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PREAMBLE

This work is a part of an ongoing project KILu (KI in der Luftfahrtforschung) that
belongs to the institute of Test and Simulation for Gasturbines in Augsburg, an institute of
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR). The thesis was conceptualized
and designed by Dr. Helal Chowdhury from DLR. The work conducted at DLR as part of
KILu activities, and co-supervised by Dr. Helal Chowdhury from DLR, Prof. Dr. Markus
Stricker and Dr. Yury Lysogorskiy from the Ruhr-University of Bochum.

For the completeness of the report, a number of ideas, algorithm, figures, pipelines are
taken from KILu works. For example, sampling the data-space, data generation strategy
and related DREAM.3D pipelines were developed by Dr. Chowdhury (DLR). The author
has automated the workflow in python and generated necessary dataset for the training and
validation of the machine learning models. Similarly, the algorithm for introducing lamellar-
grains into polycrystalline globular microstructure is an early work of Dr. Chowdhury. The
author of this thesis implemented and validated (using Python) a specific version of the
algorithm.

For the selection of generative models, the idea of Unet and pix2pixGAN for the
generation of microstructures comes from DLR-side. The initial model architectures
including code-base were supplied by PI GmbH as a third-party partner of the project
KILu. In this context, the author implemented conditional variational autoencoders,
conditional generative adversarial networks using custom loss functions and Wasserstein
loss. The idea of DREAM.3D postprocessing pipeline was suggested by the university
supervisors, Prof. Dr. Markus Stricker and Dr. Yury Lysogorskiy as part of thesis work,
and agreed by DLR. The initial structure of the report was also proposed by DLR.

All relevant figures/pipelines that comes from KILu works are marked with ∗.

1



Statutory Declaration

I declare that I completed this work on my own and that information which has been
directly or indirectly taken from other sources has been noted as such. Neither this, nor a
similar work, has been published or presented to an examination committee.

———————————————–
Sree Sameer Kumtamukkula

2



Restricted handling

This work is a part of Deutsches Zentrum für Luft- und Raumfahrt (DLR) internal project
KILu (KI in Luftforschung). Since similar activities will be continued within DLR till the
end of the project (October 2023), it is recommended to handle this report confidentiality
in case of distribution, till the end of KILu.

3



Acknowledgment

Firstly, I would like to thank Dr. Helal Chowdhury for giving me this opportunity to
work in Deutsches Zentrum für Luft- und Raumfahrt, Institute for Test and Simulation of
gas turbines, Augsburg and providing necessary support.

I would also like to thank Prof. Dr. Markus Stricker for his guidance, support and
valuable suggestions regarding the work. It is my pleasure to express my gratitude to Dr.
Yury Lysogorskiy for his insights, which helped to shape this work. Their interactions
provided me a scope for learning and motivated me to think in a different perspective.

My gratitude goes to ICAMS, Mrs. Jutta Kellermann and everyone involved with the
masters program Materials Science and Simulation, who contributed immensely during my
masters.

I would like to mention colleagues from PI GmbH, Dr. Kevin Cremanns and Dr. Can
Bogoclu for their assistance in developing machine learning models.

Additionally, I extend my thanks to Pavan, Krishna, Praneeth, Harsha, Agni Raja,
Murali, Dhanunjay and Priyatham for their engaging discussions and suggestions related to
my research.

Besides, I am also grateful to Sahitya, Mouryarag, Abhilash, Ragadeep, Indu and
Kaushik for supporting me throughout my master studies.

Finally, I would like to thank my parents and family for their unconditional love and
support.

4



Contents

Abbreviations 11

1 Introduction 14
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Materials and Methods 16
2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 3D Microstructures in multiscale modeling . . . . . . . . . . . . . . . . . . . 17
2.3 Methods for microstructure characterization and reconstruction . . . . . . . 18

2.3.1 Microstructure characterisation using descriptors . . . . . . . . . . . 19
2.3.2 Microstructure reconstruction approaches . . . . . . . . . . . . . . . . 21

2.4 State of the art generative modeling methods . . . . . . . . . . . . . . . . . 23
2.4.1 Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Variational autoencoders (VAEs) . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Generative adversarial networks . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 pix2pixGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.5 Wasserstein GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Data generation 33
3.1 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Synthetic microstructures using DREAM.3D . . . . . . . . . . . . . . . . . . 35

3.2.1 Synthetic two-phase microstructure generation . . . . . . . . . . . . . 36
3.2.2 2D vs 3D comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Lamellar generation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Description of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Future scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Model training 44
4.1 Configuring generative models and training . . . . . . . . . . . . . . . . . . . 44

4.1.1 Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Conditional variational autoencoders . . . . . . . . . . . . . . . . . . 46
4.1.3 Conditional generative adversarial networks: pix2pixGAN . . . . . . 47

5



4.1.4 WCGAN with gradient penalty . . . . . . . . . . . . . . . . . . . . . 50

5 Results and discussions 52
5.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Conditional variational autoencoder . . . . . . . . . . . . . . . . . . . 57
5.1.3 Conditional generative adversarial networks . . . . . . . . . . . . . . 59

5.2 Overall analysis of the generated microstructures . . . . . . . . . . . . . . . 68

6 Postprocessing using DREAM.3D 72
6.1 Postprocessing pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Postprocessing of pix2pixGAN predictions . . . . . . . . . . . . . . . . . . . 72

7 Conclusions 76
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 77

A Pipelines for data creation 89

B Postprocessing pipeline 93

6



List of Figures

2.1 Phase diagram of TiAl alloy system . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Multiscale finite element method (FEM) for interlinking microscale and

macroscale using top-down (homogenization techniques) and bottom-up
(Boundary value problems) approaches . . . . . . . . . . . . . . . . . . . . . 18

2.3 Synthetic microstructures obtained from DREAM.3D. . . . . . . . . . . . . . 22
2.4 Unet architecture from original paper . . . . . . . . . . . . . . . . . . . . . 24
2.5 Variational autoencoder as a generative model . . . . . . . . . . . . . . . . . 26
2.6 Conditional variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Evolution of training process of generative adversarial networks (GANs):

(a) The green line represents the generative distribution Pg, the blue dashed
line represents discriminator distribution between the generated data and
real target distribution, the black dotted normal distribution is the given
data distribution and the below lines represent the orientation of latent
space z domain. (b) Initially, the discriminator classifies the generated data
and given data easily and the generator is updated with the discriminator
feedback. (c) As training progresses, the feedback from discriminator
updates generator by governing the gradients to proceed to locations in
space, converging the objective function and generating plausible data. In
the ideal case, after multiple training iterations, the generator learns
intricate patterns in the data distribution by incorporating discriminator
responses and mapping latent variables non-uniformly to resemble the given
data distribution. (d) Finally, generator and discriminator converge
implying that the generator is able to produce realistic distributions w.r.t
training data by deceiving the discriminator. The global optima of GANs is
reached when pg = pdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Conditional GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 EA1 component of ODF distribution. X-axis represents the EA1 values (in
rad) and Y-axis represents the frequency of EA1 values in those respective
intervals∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Grain size distribution tab in Stats Generator filter in DREAM.3D. . . . . . 36
3.3 ODF distribution in Stats Generator filter in DREAM.3D. . . . . . . . . . . 36
3.4 Flowchart demonstrating the data generation process∗. . . . . . . . . . . . . 38

7



3.5 Comparison of mean EA1 between 2D and 3D synthetic microstructures∗. . . 39
3.6 Volume fraction comparison between 2D and 3D synthetic microstructures∗. 39
3.7 Comparison of mean equivalent sphere diameter between 2D and 3D synthetic

microstructures∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Euclidean distance between 2D slices and 3D volumes∗. . . . . . . . . . . . . 40
3.9 Lamellar of thickness t in a random grain Gi on a XY plane with an angle of

θ with distance d between each lamellae. . . . . . . . . . . . . . . . . . . . . 42
3.10 2D synthetic lamellar microstructure visualized in paraview. . . . . . . . . . 42
3.11 3D Lamellar microstructure visualized in paraview. . . . . . . . . . . . . . . 43

5.1 Loss curve obtained for Unet model trained with standard MAE for 4000 epochs. 53
5.2 True and predicted first component of Euler angles (EA0) for Unet with mean

absolute error (MAE) on train data for 4000 epochs. . . . . . . . . . . . . . 53
5.3 True and predicted EA0 for Unet trained with MAE on test data for 4000

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Comparison of true and predicted distributions of EA1 from Unet model with

MAE as loss metric trained for 4000 epochs on train (a) and test (b) datasets. 54
5.5 Loss curve of Unet trained with customized loss function for 2000 epochs. . . 55
5.6 True and predicted EA0 for Unet trained with custom loss function on train

data for 2000 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7 True and predicted EA0 for Unet trained with custom loss function on test

data for 2000 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.8 Comparison of true and predicted distributions of EA1 from Unet model

trained with customized loss for 2000 epochs on train (a) and test (b) datasets. 57
5.9 Loss curve obtained after training cVAE for 3000 epochs. . . . . . . . . . . . 58
5.10 True and predicted EA1 for cVAE on train data after 3000 epochs. . . . . . 58
5.11 True and predicted EA1 for cVAE on test data after 3000 epochs. . . . . . . 59
5.12 Comparison of true and predicted distributions of EA1 from cVAE model after

3000 epochs on train (a) and test (b) datasets. . . . . . . . . . . . . . . . . . 59
5.13 Loss curve obtained after training generator in pix2pixGAN for 3000 epochs 60
5.14 True and predicted EA0 for pix2pixGAN on train data after 3000 epochs. . . 61
5.15 True and predicted EA0 for pix2pixGAN on test data after 3000 epochs. . . 61
5.16 Comparison of true and predicted distributions of EA1 from pix2pixGAN

model after 3000 epochs on train (a) and test (b) datasets. . . . . . . . . . . 62
5.17 Loss curve of critic and generator obtained after training WCGAN for 5000

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.18 True and predicted second component of Euler angles (EA1) (normalized) for

WCGAN on train data after 5000 epochs. . . . . . . . . . . . . . . . . . . . 63
5.19 True and predicted EA1 (normalized) for WCGAN on test data after 5000

epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.20 Comparison of true and predicted distributions of EA1 from WCGAN model

after 5000 epochs on train (a) and test (b) datasets. . . . . . . . . . . . . . . 64

8



5.21 True and predicted EA1 (normalized) for Wasserstein conditional generative
adversarial networks (WCGAN) on train data after 4000 epochs. . . . . . . . 65

5.22 True and predicted EA1 (normalized) for WCGAN on test data after 4000
epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.23 Comparison of true and predicted distributions of EA1 from WCGAN model
after 4000 epochs on train (a) and test (b) datasets. . . . . . . . . . . . . . . 66

5.24 Loss curve obtained after training WCGAN on grain boundary mapping for
5000 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.25 True and predicted mappings of grain boundaries from WCGAN on train data
after 5000 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.26 True and predicted mapping of grain boundaries from WCGAN on test data
after 5000 epochs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.27 Comparison of difference in volume fraction predictions from different models
on test dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 True and postprocessed predictions EA1 from pix2pixGAN on train dataset. 73
6.2 Comparison of misorientation angles (a) and grain size distributions (b) after

postprocessing predicted microstructures from pix2pixGAN on train dataset. 74
6.3 True and postprocessed predictions EA1 from pix2pixGAN on test dataset. . 74
6.4 Comparison of misorientation angles (a) and grain size distributions (b) after

postprocessing predicted microstructures from pix2pixGAN on test dataset. . 75
6.5 Analyzing postprocessed microstructures quantitatively in terms of mean ESD

and number of grains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9



List of Tables

3.1 Value range of microstructure-descriptors. . . . . . . . . . . . . . . . . . . . 35

4.1 Unet architecture with skip connections. . . . . . . . . . . . . . . . . . . . . 46
4.2 Conditional variational autoencoder. . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Discriminator architecture in pix2pixGAN. . . . . . . . . . . . . . . . . . . . 48
4.4 Generator architecture in pix2pixGAN. . . . . . . . . . . . . . . . . . . . . . 49
4.5 pix2pixGAN hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Generator architecture in WCGAN. . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Critic architecture in WCGAN. . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 WCGAN-GP hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Qualitative comparison of generative models. . . . . . . . . . . . . . . . . . . 70

1 Pipeline for single phase synthetic microstructure generation∗. . . . . . . . . 89
2 Pipeline for removal of small features∗. . . . . . . . . . . . . . . . . . . . . . 90
3 Pipeline for generating two-phase 3D microstructures∗. . . . . . . . . . . . . 91
4 Pipeline for generating two-phase 2D slices from 3D microstructures∗. . . . . 92

1 Postprocessing pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

10



Abbreviations

cGANs conditional generative adversarial networks

CNNs convolutional neural networks

cVAE conditional variational autoencoder

DBM deep belief networks

DCGANs deep convolutional generative adversarial networks

EA0 first component of Euler angles

EA1 second component of Euler angles

EA2 third component of Euler angles

EBSD electron backscatter diffraction

ESD equivalent sphere diameter

FEA finite element analysis

GANs generative adversarial networks

JSD Jensen-Shannon divergence

KDE kernel density estimation

KLD Kullback-Leibler divergence

MAE mean absolute error

MLP multilayer perceptron

ODF orientation distribution function

11



PDF probability density function

PSP process-structure-property

RBM restricted Boltzmann machines

RSA random sequential addition

RVEs representative volume elements

SERVEs statistically equivalent representative volume element

VAEs variational autoencoders

WCGAN Wasserstein conditional generative adversarial networks

WGAN Wasserstein generative adversarial networks

12



Abstract

Microstructure reconstruction has been a significant area of research due to its direct usage
in multiscale modeling and micro-mechanical simulations. However generation of 3D
microstructures using experimental methods such as FIB-SEM or X-Ray tomography is a
tedious process, so alternative approaches have been developed for reconstructing 3D
microstructures. In the present work, we attempt to generate high-fidelity 3D
microstructures from 2D images using deep generative modeling approaches such as
variational autoencoders (VAEs) and generative adversarial networks (GANs). Since
obtaining experimental images for training generative models is difficult and expensive,
synthetic microstructures generated by DREAM.3D have been employed for this purpose.
The generative model predicted 3D microstructures, are statistically compared with their
real synthetic counterparts through microstructure-descriptors used previously for
characterizing them. The generative models have been trained on the given data to
efficiently generate 3D microstructures by employing Unet, conditional variational
autoencoders (cVAEs), pix2pixGAN, and Wasserstein conditional generative adversarial
networks (WCGANs) frameworks. The trained Unet model resulted in overfitting, while
the rest were successful in the generalization of data. The trained pix2pixGAN model has
been able to learn the grain structure but is not capable of capturing grain boundaries and
the underlying statistics entirely. Postprocessing techniques are necessitated for
optimization and the formation of a perfect grain-like structure. Besides an algorithm has
been developed as a postprocessing tool to increase the complexity of synthetic
microstructures by introducing lamellae.
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Chapter 1

Introduction

1.1 Motivation
Currently, we are in the fourth paradigm of science which is data-driven, after empirical,
theoretical, and computational paradigms [1, 2]. In the computational paradigm, modeling
of experiments and simulations were developed in materials science to expedite material
discovery and improve the existing high-performance materials. A new field known as
materials informatics [3, 4] has been coined for integrating the techniques from data science
with materials science for representation, parsing, storing and management of material
knowledge systems [5]. In the present data-driven paradigm, quantifying the
microstructure of the complex material has been a primary component for discovering
process-structure-property (PSP) linkages for interlinking different length scales, and
understand the influence of microstructure on its properties and performance
[6, 7, 8, 9, 10, 11, 12]. Data-driven approaches involve the utilization of tools for a better
perception of the information obtained from the previous three paradigms to develop novel
techniques for improved performance.

