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Abstract

Materials discovery and development processes are the two forefronts of materi-
als science and engineering. Representative/statistical Volume Elements (RVEs,
SVEs) are extensively used to simulate di�erent homogenized properties of an en-
gineered microstructure, facilitating further development or improvement of that
materials-system with optimized performance. The reliability of these predicted
properties is limited due to various uncertainties which come from various sources
like underlying stochastic process, complexity of microstructure etc. These tend
to reduce if the size of a volume element (VE) is larger because of incorporation
of more information, however, simulations tend to become expensive and cum-
bersome. Hence, there is a need of �nding an acceptable size which balances
both higher computational cost and lower uncertainties. A related framework in
this regard or an understanding for the estimation of acceptable sizes of a real-
istic RVE considering a range of properties is necessary. Considering the above
background it can be said that the choice of a smaller sized VE could results in
pronounced simulation-uncertainties considering a complex material model when
used for the same microstructure i.e, a larger size is required for an acceptable
RVE if the complexity of the model and the microstructure increases and thus,
a hierarchy of acceptable sizes can be mapped for the same microstructure us-
ing di�erent material models incorporating complex non-linear behaviours. Such
an RVE-Map is supposed to be extremely useful in the context of more reliable
decision-making based on homogenization results and multiscale simulations.

In this work, a primary version of an RVE-map has been attempted to be es-
tablished. Firstly, in order to build statistically equivalent volume-elements (SVE)
in terms of necessary microstructural/morphological descriptors, a number of dif-
ferent realizations of increasing size has been generated. Next, a homogenized
property is compared by carrying out the similar simulation using all the SVEs
and thus, an acceptable size has been selected after convergence study, based on
i) the relative error of less than 1% in between two consecutive realizations and
ii) a single realization. Thus, the procedure has been repeated by considering a
range of properties in order to show the expected hierarchy of selected properties.

The sequence modelling capability of deep learning models has been leveraged
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to get the property-predictions of higher sized SVEs e�ectively, by saving time
and computational cost, and thus facilitating faster decision-making. This is
done by learning the sequence formed by the property-curves at lower sizes and
having predictions at higher sizes until convergence is achieved.

From the established RVE-map, it can be concluded that a cube of side
length 60 μm is su�cient for elasticity, while for pure thermal simulation or for
thermo-elasticity or for elasto-plasticity under only slip-condition an approximate
cube-side of 140 μm is reasonable. On the other hand, if twinning mechanism is
added to the plasticity model, then a slightly larger size than that of purely slip-
case is expected. When thermal a boundary condition is added to coupled slip-
twin based plasticity, then reasonable side-length of the expected RVE reaches
to nearly 180 μm.
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Chapter 1

Introduction

Understanding of the structure-property relationship is arguably the most impor-
tant aspect of materials engineering. A large part of the community is dedicated
to the study of how tinkering with a structure will a�ect its property. Many ma-
terials (natural or synthetic) may look homogeneous macroscopically, but have
heterogeneities once they are su�ciently zoomed in. These heterogeneities may
origin from the distribution of di�erent defects in the form of grain boundaries,
lamellar boundaries, twin boundaries, anti-phase boundaries, stacking faults, dis-
location network, etc. in polycrystals. Similarly it could be due to the presence of
inclusions, pores, precipitates in composites. These microscopic heterogeneities
play an important role in the overall response of the material, and hence there
is a need to analyse how these microscopic heterogeneities actually in�uence the
macroscopic behaviour. A Volume Element, which is periodic in nature contain-
ing all these heterogeneities, is assumed to be repeating in all directions to form
the macro specimen. Thus, the averaged (homogenized) property of this peri-
odic element is representative of the whole material. This is the idea behind the
existence of Representative Volume Elements or simply RVEs. Hence, broadly,
an RVE is a material volume whose e�ective behaviour is representative of the
material as a whole.[12].

There are many not-so-precise de�nitions of RVE used for di�erent scenarios.
A collection of these de�nitions is provided by a review paper by Gitman et. al
[13]. The de�nitions are as follows:

1. The RVE is a sample that (a) is structurally entirely typical of the whole
mixture on average, and (b) contains a su�cient number of inclusions for
the apparent overall moduli to be e�ectively independent of the surface
values of traction and displacement, as long as these values are macro-
scopically uniform.

1



2 CHAPTER 1. INTRODUCTION

2. An RVE is the minimal material volume, which contains statistically enough
mechanisms of deformation processes. The increasing of this volume should
not lead to changes of evolution equations for �eld-values, describing these
mechanisms

3. The RVE must be chosen su�ciently large compared to the microstructural
size for the approach to be valid, and it is the smallest material volume
element of the composite for which the usual spatially constant overall
modulus macroscopic constitutive representation is a su�ciently accurate
model to represent the mean constitutive response.

4. The RVE is a model of the material to be used to determine the cor-
responding e�ective properties for the homogenised macroscopic model.
The RVE should be large enough to contain su�cient information about
the microstructure in order to be representative, however it should be much
smaller than the macroscopic body (This is known as the Micro�Meso�Macro
principle).

5. The RVE is de�ned as the minimum volume of laboratory scale specimen,
such that the results obtained from this specimen can still be regarded as
representative for a continuum.

