
Interactive OAISYS: A photorealistic terrain simulation for robotics
research

Marcus G. Müller1,2∗, Jaeyoung Lim2∗, Lukas Schmid2, Hermann Blum2, Wolfgang Stürzl1, Abel Gawel2,
Roland Siegwart2, Rudolph Triebel1

Abstract— Photorealistic simulation pipelines are crucial for
the development of novel robotic methods and modern machine
vision approaches. Simulations have been particularly popular
for generating labeled synthetic data sets, which otherwise
would require vast efforts of manual annotation when using real
data. However, these simulators are usually not interactive, and
the data generation process cannot be interrupted. Therefore,
these simulators are not suitable for evaluating active methods,
such as active learning or perception aware path planning,
which make decisions based on the observed perception data.
In order to address this problem, we propose a modified version
of the simulator OAISYS, a photorealistic scene simulator for
unstructured outdoor environments. We extended the simulator
in order to use it in an interactive way, and implemented a
developer-friendly RPC interface so that it is easy for any
environment to integrate into the simulator. In this paper, we
demonstrate the functionality of the extension on 3D scene
reconstruction to show its future research potential and provide
an example of the implementation using the middleware ROS.
The code is publicly available under https://github.com/
DLR-RM/oaisys

I. INTRODUCTION

Simulation frameworks are important tools for the devel-
opment and evaluation of most robotic methods. Simulations
make it is possible to generate controlled conditions to test
individual modules and scenarios [1] [2], which would have
otherwise be challenging with real experiments. Furthermore,
they can be used to simulate scenarios which cannot be
easily recreated or are too dangerous to be tested in the
real world. Simulators that can produce photorealistic images
have drawn attention in recent years mainly due to the
success of modern machine vision methods like deep neural
networks [3]. However, most of such methods need large
amounts of annotated data to train a desired model. Since
large-scale manual annotation is prohibitively expensive and
error-prone, high-quality synthetic data makes for an attrac-
tive alternative.

For machine vision approaches, the data needs to be as
photorealistic as possible in order to reduce the so called sim-
to-real gap. Since creating such photorealistic data requires
a lot of computational resources as well as long rendering
times, it is more common to use recorded datasets instead of
interactive simulation environments.

Such datasets are usually carefully designed by experts and
then rendered with high amount of computational resources.
The benefit of datasets is that their results are reproducible

∗Equal contribution
1Institute of Robotics and Mechatronics, German Aerospace Center

(DLR), Germany
2Autonomous Systems Lab, Swiss Federal Institute of Technology (ETH

Zürich), Switzerland

OAISYS
OAISYS

ROS NODE

ROS N
ODE

ROS NODE

ROS NODE

ROS MASTER

g
R

P
C

 c
li

e
n

t

g
R

P
C

 s
e

rv
e

r

Fig. 1: Conceptual illustration of the iterative version of OAISYS with the
middleware, ROS.

and can be reused for multiple experiments. However, static
datasets are not suitable for evaluating active methods, such
as active perception, active learning, which make decisions
interactively based on observed data. For such tasks, it would
be more beneficial to have direct access to a simulator, which
has parameters that could be interactively changed, such as
altering sensor positions to actively choose view points based
on previously perceived data.

In recent years, simulators based on game engines have
gained popularity, which can help with such approaches [4]
[5] [6]. However, most of these simulators focus on in-
dustrial environments or autonomous driving in structured
environments. Less simulators are available for unstructured
outdoor environments while also producing photorealistic
output images.

Another possibility is the usage of 3D creation suites
like blender [7] and Maya [8]. Game engines, like Unreal
Engine [9] and Unity [10], have the advantage that they
can render data in real-time. However, 3D creation suites
rendering engines tend to produce outputs of higher visual
quality. As a result, the sim-to-real gap is usually smaller
with such engines compared to game engines.

OAISYS is a simulator which is designed to create many
different unstructured outdoor environments [11]. Further-
more, it is designed to create photorealisitc output images,
which makes it suitable for modern machine vision tasks.
However, it was not possible to use it in an iteractive way.

To overcome this shortcoming, we present in this pa-
per a modification to the simulator OAISYS in order to
make it usable in an interactive fashion. Furthermore, we
extended the possibility to use it with the popular robotic
middleware, ROS. See Fig. 1. To show its functionality and
potential opportunities, we demonstrate our extensions with
two robotic tasks. A scene reconstruction task where a 3D

https://github.com/DLR-RM/oaisys
https://github.com/DLR-RM/oaisys


scene is reconstructed from a predefined viewpoint set, and a
perception aware planning task where the next view is chosen
interactively with the simulation.

