 2
// go through each control action ca
to calculate required elements A
forall ca € C.A do
// create context combinations CC.
using attached contexts co € Cocq
CC.q = COg X O
if CC.. # () then
// go through all related
context combinations
forall cc., € CC,, do
// add required element a., to
required set A,
A = Ape U Geg

// add calculated elements A, to
overall required element set A

| A =AUA,
// calculate all element sets
X=A\B
Y=Ana®B
Z=B\A
return XX, Y, Z

In Alg. 1, the set of current AnalysisBlockSTPA instances
@, the set of control actions C.A, and the set of the linked
context elements Co are used as input for the algorithm. By
calculating all required elements using the annotated context
combinations of each control action, the required element set
A.. can be calculated for each control action. Afterwards, the
sets of new, stable, and outdated AnalysisBlockSTPA instances
can be calculated and used to establish different supporting
functionality as described earlier.

A similar process can be implemented for the UnsafeCon-
trolActionSTPA instances or other safety artifacts. In general,
the process always requires the following steps: 1. Identify
the set of current elements, 2. Calculate the set of required
elements, 3. Calculate the new, stable, and outdated elements,
4. Use the information to support the analyst in various ways.

Due to length limitations, the detailed algorithm is omitted for
the UnsafeControlActionSTPA safety artifacts.

IV. DEMONSTRATING SAFETY TRACEABILITY

In the demonstration section, the main focus is placed on
the change impact traceability. Hence, the Flight Assistance
System introduced in Section III-C is utilized to show how the
tracing can enable a timely update of safety artifacts.

A. Tracing the Impact of Context Changes

During an agile and model-based development of the Flight
Assistance System, it was identified through a coverage assess-
ment as presented in [15] that the Traffic Advisories context
shall be extended. For instance, instead of only analyzing a
context where one intruder is nearby, also multiple intruders
shall be considered. In addition, it was identified that the
terrain related context might also have an influence on the
safe issuing of Traffic Advisories. Therefore, the context is
extended by also considering multi-intruder scenarios and the
terrain related context as visible in Fig. 5.

«ContextSTPA»
TerrainAdvisoryContext
N N
StatesJ, | |
«enumeration» I |
States

Terrain Close
Terrain Far Aw ay

«ContextSTPA»
TrafficAdvisoryContext

States l

«enumeration»
States
Multiple Intruders

One Intruder
No Intruder

1 1
«ControlActionSTPA»
Traffic Advisories

Fig. 5: Extended Traffic Advisory Context

After establishing the adapted relationships, automated
functionality can immediately identify the changes in the
context and calculate the adaptations in the AnalysisBlockSTPA
instances. Using the set operations established in Section III-B,
it is possible to calculate the new and changed, as well as the
outdated AnalysisBlockSTPA instances. At the same time, an
update functionality can be used to create the novel elements
while highlighting the outdated ones. When executing the
update functionality, six new AnalysisBlockSTPA instances can
be automatically created according to the cross product of
the two enumerations of Fig. 5. Two of the created Analy-
sisBlockSTPA instances are displayed in Fig. 6. All entries
that are inserted automatically are highlighted in blue while
the ones that are inserted automatically and have changed are
highlighted in red. After being supported by the notifying and
update functionality, the safety analyst can manually execute
the required safety analysis update. Therefore, the typical steps
of the STPA execution have to be followed. Under consider-
ation of the context in combination with the guidewords, it
is identified in STPA Element 16 that providing unnecessary
Traffic Advisories when being in close range of terrain might
lead to a Controlled Flight into Terrain (CFIT) of the aircraft.
Similarly, it is identified in STPA Element 17 that out of
order Traffic Advisories in a multi-intruder scenario could lead
to failure to prevent a Near Mid Air Collision (NMAC) of
the aircraft. After linking the corresponding hazards in the



AnalysisBlockSTPA instances, automated functionality can be
used to create the related UnsafeControlActionSTPA instances
displayed in Fig. 7, allowing a further analysis for potential
causes. Again, all entries that are inserted automatically during
creation are highlighted in blue and all entries that have
changed in addition are highlighted in red. For STPA UCA 0,
an incorrect Model of Advisory Priority is identified and linked
as a potential reason for an inadequate issuing of Traffic Advi-
sories. This loss scenario is further detailed in Fig. 8. For STPA
UCA 12, it is identified that an incorrect intruder focus can be
the reason for an out of order issuing of Traffic Advisories in
a multi-intruder scenario. Subsequently, the identified causal
information can be used to derive corresponding mitigations.
Regarding the first loss scenario of Fig. 8, a mitigation is
derived stating that a precise advisory priority shall be defined
as shown in Fig. 9. Moreover, to prevent the second loss
scenario, it is derived that a precise definition of how multiple
intruders are handled has to be established.