6. The size of the RVE should be large enough with respect to the individual
grain size in order to de�ne overall quantities such as stress and strain,
but this size should also be small enough in order not to hide macroscopic
heterogeneity

The common point among all the de�nitions is that it should be small enough
to be macroscopically homogeneous and large enough to be microscopically het-
erogeneous. For the development of synthetic microstructures, di�erent stochas-
tic processes are used for the generation of microstructures. These uncertainties
might come from various sources like di�erent realizations, sizes, mesh-desntiy,
di�erent boundary conditions etc., even the same process of generations of RVE
might give di�erent results. It is an inherent factor in various aspects of mod-
elling, processing, design, and development of a materials-system. Uncertainty is
not only added from di�erent sources, but also propagated when di�erent physics
and numerics are employed to simulate di�erent complex behaviours. One of such
prime examples is the scale-bridging problem, where propagation of uncertainty
is heavily in�uenced by individual scales, especially when lower scale information
is passed to the higher scale. So, identifying the in�uential sources from the
lower scale can be considered as a very clever step in controlling the propagation
of uncertainties, thereby making the results of the simulations reliable and robust.
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Towards a precise de�nition of an RVE
The evolution of the RVE-de�nition and some relevant literature regarding the

RVE size estimation approaches are presented here. Hill et. al [14] in 1963 gave
the �rst and most simple de�nition of RVE as a sample that is structurally typical
of the whole microstructure for a given material, containing a su�ciently large
number of heterogeneities, while being small enough to be considered homoge-
neous from a continuum viewpoint. The quanti�cation of RVE size was �rst
done by Drugan and Willis [15] in 1996. They de�ned RVE in the context of
composites as Volume over which the usual macroscopically homogeneous �ef-
fective modulus� constitutive models for composites can be expected to apply.
and they estimated the minimum size of RVEs using this de�nition and assum-
ing change in constant modulus as 5%. One of the most important aspects of
their work was the separation of concept of an RVE in terms of microstructural
in�uence and property perspective. However, they did not discussion the de-
tail of microstructure and property based RVE. Later, Kanit et. al [16] in 2003
elaborated the concept of estimation of size of an RVE. They proposed that
an RVE must ensure a given accuracy based on 5 di�erent criteria. These �ve
criteria are the physical property, the contrast of properties, the volume fractions
of components, the desired relative precision for the estimation of the e�ective
property and the number of realizations of the microstructure associated with
computations that one is ready to carryout. Swaminathan et. al [17] in 2006
proposed the concept of statistically equivalent RVEs, simply SERVES which can
be used to evaluate accurate homogenized properties to be used in macroscopic
analysis. Equivalence of the homogenized sti�ness tensor, independence from
loading and location in the microstructure, agreement in the statistical distri-
bution of the microstructural variables with those for the entire microstructure
were considered as criteria for determination of SERVE size. Gitman et. al [13]
in 2007 have chosen a combined numerical-statistical approach to determine
the RVE size and convergence studies have been done usng Chi-square analysis
on the property values of di�erent realizations. Echlin et. al [1] in 2014 have
shown a method for categorizing and quantifying volume elements based on mi-
crostructure, properties, and design(MVE, PVE, and DVE) shown in the �gure
1.1. They have shown that for a particular convergence limit, the microstruc-
ture based VEs or MVEs are smaller than property based VEs or PVEs, which
in turn are smaller than design based VEs or DVEs thus creating a hierarchy
as shown in the �gure 1.2. Pinz et. al [18] in 2018 have used the concept
of statistically equivalent RVEs to address the di�culty of quantifying RVE for
microstructures with non-uniformly dispersed heterogeneities. They are further
catergorized into microstructure based SERVEs (m-SERVES) and property based
SERVES(p-SERVES) depending on whether morphological descriptors or prop-
erties are used for checking the acceptable size.
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Figure 1.1: Material properties require di�erently sized VEs to accurately describe
them [1].

This thesis takes the concepts of m-SERVES and p-SERVES and uses them
together in a framework to have an acceptable size of an RVE and map out a
hierarchy when di�erent material models are used. This thesis can also be seen
as a detailed quanti�cation of hierarchy given by Echlin et. al[1] in the �gure 1.1
with emphasis on microscale.

The uncertainties in an RVE produced by a stochastic process are more when
the size is less and they decrease with the increasing size. For larger sizes of
RVE the uncertainties might be low, but the computation power required to cal-
culate the response will be more. So naturally the question arises whether there
exists an acceptable size of an RVE which is large enough to have minimum
uncertainties and also small enough to save computation power and speed. The
hypothesis is that this size e�ect is dependent on the complexity of the material
model used and there exists a hierarchy of acceptable RVE sizes for all material
models. In simpler terms, if the complexity of the material model increases, the
uncertainties will be more pronounced and the size of acceptable RVE will be
larger.

The idea of this thesis is to validate this hypothesis and map out the hierarchy.
This is done �rst by generating statistical volume elemenrs of di�erent sizes and
di�erent realizations for each size. The microstructure which is of interest here is
dual phase Gamma Titatnium Aluminide (TiAl). A 2D sample from experiments
is used as starting point and it is reconstructed to form samples of SVEs of di�er-
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Figure 1.2: Material volume elements can be divided into a hierarchy which is
tiered based on their dependence [1].

ent sizes using DREAM3D [2] by matching the crystallography. Microstructural
Descriptors are compared of these realizations of all sizes to comply for the fact
that these Volume Elements indeed represent same microstructure thus they can
be quali�ed as microstructure based statistically equivalent representative volume
elements or simply m-SERVES.

Next, DAMASK [4] is used to measure the stress-strain responses of these
SVEs when di�erent material models(pure elastic, elasto-plastic) for the two
phases in the microstructure are used. Same tensile test is carried out for all
the SVEs of di�erent sizes with same material property. Since these SVEs are
already quali�ed as m-SERVES any uncertainties seen here only attribute to the
size e�ect. The DAMASK results are processed and homogenized stress-strain
curves are plotted for all realizations of all sizes. The size is said to be acceptable
if the relative error between values of curves of di�erent realizations of same is
less than 1 %. This quali�es the SVEs as property based statistically equivalent
RVEs or simply p-SERVES.

If the convergence is not seen after �ve sizes, deep learning is used to save
computation time and accelerate the decision making process. A sequence of
curves is formed from the existing sizes and the deep learning model is trained
to learn this sequence and predict the next occurences until the relative error
between succesive occurences is less than 1 %.
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A hierarchy of acceptable sizes of RVE is mapped out for di�erent material
models(pure elasticity, elasto-plasticity with slip and slip+twin, thermo-elasticity
and thermo-elasto-plasticity) by essentially combining the concepts of m-SERVES
and p-SERVES to have a reliable acceptable size.