Therefore, we can summarize our contributions as follows:
• several extensions of OAISYS to enable an iteratable

mode for the simulator
• integration of the simulator with the common middle-

ware, ROS
• show different evaluation experiments to demonstrate

the potential of the mentioned extension
In the next section, we will first give a brief overview

over the OAISYS simulation framework. Afterwards, we will
introduce the extensions we made for the simulator. Finally,
we will show two evaluation experiments to demonstrate the
possibilities of our extension.

II. OAISYS

In this section, we will give a brief overview over the
simulator OAISYS [11].

OAISYS is a simulator for unstructured outdoor environ-
ments with a focus on planetary environments. The simulator
is able to generate automatically different worlds, which
can be configured via a configuration file. It builds up on
the free and open-source 3D computer graphics software,
Blender [7], and therefore, able to achieve photorealistic
image results. The basic workflow of the simulator will be
explained in the following.

First, OAISYS loads a basic mesh into the simulator,
which is deformed by a modifier using random noise as
deformation parameters. The resulting object, called the

stage, is used as terrain base mesh. Although, the basic
mesh could be any object, it will be a plane in most outdoor
cases. In order to get local terrain information, the simulator
loads terrain textures provided by the user and blends them
together. Each texture can have its individual semantic label.
Since the blending process is known, the semantic label for
each part of the new blended texture is kept. The resulting
blended texture is applied as material to the stage, which
gives the stage color information as well as roughness and
local deformation data. Next, the simulator gives the option
to place 3D assets onto the surface of the stage. OAISYS
has the option to scatter a large amount of objects due to the
usage of blender’s particle system.

After the terrain is set up with all its textures and meshes,
the light setup can be created as well as the placement of
the desired sensors. The movement of the sensors can either
be done randomly or via a csv file.

Once the entire scene is in place, the rendering is executed.
OAISYS can render a variety of modalities, such as RGB,
depth and different semantic maps.

Once all modalities are rendered, the light and sensor
setups are updated to take another sample or a new batch
is created. When a new batch creation is triggered, all assets
are updated to get a new sample of the next environment.
This procedure is continued until all samples and batches are
rendered.

Although the simulator provides a variety of options by
default, it can also be extended with custom modules.

Fig. 2 gives an overview over the OAISYS pipeline. For
more detail information about the simulator, we refer to the

Fig. 2: Basic Flow Diagram of OAISYS. First, the main stage mesh is loaded and deformed 1 . Afterwards, the terrain materials are created randomly
and mesh assets are picked randomly 2 . In 3 , the camera and light are set up. In 4 , the RGB pass of all assets is loaded and rendered. Afterwards,
the semantic labels are loaded and rendered 5 . This procedure is repeated on as many semantic levels as desired. In 6 the instance labels are loaded
and rendered. Afterwards, either more samples of the sample asset configuration are processed or a new batch ends. The process is completed when the
number of desired batches is reached. The green shaded box shows the part which were adapted for the iterative usage.



publication of the simulator [11].

III. INTERACTIVE MODE AND FURTHER IMPROVEMENTS

In order to use OAISYS for interactive methods, like
perception aware path planning or active learning, the core
implementation has been extended. In the following, we
introduce which improvements were made and why they
were important to give OAISYS an interactive option.

A. Interactive Mode

To use the simulator in an interactive mode, it is necessary
to send meta data after each sample step to adjust parameters
at runtime. The meta data could include the position of the
sensor base or the position and strength of a light source.
Although the parameters could be provided as a range in
which the simulator picks random samples for each batch, it
was not possible to change the range during the simulation.
As a result, every parameter was predefined previously via
a config file. Therefore, it was necessary to extend OAISYS
with the option to transfer meta data for each step. In
this paper, we focus on transferring poses as meta data.
However, the basic principle is not limited to it. Furthermore,
we only send meta data for each new requested sample
step. The general parameters defined in the config file for
the generation of a new batch is not changed at runtime.
However, this could be done easily in the future since it is
very similar to the adaption done in this paper.

In order to make OAISYS interactive, we modified the
parts of the simulator pipeline which is shaded green in
Fig. 2 Instead of looping over the number of requested
samples, the simulator stops at every sample and waits until
the stepping function is called again. Instead of just executing
the stepping function of each module once the function is
called, we also parse meta data. The meta data is in the
format of a dictionary. The dictionary contains a key entry
for each main modules of OAISYS. As value, it contains
the meta data which is passed to the corresponding module.
If data is transferred to the sensor and the render module,
then the dictionary contains the keys sensor and render.
Currently, OAISYS features four main modules: sensor,
environment, asset, and render. If no meta data is supposed
to be transferred, the meta data parameter is set to None.