B. Tracing the Impact of System Changes

After demonstrating the ability to trace changes in the
analysis context, it is explained in the following how changes
in the systems control structure model can be traced. There-
fore, the control structure of the Flight Assistance System
in Fig. 2 will be considered. During the analysis of the
operating environment of the Pilot Assistance HMI, it might
be identified that the Environmental Influences also have to
be considered. In practice, this would mean that the con-
trol structure diagram of Fig. 2 would be extended with a
corresponding control action between the Environment [I]
port and the Pilot Assistance HMI. When this connection
is established, it also has to be evaluated if this additional
relation could be a potential causal factor for the execution
of an unsafe control action. Considering the UnsafeContro-
IActionSTPA instance from Fig. 1, it is visible that incoming
Command Variables are attributes of the stereotype. Moreover,
the Variables are among others pre-filled during the automated
creation of the stereotypes instances as explained in Section II-
B. After adding the Environmental Influences control action,
it is therefore known that all of the UnsafeControlActionSTPA
instances related to the PilotAssistanceHMI have to be updated
to include the new incoming Command Variable. Therefore,
the safety engineers can be notified that an update is required
in the UnsafeControlActionSTPA instances and the adapted
instances can be created as displayed in Fig. 7.

Since the safety engineers are automatically notified after
the change, they can then search for potential loss scenarios
that were missed beforehand. Exemplary, the loss scenario
could be identified that electromagnetic interference of the sur-
rounding environment might be able to change the displayed
advisory as shown in the third loss scenario of Fig. 8. Sub-
sequently, a corresponding mitigation can be derived stating
that the Pilot Assistance HMI has to cope with electromagnetic
compatibility as displayed in Fig. 9. This is only one example
of a system related change that can be traced towards the safety
artifacts and used to update the safety analysis. In general, all

changes in the properties that are inserted during the automatic
generation of the safety artifacts are traceable.

V. RELATED WORK

Since the agile paradigm stems from the software commu-
nity, interesting work has been done to integrate the software
considerations into the safety-critical aviation domain. For
instance, [4] explains how agility can be compatible with DO-
178C [9] and used to develop certifiable avionics software.

Another important area for this paper is the combination
of agile developments with a systematic SE activities. An
overview of the concepts and challenges of agile SE is pro-
vided in [3]. Considering the step towards combining MBSE
with the agile paradigm, [16] proposes a framework that
integrates the ideas of agile into MBSE by structuring the
development process according to a DevOps approach.

Interestingly, not only SE and MBSE are linked to the
agile paradigm in the literature. It is also shown in [17], [18]
how the STPA itself can be integrated into agile development
processes. Regarding the establishment of an agile STPA
execution, [19] argues that a sufficient tool support is required
that enables to track design changes.

Since safety and security are both emergent properties, the
analysis of them can also be quite similar. This is supported
by the fact that the STPA is also be applied for security
concerns in form of the STPA-Sec [20]. Therefore, it is
also interesting to consider related approaches in the security
direction. Looking at the integration of agility with STPA,
[21] demonstrates how security concerns can be efficiently
evaluated with the the agile paradigm. At the same time,
the combination of agility and MBSE was considered for the
security analysis of IOT devices in [22].

After outlining work that combines topics such as agility,
MBSE, and analyses, related work in the direction of tracing
changes will be introduced. In [23], a model-based traceability
of changes is proposed that allows automatic and iterative
creation of parts for a "Dependent Failure Analyse (DFA)“.
Furthermore, [24] shows how traceability can be established
in combination with SysML to trace the impact of requirement
changes. On the overarching level of change management,
[25] explains how MBSE can be used to facilitate the change
impact analysis for product design processes. Finally, [26]
lays out a process to establish a systematic change impact
traceability for safety artifacts in software product lines.

VI. DISCUSSION

To allow an agile SGD in future system developments,
the ability to trace safety related system changes becomes
inevitable. With the envisioned process presented in this paper,
changes can be traced automatically and used to implement
multiple supporting functionality. However, there are some
limitations to the process that have to be considered. The
current implementation enables powerful supporting function-
ality, but does currently only cover traceability of changes in
the aspects that are related to the targeted safety artifacts.
Hence, the provided information relating to updates has to
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Element 17 ] TrafficAdvisoryContext O Terrain Far Away