The microstructural space of a materials system is interdependent on its manufacturing
routes and plays a prominent role in governing its properties and performance.
Microstructure lies at the core of both process-structure and structure-property
relationship, where various 2D and 3D characterization techniques provide a better
understanding of the whole PSP process-chain. Numerous experimental and computational
methods have been developed for this purpose and a vast amount of research is focused on
computational methods for obtaining high fidelity of experimental data [13]. Modeling of
microstructures, particularly 3D ones has been trending as they are employed in multiscale
simulations by serving as representative volume elements (RVEs) in finite element analysis
(FEA) thereby bridging the gap between microscale and macroscale. Acquirement of
high-quality 3D microstructures involves the utilization of various tomography techniques
which are tedious and expensive [14, 15]. For this reason, reconstruction algorithms for the
generation of synthetic microstructures are an active area of research. Advanced algorithms
for synthetic microstructure generation usually comprise probabilistic methods such as
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spatial tessellation algorithms and random sequential addition (RSA) [16, 17, 18]. Initially,
a microstructure is quantified in form of descriptors for characterization, which are further
employed for 3D reconstruction purposes. Due to the advent of the data-driven paradigm,
deep generative models are also employed for reconstruction purposes. Generative
modeling has been trending after the invention of generative adversarial networks [19] and
the development of variational autoencoders [20] for generating artificial images.
Advancements in this field opened a wide range of possibilities in various domains which
were earlier believed to be impossible [21, 22, 23].

This thesis was conducted at Deutsches Zentrum für Luft- und Raumfahrt, Institute
for Test and Simulation of gas turbines, Augsburg where the main focus is on developing
novel aero-engine technologies. Titanium aluminide alloys which are widely used in gas
turbines are considered as the material of interest in this work. Here, we attempt to generate
statistically equivalent 3D microstructures from 2D images by employing deep conditional
generative models. Synthetic microstructures generated by DREAM.3D are employed for
gathering data for training. This is advantageous in terms of encompassing all the variations
possible in practical microstructures. Microstructure-descriptors such as grain size, volume
fraction, and crystallographic orientation of grains are utilized for producing synthetic 3D
and 2D microstructures. The main objective of this work is to develop a deep generative
model framework for generating statistically equivalent 3D microstructures from 2D such that
the statistical information in 2D image is also retained in the 3D microstructure. Besides,
the reconstructed microstructures should not be deterministic and have clearly demarcated
grains.

1.2 Structure of the report
This report is organized in the following chapters. Chapter. 2 gives an overview of the
materials and theory necessary for achieving the objective of this work. The next chapter,
Chapter. 3 discusses the data generation strategies and workflow. Chapter. 4 showcases the
configurations of each model employed in this work. Chapter. 5 presents the results obtained
by training the configured models and discusses the observations. Chapter. 6 introduces the
postprocessing pipeline and Chapter. 7 concludes the thesis with a summary and suggestions
for future work.
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Chapter 2

Materials and Methods

2.1 Materials
In this work, duplex titanium aluminide alloys are considered as the material of interest.
They constitute γ-TiAl and a comparatively smaller amount of Ti3Al in the form of
lamellar and equiaxed α2 grains [24]. These alloys are widely used in automotive and
aerospace domains mainly due to their low density and high creep resistance. Intermetallic
TiAl (Ti-47Al-2Cr-2Nb) has been originally used in low pressure turbine blades (700°C) in
General Electric (GE), GEnx-1B for the Boeing 787 Dreamliner increasing its fuel
efficiency (which is mainly owed to its low weight (≈ 4g.cm-3) compared to nickel-based
superalloys (≈ 8-9 g.cm-3)) [25]. Generally γ-TiAl alloys have three distinct
microstructures namely nearly lamellar (contain globular γ-TiAl with small percent of
α2-Ti3Al grains), fully lamellar (comprises γ-TiAl and α2-Ti3Al lamellae) and duplex
(lamellae colonies of γ-TiAl and α2-Ti3Al globular grains) [26].

The duplex alloys were obtained as a middle ground between nearly and fully lamellar
during improving performance by application of heat treatment processes for the reduction
of coarse structure. The resultant duplex microstructure constitute γ (ordered tetragonal,
L10) and γ + α2 (ordered hexagonal, D019) lamellar colonies.

In comparison with complete lamellar, the nearly lamellar and duplex alloys have low
fracture toughness and creep resistance but better ductility and strength at room and high
temperatures [27]. The family of γ-TiAl alloys is generally alloyed with Nb, Cr, B, C for
improved mechanical properties in strength, creep resistance, and also oxidation resistance.
Achieving duplex TiAl microstructure is a complex process as direct solidification yields
structural inhomogeneities in TiAl and also directional cooling results in a strong texture
which is hard to remove via further heat treatments [28, 29, 30, 31]. These mechanical
properties are influenced by the microstructure parameters such as mean grain diameter, the
volume fraction of lamellar grains, and inter-lamellar spacing which are further dependant
on the heat treatment methods employed during its preparation [32]. The phase diagram of
the TiAl alloy system is depicted in Fig. 2.1 and in the present work, the composition of Al
in the TiAl alloy system is chosen to be 43-48 %. It can be inferred from Fig. 2.1, that at
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this selected composition, the TiAl alloy microstructure consists of α2 and γ phases.

Figure 2.1: Phase diagram of TiAl alloy system [33].

2.2 3D Microstructures in multiscale modeling
Multiscale modeling constitutes hierarchical modeling at different length scales for the
accurate prediction of its properties. The 3D volumes of microstructures are quintessential
in multiscale modeling as they are employed as RVEs in crystal plasticity finite element
analysis and homogenization methods which plays a major role in continuum mechanics.
This idea of utilizing a small part of a material as an average representation of complete
material was first introduced in 1963 by Hill [34] and further developed by Hashin and
Shtrikman [35, 36] who proposed considering the morphology of RVEs as a reference cube.
RVEs should be a miniature of the complete structure and exhibit properties (i.e., volume
fraction, stresses, and strains) identical to the whole. The primary assumption in RVEs is
that the internal spatial alignment is periodic and a single unit of RVEs should carry all
the required information, representing the whole geometry [37]. In cases where there are
severe structural inhomogeneities or gradient microstructures, the underlying assumptions
in RVEs couldn’t accurately model the relationship between failure predictions and
experiment results.

Furthermore, Willis [38] initiated a novel strategy of using a two-point probability
function as statistically equivalent representative volume element (SERVEs) to incorporate
the arbitrary deviations in composite microstructures. Since all arbitrary RVEs are not
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able to accommodate the microstructures with irregularities or complexities, SERVEs can
be applied to determine precise homogeneous attributes and can be further employed in
micro-macro modeling [39]. As the name signifies SERVEs comprise essential statistics
representing the complete microstructure i.e., local distribution functions of descriptors of
internal structure (such as nearest neighbor distances, volume fraction, radial distributions)
should be similar to the whole. The ergodic hypothesis states that; supervising a stochastic
system for a long time results in the same statistical measures when a single independent
instance of that system is considered over that time [40, 8]. This permits scrutinizing a
single randomly chosen instance from an ensemble, for calculating the average function
over the complete space by relating it to the volumetric average. Fig. 2.2 illustrates where
a point in the macrostructure materializes into a microstructure with subtle details and
ergodic hypothesis is invoked to solve the problem of RVEs with the local boundary
conditions.

Figure 2.2: Multiscale finite element method (FEM) for interlinking microscale and
macroscale using top-down (homogenization techniques) and bottom-up (Boundary value
problems) approaches [40].

2.3 Methods for microstructure characterization and
reconstruction

Microstructure characterization and reconstruction comprise quantifying microstructure by
exploiting accessible parameters and further employing them for reconstructing a 3D
microstructure. It has several applications in materials modeling such as determining a
constitutive law for characterizing a homogenized response of heterogeneous material,
develop material systems with desirable properties, and so on [40]. The randomness in a
microstructure gives rise to probabilistic material properties and performance which
provides a need for preserving their statistical behavior. As such, an ensemble of
microstructures is necessary for capturing the randomness and predicting their properties
(by finite element method) and further construct PSP linkages.
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2.3.1 Microstructure characterisation using descriptors
Microstructure characterization involves determining parameters from a microstructure that
provide a physical significance and can be used for quantitative comparison. Quantifying the
internal structure of material using the descriptors is a cumbersome process as they should
efficiently represent an ensemble of 3D cross-sections extracted from the specimen. So, they
should inevitably be statistical as they must capture the distributions of properties from the
internal structure of the material [8, 41, 42, 43, 44, 45]. Microstructure-descriptors are the
parameters defined for quantifying microstructure in a consistent manner and comprehend
the relationship between material internal structure and its properties and also effective
for quantitative comparison [46]. In simple terms, these are the functions that represent a
microstructure and are selected in such a manner that a minimum number of descriptors
encompasses a majority of information of microstructure. The microstructure-descriptors
are classified into statistical and physical. The statistical descriptors capture the spatial
correlations between different points in a microstructure while the physical descriptors utilize
the physically comprehensive functions in one, two, and higher dimensional spaces. The
selection of descriptors is a heuristic process, mainly dependant on the type of material and
specified application [40]. In general, the aggregate values of descriptors are determined for
quantifying and designating a microstructure [47]. The information from these descriptors is
conveyed to formulate a reconstruction algorithm capable of generating required statistically
equivalent microstructures. The fidelity of the generated microstructures is then calibrated
with mechanical simulations to determine inconsistencies.

2.3.1.1 Statistical descriptors

Statistical descriptors comprise two-point correlation functions, lineal path functions,
cluster correlation functions, and so on. Reconstruction using statistical descriptors is
principally a stochastic optimization problem by modifying an initial image to minimize a
cost function. Yeong and Torquato (YT) method is one of the prominent optimization
methods for reconstruction using statistical descriptors. Intuitively, correlation functions
define correlations between random values. For instance, N random points are dispersed in
a microstructure for an adequate number of times, and the probability of these points
falling into a phase Pi have been calculated and the statistical probability function is
termed as one-point correlation function.

P 1
i = Ni

N

∣∣∣∣
N→∞

= vi (2.1)

This equation is analogous to calculating volume fraction of phase i. Volume fraction of
phase i is calculated by the formula

vi = V i/V tot

where Vi denotes the volume of phase i and sum of all volume fractions should be unity.
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In a similar manner, instead of N random points, N random line vectors with length r
are thrown simultaneously in a microstructure, then the probability that both the ends of
line vector fall on a particular phase x and y respectively is denoted as Two-point correlation
functions [48].

P 2
xy(r̄) = Nxy

N

∣∣∣∣
N→∞

, r̄ = |ry− rx| , rx ∈ x and ry ∈ y (2.2)

here rx and ry are the edges of the line vector and present in phase x and phase y respectively.
Compared to one-point correlations, they provide further information and are normalized
by two constraints. The first is that the sum of all feasible probabilities adds up to one and
the second constraint is that the probability function should be symmetric [49]. Two-point
correlation functions provided a major breakthrough in microstructure characterization as
they provide an elegant way of describing microstructure [50, 51]. The stochastic nature of
this function is rewarding in precisely characterizing an ensemble of 3D microstructures to
the corresponding 2D images. The success of two-point correlations led to the development
of stochastic algorithms for optimizing the difference in correlations between 2D and 3D
microstructures. But this method is not completely foolproof, as the degeneracy of the
two-point correlation function resulted in impractical results [52]. For more information
related to statistical functions kindly refer [8, 49].

2.3.1.2 Physical descriptors

The main motivation for choosing physical descriptors is the existence of a large number of
descriptors and strong correlations between them [5]. They give a better intuition, and are
classified into deterministic (characterized using a single numerical value) or statistical
(characterized by a distribution function). The descriptors such as volume fraction, surface
area, and the number of clusters pertain to deterministic category. Whilst the latter
comprises of nearest cluster center distance, orientation angles, and geometry-based
descriptors such as aspect ratios, pore sizes and so on. They are further divided into
high-level descriptors (such as volume fraction) which designates for the whole
microstructure and low-level descriptors (such as grain size) are assigned to individual
grains.