A remote process control (RPC) interface based on gRPC
[12] is used to interact with OAISYS. By using a RPC
framework, the simulator can interact with an application of
any environment or language as long as it has a RPC client.
The RPC server is running an instance of OAISYS and can
call the interactive functions of it. Via the client software,
one can send commands to the server, which are executed
by OAISYS. The client can request actions, such as creating
a new batch or sample and render a scene. Furthermore, it
can also receive the results of a rendering of a sample. Since
the creation of a new environment and the rendering of a
sample can take some time, it was necessary to include the
functionality to check the status of the particular action.

B. OAISYS-ROS Bridge

In order to use the interactive mode of OAISYS in a
convenient way, we provide an example implementation

with the Robot Operating System, ROS [13], a widely
used middleware in the robotic community. In order to do
that, we implemented a ROS node, which is wrapping the
functionalities of the gRPC client. While this paper uses
ROS as an example, the RPC interface is not specific to
ROS and it is very easy to integrate a new client to interact
with OAISYS. This client is performing all interactions with
the corresponding RPC server as explained in the previous
section. Furthermore, the ROS node takes care of taking the
information gathered from OAISYS and transforms it to the
equivalent ROS topic. To send messages to the simulator, the
ROS node is reacting on ROS requests. In the moment, the
ROS nodes pipes the rgb images and depth images into ROS
topics. The node can be extended for further custom topics,
which shall be relayed to the ROS node. Fig. 1 illustrates
the architecture of OAISYS and the middleware interface.

C. Reuse of Stage
OAISYS creates a new random stage element every time a

new batch is created. While this is one of the strengths of the
simulator, there are several occasions where one might want
to reuse a stage and not modify it at all, such as when some
pre-processing is applied to the stage or when someone wants
to use a custom stage. Another case is if one wants to run
an experiment again with a different methods, but the same
environment. Therefore, we modified the basic StageCreation
Class provided by the vanilla OAISYS version and extended
it with the feature to reuse a stage. In order to reuse only
the stage and not any objects scattered on the surface, the
object has to be cleared.

IV. EXPERIMENTS

In order to demonstrate the functionality of our extensions
we evaluate them with two different experiments. First a task
of scene reconstruction and a second task for active view
planing. Both are important tasks in robotics and active fields
of research.

A. Experimental Setup
A terrain environment resembling an exoplanet was used

to generate scenes. The scene mainly consists of an uneven
rough surface and randomly placed rocks.

Fig. 3: Simulated RGB-D camera images(Bottom) and pointcloud visual-
ization(Top)



Since OAISYS is capable of rendering complete informa-
tion of the scene such as appearance, depth and semantics,
it is possible to simulate various sensor modalities. OAISYS
also supports simulating multiple cameras simultaneously,
enabling simulation of realistic camera setups such as stereo
camera pairs. Given that the true scene information is passed,
different noise models of the sensors can be easily imple-
mented. For the experiments in this paper, a RGB-D camera
was simulated by combining the RGB and depth renderings.

A sensor module was implemented which sends a view-
point pose to OAISYS, waits for the rendering to finish
and publishes the RGB and depth renderings in a RGB-D
sensor data format. A pinhole camera model was used to
generate pointclouds from the depth renderings. Fig. 3 shows
an example of the RGB and depth image size of an image
size of 640×480 on the bottom, and the resulting point cloud
on the top. The pointcloud and vehicle odometry information
is then passed to the mapping and planning packages to
simulate data coming from a real robotics system.

Using the simulated RGB-D sensor, a scene reconstruction
task and an active view planning use case was considered to
demonstrate the simulator running interactively for a given
robotics tasks.

The experiments were run on a desktop PC, equipped with
an Intel Core i7-10700 CPU and a Nvidia Quadro P2200
Graphical Processing Unit. The simulations were run on
Ubuntu 18.04 and a client implementation of ROS Melodic
was used to interact with OAISYS. While the Average
rendering times of each scene was 39.61 ± 2.25 seconds
on this setup, the rendering times can vary depending on the
configuration and hardware setup.

B. Scene Reconstruction

For the scene reconstruction task, a set of predefined view
points were used to demonstrate the scene reconstruction
capabilities from scene renderings from OAISYS. This rep-
resents a mapping task that is commonly done with aerial
vehicles. Voxblox [14], a truncated signed distance field
(TSDF) based volumetric mapping framework was used as
a map representation since it has been used in many robotic
tasks, such as exploration and mapping.

Downward facing view points were generated from a grid
pattern covering the terrain to simulate an aerial mapping sur-
vey [15]. Fig. 4 shows the reconstructed mesh generated from

Fig. 4: Visualization of scene reconstruction results using Voxblox [14]

Fig. 5: Reconstruction results of the active mapping use case mapping a
steep hill

30 viewpoints with a voxel resolution of 10 cm in Voxblox.
Due to the photorealism of OAISYS, high resolution textures
are visible in the reconstructed surface as well as shadows
generated from lighting conditions.