Fig. 6: New and Changed AnalysisBlockSTPA Instances

# Name ‘ UCA Description | Context | Context Value Command Variables I Process Variables | Loss Scenarios
= TerrainAdvisoryContext O Multiple Intruders Calculated Advisories O Model of Advisory Priority AdvisoryPriorityMismatch
The [Pilot Assistance HMI] applies =] TrafficAdvisoryContext = O Terrain Close Change Settings O Model of Human Controller = l|jtepSLlJJ;tSII’\WI’OI’\gAdVISOI’yO
[Traffic Advisories] to the [Pilot] ; Model of Pilot Information
1 B ﬁ-(rIPAA when [TerrainAdvisoryContext] is = Elec-trlc B Processing ElectromagneticInterferre
0 in state [Terrain Close] and Environmental Influences ) =] nceChangesAdvisoryOutp
[TrafficAdvisoryContext] is in Update SW perationatiiode ut
state [Multiple Intruders]. O Software Version
O Integrity of Underlying Components
T ——- 0 = TerrainAdvisoryContext O Multiple Intruders Calculated Advisories O Model of Advisory Priority g IncorrectIntruderFocgsRes
B{AIE AT (T Eples =] TrafficAdvisoryContext O Terrain Far Away Change Settings O Model of Human Controller ultsInInadequateAdvisory
[Traffic Advisories] to the [Pilot] Electromagneticinterferre
STPA out of order when Electric Energy Model of Pilot Information I nceChan gsAdviso Out
2 Eluca [TerrainAdvisoryContext] is in Environmental Influences Processing ut & S
12 state [Multiple Intruders] and O Operational Mode
b N L Update SW
[TrafﬂcAdwgoryContext] isin O Software Version
state [Terrain Far Away]. B .
O Integrity of Underlying Components
Fig. 7: New and Changed UnsafeControlActionSTPA Instances
# Name Causa] Fac_tor Causal Factor Source Causal Factor Loss Scenario Description Loss Mitigations
Classification
o Process - Pilot Assistance HMI o Model of Advisory An imprecise definition of the advisory ] Loss of Aircraft 209.2.5 Precise
Model Priority priorities leads to a inadequate forwarding [RI Advisory Priority
AdvisoryPriorityMismatch of a traffic advisory even though a more Definition
1 = ResultsInWrongAdvisory important terrain advisory is present. This
Output leads to the pilot not executing the right
terrain avoidance maneuver and a CFIT of
the aircraft.
O Algorithm =] Avionic Computer O Multiple Intruders During a multi intruder scenario the E] Loss of Aircraft 209.3.2 Precise

IncorrectIntruderFocusRe
2 [ sultsinInadequateAdvisor
y

Environment =] Environment

ElectromagneticInterferre ~ /External Influences

3 EJ nceChangesAdvisoryOutp

Environmental

incorrect intruder is selected as the highest
priority. This leads to a late traffic advisory
and a failure to prevent a CFIT or NMAC of
the aircraft.

[R] Definition of
Intruder Priority

Before the advisory is displayed, £ Loss of Aircraft 209.5.2 HMI
electromagnetic interferrence changes the [RI Electromagnetic
advisory output. This leads to an inadequate Mitigation

advisory output and a contribution to a CFIT
or NMAC of the aircraft.

Fig. 8: Loss Scenarios Identified due to Design Change Traceability

ut
# | Name ‘ Text [
Precise Advi The Flight Assistance System shall
1 P’?C',S o D \;Iszfy use a precisely defined priority of all
riority Definition advisorles.
Th Flight Assistance System shall use
2 Precise Definition of a precise definition of intruder
Intruder Priority priority to correctly handle multi
intruder scenarios.
. The HMI design and installation shall
3 HMI Electromagnetic consider and prevent electromagnetic

Mitigation interference of other components.

Fig. 9: Derived Loss Scenario Mitigations

be considered as valuable supporting functionality, but not as
the all-encompassing solution. In the end, the human analyst
has the final decision about the completeness of the traced
changes. This also aligns with the ideas of the agile paradigm,
since the automation mainly helps to facilitate discussions
about the impact of design changes, while also reducing man-
ual tracing efforts which are error-prone. A further limitation
of the automation is that a formal analysis structure has to
be followed to enable the supporting functionality which is

always related to overhead. Still, we would argue that an
overhead to defining the system and analysis analysis parts
more precisely is not necessarily a bad thing.

In terms of the SGD aspect that integrates safety and design
activities, the potential differences between the design and
safety analysis model have to be discussed. In fact, even
though the design and analysis model might overlap in a lot of
ways, there is still the possibility that not the same set of model
elements is used on purpose in both tasks. For the ability to
trace design changes, this gap in the overlapping elements
is the limiting factor. This limitation has to be considered
during the establishment of the control structure within the
MBSE framework. All elements that are not annotated with
the required STPA related stereotypes and used within the
safety considerations, are also not traceable in the current
implementation.

VII. CONCLUSION

By utilizing a model-based integration of MBSE and STPA,
a step towards establishing an agile SGD is outlined in this



paper. This integration allows the ability to trace the impact
of design changes to the changes required in related safety
artifacts. Using this traceability, support functionality to inform
the safety analyst and update the safety artifacts can be easily
implemented. Current trends show that such a process will be
required to establish efficient developments of future safety-
critical systems. Considering the potential limitations of the
process and the values of the agile paradigm, it is important
to not forget the human component in such a SGD. With
the supporting functionality highlighting and updating artifacts
that are affected by design changes, the analysts are relieved
of the error-prone parts and gain more time to focus on the
creative tasks of the analysis. For instance, they can focus
on identifying complex relationships that were missed by
the automation and enhance the safety analysis even further.
Essentially, we argue that this process facilitates the creative
tasks and thereby increases the overall development agility.
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