Initially, image segmentation techniques were widely employed for microstructure
characterization to determine objects in the microstructure such as lines, clusters and
edges. It is followed by the analysis of the aforementioned objects to retrieve the magnitude
and distribution of deterministic and statistical descriptors respectively. In order to achieve
high fidelity of microstructures, the selected descriptors should not be correlated and
supply adequate information to eliminate uncertainty in generating PSP linkages.
Stereological methods can be utilized to enable reconstruction of 3D microstructures from
2D images by making certain assumptions of geometrical features in 3D and determine
various 3D objects from the corresponding 2D objects [53, 54]. In polycrystalline materials,
grain-related features such as grain size, shape, and crystallographic orientation are
extensively employed as descriptors and their influence on properties is thoroughly

20



investigated [55]. Finally, reconstruction of 3D microstructure is achieved by evolving the
initial structure to predict its descriptors to that of the target ones.

In this work, a processed image from electron backscatter diffraction (EBSD) is
employed. This image depicts contrast at each individual pixel as the intensities are based
on their individual diffraction or scattering events [56]. So, in order to reconstruct a 3D
microstructure from the given 2D image; volume fraction, equivalent sphere diameter (in
microns), and Euler angles in orientation distribution function (ODF) are selected as
microstructure-descriptors. The volume fraction is chosen due to its capability in
representing a homogenized property of material while ODF and equivalent sphere
diameter capture the heterogeneities across the microstructure. The ODF denotes
crystallographic texture in each grain and equivalent sphere diameter represents the
diameter of a sphere with equivalent volume (generally defined for an irregularly shaped
object). The chosen descriptors play a significant role in determining the
structure-property (S-P) linkages as they are known to be relevant for the mechanical
properties of polycrystalline materials. Firstly, volume fraction determines the formation of
phases in the resultant microstructure which directly controls the mechanical properties of
the material. Secondly, mean equivalent sphere diameter (ESD) affects the strengthening
mechanisms by grain boundaries as the strength of alloys decreases with grain size [57].
Finally, ODF gives the information regarding misorientations that controls the texture or
topography of the material thereby defining the isotropic and non-isotropic behavior of the
materials. The volume fraction of 3D and 2D can be compared directly by calculating the
area of respective phases, but for a quantitative comparison of grain diameter and ODF,
the distributions of the Euler angles in the resultant 2D and 3D needs to be analyzed.
When visualizing the Euler angle components in ODF, the EA0, third component of Euler
angles (EA2) exhibited a uniform distribution while EA1 displayed a Gaussian distribution.
So, EA1 is particularly selected and customized accordingly for synthetic data generation.

2.3.2 Microstructure reconstruction approaches
Synthesis of 3D microstructures from experimental methods is a time consuming and
tedious process as experimental techniques consist of serial sectioning techniques or
utilizing X-Ray tomography [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. Serial
sectioning techniques involve automatic progressive slicing followed by scanning them using
appropriate microscopic methods. Regardless of the above mentioned disadvantages, these
techniques are not employed due to their inadequacy of providing a comprehensive
representation of the entire samples [71].Therefore there is a need for the development of
computer-aided 3D reconstruction methods from statistical information. Since 2D
microstructure images are easily obtained from the experimental image analysis techniques,
they can form a basis for 3D reconstruction.

This 3D reconstruction from specific 2D microstructural information has been a classic
inverse problem with numerous applications in improving material design and the solution
for this complicated task is non-unique [72]. Initially, Gaussian filtering methods using
correlation functions were employed for this purpose [73, 74]. Yeong et al. [75] applied
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optimization algorithms for 3D reconstruction by employing two-point correlation functions
as a descriptor for 2D slices. Following this, simulated annealing algorithms, support vector
machines and Monte Carlo methods were employed for 3D microstructure reconstruction
[76, 46, 77]. The accuracy of the simulated 3D reconstructions depends mainly on the
chosen set of descriptors, and how efficiently they are able to represent the microstructure.

Quey et al. [16] presented an efficient approach for synthetic microstructure generation
using spatial tessellation algorithms which is quite effective for simple microstructures.
Random sequential addition (RSA) is an update to the tessellation methods which has the
capability to produce microstructures with convex and non-convex grain structures but has
a limitation regarding the requirement of large computational resources [17, 18]. Prasad et
al. [78] developed a python package for generating complex polycrystalline microstructures
by employing a collision-driven particle dynamics approach. In annealing algorithms,
particle size distribution obtained from 2D image is employed for emulation of powder
processing [53]. These algorithms employ statistical distributions related to grain size
distributions, aspect ratios, neighbor distances, and orientation distribution functions for
simulating grain growth in 3D (depicted in Fig. 3.2). This generalized method is mainly
restricted to polycrystalline materials and furthermore, there is a loss of geometric data as
irregular shapes are generalized as ellipsoids, and complex grain shapes are defined using
mean diameters and aspect ratios. The left part in Fig. 2.3 illustrates 3D synthetic
microstructure of 192× 192 × 192 obtained from DREAM.3D and the right part is the 2D
slices obtained by slicing the 3D microstructure along x= [1,48,96,144,192].

Figure 2.3: Synthetic microstructures obtained from DREAM.3D.

Lately, deep learning based generative models such as variational autoencoders [79] and
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generative adversarial networks [80] have spiked the interest of material scientists
exploiting their potentialities in the synthesis of artificial microstructures. These generative
models are more generalized compared to the previously mentioned reconstruction methods
as they learn the underlying distributions of the given dataset. Initial works in this domain
include Tang et al. [81] employing GANs for microstructure material design, Cang et al.
[82] utilized variational autoencoders (VAEs) for generating artificial microstructure
samples of sandstones and Singh et al. [83] applied Wasserstein GANs for a two-phase
heterogeneous isotropic material. Iyer et al. [84], used conditional Wasserstein GANs with
gradient penalty for generating microstructures based on the given processing method, and
Fokina et al. [85] employed StyleGAN architecture for the synthesis of multiphase
gray-scale microstructures. Mosser et al. [86, 87] applied GANs for generating 3D
representative volumetric models of limestone. Gayon-Lombardo et al. [88] generated
n-phase 3D microstructures of solid oxide fuel cell by using deep convolutional generative
adversarial networks (DCGANs). Recent works include microstructure generation of
heterogeneous and topologically complex materials using GANs by Hsu et al. [89] and
developing a new GAN framework termed as sliceGAN by Kench et al. [90]. In the present
work, deep learning based generative models such as GANs and VAEs, and Unet have been
employed for microstructure reconstruction.

2.4 State of the art generative modeling methods
Machine learning (ML) has reached a level where it is not only capable of learning
significant information from high dimensional data and predicting outcomes, but also
proficient in learning distributions for generating new data from the underlying data
distribution. These models primarily involve generating new data from existing data by
learning intrinsic patterns and are termed, generative models. Generative modeling
constitutes a statistical model for determining a probabilistic distribution P (X,Y ) between
observations X and targets Y and another model for computing conditional probability
P (Y |X = x) whether a given observation x belongs to a target label Y . The first model is
called the generative model while the latter is termed the discriminative model. In simpler
terms, generative models learn the probability distributions of the target data and generate
data while discriminative models ensure that the generated data complements underlying
distributions. There are several methods in this domain namely restricted Boltzmann
machines (RBM) [91, 92], deep Boltzmann machines [93], deep belief networks (DBM) [92],
Bayesian networks [94], GANs [80] and VAEs [79, 20] have been employed. A brief
introduction to the methods implemented in this work is described in the subsequent
sections.

2.4.1 Unet
Unet was initially invented for biomedical image segmentation by Ronnenberger et al. at
Computer Science Department and BIOSS Center for Biological Signalling Studies, the
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University of Freiburg [95], it mainly performs segmentation tasks in images by providing
class labels to each pixel. Unet framework is similar to autoencoder with an
encoder-decoder assembly but in contrast to autoencoder, the decoder cannot be
stand-alone generative model due to the employment of skip connections. Its name comes
from its architecture which consists of a symmetrical contracting path (downsampling) and
expansive path (upsampling) which forms a U-shaped architecture. Additionally, skip
connections are employed between the downsampling (encoding) and upsampling
(decoding) paths to provide access to the elementary features obtained previously from the
encoder. The Unet architecture is illustrated in image 2.4. In this network, the input
traverses through a series of layers that gradually decreases dimensions, i.e., downsampling
path, until it reaches the bottleneck layer where the process is inverted, i.e., the dimensions
are increased until it reaches the required size which is termed as an upsampling path. In
this whole process, it is essential that a fair amount of information from the lower levels
should be passed on to higher levels directly, and skip connections are mainly employed for
this reason. In this work, the Unet is modified accordingly to generate a 3D microstructure
from a 2D microstructure.

Figure 2.4: Unet architecture from original paper [95].
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2.4.2 Variational autoencoders (VAEs)
In general, an autoencoder is a combination of encoder and decoder where encoder
transforms the given feature space into lower dimensions while the latter reconstructs them
to original dimensions [96, 97]. In deep learning regime, encoder and decoder can be
represented by neural networks and this model can be functional for applications such as
dimensionality reduction and denoising of images [98]. For instance, autoencoders can be
used for dimensionality reduction by the creation of bottleneck for data that there is no
significant loss of information and also efficient in reconstruction w.r.t original data
[79, 20]. The bottleneck layer, which is also referred to as latent space is obtained after
encoding the data and acts as a starting point for decoding process. It is quintessential as
it constitutes the major part of the information in form of reduced representations. The
main objective of autoencoders is two-fold, firstly, to develop a model with zero
reconstruction loss is not strictly advised as the model is not regularized and secondly, the
model should preserve the essential feature information and be efficient in pattern
recognition. The main drawback with the autoencoders is that they cannot generate new
data and are mainly focused on reproducing the same input as their latent space is not
generalized enough to create data which is a case of severe overfitting. Variational
autoencoders (VAEs) are autoencoders that are trained in a regularized manner and
capable of generating data by minimizing overfitting and ensure preserving significant
feature information in the latent space. In contrast to autoencoders which results a data
point as output, VAEs output a distribution over a latent space, from which a random
point in the distribution is considered for decoding. This technique of sampling from a
distribution over a latent space generalizes the output and reduces overfitting.

For models which generate data from latent dimensions, learning complicated
dependencies between dimensions is significant to accurately represent our dataset as there
can be one or many settings of latent variables to generate meaningful data [20, 23, 79]. In
mathematical terms, each data point X after encoding results in a latent space denoted by
Z which represents a probability density function (PDF), P (z) on latent variables z
defined over Z. These latent variables z represent a group of deterministic functions f(z;θ)
in space Θ (obtained after decoding) where f : Z ×Θ → X . In the above equation f
results in a single point for a certain z and θ, and z is random and θ is fixed. To achieve a
high probability of P (x) while sampling z; θ should be optimized, so the deterministic
functions f(z;θ) should be considered as inputs Xs in our dataset and the equation of
probability is given by

P (X) =
∫
P (X | z;θ)P (z)dz (2.3)

In the Eqn. 2.3, by utilizing probability rule P (X | z;θ) distribution is substituted for
f(z;θ), to explicitly include the dependency of z and X. If the model is adept in the
generation of training data with less reconstruction error, it is more likely to generate similar
outputs with different inputs rather than less meaningful ones. This is known as maximum
likelihood and generally the distribution P (X | z;θ) is Gaussian which is characterized by
mean f(z;θ) and covariance σ2. This assumption of Gaussian distribution is useful in using

25



the gradient descent method for improving probability P (X) by constraining the f(z;θ) to
generate plausible X for some z such that it can be used as a generative model. P (X) in
Eqn. 2.3 is quite complicated to calculate directly, so a new function Q(z |X) is introduced
to calculate a value in X and provide a distribution over z values that can approximate X.
It is obvious that the values Q takes are comparatively smaller space than before. This can
be solved easily by computing the expectation of Ez∼QP (X | z) which can be obtained from
Kullback-Leibler divergence (denoted by D) between P (z |X) and Q(z).

D[Q(z)‖P (z |X)] = Ez∼Q[logQ(z)− logP (z |X)] (2.4)
By application of Bayes rule on P (z |X); P (X) and P (X | z) can be included in the Eqn.
2.4. The main objective function of VAEs is given by solving the Eqn. 2.4 and can be further
reduced to Eqn. 2.5.

logP (X)−D[Q(z |X)‖P (z |X)] = Ez∼Q[logP (X | z)]−D[Q(z |X)‖P (z)] (2.5)

Figure 2.5: Variational autoencoder as a generative model [23].

Fig. 2.5 demonstrates VAEs with two different sampling approaches where the red color
refers to non-differentiable layers and blue color corresponds to loss layers. The right one
denotes sampling method in which latent variable is sampled directly from mean µ(X) and
covariance Σ(X) ofQ(z|X) i.e., N (µ(X),Σ(X)) and in the left part latent variable is sampled
from the formula z = µ(X) + Σ1/2(X) ∗ ε where ε ∼ N (0, I); µ(X) and Σ(X) denote mean
and covariance of output distribution of encoder respectively. This reparameterization of z
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on right side of the Fig. 2.5 allows differentiation and hence they can be back-propagated.
However, this is not the case in the left part of the figure as there are no random variables.
The first loss, KL[N (µ(X),Σ(X))||N (0, I)] is termed as Kullback-Leibler Divergence loss
while the second loss, ||X−f(z)2|| is termed as reconstruction loss.

2.4.2.1 Conditional variational autoencoders

In order to impose a certain condition on the generated output from the VAEs and still
satisfy one-to-many mapping, the conditional variational autoencoders (cVAE) are
introduced [99]. In conditional variational autoencoder (cVAE), the label of the input is
provided as a condition for both encoder and decoder. The math of VAEs is adjusted to
accommodate this condition while generating output. The objective function is presented
in Eqn. 2.6, where Y is the output label and the modified framework is demonstrated in
Fig. 2.6. In cVAE, the output label Y is embedded with both encoder and decoder inputs,
and additionally, the loss function is also modified to include the given condition.

logP (Y |X)−D[Q(z | Y,X)‖P (z | Y,X)] =
Ez∼Q(·|Y,X)[logP (Y | z,X)]−D[Q(z | Y,X)‖P (z |X)] (2.6)

Figure 2.6: Conditional variational autoencoder [23].