The thesis is structured in the following manner. First an Introduction is
provided along wih background which covers the evolution of de�nitions and
concepts of Representative Volume Elements. The modern de�nitions of mi-
crostructure based and property based RVEs are also provided. Next, a lit-
tle background and theory of tools used within the context of this thesis like
DREAM3D, DAMASK, Deep learning along with some information on Titanium
Aluminides is provided. In the next section, the comparision of microstructural
descriptors of generated SVEs is provided and then, the Deformation Gradient
- Piola Kircho� stress curves are provided for di�erent material models used in
these m-SERVES and p-SERVES.

The terms referring the RVEs throughout the thesis is explained here. The
generated samples from DREAM3D are called Statistical Volume Elements(SVEs)
or simply Volume Elements(VEs) since they are not yet representative. After
having a comparision of morphological descriptors they are called microstructure
based SERVES or m-SERVES and after having convergence of property at a
particular size, they are termed as property based or p-SERVES. This combined
m- and p-SERVES are the acceptable RVEs.



Chapter 2

Tools, materials and methods

2.1 DREAM.3D for 2D to equivalent 3D gen-

eration

All this information in this section is taken from the website and documentation
of DREAM.3D which can be found in [2] and [3]. DREAM.3D stands for Digi-
tal Representation Environment for Analyzing Microstructure in 3D. DREAM.3D
is a multidimensional, multimodal data reconstruction, instantiation, quanti�ca-
tion, meshing, handling, and visualization software package that is open source,
cross-platform, and modular.

Statistical Volume Elements of TiAl need to be generated from the same
process at di�erent sizes such that all the VEs indeed represent the same type
of material. DREAM.3D is used to generate 3D synthetic SVEs from 2D EBSD
image by extracting microstructural descriptors to view them as m-SERVEs. A
brief overview of DREAM.3D is provided and the pipeline used to generate VEs
is also discussed. Then the microstructural descriptors are compared for di�erent
sizes to state the fact that these varied size VEs represent the similar microstruc-
ture, thus viewing them as m-SERVES.

DREAM.3D provides tools/�lters which can be used to build pipelines. These
pipelines are used for microstructure data analysis and manipulation. It provides
a �exible data structure in which this microstructure information is stored and
this data structure is manipulated by �lters according to the task to be done
and it is stored in a proprietary format. DREAM.3D is a �lter suite developed
for materials scientists to use to reconstruct 3D microstructures or synthetically
build microstructures. It is built on top of the SIMPL and SIMPLView software
projects.

7
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Some of the salient features and functionalities include:

1. Import ASCII, EBSD Vendor Data and standard image �les.

2. Alignment, cleaning, reconstruction, segmentation and analysis of imported
data Statistics, either synthetically created or from real data, can be used
to generate a statistically equivelent material structure

3. Reconstructed and synthetic volumes can be surfaced meshed to allow
export into FEM or other simulations.

4. Import/Export of data into/out of ASCII or Binary �les

5. Export Surface Mesh as STL Files

6. Over 350 �lters to process data

DREAM.3D makes use of an abstract, hierarchical data structure based on com-
binational topology and shared mesh structure descriptions. The tree structure
of the generalized data structure has the following node types:

1. Data Container Array: The root node of the data structure. In most cases,
a particular work�ow will only have one Data Container Array, but this is
not a hard requirement. The Data Container Array has access to create
and retrieve all objects that descend from it, not just its immediate Data
Container children.

2. Data Container: Holds Attribute Matrices for data that belong to unique
geometries. Two Data Containers are distinguised by their associated Ge-
ometry.

3. Attribute Matrix: Holds Attribute Arrays, which are the containers for raw
data. The type of Attribute Matrix labels the hierarchy level to which its
associated Attribute Arrays corresponds.

4. Attribute Array: Holds raw data in memory. DREAM.3D utilizes a �at
data storage approach, such that even multidimensional data is allocated
into a contiguous section of memory. This approach enables faster and
more e�cient compute times.

A visualization of the data structure is shown in the �gure 2.1
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Figure 2.1: Data Structure in DREAM.3D [2] and [3]

Pipeline∗ The processing of Data in DREAM.3D takes place through pipelines.
Pipelines are made from series of �lters which modify / process the underlying
data according to the requirement. The pipeline, just as the name suggests can
be imagined as a pipe line built from individual series of pipes, which are here
�lters. The �uid �owing inside the pipeline is the data which is being processed.
This �uid may be compressed, color can be added etc when it enters a pipe
similarly the data can be �lteres/processed according to the requirement in an
individual �lter of a pipeline. There are three types of �lters to Generate, Modify
and Store the Data structure, these are placed sequentially to create a working
pipeline as shown in the �gure 2.2

The starting point of generation of 3D Volume Elements of di�erent sizes is
a 2D EBSD image provided by DLR Institute. This image is read into a data
structure named Image Data Container. The basic outline of how 2D to 3D
reconstruction is taking place is as follows: The ensemble statistics of 2D image
are stored in a container. A synthetic volume of a particular side length with
established shape type is created and the crystallography is matched between
the Image and created synthetic volume. Iterations over di�erent statistics takes
place and they are matched as closely as possible thus giving an equivalent 3D
microstructure from a 2D image.

The snippet of the pipeline for 3D and the corresponding Data Structure
(Synthetic Data Volume) are shown in the �gures 2.3.
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Figure 2.2: Anatomy of a pipeline [2] and [3]

Figure 2.3: Pipeline to generate equivalent 3D volume elements from 2D EBSD
Image and the corresponding Data Structure (Synthetic Data Volume)*
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2.2 DAMASK � The Düsseldorf Advanced Ma-

terial Simulation Kit

The micromechanical simulations for property analysis are done on the volume
elements of all sizes using DAMASK. Hence a small overview of the concept and
usage is provided here. This is not a complete description of framework and
implementations in DAMASK but only a brief overview which is relevant to the
thesis. All the relevenat information and �gures are taken from the DAMASK
paper [4] and the website https://damask.mpie.de contains examples and tuto-
rials.