C. Active View Planning
In order to demonstrate the simulation running interac-

tively with an active planner, we choose the task of exploring
an unknown terrain. The goal is to incrementally add the
most informative viewpoints by finding the next best view
to explore unobserved space within the target volume.

A front facing RGB-D camera attached on an aerial vehi-
cle was considered. Viewpoints were generated sequentially
by an active view planner from [16], where most informative
view is chosen as the next best view. The planner samples
randomly generated viewpoints in the observed free space of
the map and evaluates the untility of the viewpoints using a
information score based on number of unknown voxels in as
well as the surface quality for the surface.

Fig. 5 shows the viewpoints and resulting reconstruction
during an active exploration task around a steep hill in the
middle of the scene. One unique capability of using a photo-
realistic rendering pipeline, such as OAISYS, is that selected
viewpoints close to the surface can be rendered without
compromising image quality. This is because OAISYS is able
to render high resolution textures on the surface.

V. CONCLUSION

In this paper, we introduced an extension of the simulator
OAISYS in order to provide an interactive functionality. To
make it more accessible for the robotic community, we also
provided a ROS interface. We demonstrated the functionality
of our work with two experiments. However, the number of
potential use cases are greater than that.

Future work might just concentrate on using the meta data
for more modules than just the sensor module. Also, it would
be beneficial to adopt the gRPC and ROS interfaces in order
to provide more message types. Since OAISYS including the
described extensions is open source, more functionalities can
also be implemented for the interactive version also by other
researchers in the community.



ACKNOWLEDGMENT
This work was supported by the Helmholtz Association,

project ARCHES (www.arches-projekt.de/en/, con-
tract number ZT-0033).

REFERENCES

[1] W. Boerdijk, M. G. Müller, M. Durner, M. Sundermeyer, W. Friedl,
A. Gawel, W. Stürzl, Z.-C. Marton, R. Siegwart, and R. Triebel, “Rock
instance segmentation from synthetic images for planetary exploration
missions,” in Advances in Space Robotics and Back to Earth (IROS
WS), 2021. [Online]. Available: https://elib.dlr.de/144626/

[2] M. G. Müller, S. Stoneman, I. von Bargen, F. Steidle, and W. Stürzl,
“Efficient terrain following for a micro aerial vehicle with ultra-wide
stereo cameras,” in 2020 IEEE Aerospace Conference, 2020.

[3] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” arXiv preprint
arXiv:1911.01911, 2019.

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity
visual and physical simulation for autonomous vehicles,” in Field and
Service Robotics, 2018.

[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in 1st Annual Conference
on Robot Learning, 2017.

[6] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” in Conf. on Robot
Learning, 2020.

[7] B. O. Community, Blender - a 3D modelling and rendering package,
2018.

[8] Autodesk, INC., “Maya.” [Online]. Available: https:/autodesk.com/
maya

[9] Epic Games, “Unreal Engine,” https://www.unrealengine.com.
[10] Unity, “Unity Engine,” https://unity.com.
[11] M. G. Müller, M. Durner, A. Gawel, W. Stürzl, R. Triebel, and R. Sieg-

wart, “A Photorealistic Terrain Simulation Pipeline for Unstructured
Outdoor Environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2021.

[12] gRPC Authors, “grpc.” [Online]. Available: https://https://grpc.io
[13] Stanford Artificial Intelligence Laboratory et al., “Robotic operating

system.” [Online]. Available: https://www.ros.org
[14] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,

“Voxblox: Incremental 3d euclidean signed distance fields for on-
board mav planning,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1366–1373.

[15] R. Bähnemann, N. Lawrance, J. J. Chung, M. Pantic, R. Siegwart,
and J. Nieto, “Revisiting boustrophedon coverage path planning as
a generalized traveling salesman problem,” in Field and Service
Robotics. Springer, 2021, pp. 277–290.

[16] L. Schmid, M. Pantic, R. Khanna, L. Ott, R. Siegwart, and J. Nieto,
“An efficient sampling-based method for online informative path
planning in unknown environments,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 1500–1507, 2020.

https://elib.dlr.de/144626/
https:/ autodesk.com/maya
https:/ autodesk.com/maya
https://www.unrealengine.com
https://unity.com
https://https://grpc.io
https://www.ros.org

	INTRODUCTION
	OAISYS
	Interactive Mode and Further Improvements
	Interactive Mode
	OAISYS-ROS Bridge
	Reuse of Stage

	Experiments
	Experimental Setup
	Scene Reconstruction
	Active View Planning

	Conclusion
	References