2.4.3 Generative adversarial networks
Ian Goodfellow et al. developed GANs in 2014 [80], which became an instant success that
they can be described as the biggest development in the field of deep learning in the last
decade. The basic idea of GANs is that two neural networks namely generator and
discriminator compete with each other in a zero-sum game to generate realistic data. The
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generator produces data with noise as input while the latter acts as a classifier whether the
generated data is plausible or not. The objective of the generator in GANs is to learn the
distribution Pg over the given data points X and then define a mapping to a data space
G(z;θg) on predefined input noise distribution Pz(z), where G is a differentiable function
represented by a multilayer perceptron (MLP). A discriminator D(x,θ) returns a scalar
which signifies whether x is from Pg or given data. The main intention of the discriminator
is to maximize this probability of classifying training data and generator outputs
accurately. In simpler words, the generator tries to generate realistic data from noise pz(z)
by mapping it to a data space G(z;θ) and discriminator D(x;θ) ensures that x corresponds
to the training distribution. The objective function of GANs is quantified by V (G,D) in
Eqn. 2.7 and it is nearly non-convex. The optimization of GANs is a complex process as
there is always a possibility of multiple local optima and a wide amount of research is
focused on that area [21, 22, 100].

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] +Ez∼pz(z)[log(1−D(G(z)))] (2.7)

Figure 2.7: Evolution of training process of GANs: (a) The green line represents the
generative distribution Pg, the blue dashed line represents discriminator distribution between
the generated data and real target distribution, the black dotted normal distribution is
the given data distribution and the below lines represent the orientation of latent space z
domain. (b) Initially, the discriminator classifies the generated data and given data easily
and the generator is updated with the discriminator feedback. (c) As training progresses,
the feedback from discriminator updates generator by governing the gradients to proceed to
locations in space, converging the objective function and generating plausible data. In the
ideal case, after multiple training iterations, the generator learns intricate patterns in the
data distribution by incorporating discriminator responses and mapping latent variables non-
uniformly to resemble the given data distribution. (d) Finally, generator and discriminator
converge implying that the generator is able to produce realistic distributions w.r.t training
data by deceiving the discriminator. The global optima of GANs is reached when pg = pdata
[80].

.
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In the initial training stages, the generator learns the mapping between the latent
variables and data space slowly while the discriminator easily differentiates targets from
generator outputs. The weights of the generator are not updated directly by optimizing
generator loss but through the objective function of the discriminator. As training
progresses, the generator optimizes its objective function by producing better plausible
outputs and it becomes more challenging for the discriminator to detect generated ones
from real targets i.e., in Eqn. 2.7 the second term log(D(G(z))) increases. The training of
GANs is a complex process, figure 2.7 depicts training of GANs. However, this is not the
case in general, as the training process is not as smooth as it seems and suffers from
various limitations.

2.4.3.1 Conditional generative adversarial networks

The GANs framework discussed in Section. 2.4.3 utilizes multi-layer perceptron in both
discriminator and generator and there is no restraint on the output generated [101]. This
can be achieved by employing a conditional probabilistic generative model by conditioning
the input in such a manner that the one-to-many mapping between the input and output is
substituted by a conditional prediction. This can be achieved by providing both
discriminator and generator with supplementary information of output label y, this y can
be any kind of information that is sufficient for obtaining a specified output. As a result,
the generator is provided noise pz(z) combined with y as an additional input layer this
permits the GANs for substantial flexibility in representing the hidden distribution. In a
similar manner discriminator is also provided with inputs x and y and the objective
function given in 2.7 of GANs is adjusted as 2.8 and architecture of conditional generative
adversarial networks (cGANs) is illustrated in 2.8. In recent times, numerous cGANs have
been developed each corresponding to its own applications.

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x | y)] +Ez∼pz(z)[log(1−D(G(z | y)))] (2.8)
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Figure 2.8: Conditional GANs [101].

2.4.4 pix2pixGAN
Isola et al. [102] developed pix2pixGAN in 2017 for image-to-image translation tasks by using
cGANs. There have been other GANs developed for image-to-image translation without
conditional setting and also generated remarkable results in image inpainting [103], future
state prediction tasks [104], style transfer [105] and image superresolution [106]. Apart from
these applications, pix2pixGAN can be used for a wider range of applications which include
coloring black and white images, generate photos from mapped labels, conversion of google
maps to aerial images, reconstituting images from edge maps, etc. [102]. It carries the
basic idea of GANs i.e., discriminator attempting to quantify a loss that classifies whether a
given image is real or fake, meanwhile synchronously training generator to reduce that loss.
This cGANs assimilates mapping from input to output image by training a loss function,
it is termed as pix2pix since it predicts pixels from pixels. pix2pixGAN constitutes Unet
(described in Section. 2.4.1) as the generator and a PatchGAN as a classifier in discriminator.
The idea of PatchGAN discriminator is motivated from Markovian GANs [105] where it is
proposed first. It utilizes patches of shape N×N in the image for classification to determine
whether it is real or fake, i.e., the discriminator traverses convolutionally across the patches
of the image and returns aggregate of their results. This exploits the correlations between
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the patches contextually and allows faster learning [102].

2.4.5 Wasserstein GANs
Wasserstein generative adversarial networks (WGAN) were developed by Arjovsky et al.
[100] to overcome certain limitations pertaining to model stability, mode dropping
phenomenon and vanishing gradients observed during training of GANs. In WGAN,
Wasserstein distance is employed to improve stability in training. The main objective of
GANs is to minimize the distance between a model distribution and target distribution,
and training of GANs is dependant on the type of distance metric chosen ad hoc. The
selected definition of the distance metric significantly influences the convergence of model
distribution towards real distribution and for this reason that it should be continuous. For
instance; VAEs minimize Kullback-Leibler divergence (KLD) and GANs use
Jensen-Shannon divergence (JSD) as objective function [80]. Wasserstein distance or also
termed as Kantorovich–Rubinstein metric is used as the distance metric in WGAN, this
improved stability of training GANs and also led to faster convergence.

The mathematical equations of different distance metrics between two probability den-
sity distributions Pr,Pg ∈ Prob(X) where X is the set compassing image space [0,1]d are il-
lustrated below.

• The Total Variation (TV) distance

δ (Pr,Pg) = sup
A∈Σ
|Pr(A)−Pg(A)| (2.9)

Here Σ denotes the set of all Borel subsets of X [100]

• The Kullback-Leibler (KL) Divergence

KL(Pr‖Pg) =
∫

log
(
Pr(x)
Pg(x)

)
Pr(x)dµ(x) (2.10)

where Pr and Pg are distributions of real and generated respectively. This divergence
becomes asymmetric and discontinuous when Pg = 0

• The Jensen-Shannon (JS) Divergence

JS (Pr,Pg) =KL(Pr‖Pm) +KL(Pg‖Pm) (2.11)

where Pm = ((Pg +Pr)/2) and JS divergence is symmetric.

• Earth-Mover (EM) Distance or Wasserstein-I

W (Pr,Pg) = inf
γ∈Π(Pr,Pθ)

E(x,y)∼γ [‖x−y‖] (2.12)

where Π(Pr,Pg) are a group of joint distributions and distance between those two are
measured by Y (x,y) where Y specifies the amount of mass required to be carried from
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x to y such that the distribution Pg is equivalent to Pr. EM distance is the cost of this
movement. It is better understood by visualizing the real and generated distributions
as heaps of sand. The objective is achieved by transforming the generated distribution
to target distribution. The Wasserstein distance is measured by the minimum cost of
this transformation by calculating the amount of sand that is required to be transported
and due to this analogy, it is also known as earth mover’s distance.

In WGAN, the value function is defined by Kantorovich-Rubinstein duality [107]

W (Pr,Pθ) = min
G

max
D∈D

Ex∼Pr [D(x)]−Ex∼Pθ [D(x)] (2.13)

In the above Eqn. 2.13, D corresponds to 1-Lipschitz functions and Pg denotes the
generated model distribution. In WGAN discriminator is renamed as critic as its function
is not to classify but minimizing the value function w.r.t the generator i.e., minimizing
W (Pr,Pg). In the original WGAN paper, Lipschitz constraint is enforced by weight clipping
in critic by clamping weights in a fixed interval (for instance say weights W ∈ [−0.01,0.01])
after each gradient update. But using weight clipping as a constraint resulted in optimization
issues in training [22]. An alternative to weight clipping is presented by Gulrajani et al. [22]
in 2017 as an improvisation to the original WGAN paper by penalizing the gradients. It
constrains the norm of critic’s output gradient w.r.t its input. The equation is depicted in
Eqn. 2.14 and λ is a gradient penalty coefficient which can be considered as an additional
hyperparameter determined by heuristic process [22].

L= E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
Original critic loss

] +λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2−1)2]

︸ ︷︷ ︸
gradient penalty

(2.14)
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Chapter 3

Data generation

This chapter explores the methods for data generation using DREAM.3D software and as
discussed in the Chapter. 2, microstructure-descriptors such as volume fraction, grain size
distribution (mean equivalent sphere diameter), and orientation distribution function are
varied in their respective space to synthesize 3D and corresponding 2D microstructures. The
main reason for selecting synthetic microstructures is their easy accessibility and feasibility
of constructing them with specified statistics.

3.1 Sampling strategy
DREAM.3D is a software that is based on the filter-pipeline principle and focuses mainly
on polycrystalline microstructures. Each filter performs a particular task and a combination
of one or more filters constitutes a pipeline for addressing multiple issues together. Stats
Generator is one of the main filters for artificial microstructure generation, by employing a
series of descriptors. Based on the selected descriptors, DREAM.3D synthesizes an equivalent
3D by solving a multi-objective optimization problem, since a number of descriptors can be
considered for synthetic building, arguably the software can be treated as the most accurate
one for the analysis of polycrystalline microstructures. However, when a number of larger-
sized synthetic 3D microstructures is expected to cover a wide range of descriptor-space,
the pipeline cannot always provide globular-like grains. This issue complicates the data
generation strategy, so the whole process has been divided into smaller parts by employing
python scripts wherever necessary.

In this work, we are concerned with volume fraction, grain size distribution and
orientation distribution function. Analyzing the statistics of a few duplex TiAl alloys, we
fixed our data-space, where the range of pure γ-grains was 60-70%. On the other hand, the
range of mean ESD was selected in between 6-11 µm. Regarding the orientation
distribution, we observed that the first and third components of Euler angles, i.e., EA0 and
EA2 are uniformly distributed, that’s the main reason for not varying the space of these
two components. The middle component, i.e., EA1, showed a Gaussian like distribution
where we tried to generate four more sets of EA1 by varying the distribution patterns
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slightly, after observing a real duplex alloy. The selected plausible values for the
microstructure descriptors are illustrated in Table. 3.1. The variation of EA1 is also shown
in Table. 3.1, corresponding distribution patterns are shown in Fig. 3.1.

Regarding the whole workflow of data generation, we had to apply few tricks, since 3D
synthetic generation from a 2D image directly did not give high-fidelity outcomes. Initially,
a single-phase 3D image has been generated then it has been converted to two phases by
stochastically switching phases to achieve the expected volume fraction. Apart from grain
size distribution and ODF parameters, several statistical measures are available for describing
microstructure. In order to get a greater extent of information from EA1, it is exploited by
altering its mean and the maximum frequency of the EA1. The ODF space of EA1 is
explored and modified w.r.t its mean and frequency of EA1 values shown in Fig. 3.1. The
initial ODF file has statistics of mean of EA1 0.7 and a maximum frequency of 120 between
EA1 values 0.6 and 0.7. The ODF is altered in such a manner to accomplish an average EA1
component of 0.6 and 0.8 (irrespective of maximum frequency) and the maximum frequency
of original ODF to 100 and 130 (with mean of EA1 as 0.7).

Figure 3.1: EA1 component of ODF distribution. X-axis represents the EA1 values (in rad)
and Y-axis represents the frequency of EA1 values in those respective intervals∗.
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Table 3.1: Value range of microstructure-descriptors.

Microstructure-descriptor Range of values
Volume fraction 0.6, 0.62, 0.64, 0.66, 0.68, 0.7

Mean ESD 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11

EA1

mean = 0.6 & Max freq = 125
mean = 0.8 & Max freq = 110
mean = 0.7 & Max freq = 120
mean = 0.7 & Max freq = 130
mean = 0.7 & Max freq = 100

3.2 Synthetic microstructures using DREAM.3D
DREAM.3D [17] is an open-source software package with several utilities for processing,
fragmenting, quantifying, representing, and manipulating microstructures. It is developed
in such a manner that enables the user to develop pipelines constituting independent filters
(each performing its own function). Its interface is user-friendly and accessing their
tutorials provides a better understanding allowing users to build pipelines according to
their requirements. Synthetic microstructure generation is one of the significant primary
features of DREAM.3D which offers flexibility in constructing microstructures with given
parameters. This work exploits the synthetic microstructure generation feature of
DREAM.3D for data generation.

For synthetic microstructure generation, firstly the Stats Generator filter from
DREAM.3D is employed to designate a set of statistics that can be utilized for
constructing required synthetic microstructures. This filter allows the user to select
different statistics associated with grain size and shape distributions, nearest neighbor
distances and so on. It employs feature packing algorithms to instantiate features and then
optimize the shapes, sizes and morphology-based on the given statistics [108]. As discussed
in the previous chapter; volume fraction, grain size distribution, and grain orientation
distribution functions are chosen as microstructure-descriptors. The grain size distribution
tab in Stats Generator filter is modified accordingly by adjusting the mean and standard
deviation parameters of the diameter of the sphere (which has the equivalent volume of the
grain). In this work, the geometry of 3D grains is assumed to be ellipsoid and the custom
ODF file is given as input. Fig. 3.2 and 3.3 illustrate the inputs in grain size distribution
and ODF tabs respectively in Stats Generator filter for generating a synthetic
microstructure with mean ESD equal to 11 (obtained by modifying the mu and sigma
fields). After the generation of a synthetic single-phase 3D microstructure, the volume
fraction is introduced by altering the phases of arbitrary grains by a python script.
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Figure 3.2: Grain size distribution tab in Stats Generator filter in DREAM.3D.