2.2.1 Concept

DAMASK provides the scienti�c community with an open, versatile, and simple-
to-use implementation that is highly modular and allows the usage and straight-
forward implementation of various types of constitutive laws and numerical solvers.
DAMASK's internal modular structure is derived directly from the hierarchy in-
herent in the continuous description used. DAMASK was created to replicate the
multi-scale hierarchy and multi-physics structure seen in the underlying material
physics of thermo-mechanical loading of complex materials. As a result, template
functions that connect numerical solvers, homogenization methods, and consti-
tutive laws are de�ned. Multiple constitutive laws and homogenization schemes,
as well as a speci�c set of solvers for the associated boundary and/or initial value
issues, can be mixed in the same model for more �exibility. To best handle the
situation at hand, a choice might be made between model accuracy and numer-
ical e�ort in this way.

Hierarchichal Structure

The conservation laws require a structured multi-scale description of the �uxes
and sources. The hierarchical structure is as follows: At the highest level, a Di-
vision and Homogenisation scheme performs the partitioning of prescribed �eld
values on a material point among its underlying microstructural elements and the
subsequent homogenization of each constituent's constitutive reaction. The time
integration of the underlying constitutive laws for �uxes and sources determines
the reaction of each microstructural constituent at the intermediate Constituent
Level. To provide this response at the lowest level, constitutive laws based on
evolving internal state variables are implemented in DAMASK. The framework
is designed in a modular structure to allow for a �exible and expandable im-
plementation. The Material Point Model is made up of abstract modules for
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Figure 2.4: Concept of DAMASK. Each material point, which is part of a dis-
cretized body on which conservation laws are solved, is made up of multiple
constituents that comprise of various constitutive laws [4]
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partitioning and homogenization, as well as the Constitutive Level. The provi-
sion of these abstract modules is intended to make branching into the various
specialized sub-modules present in DAMASK as shown in 2.4.

2.2.2 Spectral Method and FFT Solver

Building a model with a number of material points by using a combination of
modules from partitioning, homogenization and constitutive law and applying
a conservation law from the continuum formulation gives a PDE which is very
di�cult to solve analytically. Generally numerical methods like Finite Element
Method(FEM), Finite Volume Method(FVM) and Finite Di�erence Method(FDM)
are used to solve these complex PDEs. FEM is a popular and widely used.
Galerkin's method is the basis for FEM, which basically involves conversion of a
weak formulation of di�erential equation into a linear and non-linear system of
di�erential equations using ansatz functions. In FEM, these ansatz functions are
are usually polynomials of low degree (p < 3) with compact support, meaning
they are non-zero only in their domain (i.e. in one element). They equal zero in
all other elements. The approximate solution is the result of the assembly of the
single elements into a matrix. The matrix links the discrete input values with the
discrete output values on the sampling points. Thus, the FEM converts PDEs
into system of linear and non-linear equations. The resulting matrix is sparse
because only a few ansatz functions are non-zero on each point.
Spectral methods can be viewed as a variant of FEM, where higher degree poly-
nomials are used (p>3) and the anstaz functions are not restricted to elements,
i.e taking a global approach. Higher order polynomials give higher accuracy
for same number of sampling points and these spectral methods are expected to
have exponential convergence, meaning a faster convergence of solution. If these
ansatz functions are trigonometric polynomials, the system can be expressed and
solved easily in Fourier space. This property is leveraged in DAMASK using FFT
solver named FFTW(Fastest Fourier transform in West). The basic concept [19]
is outlined here, the function u(x) is written as combination of global ansatz func-
tions. If we take the number of sampling points as N+1, then the approximation
is given as 2.1

u(x) ≈
N∑
n=0

anφn(x) (2.1)

This is then used to approximate the required solution as 2.2

Lu(x) = f(x) (2.2)

here L is the di�erential operator and u(x) is the unknown we are solving for. The
residual function 2.3 is the error between the original solution and approximated
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Crystal class Number of Cij List of elastic constants
Triclinic 21 All possible combinations
Monoclinic 13 C11;C12;C13;C16;C22;C23;C26; ; C33;C36;C44;C45;C55;C66

Orthorhombic 9 C11;C12;C13;C22;C23;C33;C44; ; C55;C66

Trigonal 6 or 7 C11;C33;C44;C13;C12;C14;C25

Tetragonal 6 C11;C33;C44;C13;C12;C66

Hexagonal 5 C11;C33;C44;C12;C14

Cubic 3 C11;C12;C44

Isotropic 2 C11;C44

Table 2.1: Independent elastic constants for various crystal symmetries [11].

one and the spectral methods are employed to minimize this residual

R (x; a0, a1, . . . , aN) = L

(
N∑
n=0

anφn(x)

)
− f(x) (2.3)

2.2.3 Material Models

Some material models and corresponding constitutive laws are discussed. Note
that there are more modules available in DAMASK and only the used relevant
to the present thesis are discussed. These form the foundational blocks of the
hierarchical structure and are characterized by set of internal state variables.
Their purpose is to provide the response to the given input �elds and �uxes
and also to capture the evolution of internal state variables incase of history
dependence.

Elasticity Generalized Hookes Law is implemented as the relation between
Second Piola-Kircho� Stress S and Green-Lagrange strain E by a elastic sti�ness
matrix C , whose entries are determined by the type of crystal lattice.

S = C : E (2.4)

This elastic sti�ness matrix C is a tensor of rank 4 and, due to symmetries there
can be a maximum of 21 independent constants. The number of independent
constants for di�erent types of crystals is shown in the table 2.1

Plasticity: Phenomenological Crystal Plasticity Plasticity law should pro-
vide plastic velocity gradient Lp for a given Mandel StressMp, typically involving
a set of internal state variables. In polycrystalline materials plasticity occurs on
well-de�ned deformation systems according to the lattice structure. The sum to-
tal from these individual systems constitute the total plasticity given by equation
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2.5
Lp =

∑
α

γ̇α (sαS ⊗ nαS)︸ ︷︷ ︸
=:Pα

Schmid

(2.5)

with s and n being the directions and normals to the slip planes. The driving
force τα is generally given by SCHMID'S LAW equation 2.6

τα = Mp ·Pα
Schmid (2.6)