Figure 3.3: ODF distribution in Stats Generator filter in DREAM.3D.

3.2.1 Synthetic two-phase microstructure generation
The complete process is summarized in the steps below.

1. Initially a single-phase synthetic 3D microstructure of size 192x192x192 has been gen-
erated in DREAM.3D by using filters mentioned in the Table. 1 in Appendix A.
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2. Secondly another pipeline is employed for the removal of small features by merging
them with existing grains and the filters employed are shown in Table. 2 in Appendix
A.

3. Phases are altered in the resultant microstructures to achieve the required volume
fraction and this alteration is performed using python.

4. After the conversion of single phase to dual-phase microstructure, values of
microstructure-descriptors are calculated using a third pipeline which comprises
filters described in Table. 3 in Appendix A.

5. Finally a fourth pipeline is built for slicing the synthetic 3D dual phase microstructure
to get a 2D synthetic 2 phase microstructure which also calculates the respective values
of microstructure-descriptors for that 2D slice. The filters associated with this pipeline
are described in Table. 4 in Appendix A.

6. The slicing procedure is performed on an iterative basis where the 3D volume is sliced
sequentially along 3 directions. The obtained microstructure-descriptor values of 2D
slice are then compared with that of corresponding 3D values and the 2D slice with
the least Euclidean difference is selected.

All the above processes have been automated in python script using pipeline runner feature
from DREAM.3D. The above mentioned entire process is illustrated in a flowchart demon-
strated in Fig. 3.4.

37



Generate 3D single phase 
microstructure

Conversion of single phase 
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Figure 3.4: Flowchart demonstrating the data generation process∗.

3.2.2 2D vs 3D comparison
After generating statistically equivalent 2D slices from the corresponding 3D microstructures,
the microstructure-descriptors are computed and visualized. Euclidean distance between
2D slices and their respective 3D volumes has been calculated by summing the differences
between microstructure-descriptors in 2D and 3D, i.e., ||d2d− d3d||2, where d = [∅,ρ,ϕ]T
where ∅, ρ, ϕ denote volume fraction, mean ESD and mean EA1 respectively. Fig. 3.5,
3.6 and 3.7 represent the values of microstructure-descriptors calculated from 3D and 2D
synthetic microstructures. Fig. 3.8 shows the Euclidean distance between 3D volumes and
their 2D counterparts. It can be observed that Fig. 3.7 there is no ideal 2D slice which
completely matches the microstructure-descriptors of synthetic 3D microstructures.
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Figure 3.5: Comparison of mean EA1 between 2D and 3D synthetic microstructures∗.
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Figure 3.6: Volume fraction comparison between 2D and 3D synthetic microstructures∗.
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Figure 3.7: Comparison of mean equivalent sphere diameter between 2D and 3D synthetic
microstructures∗.
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Figure 3.8: Euclidean distance between 2D slices and 3D volumes∗.
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3.3 Lamellar generation algorithm
Lamellae structure in a microstructure consists of ultra-fine thread-like structures which are
present in alternative layers with another material. Most common examples of lamellar
microstructures are duplex stainless steels and titanium aluminide alloys [109, 24]. Lamellar
microstructures in TiAl are formed by heating the alloys (with 43-48% Al) into α region
(>1250°C) and then cooling through α2 +γ phase region resulting in formation of alternating
layers of γ and α2 lamellae [110]. These alloys show high fracture toughness as deformations
mobility which can be explained by inhibition of deformation mobility by the lamellae. Since
TiAl alloy system is the material of interest in this work, they can be comprehended in a
superior manner by employing synthetic lamellar microstructures. Inclusion of complexities
such as lamellar in synthetic microstructures is not yet feasible in DREAM.3D software.
So, an algorithm is formulated to inject lamellar with uniform thickness but with varied
orientation into synthetic microstructures. Although, the algorithm is initially tested in
python on 2D synthetic microstructures generated from DREAM.3D and later extended to
3D also.

3.3.1 Description of algorithm
Since the main objective is the inclusion of lamellae in a synthetic microstructure, it is
important to understand the hierarchy of their data structure. Generally, pixel and voxel-
based information are used for visualization of 2D and 3D microstructures respectively, and
subsequently, grain-based information can be extracted from them. After the segregation
of individual grains, every single grain is considered a separate entity. This grain level
information is beneficial for modifying the contents of the microstructure and in this case,
it is utilized for the insertion of lamellae into the grains. The introduction of lamellae in a
2D synthetic microstructure is briefly explained here.

Let us consider a particular grain Gi in a 2D synthetic microstructure in which lamellae
of thickness t need to be inserted at an orientation theta w.r.t X axis and separated by a
distance d. Firstly, these required parameters are properly defined. Secondly, a reference
pixel is defined with a minimum y coordinate nearest to the X axis and the lamellae insertion
process is initiated. Based on the orientation theta, the intercept w.r.t its predefined axis
is calculated by considering the orientation as slope. A function is developed to determine
whether a particular pixel in the given grain should constitute lamellae or not by employing
the information related to reference pixel and lamellae parameters). Finally, every pixel in
the grain Gi is mapped to this function. Based on the output of this function, the pixel
data is modified for transforming a regular grain to a grain consisting of lamellae. This
process is repeated for all the grains with lamellae. A simple description of the algorithm
for introducing lamellar into a 2D synthetic microstructure is illustrated in Fig. 3.9. Pandas
library in python is used for implementing this algorithm. In a similar manner, lamellae
are also introduced into synthetic 3D microstructures by considering a reference voxel. The
microstructures with lamellae in 2D and 3D are illustrated in Fig 3.10 and 3.11 respectively.
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Figure 3.9: Lamellar of thickness t in a random grain Gi on a XY plane with an angle of θ
with distance d between each lamellae.

Figure 3.10: 2D synthetic lamellar microstructure visualized in paraview.
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Figure 3.11: 3D Lamellar microstructure visualized in paraview.

3.3.2 Future scope
The present algorithm has immense potential to achieve high fidelity complex
microstructures artificially. The developed algorithm needs optimization and some ideas for
further development are discussed in this section. Currently, it can generate lamellae with
the given parameters uniformly across a grain by treating it as an individual entity. The
grain information can be exploited to produce lamellae with non-uniform thickness in a
grain. Besides, the distance between lamellae need not be necessarily consistent across the
single grain. Furthermore, the normal and orientation of lamellae are presently defined
only w.r.t a single axis i.e., either X, Y or Z axes and this can be extended to planes. This
algorithm can be integrated as an additional utility for generating complex synthetic
microstructures in DREAM.3D.
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Chapter 4

Model training

4.1 Configuring generative models and training
In this section, architectures of generative models which are employed in this work are
presented. Microstructure reconstruction of statistically equivalent 3D from 2D
microstructures falls under semi-supervised learning problem as it consists of learning the
statistical distributions of microstructure-descriptors (unsupervised part) and qualitative
comparison of labels i.e., visual representations of real and generated microstructures
(supervised part). Generative modeling using convolutional neural networks (CNNs)
architectures such as cVAE and DCGANs (pix2pixGAN) are applied and the results are
presented and discussed in subsequent sections. The generative models are trained on the
CARA cluster from DLR (Deutsches Zentrum für Luft- und Raumfahrt) endowed with
Quadro P5000 GPU. Initially, the models are trained on a single channel (EA0) to
determine optimal hyperparameters and then the model training is extended to all the
channels. Models are saved at intermediate steps during training to supervise training
process and prevent the model from overfitting. The input channels (phases and three
components of Euler angles) are standardized before training. Taking into consideration,
the given computational resources and thesis time-frame, for efficient training and result
analysis, the dimensions of the synthetic microstructures have been reduced from
192×192×192 to 64×64×64.

4.1.1 Unet
Unet framework consists of a combination of encoding and decoding layers. Firstly, the
given 2D microstructure is extrapolated in Z-dimension to reconstruct the required
dimensions in 3D to convert it as an input to the model architecture and standard error
metrics such as MAE are employed. Each encoding layer consists of Conv3D layers
followed by Batch Normalization and then with leaky ReLU activation function. Decoding
layers are built in a similar manner but instead of Conv3D layers, Conv3DTranspose layers
are employed to increase the dimensions. Since the Unet framework employs skip
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connections between encoding and decoding layers, concatenation layers are employed in
decoding layers to substantiate the decoding output with the encoding output at that
corresponding layer.

Unet architecture consists of five encoding layers followed by a bottleneck layer and five
decoding layers which is described in Table. 4.1. The objective function is constructed to
accommodate predicted image, volume fraction and distributions of Euler angles. The model
is trained using Adam optimizer with a learning rate of 0.00001.

4.1.1.1 Customized loss function

In the initial stages, standard error metrics such as Mean Absolute Error, binary
crossentropy, Kullback-Leibler Divergence were employed in loss function in the Unet and
pix2pixGAN models. To improve the accuracy of predictions, a custom loss function is
developed to quantitatively compare the real and generated microstructures by including
volume fraction and distributions of Euler angle components. Volume fraction Vf can be
computed by considering the phases channel and for comparison of Euler angles
distributions, kernel density estimation (KDE) is utilized. The main reason for utilizing
KDE is converting the Euler angles distributions into continuous differentiable histograms
using a Gaussian filter.

MAE =
Σn
i=1|yi(true)−yi(predicted))|

n
(4.1)

So, the custom loss function in addition to Eqn. 4.1, consists of additional terms such as
Eqn. 4.2 and 4.3 for calculating difference in volume fractions and Euler angle distributions
using KDE respectively for the true and predicted microstructures.

∆Vf =
Σn
i=1|(Vf(i,true)−Vf(i,predicted))|

n
(4.2)

∆KDE =
Σn
i=1Σφ,θ,ψ|(KDE(i,true)−KDE(i,predicted))|

n
(4.3)

where φ,θ,ψ in Eqn. 4.3 refer to the three components of Euler angles respectively.
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Table 4.1: Unet architecture with skip connections.

Layer Operation Output shape kernel
size

Activation

Unet input = 2D input image (64, 64, 4)

encoding block 1 Conv3D (64, 64, 64, 64) (3,3,3) ReLU
MaxPooling3D (32, 32, 32, 64)

encoding block 2 Conv3D (32, 32, 32, 128) (3,3,3) ReLU
MaxPooling3D (16, 16, 16, 128)

encoding block 3 Conv3D (16, 16, 16, 256) (3,3,3) ReLU
MaxPooling3D (8, 8, 8, 256)

encoding block 4 Conv3D (8, 8, 8, 512) (3,3,3) ReLU
MaxPooling3D (4, 4, 4, 512)

encoding block 5 Conv3D (4, 4, 4, 512) (3,3,3) ReLU
MaxPooling3D (2, 2, 2, 512)

bottleneck layer Conv3D (2, 2, 2, 1024) (3,3,3) ReLU

decoding block 1
Conv3DTranspose (4, 4, 4, 512) (3,3,3) ReLU
Concatenate (4, 4, 4, 1024)
Conv3D (4, 4, 4, 512) (3,3,3) ReLU

decoding block 2
Conv3DTranspose (8, 8, 8, 512) (3,3,3)
Concatenate (8, 8, 8, 1024)
Conv3D (8, 8, 8, 512) (3,3,3) ReLU

decoding block 3
Conv3DTranspose (16, 16, 16, 256) (3,3,3)
Concatenate (16, 16, 16, 512)
Conv3D (16, 16, 16, 256) (3,3,3) ReLU

decoding block 4
Conv3DTranspose (32, 32, 32, 128) (3,3,3)
Concatenate (32, 32, 32, 256)
Conv3D (32, 32, 32, 128) (3,3,3) ReLU

decoding block 5
Conv3DTranspose (64, 64, 64, 64) (3,3,3)
Concatenate (64, 64, 64, 128)
Conv3D (64, 64, 64, 64) (3,3,3) ReLU

Output layer Conv3D (64, 64, 64, 4) tanh

4.1.2 Conditional variational autoencoders
The cVAE model is constructed with an encoder and decoders as described in Section. 2.4.2.1
and trained on phases and EA1 channels. The model framework is demonstrated in Table.
4.2 and the 2D microstructure is provided as an input to both encoding and decoding parts
of cVAE. The encoding part gives two outputs namely µ and Σ, from which latent variable
are constructed using the equation z = µ(X) + Σ1/2(X)∗ ε where ε ∼N (0, I). The decoder
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employs a series of Conv3D and Conv3DTranspose layers to reconstruct the given two inputs
(latent variables and 2D image) to 3D volume. The decoder is defined on the decoding layers
of the cVAE and can be utilized as a generative model. The cVAE model is trained for 3000
epochs at a learning rate of 0.00001.

Table 4.2: Conditional variational autoencoder.

Layer Operation Output
shape

kernel
size

strides Activation Batch
Normal-
ization

encoder input = 2D input image (64, 64, 2) & 3D image (64, 64, 64, 2)
E1 Conv3D (32, 32, 32, 32) (4,4,4) (2,2,3) ReLU Yes
E2 Conv3D (16, 16, 16, 64) (4,4,4) (2,2,2) ReLU Yes
E3 Conv3D (8, 8,8, 128) (4,4,4) (2,2,2) ReLU Yes
E4 Conv3D (4, 4, 3, 256) (4,4,4) (2,2,2) ReLU Yes
E5 Conv3D (2, 2, 2, 512) (4,4,4) (2,2,2) ReLU Yes
E6 Dense (2, 2, 2, 1024) ReLU No
E7 Flatten (8192)
µ Dense (50) linear No
Σ Dense (50) linear No
decoder input = 2D input image (64, 64, 2) & z = µ(X) + Σ1/2(X)∗ ε, where ε∼N (0, I)
D1 Conv3D (32, 32, 2, 64) (4,4,1) (2,2,1) ReLU No
D2 Conv3D (16, 16, 2, 128) (4,4,1) (2,2,1) ReLU No
D3 Conv3D (8, 8,2, 256) (4,4,1) (2,2,1) ReLU No
D4 Conv3D (4, 4, 2, 512) (4,4,1) (2,2,1) ReLU No
D5 Conv3D (2, 2, 2, 512) (4,4,1) (2,2,1) ReLU No
D6 Conv3DTranspose (4, 4, 4, 1024) (4,4,4) (2,2,2) ReLU No
D7 Conv3DTranspose (8, 8, 8, 512) (4,4,4) (2,2,2) ReLU No
D8 Conv3DTranspose (16, 16, 16,

256)
(4,4,4) (2,2,2) ReLU No

D9 Conv3DTranspose (32, 32, 32,
128)

(4,4,4) (2,2,2) ReLU No

Dout Conv3DTranspose (64, 64, 64,2) (4,4,4) (2,2,2) tanh No

4.1.3 Conditional generative adversarial networks: pix2pixGAN
As discussed in Section. 2.4.4, pix2pixGAN constitutes generator with Unet framework
and discriminator having a patchGAN architecture. The generator architecture is identical
to that of Unet architecture shown in Table. 4.1. Generally, in vanilla GANs, the input is
random noise, however, in order to condition the output as necessary, the noise is
concatenated with an input label. So, in this case, Gaussian noise is concatenated with 2D
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microstructure, as this Gaussian noise is significant in generating non-deterministic outputs
and the 2D microstructure acts as a label for obtaining a specified generator output. The
noise is concatenated with 2D input in such a way that it attains original 3D dimensions.
The discriminator framework from the original pix2pixGAN paper has a patchGAN
architecture (described in Section. 2.4.4), however, in this work, it is modified to act as a
classifier type model with a single output determining whether its input is real or
generated one. The discriminator is also provided with 2D and 3D images as input. In
order to improve the accuracy of discriminator classification, volume fraction and Euler
angle distributions are supplied as inputs. The discriminator and generator are trained
iteratively until the convergence of the objective function is reached. The architectures of
discriminator and generator are described in Table. 4.3 and 4.4 respectively.

Table 4.3: Discriminator architecture in pix2pixGAN.

Layer Operation Output
shape

kernel
size

strides Activation Batch
Normal-
ization

discriminator input = 3D (64, 64, 64, 4) and 2D (64, 64, 4) & x ∈ R64∗64∗64∗4

D1 Conv3D (32, 32, 22, 64) (4,4,4) (2,2,3) leaky
ReLU

No

D2 Conv3D (16, 16, 11,
128)

(4,4,4) (2,2,2) leaky
ReLU

Yes

D3 Conv3D (8, 8, 6, 256) (4,4,4) (2,2,2) leaky
ReLU

Yes

D4 Conv3D (4, 4, 3, 512) (4,4,4) (2,2,2) leaky
ReLU

Yes

D5 Conv3D (2, 2, 2, 512) (4,4,4) (2,2,2) leaky
ReLU

Yes

D6 Conv3D (1, 1, 1, 1) (4,4,4) (2,2,2) leaky
ReLU

Yes

D7 Flatten (1)
D8 Concatenate (3)
D9 Dense (10) leaky

ReLU
No

Dout Dense (1) sigmoid No
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Table 4.4: Generator architecture in pix2pixGAN.

Layer Operation Output shape kernel
size

Activation

generator input = 2D input image (64, 64, 4) & z ∈ R100 ∼N (0, I)

encoding block 1 Conv3D (64, 64, 64, 64) (3,3,3) ReLU
MaxPooling3D (32, 32, 32, 64)

encoding block 2 Conv3D (32, 32, 32, 128) (3,3,3) ReLU
MaxPooling3D (16, 16, 16, 128)

encoding block 3 Conv3D (16, 16, 16, 256) (3,3,3) ReLU
MaxPooling3D (8, 8, 8, 256)

encoding block 4 Conv3D (8, 8, 8, 512) (3,3,3) ReLU
MaxPooling3D (4, 4, 4, 512)

encoding block 5 Conv3D (4, 4, 4, 512) (3,3,3) ReLU
MaxPooling3D (2, 2, 2, 512)

bottleneck layer Conv3D (2, 2, 2, 1024) (3,3,3) ReLU

decoding block 1
Conv3DTranspose (4, 4, 4, 512) (3,3,3) ReLU
Concatenate (4, 4, 4, 1024)
Conv3D (4, 4, 4, 512) (3,3,3) ReLU

decoding block 2
Conv3DTranspose (8, 8, 8, 512) (3,3,3)
Concatenate (8, 8, 8, 1024)
Conv3D (8, 8, 8, 512) (3,3,3) ReLU

decoding block 3
Conv3DTranspose (16, 16, 16, 256) (3,3,3)
Concatenate (16, 16, 16, 512)
Conv3D (16, 16, 16, 256) (3,3,3) ReLU

decoding block 4
Conv3DTranspose (32, 32, 32, 128) (3,3,3)
Concatenate (32, 32, 32, 256)
Conv3D (32, 32, 32, 128) (3,3,3) ReLU

decoding block 5
Conv3DTranspose (64, 64, 64, 64) (3,3,3)
Concatenate (64, 64, 64, 128)
Conv3D (64, 64, 64, 64) (3,3,3) ReLU

Output layer Conv3D (64, 64, 64, 4) tanh

Table 4.5: pix2pixGAN hyperparameters.

Symbol Hyperparameter Value
αgen learning rate for Generator 0.00001
αdisc learning rate for Discriminator 0.00001
β1 first decay rate of Adam optimizer 0.5
β2 second decay rate of Adam optimizer 0.9
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4.1.4 WCGAN with gradient penalty
WCGAN framework is similar to the typical GANs framework except for the discriminator
part, which is termed as critic in WCGAN and Wasserstein distance is employed as the
objective function. Unlike pix2pixGAN, in WCGAN it is not necessary to train generator
and critic equal number of iterations and this ratio of updates to the critic for a single update
of the generator can be treated as a hyperparameter. The architectures of generator and
critic of WCGAN are shown in Table. 4.7 and 4.6 and their respective hyperparameters are
depicted in 4.8. Training of WCGAN is carried out on EA1 only.

4.1.4.1 Grain boundary mapping

Besides reconstruction of complete 3D microstructures, an attempt to reconstruct mapping of
3D grain boundaries from 2D microstructures is also carried out using WCGAN architecture
described in Table.4.6 and 4.7. The corresponding data has been generated by using scikit-
image library [111] for 2D and 3D microstructures.

Table 4.6: Generator architecture in WCGAN.

Layer Operation Output
shape

kernel
size

strides Activation Batch
Normal-
ization

generator input = 2D input image (64, 64, 4) & z ∈ R100 ∼N (0, I)
G1 Conv3D (32, 32, 32, 64) (4,4,4) (2,2,3) ReLU Yes
G2 Conv3D (16, 16, 16,

128)
(4,4,4) (2,2,2) ReLU Yes

G3 Conv3D (8, 8,8, 256) (4,4,4) (2,2,2) ReLU Yes
G4 Conv3D (4, 4, 3, 512) (4,4,4) (2,2,2) ReLU Yes
G5 Conv3D (2, 2, 2, 512) (4,4,4) (2,2,2) ReLU Yes
G6 Conv3DTranspose (4, 4, 4, 512) (4,4,4) (2,2,2) ReLU Yes
G7 Conv3DTranspose (8, 8, 8, 512) (4,4,4) (2,2,2) ReLU Yes
G8 Conv3DTranspose (16, 16, 16,

256)
(4,4,4) (2,2,2) ReLU Yes

G9 Conv3DTranspose (32, 32, 32,
128)

(4,4,4) (2,2,2) ReLU Yes

Gout Conv3DTranspose (64, 64, 64, 1) (4,4,4) (2,2,2) tanh No
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Table 4.7: Critic architecture in WCGAN.

Layer Operation Output
shape

kernel
size

strides activation Batch
Normal-
ization

Critic input = 3D (64, 64, 64, 4) and 2D (64, 64, 4) & x ∈ R64∗64∗64∗4

D1 Conv3D (32, 32, 22, 64) (4,4,4) (2,2,3) leaky
ReLU

Yes

D2 Conv3D (16, 16, 11,
128)

(4,4,4) (2,2,2) leaky
ReLU

Yes

D3 Conv3D (8, 8, 6, 256) (4,4,4) (2,2,2) leaky
ReLU

Yes

D4 Conv3D (4, 4, 3, 512) (4,4,4) (2,2,2) leaky
ReLU

Yes

D5 Conv3D (2, 2, 2, 1024) (4,4,4) (2,2,2) leaky
ReLU

Yes

D7 Flatten (8192)
D8 Dense (10) leaky

ReLU
No

D9 Dense (10) leaky
ReLU

No

Dout Dense (1) linear No

Table 4.8: WCGAN-GP hyperparameters.

Symbol Hyperparameter Value
αgen learning rate for Generator 0.00009
αcritic learning rate for Critic 0.00009
β1 first decay rate of Adam optimizer 0
β2 second decay rate of Adam optimizer 0.9
ncritic number of critic updates w.r.t generator 5
λ gradient penalty 10
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Chapter 5

Results and discussions

5.1 Training results
The results obtained from training the models (discussed in Chapter. 4) are presented and
analyzed in this chapter. It should be noted that the predictions shown were randomly
chosen from their respective datasets (train/test). The synthetic microstructures obtained
from DREAM.3D are termed as real images to avoid confusion and the generated
microstructures are synonymous with predicted ones. For visual comparison, one of the
Euler angle components (either EA0, EA1 or EA2) are plotted against the respective
targets. Each component of Euler angles has various ranges. The values of EA0 and EA2
range from 0 to 2π while values in EA1 ranges between 0 and π.

5.1.1 Unet
Firstly, Unet is implemented with Mean Absolute Error as loss metric and constituting
architecture described in Table. 4.1 for generating 3D microstructures using 2D slices. The
model is trained for 4000 epochs and the evolution of loss is plotted as a function of epochs.
It can be inferred from Fig. 5.1, that there is a smooth convergence of loss function as
training advances. The trained model is then employed for predictions on the train and test
datasets, which were later visually compared with real synthetic microstructures and depicted
in Fig. 5.2 and 5.3 respectively. Fig. 5.2 illustrate the first component of Euler angles,
EA0 in true and predicted microstructures. The cubes in Fig. 5.2 and 5.3 demonstrate the
microstructures of true and predicted targets in different orientations and the values of phases
and Euler angles in a single grain in microstructure are similar. From visual inspection, the
predictions of Unet on the training dataset were identical to their 3D counterparts but
mismatching on the test dataset. This is clearly evident from the Fig. 5.3, where there is no
clear differentiation between individual grains. From a statistical perspective, the volume
fraction and EA1 distribution of the predictions (from Fig. 5.4a) obtained from the training
dataset were similar to the synthetic microstructures from DREAM.3D. These statistics
(from Fig. 5.4b), however when compared on test dataset showed significant disparities.
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5.1.1.1 With standard loss metric

Figure 5.1: Loss curve obtained for Unet model trained with standard MAE for 4000 epochs.

Figure 5.2: True and predicted EA0 for Unet with MAE on train data for 4000 epochs.
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Figure 5.3: True and predicted EA0 for Unet trained with MAE on test data for 4000 epochs.

 Predicted distribution

 U-Net standard loss train dataset 

(a)

 Predicted distribution

 U-Net standard loss test dataset 

(b)

Figure 5.4: Comparison of true and predicted distributions of EA1 from Unet model with
MAE as loss metric trained for 4000 epochs on train (a) and test (b) datasets.

From analyzing the results of Unet with Mean Absolute Error as the loss metric, the model
was incapable of predicting plausible outputs on the test dataset. So from this inference, if the
loss function is provided with information related to volume fraction and EA1 distribution,
the model can efficiently predict samples with identical statistics.
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5.1.1.2 With custom loss function

From analyzing the results of Unet with Mean Absolute Error as the loss metric, the model
was incapable of predicting plausible microstructures on the test dataset. The loss function
is customized to include information of volume fraction and Euler angle distributions
(obtained after application of Gaussian kernels on distributions of Euler angles). By
employing this custom loss function (described in Section. 4.1.1.1), the model attempts to
minimize the difference of volume fraction and Euler angle distributions between the
predicted and target samples. The model was trained for 2000 epochs and the loss
obtained after each epoch was plotted and given in Fig. 5.5. The loss curve in Fig. showed
a smooth convergence.Fig. 5.6 and 5.7 depict the EA0 channel in true and predicted
microstructures on train and test datasets respectively. On visual inspection, the true and
predicted microstructures in the training dataset were identical, however, they showed
severe disparities in the test dataset as the grain structure is not clearly evident. Fig. 5.8a
and 5.8b illustrate the statistical comparison of a random sample in the corresponding
datasets. The model predictions of volume fractions and Euler angle distributions on the
test dataset have shown minor improvement compared to the Unet model trained with
standard loss metrics.

Figure 5.5: Loss curve of Unet trained with customized loss function for 2000 epochs.
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Figure 5.6: True and predicted EA0 for Unet trained with custom loss function on train data
for 2000 epochs.

Figure 5.7: True and predicted EA0 for Unet trained with custom loss function on test data
for 2000 epochs.
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 Predicted distribution

 U-Net custom loss train dataset 

(a)

 Predicted distribution

 U-Net custom loss test dataset 

(b)

Figure 5.8: Comparison of true and predicted distributions of EA1 from Unet model trained
with customized loss for 2000 epochs on train (a) and test (b) datasets.