Phenomenological Crystal plasticity is a widely used simple model introduced by
Hutchinson for FCC and extended to twinning by Kalidindi. It's modi�ed form
is implemented for all crystal structures in DAMASK. The plastic component in
internal variables is characterized by resistances on slip and twin systems. This
is given by the equation 2.7

ξ̇α = hs−s0

(
1 + c1

(
f tot
tw

)c2) (1 + hαint)×
Ns∑
α′=1

∣∣∣γ̇α′
∣∣∣ ∣∣∣∣1− ξα

′

ξα′
∞

∣∣∣∣a sgn(1− ξα
′

ξα′
∞

)
hαα

′
+

Ntw∑
β′=1

γ̇β
′
hαβ

′ (2.7)

here f tot
tw is the twin volume fraction and h are slip-slip and slip-twin interaction

parameters and the rest are model �tting parameters. The resistances on twin
systems evolve in a similar way given by equation 2.8

ξ̇β = htw−s0

(
Ns∑
α=1

|γα|

)c3 Ns∑
α′=1

∣∣∣γ̇α′
∣∣∣hβα′

+ htw−tw0

(
f tot
tw

)c4 Ntw∑
β′=1

γ̇β
′
hββ

′
(2.8)

The evolution of shear on each slip system is given by equation 2.9

γ̇α =
(
1− f tot

tw

)
γ̇α0

∣∣∣∣ταξα
∣∣∣∣n sgn (τα) (2.9)

Thermal The thermal models are implemented to take in account strains due
to thermal expansion, heat generation and transport. The transport of heat in
solids predominantly takes place due to conduction. FOURIER'S LAW of heat
conduction given by equation 2.10 uses an anisotropic thermal conduction tensor
K to relate �ux and temperature gradient.

fT = −KGradT (2.10)

Heat can be generated as dissipation during plastic deformation, given by the
equation 2.11

fT = κS.Lp (2.11)
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κ is the TAYLOR-QUINNEY FACTOR which describes the fraction of plastic
work dissipated as heat. A user-de�ned heat source can also be prescribed as
equation 2.12

fT (tn) = cn (2.12)

The values at time t are interpolated linearly between constants cn

2.3 Machine Learning and Deep Learning

The previous decade saw an unprecedented growth in the application of Machine
and Deep learning techniques in almost all �elds of science,technology,�nance etc
supplemented by the change in ideology from "Think and Store Data" to "Store
Data and Think". The basic theme of the whole �eld of Machine learning is the
following : A computer is faced with a task and an associated performance mea-
sure, and its goal is to improve its performance in this task with experience which
comes in the form of examples and data [20]. Deep learning is a special branch
of Machine Learning where Neural networks are used. Some basic overview of
neural networks is provided below.[21]

2.3.1 Neural Networks

Neural Networks are a speci�c type of models which are somewhat inspired by
working of human brain. Small blocks of information (called Neurons) �re in a
speci�c manner (according to the activation function) with a speci�c intensity
(called weights) in a speci�ed sequence which will capture the behaviour of
complex data by optimizing the weights (by using optimizers) to minimize the
loss function constructed using the training data.
Information passes from one set of neurons (called a layer which can be thought
of as single unit of computation) to another set of neurons. Based on these
interconnections between the layers and type of the individual neuron several
architectures of neural networks are developed. Many of such architectures are
given in �gure 2.5.

Activation functions:
Activation function characterizes the behaviour of a neuron. It is a function

which manipulates the incoming data into the neuron to produce a output which
can be the �nal output or input to another layer. The activation functions
channelize the �ow of data leading from input to output via hidden layers. Some
typical activation functions used in Neural Networks are given in the �gure 2.6
along with corresponding formulae.
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Figure 2.5: Neural Network Architectures [5]
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Figure 2.6: Activation functions [6]

Figure 2.7: A simple Neural Network [7]

A simple Neural Network:
Based on the above de�nitions, a simple Neural Network, generally called as

an Arti�cial Neural Network(ANN) or a Multi-layer perceptron along with it's
mathematical formulation is shown in the �gure 2.7.

Loss function:
Loss function is the performance measure in the Neural Networks. Weights are

altered by the optimization algorithms to minimize this loss functional. Generally,
the loss function penalizes the output of the Neural network against the known
training data points.
General mathematical formulation is as follows, Let the training data (known
outputs for inputs) be given as input-output pairs as equation 2.13 :
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{(x1, y1) , . . . , (xN , yN)} ⊆X × (2.13)

Where X is the input sample space and Y is the output sample space.
The goal of a Neural Network (or any ML model for that matter) is to �nd
a function which maps from X to Y and gives predictions (ŷ) according to
training data, i.e equation 2.14

f : x 7→ ŷ (2.14)

This calculation of f is sometimes called "Forward propagation"(as in we are
moving forward direction in a Neural Network) and computing the loss and gra-
dients is referred as "Backward propagation"(as in we are moving in the reverse
direction in Neural Network calculating the error). As a performance measure(to
see whether f is doing a good job) loss function is de�ned as equation 2.15:

L : Y × → R (2.15)

Here L measures how close actual y is to the predicted output ŷ

1. squared loss:

L(y, ŷ) = |y − ŷ|2 for = R

2. zero one loss:

L(y, ŷ) = 1y(ŷ) for arbitrary

3. cross-entropy loss:

L(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) for = [0, 1]

Optimizers:
Weights of a Neural Network need to be changed to decrease the loss function.

Optimizers govern how these weights are changed to get optimum set of weights
which minimize the loss. Gradient based optimizers are based on the fact that
the gradient of a function gives the direction of it's decrease.
The general theme of all gradient-based optimizers is : Compute the gradients
and manipulate these gradients(e.g multiply with negative of learning rate) and
add them to present set of parameters. How do we manipulate the gradients to
make them more e�cient forms the factor for di�erent types of algorithms. This
is elucidated in the �gure 2.8
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Figure 2.8: General theme of Gradient based Optimizers [8]

2.3.2 Recurrent Neural Networks (RNNs) Long Short
Term Memory (LSTM) Networks

Though very versatile and simple, the limitations of ANNs are clearly seen if the
complexity of the data at hand is also increased. Sequential Data, i.e data whose
output not only depends on current input but also on previous occurences. For
example, both sense and meaning and the sentence depends on the order of oc-
curence of individual words, therefore the current output of a speech recognizer,
voice detector like Alexa should consider the previous data as well. Another ex-
ample might be when capturing the stress strain behaviour of non-linear material
model, the current stress state not only depends on current strain state but also
on the history of occurence of strains. Neural networks need to be equipped with
internal variables which capture the history dependence of the sequential data to
give meaningful outputs. This is the main reason that led to the development of
Recurrent neural networks(RNNs)

Life can only be understood looking backward. It must be lived forward.

-The Curious Case of Benjamin Button

The basic theme of development of RNNs is to acheive this "having a memory
of the past" and base it to have accurate/sensible prediction of future. A basic
architecture of RNN will look something like 2.9. x is the input state, o is the



2.3. MACHINE LEARNING AND DEEP LEARNING 21

Figure 2.9: Basic RNN architecture from Wikipedia

output and h is the hidden state. U,V,W are the weights applied respectively.
The recursive pointing structure forms the crux of RNN. This characterizes few
things:

1. Varied sizes of inputs and outputs

2. The hidden state represents the past knowledge, this serves as input to the
next step, and is dervied from previous hidden state and current input

3. This hidden state bridges both input and output, past and present

Long Short Term Memiry Networks LSTMs:
The limitations of basic RNNs discussed above will be seen easily when deal-

ing with higher dimensional data. RNN cannot remember too much because
of it's less parameters and it will face an overload. For these types of complex
situations, RNNs now need to be intelligent enough to output somethings, em-
phasize somethings and forget somethings. This is the basis of Long Short Term
memory networks (simlply LSTMs) which employ an input gate, output gate and
forget gate to acheive these functionalities and also sigmoid function to show the
amount of information being passed on. This is shown in �gure ??

Gated Recurrent Unit(GRU) is seen as a simpler version of LSTMs . Here
the three gates of LSTM are replaced with only two gates for reset and update.
The intermediate gate for emphasis is removed and both update and output are
done by update gate. This is illustrated in the �gure

Bi-Directional LSTM:
In LSTM, there is input �ow forwards i.e in one direction. When the data
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Figure 2.10: Basic LSTM Architecture Source:�A trip
down long-short memory lane� by Peter Velickovic
(https://www.cl.cam.ac.uk/~pv273/slides/LSTMslides.pdf)

Figure 2.11: Basic GRU unit Source:https://towardsdatascience.com/understanding-
rnns-lstms-and-grus-ed62eb584d90
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Figure 2.12: Basic Bi-LSTM Architecture
https://towardsdatascience.com/understanding-rnns-lstms-and-grus-
ed62eb584d90

is sparse, there is a need to capture the underlying nature of occurences both
from forwards and backwards for e�ective usage of sparse data in training.This
is facilitated by Bidirectional LSTMs (Bi-LSTMs). With the advent of packages
like Tensor�ow, PyTorch etc. It has become very simple , elegant to use these
architectures right away. In this thesis, Tensor�ow is used to implement LSTM
model neural network.

2.3.3 Implementation in current problem:

Micromechanical simulations for larger sizes of Volume Elements(VEs) becomes
expensive and time consuming. An Elasto-Plastic simulation of VE with 140
units (1 Voxel per unit) takes around 10GB of data and arouud 8-10 hours
to complete the simulation with 10 cores used parallelly. In this thesis, deep
learning models for sequence learning and prediction are used to save both time
and computational power by implementing a light sequence predictor which trains
for lower sizes which are relatively faster and inexpensive to obtain data and used
to predict the property for higher sizes. The idea is to leverage the fact that
for lower sizes of VEs the property has more uncertainity (more spread about
mean) and this spread decreases with increasing size of the VEs and this almost
disappears or is within the acceptable limits for larger sizes. This can be used to
generate a sequence of property data for increasing size of VEs. The di�erence
between each consecutive size of VE will be less than the previous ones due to the
decrease in uncertainity. This data when trained with a proper sequential learning
neural network (here, LSTM), with each prediction at higher size, the di�erence
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Figure 2.13: F-P curves for Elasto-Plastic simulations to illustrate the conver-
gence behaviour at increasing sizes. It can be seen that the distance between
subsequent curves is decreasing with increasing size

of proprty between consecutive size will be decreasing until it is minimized within
acceptable limits. This means that our solution is converged at a partculat size
and this size will be the acceptable size of our VE for that particulat material
model and against that particular property.
This is shown in the �gure 2.13, it can be observed that the curves have distance
between them decreasing and the predictions will be made easily until required
convergence is met. The training data is prepared from this pattern as shown
in the table 2.2. The data is arranged as pairs which output the occurence at
next size. This gives the deep learning model a good idea of the underlying
correlation. Once the training is done, prediction at higher size can be made by
giving the data at previous two sizes as input and this prediction is used as input
to the next prediction and this is repeated until required convergence is acheived.

Here in the example provided for Elasto-Plastic model, VEs upto size 120units
are used for training . After training , a prediction for 140 units is made by giving
data at 100 and 120 units as input. The next prediction of 160 units can be
made by using the current prediction of 140units and this is continued until the
convergence is reached.

The LSTM neural network architecture used to do this task is given in the
�gure 2.14 . The data is trained against this model. The measure of error is
Mean Squared Error. Optimizer used is Adam with learning rate as 0.5e-3 and
rest of the parameters are default values.