5.1.2 Conditional variational autoencoder
The cVAE model constitutes the framework described in Table. 4.2. This model is trained
on all channels for 3000 epochs and the generated samples are compared with targets visually
and statistically. The loss curve plotted between loss and number of epochs is depicted in
Fig. 5.9 and it can be observed that the loss converged smoothly. The EA1 in true and
predicted microstructures on train and test datasets were illustrated in Fig. 5.10 and 5.11
respectively.The predictions obtained were blurry and the grain boundaries are not clearly
visible on visual examination. From the statistical point of view, the volume fraction and
EA1 distributions (depicted in Fig. 5.12) in both train and test datasets were mostly similar
to the target microstructures. The blurriness in the generated samples is a common problem
of VAEs [112].
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Figure 5.9: Loss curve obtained after training cVAE for 3000 epochs.

Figure 5.10: True and predicted EA1 for cVAE on train data after 3000 epochs.

58



Figure 5.11: True and predicted EA1 for cVAE on test data after 3000 epochs.
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Figure 5.12: Comparison of true and predicted distributions of EA1 from cVAE model after
3000 epochs on train (a) and test (b) datasets.

5.1.3 Conditional generative adversarial networks
5.1.3.1 pix2pixGAN

As stated earlier in Section. 4.1.3, the model is trained on custom loss function for 3000
epochs. The loss curve is plotted for each step of the training batch i.e., for every batch, the

59



loss is calculated, and since there are 140 samples in the training dataset, 14 training steps
complete an epoch. The generator loss is computed after each step and plotted against the
number of steps and the resultant loss curve is shown in Fig.5.13. The true and generated
EA0 channel in train and test datasets is visualised in Fig. 5.14 and 5.15 respectively.

The pix2pixGAN generated microstructures were similar to the true targets but the
boundaries of the grains are not clearly defined. The grain structure is comparatively more
evident than cVAE, however the grains cannot be segmented accurately as their boundaries
are not distinct. The EA1 distributions in the true and generated microstructures are given
in Fig. 5.16, it can be observed that the predictions were not completely identical with the
true target distributions. The volume fractions of the generated microstructures were in
proximity with the targets.

Figure 5.13: Loss curve obtained after training generator in pix2pixGAN for 3000 epochs
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Figure 5.14: True and predicted EA0 for pix2pixGAN on train data after 3000 epochs.

Figure 5.15: True and predicted EA0 for pix2pixGAN on test data after 3000 epochs.
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 Predicted distribution

 pix2pixGAN train dataset 

(a)

 Predicted distribution

 pix2pixGAN test dataset 

(b)

Figure 5.16: Comparison of true and predicted distributions of EA1 from pix2pixGAN model
after 3000 epochs on train (a) and test (b) datasets.

5.1.3.2 Using Wasserstein loss with gradient penalty

Wasserstein GANs are employed with conditional setting with gradient penalty as Lipschitz
constraint for microstructure reconstruction. The architecture and hyperparmeters of
WCGAN is described in Section. 4.1.4 . The configured model is trained for 5000 epochs
and the obtained loss is plotted as a function of epochs in Fig. 5.17. From the loss curve
shown in Fig. 5.17, it can be inferred that there is no smooth convergence of loss and there
are significant spikes in loss values during training the model. After examining the
predictions visually, the predictions at 5000 epochs were very noisy on both train and test
datasets which is evident from Fig 5.18 and 5.19. Interestingly, the predictions of WCGAN
at 4000 epochs showed similar EA1 distributions, illustrated in 5.23a and 5.23b, albeit the
visual predictions presented in from Fig. 5.21 and 5.22 were not identical.
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Figure 5.17: Loss curve of critic and generator obtained after training WCGAN for 5000
epochs.

Figure 5.18: True and predicted EA1 (normalized) for WCGAN on train data after 5000
epochs.
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Figure 5.19: True and predicted EA1 (normalized) for WCGAN on test data after 5000
epochs.
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Figure 5.20: Comparison of true and predicted distributions of EA1 from WCGAN model
after 5000 epochs on train (a) and test (b) datasets.
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Figure 5.21: True and predicted EA1 (normalized) for WCGAN on train data after 4000
epochs.

Figure 5.22: True and predicted EA1 (normalized) for WCGAN on test data after 4000
epochs.
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 Predicted distribution

WCGAN-GP train dataset

(a)

 Predicted distribution

WCGAN-GP test dataset

(b)

Figure 5.23: Comparison of true and predicted distributions of EA1 from WCGAN model
after 4000 epochs on train (a) and test (b) datasets.

5.1.3.3 Grain boundary mapping

The predictions obtained from training WCGAN with gradient penalty on grain boundary
mappings after 5000 epochs were illustrated in Fig. 5.25 and 5.26. From the loss curve in
Fig. 5.24, the critic loss converged smoothly while the generator loss increased exponentially.
This is not completely unusual as the generator loss computes the average of Dense layer
outputs from critic while the critic loss calculates the difference between Dense layer outputs
of true and generated images. In this case, the model failed in mapping the grain boundary
in both training and test datasets which is apparent from Fig. 5.25 and 5.26.

Figure 5.24: Loss curve obtained after training WCGAN on grain boundary mapping for
5000 epochs.

66



Figure 5.25: True and predicted mappings of grain boundaries from WCGAN on train data
after 5000 epochs.

Figure 5.26: True and predicted mapping of grain boundaries from WCGAN on test data
after 5000 epochs.
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5.2 Overall analysis of the generated microstructures
In the above sections, the predictions after training from various generative models were
presented. Initially, a single channel (generally EA0) is considered for training the model to
determine the optimal values of hyperparameters and later on extended to all the channels.
From analyzing their results, modifications are made in the speculated areas such as
employing custom loss function or adjusting the complexity of the model for improving the
fidelity of predictions. The volume fractions in generated and real microstructures are
calculated on the test dataset for all the models employed in this work. The respective
differences between true and predicted volume fractions of different models are plotted in a
box plot and illustrated in Fig. 5.27.
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Figure 5.27: Comparison of difference in volume fraction predictions from different models
on test dataset.

In the model training part, firstly, Unet with standard loss metrics is employed with some
modifications to make it applicable for constructing 3D microstructures from an extruded
2D slice. After visual inspection of the generated images, the predictions on the train dataset
were extremely similar to that of the real microstructures depicted in Fig. 5.2, however, the
predictions on the test dataset were highly contrasting which can be seen in Fig. 5.3. Besides,
the microstructure-descriptors such as volume fraction and Euler angle distributions of the
generated microstructures in the train dataset were equivalent to target microstructures but
showed severe discrepancies in test dataset. This is a case of severe overfitting, as the model
learned the patterns by-heart from the training data and was inept in generalization on test
data.
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So, the loss function is modified to include volume fraction and Euler angle distributions
in the Unet model and trained for 2000 epochs. When compared to previous predictions, the
custom loss trained Unet showed less difference in volume fraction between real and generated
microstructures which is evident from Fig. 5.27. We cannot get any concrete inferences by
comparing the predictions visually from Fig. 5.3 and 5.7. Unet models accurately reproduced
the EA1 distributions on the train dataset (depicted in Fig. 5.4a and 5.8a), however on test
dataset, they were approximated to a Gaussian distribution (shown in Fig. 5.4b and 5.8b).

State of the art generative models such as VAEs and GANs were employed in a
conditional setting by using cVAE, pix2pixGAN and WCGAN with gradient penalty. The
cVAE, were trained using Kullback-Leibler divergence and reconstruction loss. The
generated microstructures from cVAE showed indistinct grain boundaries (blurry edges) on
both train and test datasets. Even though the cVAE model generated blurry
microstructures, the volume fraction values of the generated microstructures from both
train and test datasets were in the vicinity to that of the real ones. From Fig. 5.27, the
mean difference in predictions of volume fraction in cVAE lies around 0.13 (from Fig. 5.27)
which is much better than the Unet models (greater than 0.3). The EA1 distributions were
quite identical on test and train datasets (illustrated in Fig. 5.12a and 5.12b) and have
been generalized closely to a normal distribution. So, the cVAE model learnt the
underlying patterns of the data instead of absolute distributions from the training dataset
which is desirable.

Subsequently, pix2pixGAN is trained with a modified discriminator to include volume
fraction and Euler angle distributions. After training the model for 3000 epochs, the
generated microstructures illustrated distinguishable grain structures but with hazy grain
boundaries. The microstructure-descriptors of the generated images also showed a
satisfactory resemblance to the real microstructures. The predicted volume fraction values
of microstructures from pix2pixGAN model are more equivalent to that of the real ones
compared to cVAE. On visual examination, the grains in generated microstructures from
pix2pixGAN are more distinguishable than the ones generated from cVAE.

Additionally, WCGAN with gradient penalty is trained using EA1 channel. WCGAN
utilizes Wasserstein distance as a loss metric for training the model. Even though these are
efficient in generating more realistic predictions, training them is a complicated task due to
the involvement of hyperparameters such as gradient penalty parameter and ratio of critic
updates w.r.t generator. After determining the hyperparameters in a heuristic process, the
configured model has been trained for 5000 epochs and from visual and statistical analysis
of generated microstructures, conclusions can be drawn that the model was incapable of
learning grain structures and EA1 distributions which can be described in Fig. 5.18, 5.19,
5.20a and 5.20b. Since we cannot get any specific information from the loss curve, this may be
attributed to the local minima problem as even the training predictions were also inaccurate.
This argument is further supported by analysing the WCGAN model saved after 4000 epochs
which showed better similarities in EA1 distributions and used in future analysis (illustrated
in Fig. 5.21, 5.22, 5.23a and 5.23b). The statistical comparison of EA1 distributions depicted
in Fig. 5.23 showed a good approximation of EA1 distributions. In fact, the estimation of
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EA1 distribution is not completely exact but much better than the generated microstructures
from pix2pixGAN and cVAE (can be observed from 5.16b and 5.12b). As the latter two
predicted a seemingly Gaussian like distribution, the WCGAN model after 4000 epochs
produced EA1 distribution similar to that of the real target microstructure. This led to
an inference that employing EA1 for the initial training process resulted in better EA1
distributions which can be explained due to its Gaussian like distributions. Employing only
EA1 channel for training purposes helps the model to learn the patterns of the data compared
to training the model with EA0 or EA2 channels which have uniform distributions.

Even though the WCGAN generated a closer EA1 distribution, it is not further sought as
the model could not reproduce microstructures with visible grain structures. So, instead of
training the model to generate microstructures with phases and Euler angles, the WCGAN
is trained on mapping grain boundaries. So the data is boundary cell data i.e., those cells
which are part of grain boundary are explicitly marked and the model should be capable
of generating them. After training the model for 5000 epochs, this model is unsuccessful in
producing a contiguous and distinct grain like structure.

Table 5.1: Qualitative comparison of generative models.

Model Grain structure predictions EA1 predictions
Train Test Train Test

Unet with Mean Abso-
lute Error

++ - - ++ - -

Unet with custom loss
metric

++ - ++ -

cVAE ++ + + +
pix2pixGAN ++ ++ + +
WCGAN-GP (saved
after 4000 epochs)

- - ++ ++

The shortcoming of the generative models employed in this work is the generalization
over the samples which are not under the training dataset. Unet is employed as a baseline
model for microstructure reconstruction, was able to reconstruct the microstructures
perfectly which were supplied during the training process. It failed to capture the statistics
of the underlying data and reconstruct plausible microstructures on the test dataset. The
blurry microstructures generated by cVAE framework is foreseen and a common problem
of VAEs. The pix2pixGAN model is trained with a customized discriminator by
incorporating the volume fractions and Euler angle distributions during optimization. It
generated microstructures with distinguishable grain structures but indistinct grain
boundaries. Although the pix2pixGAN and cVAE models were comparatively efficient in
emulating microstructure-descriptors, the generated microstructures are still not adequate
enough to employ it in micromechanical simulations and require further optimization.
Using image postprocessing tools from DREAM.3D, the microstructures generated from
pix2pixGAN are postprocessed for investigating the microstructure characteristics.
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WCGAN with gradient penalty captured the underlying statistics of EA1 quite well but
ineffectual in learning the grain structure. Wasserstein distance as objective function in
WCGAN proved to be effective in minimizing the difference in EA1 distributions.
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Chapter 6

Postprocessing using DREAM.3D

6.1 Postprocessing pipeline
From the results of trained models, it is evident that the predictions from Unet,
pix2pixGAN, and WCGAN failed in the clear demarcation of grains. Although the grain
structure is evident for some predictions on the test dataset, the grain boundary is not
clearly defined. Even the grain size information cannot be calculated directly from the
generated microstructures, so there is a need for postprocessing for better analysis of
microstructure-descriptors. A postprocessing pipeline is developed in DREAM.3D which is
demonstrated in Table. 1 in Appendix B and the input microstructure should contain
both phases and Euler angle channels. From the below mentioned filters, only two are
significant for grouping the voxels for forming grain structures namely, Segment Features
(Misorientation) and Minimum Size. The Segment Features (Misorientation) filter groups
the nearby voxels by segmenting them to form a single grain based on a user-defined
variable Misorientation tolerance. This field variable indicates the minimum tolerance in
misorientation angle required to group the neighboring voxels into a single grain. The
latter filter i.e., Minimum Size takes the input parameter Minimum Allowed Feature Size
which denotes the minimum number of voxels necessary to form grain. These two variables
can be adjusted for tuning the microstructures in terms of grain size distributions and the
number of grains in the postprocessed microstructures. Nevertheless, the parameters for
Minimum Size and Minimum Allowed Feature Size should be chosen in such a manner that
the average grain size and number of features of the postprocessed microstructure were
matching with the real target microstructure.