The performance and predictions of neural network will be discussed in the
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Input Output
Training

[P_40,P_60] [P_80]
[P_60,P_80] [P_100]
[P_80,P_100] [P_120]

Prediction

[P_100,P_120] [P_140]
[P_120,P_140] [P_160]

Table 2.2: Strategy of sequence generation for training at lower sizes and pre-
diction at higher sizes, the term P_(side_length_VE) is the Property which the
neural network is trained at that particular size

Figure 2.14: Architecture of the neural network*
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Phase γ-TiAl α2 − Ti3Al
System fct hcp

Lattice parameters
a 0.400 nm 0.577 nm
c 0.407 nm 0.465 nm

Table 2.3: Some characteristics of the most important phases in γbased alloys
(from Pearson's Handbook of Crystallographic Data for Intermetallic Phases,
Villars and Calvert 1991

subsequent chapters

2.4 Titanium Aluminide

The material which is considered in the context of thesis is Titanium Aluminide.
There are a spectrum of Titanium Aluminides based on the amount of phases
present. These phases in the Ti-Al system have been widely recognized as a
viable basis for the creation of innovative lightweight alloys for high-temperature
structural applications since the 1970s. Since then, the fundamental driving rea-
son behind extensive research has been to partially replace considerably denser
superalloys or less temperature resistant titanium alloys in gas turbines. TiAl
based LPT blades are already in use since 2001. Ti-based alloy (minor Al) has
been used in the engine parts in other military application for nearly 50 years.
In the �eld of aeronautics, Intermetallic TiAl are being considered for turbine
blades. In blade applications, not only can direct weight savings be achieved by
using lighter components, but indirect weight savings can also be achieved by
reducing the centrifugal force acting on the disks upon which the turbine blades
are mounted.[10]

The phase diagram of Titanium Aluminide is shown in the �gure 2.15. The
type which is considered here has two phases : γ-TiAl and α2−Ti3Al, often
mentioned as Gamma and Alpha2. The percentage of Alpha2 phase is around
35%. The important characteristics of these phases are given in the table 2.3
and the crystal structures are given in the �gure 2.16

The properties of these materials, like elastic constants and inelastic parame-
ters are mentioned in the property based RVE section wherever a particular type
of constitutive law is used. There are these two phases in the polycrystalline
RVEs throughout this work. The grains are oriented randomly.
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Figure 2.15: Binary Ti-Al phase diagram [9]

Figure 2.16: Crystal structures of a) γ-TiAl ; b) α2 −Ti3Al dark spheres depict
Ti atom positions. [10]
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Chapter 3

Results and Discussions

3.1 Comparision of Microstructural Descrip-

tors

The generated Statistically Equivalent VEs are compared using di�erent mi-
crostructural descriptors. By comparing the morphological descriptors at dif-
ferent sizes and realizations, we can get a good overview of how similar or how
di�erent the microstructures are. Any uncertainties which will be seen in prop-
erty based simulations will then be attributed only to the size and therefore the
concept of acceptable sized RVE will be more meaningful. Any realization which
shows a large deviation from the expected trend is omitted and thus the remain-
ing statistical volume elements can be called as microstructure based statistically
equivalent representative volume elements , simply m-SERVES. All the images,
entries in graphs and plots have the indication of side length of the SVE in μm.

Visualization of Volume Elements:
Di�erent sizes of statistical volume elements are produced from the pipeline.They

are visualized usíng ParaView[22] . The IPF magnitudes are shown in the �gure
3.1 and the phases are shown in the �gure 3.2

Volume Fraction The ratio of volume of a phase in a material to the total
volume of all phases is called Volume Fraction of that particular phase. Since
this is a two phase material, volume fraction of one phase will be enough to
quantify the distribution of phases. Volume fraction of the Gamma phase in VE
is shown for all realizations of all sizes as a boxplot to have a statistical view
of the distribution of the values in the �gure 3.3. It is clearly illustrated that
the deviation about mean is less than 1% for all the sizes hence representing the
similar microstructure.

29
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Figure 3.1: IPF Color Magnitudes of Volume Elements of all sizes in the order
of side length 40, 60, 80, 100, 120μm.

Mean ESD (equivalent sphere diameter) The grains of the two phases
are cosidered to be ellipsoids in the DREAM3D pipeline, therefore the descriptor
quantifying the grain size will be equivalent sphere diameter of the grain. The
mean of equivalent sphere diameter of all grains in a m-SERVE is also a morpho-
logical statistical descriptor. The value at di�erent sizes is shown in the �gure
3.4. The MeanESD is almost same for all the m-SERVES.

The di�erence in the values of reference 2D and generated 3D samples is due
to the fact that, ESD is calculated on the basis of area in reference 2D and it is
calculated on the basis of volume in generated 3D SVEs. Hence, it is natural to
�nd that mean ESD of reference 2D sample is slightly less than the generated
3D SVEs. This similar behaviour is also seen in dustribution of diameters also.

Distribution of Diameters Di�erent sizes of grains are distributed inside the
m-SERVES and their distribution is also morphological descriptor. The �gure
3.5 shows that for all sizes the distribution curves look similar. The inference
can be made by virtue of this descriptor that these-SERVES represent the same
microstructure .

Orientation Distribution The atoms in a grain are arranged in a speci�c
manner and this is quanti�ed by Orientation of that particular grain. There
are many representations of orientation (Euler Angles, Quaternions, Rotation
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Figure 3.2: Distribution of Phases Volume Elements of all sizes in the order of
40, 60, 80, 100, 120.

Matrices, Axis-Angle pair etc.). The distribution of orientations is given by a
Pole Figure, which is a collection of stereographic projection of poles representing
the orientation of grains. This characterizes the texture of the material, i.e it
shows whether the grains are favourably oriented towards a speci�c direction
or randomly oriented. The Orientation distribution of all the grains in the m-
SERVES against the original 2D sample will show that with increasing size of
m-SERVE the orientation looks more like the original 2D sample as shown in the
�gure 3.6

Misorientation Distribution Misorientation is the measure of di�erence in
the crystallographic orientation between two adjacent grains or cells. The average
angle of misorientation of a grain with all the other grains it is in contact with is
stored for all grains of all realizations and it is plotted as a distribution curve to
get an idea of misorientation distribution. It is observed that for this particular
descriptor, for the sizes from and above 60μm the curves look similar.
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Figure 3.3: Volume Fraction of Gamma phase of all realizations

3.2 Mesh convergence study

The uncertainties due to meshing are also minimized by having a mesh conver-
gennce analysis. The same simulation is made with di�erent mesh sizes to see
how mesh is actually a�ecting the homogenized F-P curve. The curves for dif-
ferent mesh sizes are shown in the �gure 3.8. It is clear that the values converge
after a mesh size of half of the the side length of the SERVE. To be on a safer
side, the meshes considered in this whole thesis are 1 fourier point per voxel. (A
SERVE of side length 120μm has a mesh of 120x120x120).