6.2 Postprocessing of pix2pixGAN predictions
The postprocessing pipeline (see Table. 1 in Appendix B) has been employed on
microstructures predicted from pix2pixGAN on test dataset. The postprocessed
microstructures are further analyzed quantitatively by comparing the mean ESD and the
number of grains, with real microstructures. Analysis of postprocessed images reflected
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several concerns related to the statistics, as we are able to obtain a perfect grain like
structure with clearly demarcated grain boundaries which can be observed in Fig. 6.1 and
6.3. The postprocessed microstructure and real microstructure have noticeable differences
when perceived visually which is expected, As we are only trying to mimic the statistics of
the input to reconstruct a statistically equivalent microstructure. The average
misorientations between each voxel in the postprocessed and real microstructures are
demonstrated in Fig. 6.2a and 6.4a. Furthermore, their respective grain size distributions
are compared in Fig. 6.2b and 6.4b.
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Figure 6.1: True and postprocessed predictions EA1 from pix2pixGAN on train dataset.
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(a) (b)

Figure 6.2: Comparison of misorientation angles (a) and grain size distributions (b) after
postprocessing predicted microstructures from pix2pixGAN on train dataset.
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Figure 6.3: True and postprocessed predictions EA1 from pix2pixGAN on test dataset.
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(a) Misorientation angles comparison (b) comparison of grain size distribution

Figure 6.4: Comparison of misorientation angles (a) and grain size distributions (b) after
postprocessing predicted microstructures from pix2pixGAN on test dataset.

Besides, the postprocessing pipeline is applied on some test samples of pix2pixGAN, and
the number of grains and mean ESD are computed. The two parameters Misorientation
tolerance and Minimum Allowed Feature Size parameters are selected such that the average
grain size and the number of features are closest to the real microstructures. It is quite
interesting that the number of grains and mean ESD are not identical as shown in Fig.
6.5a and 6.5b. As one would expect the mean ESD and the number of grains are inversely
proportional, which is evident from Figs. 6.5a and 6.5b. However, there are inconsistencies
in the volume fraction of the samples after postprocessing which are not analyzed in this
work.
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Figure 6.5: Analyzing postprocessed microstructures quantitatively in terms of mean ESD
and number of grains.
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Chapter 7

Conclusions

7.1 Summary
This work is an ambitious effort to reconstruct 3D statistically equivalent microstructures
from 2D microstructures by employing generative models. It mainly focuses on
microstructure reconstruction and does not involve property predictions. The
microstructure is quantified by defining the microstructure-descriptors namely volume
fraction, grain size and grain orientation information. Since the accumulation of data from
experiments for the given objective is not only expensive but practically impossible due to
the enormous efforts involved. So, DREAM.3D has been employed for synthetic
microstructure generation by capitalizing the microstructure-descriptors.

Furthermore, an algorithm is also developed to include lamellae in the synthetic
microstructures. It is a postprocessing tool applied on synthetic microstructures to
augment generated polycrystals with additional features to make them more realistic. It
involves modifying the existing grain information by taking the geometrical aspects of the
grain into account. The required parameters such as distance between lamellae, thickness,
orientation, and normal direction of the lamellae can be utilized for customizing them.

The initially chosen dimensions for a synthetic 3D microstructure constructed from
DREAM.3D is 192× 192× 192 and a relative 2D microstructure is acquired by slicing the
3D volume. Comparing the statistics of obtained 2D slices with that of the entire 3D
volume, the 2D slice which accurately describes the 3D volume is selected. A dataset of
165 data points constituting 3D and corresponding 2D microstructures has been prepared.
In consideration of the available computational resources, the dimensions of synthetic
microstructures have been reduced to 64×64×64 for faster training.

Initially, Unet framework has been employed for microstructure reconstruction using
standard loss metrics and employing 2D slice as input. The Unet predictions failed in
generalization of data points, resulted in overfitting of training samples, and showed severe
disparities in the microstructure-descriptors which hinted at optimizing the objective
function. Subsequently, the Unet is trained with a customized loss function to get more
plausible outputs. The custom objective function improved the generated microstructures
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slightly, however it is not sufficient for generating high-fidelity microstructures.
State of the art generative models namely VAEs and GANs have been applied for

reconstructing the synthetic microstructures using 2D slice as a conditional setting. The
cVAE model generated blurry images with minor deviations in microstructure-descriptors.
The cGANs constituting pix2pixGAN framework has been employed for microstructure
reconstruction and its predictions had shown decent similarities with the targets. It also
showed competence in learning the microstructure-descriptors, and the generated
microstructures showed visually distinguishable grain like structures, however with opaque
grain boundaries. This emphasized the need for postprocessing for better analysis of the
generated microstructures. The postprocessed microstructures showed visually
distinguishable grains with distinct grain boundaries and are also effectual in quantitative
comparison of the generated microstructures with real ones. The postprocessed
microstructures displayed some disparities when microstructure-descriptors are compared.

Besides, WCGAN with gradient penalty has been also employed for this purpose and
trained only with a single channel. The resultant microstructures did not show any visible
grain like regions, however competent in reproducing EA1 distributions. WCGAN was also
been applied for mapping grain boundary solely, however, it could not predict grain
boundaries satisfactorily. From the above mentioned generative models, pix2pixGAN
trained with customized loss function indicated potential in generating microstructures
with similar microstructure-descriptors.

7.2 Recommendations for future work
The present work has the potential to reconstruct a 3D microstructure from the given 2D
slice rapidly on-the-go compared to the conventional algorithms which require considerable
time and computational resources. For instance, the time taken for generating a synthetic 3D
microstructure by employing present algorithms can be reduced from several minutes to few
minutes or seconds. However, this work demands high computational resources only during
training the configured models. Even though the generative models employed in this work
were not completely successful in the generation of statistically equivalent microstructures,
they provided valuable insights into microstructure reconstruction. Firstly, one needs to
comprehend the complexity in this task to reconstruct a 3D microstructure of dimensions
64× 64× 64 from a 2D image of size 64× 64. Another significant insight is customizing
the evaluation metrics by the inclusion of descriptors improved the accuracy in generated
microstructures in terms of statistics. The efficiency of the model can be enhanced further
by customizing the loss metrics, and the current evaluation metrics for the comparison of
two 3D images require further research.

Since postprocessing the predictions showed promising results, it can be included
immediately after training the generative model on a single channel specifically EA1 (owing
to its Gaussian like distribution) using pix2pixGAN architecture with more effective
evaluation metrics. Subsequently filling the other Euler angle components and phases
channels from the information obtained from 2D slice using segmentation algorithms.
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Optimization of latent space in generative models can be performed to achieve more
realistic microstructures. There is also scope for expanding the microstructure-descriptors
space (such as aspect ratios and number of neighbors) to incorporate the possible variance
in the dataset which is critical for the generalization of microstructures. Although the main
objective of this work is to reconstruct statistically equivalent synthetic microstructures,
the ultimate aim is to expand this framework for experimental and complex
microstructures. Nevertheless, the present proposed approach is still evolving and has huge
potential in microstructure reconstruction.
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Appendix A

Pipelines for data creation

A.1: Pipeline for single phase synthetic microstructure generation∗.

Filter # Filter name Reason for Use
0 Stats Generator constructs the arrays necessary to generate

synthetic microstructures
1 Initialize Synthetic Volume produces an empty volume as basis for

inserting features in image geometry for
creation of synthetic microstructures

2 Establish Shape Types allocates shape type to each ensemble
3 Pack Primary Phases pack precipitate features to achieve required

statistics
4 Find Feature Neighbors calculates number of neighbours of that

feature
5 Match Crystallography matches ODF to feature set
6 Find Feature Sizes determines the size of each features
7 Delete Data removes unwanted or unnecessary data
8 Create Element Array from

Feature array
copies the data of a feature to all elements
that belong to it

9 Export ASCII Data outputs cell data array to a file in ASCII
format

10 Export ASCII Data outputs feature sizes array to a file in ASCII
format

11 Export ASCII Data outputs data containing volumes of features
to a file in ASCII format

12 Write DREAM.3D Data file Writes out all attribute matrices and pipeline
to a file
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A.2: Pipeline for removal of small features∗.

Filter # Filter name Reason for Use
0 Read DREAM.3D Data File reads all attribute matrices into a data

structure
1 Threshold Objects threshold data values based on given condi-

tions
2 Remove Flagged Features deletes features which are flagged by the

threshold objects filter
3 Delete Data removes unwanted or unnecessary data
4 Find Feature Sizes determines the size of each features
5 Create Element Array from

Feature Array
copies the data of a feature to all elements
that belong to it

6 Export ASCII Data outputs cell data array to a file in ASCII
format

7 Export ASCII Data outputs equivalent diameters to a file in
ASCII format

8 Export ASCII Data outputs feature volumes to a file in ASCII
format

9 Write DREAM.3D Data
File

writes out all the attribute matrices and
pipeline to a file
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A.3: Pipeline for generating two-phase 3D microstructures∗.

Filter # Filter name Reason for Use
0 Create Data Container generates a new empty data container
1 Create Geometry(Image) creates geometry of image for constituting

3D rectilinear grid of voxels or pixels
2 Import ASCII Data imports ASCII data from any text file into

DREAM.3D format
3 Combine Attribute Arrays merges specified attribute arrays into a single

attribute array
4 Convert Orientation Repre-

sentation
converts given representation of orientation
to specified representation

5 Create Ensemble Info stores info about the crystal structure and
phase types of all the features

6 Create String Array produces an attribute array of string type
7 Segment Features (Misori-

entation)
divides features by grouping neighbouring
voxels such that misorientation tolerance is
satisfied

8 Find Feature Neighbours computes number of neighbours for that
feature

9 Find Surface Features governs whether a feature is present on the
surface of the sample

10 Find Feature Centroids computes centroid of each feature
11 Create Feature Array from

Element Array
copies the associated element data to all the
elements belonging to a feature

12 Delete Data erases data which is not required or replica
of existing data

13 Find Feature Sizes computes the size of each feature
14 Find Feature Average Ori-

entations
calculates the average orientation of each
feature

15 Find Volume fractions of
Ensembles

evaluates volume fraction of each ensemble

16 Export Pole Figure Images outputs pole figure images for each ensemble
17 Export ASCII Data outputs volume fractions in microstructure

in ASCII format
18 Export ASCII Data Outputs cell data in microstructure in ASCII

format
19 Export ASCII Data outputs diameters of features
20 Export ASCII Data writes average of Euler angles to a file
21 Write DREAM.3D Data

File
writes out all attribute matrices and pipeline
to a file
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A.4: Pipeline for generating two-phase 2D slices from 3D microstructures∗.

Filter # Filter name Reason for Use
0 Read DREAM.3D Data File reads all attribute matrices to a data

structure
1 Crop Geometry(Image) slice 3D microstructure into 2D based on the

are
2 Create Ensemble Info reads the information about crystal structure

and phase types of all the features
3 Delete Data deletes unwanted data
4 Threshold Objects thresholding data values based on specified

conditions
5 Segment Features (Misori-

entation)
divides features by grouping neighbouring
voxels such that misorientation tolerance is
satisfied

6 Find Feature Sizes computes size of the features
7 Create Feature Array from

Element Array
replicates the associated element data to all
the elements belonging to a feature

8 Find Volume Fractions of
Ensembles

evaluates volume fraction of each ensemble

9 Export ASCII Data outputs pole figure image for each ensemble
10 Export ASCII Data outputs volume fractions in microstructure

in ASCII format
11 Export ASCII Data outputs cell data in microstructure in ASCII

format
12 Export ASCII Data outputs diameters of features
13 Create String Array produces an attribute array of string type
14 Export Pole Figure Images outputs pole figure image for each ensemble
15 Write DREAM.3D Data

File
writes out all attribute matrices and pipeline
to a file
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Appendix B

Postprocessing pipeline

A.1: Postprocessing pipeline.

Filter
# Filter name Reason for Use

0 Create Data Container generates a new empty data container
1 Create Geometry (Image) creates geometry of image for constituting

3D rectilinear grid of voxels or pixels
2 Import ASCII Data imports ASCII data from text file into

DREAM. 3D format
3 Threshold Objects permits user to define conditions for limiting

Attribute arrays
4 Combine attribute Arrays merges specified attribute arrays into a single

attribute array
5 Convert Orientation Repre-

sentation
converts given representation of orientation
to specified representation

6 Create Ensemble Info stores info about the crystal structure and
phase types of all the features

7 Isolate Largest Feature
(Identify Sample)

identifies the bad data which might be
present due to overscanned volume

8 Neighbor Orientation Com-
parison (Bad Data)

orientations of bad cells are compared with
their neighbors

9 Segment Features (Misori-
entation)

divides features by grouping neighbouring
voxels such that misorientation tolerance is
satisfied

10 Find Feature Phases determines the ensemble of features
11 Find Feature Average Ori-

entations
calculates the average orientation of each
feature

12 Find Feature Neighbors computes number of neighbours for that
feature
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13 Find Feature Sizes computes the size of each feature
14 Delete Data removes selected data from the prevailing

data
15 Minimum Size deletes features having a total number of cells

below the given minimum threshold value
16 Find Feature Neighbors computes number of neighbours for that

feature
17 Fill Bad Data eradicates noise in data by keeping only

possible features
18 Erode/Dilate Bad Data (with Erode) reduces the bad data by one

cell for a given number of iterations
19 Erode/Dilate Bad Data (with Dilate) expands the bad data by one

cell for a given number of iterations
20 Find Feature Centroids computes centroid of each feature
21 Delete Data removes selected data from the prevailing

data
22 Find Feature Sizes computes the size of each feature
23 Create Element Array from

Feature Array
duplicates the values of a feature to all the
elements belonging to that feature

24 Find Feature Shapes computes second-order moments of each
feature to calculate principal axis lengths,
principal axis directions, aspect ratios and
moment invariant Omega3s

25 Export ASCII Data outputs Feature data in microstructure in
ASCII format

26 Generate IPF Colors generate inverse pole figure (IPF) colors for
crystal structures

27 Write DREAM.3D Data
File

writes out all the attribute matrices and
pipeline to a file

28 Export Feature Data as
CSV File

writes the data associated with each feature
to a CSV file
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