3.3 Property based analysis on di�erent ma-

terial models

Di�erent realizations of m-SERVES will have di�erent behaviour owing to the
uncertainties which are now mainly due to the di�erent spatial distribution of
descriptors with increasing size or even within the same size. In other words, the
response of di�erent realizations of m-SERVES of the same size will be di�erent
for same simulation performed with them. The uncertainties tend to reduce with
the increasing size and ideally they would disappear at a particular size and that
can be regarded as an acceptable size. In this thesis we are searching for a size
where consecutive realizations will have the di�erence in property within accep-
tale limit (relative error is less than 1 %). Thus we will get the acceptable size
of RVE for which one realization (checked for morphological descriptors, thus
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Figure 3.4: Mean equivalent grain diameter of all realizations

m-SERVE) and has 1% of relative error of property (thus p-SERVE). The simu-
lations are carried out in DAMASK. The response or property which is used for
investigation is the Deformation Gradient (F) vs Piola Kircho� Stress(P) curves.
To carry out the simulations in DAMASK, the DREAM3D �les are converted into
DAMASK material and geometry �les using the preprocessing tools of DAMASK.
The loading is same for all the simulations, tension in 11 direction.

The main aim of this work is also to prove that this size e�ect becomes more
pronounced if the material model employed in the simulation is complex, in other
words, for a more complex constitutive model (complex meaning more types of
phenomenon are involved in the material behaviour), larger size of SERVE is
needed to get minimum uncertainity and map out the corresponding hierarchy
of the sizes for di�erent material models. For this, the same simulation is done
for di�erent types of material (constitutive) models for the two phases (Gamma
and Alpha2) and are probed for a size where the relative error of property is less
than 1%.

The DAMASK simulations become more and more computationally expen-
sive and time taking with the increasing size and also the increased complexity
of the material model. For example, For size of 120μm, carrying out a tensile
simulation for 25 seconds with the elasto-plastic constitutive model and using
10 cores of CPU for parallellization, it takes around 12 hours to complete the
simulation and the result �le will be around 15GB. This can be evaded by using
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Figure 3.5: Mean equivalent grain diameter distribution of all realizations

the property data at lower sizes (which are computationally less expensive) and
use this data to get the predictions and look for convergence using the sequential
learning deep learning models. The convergence criteria here will be: If the prop-
erty between consecutive predictions will be less than 1 % this will be considered
the acceptable size of the RVE for that particular material model.

It became very simple and convenient setting up the LSTM model for se-
quence prediction, thanks to well developed commercial packages like Tensor�ow.
The dataset being dealt with is sparse, therefore the model has fewer layers and
it is faster (takes no more than 6 minutes to train). Once the model is trained, it
can be used to make predictions of the larger sizes instantaneously with minimal
computational e�ort until the convergence. Thus it can be considered a clever
and e�cient usage of deep learning in this scenario for faster and precise decision
making. The startegy for training and predictions is already discussed in detail
in the previous section. Here, the results are presented.

In the following sections, each type of material model and the corresponding
values of parameters used to describe the model are presented for the two phases
which are present in the present material of interest, Gamma-Titanium Aluminide
which are Gamma and Alpha2 phases.Then the F-P curves are shown (the whole
and/or zoomed views for better visualization). For complex models, deep learning
model and sequence used to train the model are given.The predictions made
and the accuracy of the predictions are tested by comparing them by an actual
simulation carried out for that size. Then, relative error graph for the acceptable
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Figure 3.6: Pole �gures of all the realizations

Property Gamma Alpha2
Lattice FCC HCP
C11 165e9 150e9
C13 - 42e9
C33 - 182e9
C44 56e9 28e9
C12 52e9 85e9

Table 3.1: Elastic Properties of two phases of TiAl

size is given and at last, a hierarchy is presented.

3.3.1 Pure Elastic

This is the simplest constitutive model that can be employed for two phases
of TiAl. Generalizd Hooke's law is used and crystal structure and the resulting
values of elastic constants due to symmetry are provided by DLR. The values are
provided in the table 3.1.

All the values are given in SI units unless and unil any other units are speci�ed.
With these values used in the material �le, the tensile test has been carried out
for all the realizations. The F-P curves are drawn for each size with and they
are shown in the �gure 3.9. Zooming in the last part of the curves will give a
good view of the uncertainties given in the �gure 3.10. The relative error graph
for the SERVES of size 60μm are shown in the �gure 3.11 (only the relative
error between the realizations which are visually farthest from each other). From
this an inference is made that acceptable size of an RVE for of this particular
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Figure 3.7: Average Misorientation distribution

Property Gamma Alpha2

Number of Slip systems per family
[12]

<110>{111} system
[3,3,0,6]:<-1-1.0>{00.1}, <-1-1.0>{1-1.0}, <-1-1.0>{-11.1}, <11.3>{-10.1}

Initial CRSS 112e6 [25e7,50e7,250e6,1250e6]
CRSS at In�nity 300e6 [30e7,60e7,300e6,1600e6]
Reference hardening for slip 1e9 1e9
Stress Exponent 35 30
Reference shear strain slip 0.001 0.001

Table 3.2: Parameters used in Phenomenological Crystal Plastic Law to describe
plasticity due to Slip

microstructure with pure elasticity constitutive model is 60μm.

3.3.2 Elasto-Plastic (Slip)

Phenomenological power law is used for description of plasticity due to slip for
the both phases. The values are provided in the table 3.2. The F-P curves for
the same simulation conducted are given in the whole and zoomed in view in the
�gures.3.12 and 3.13 respectively.

Here more pronounced uncertainties are seen and the convergence is not
seen at 120μm. In this case deep learning can be used to get the predictions for
higher sizes. The sequence used for training is shown in the �gure 3.14. Using
the trained model the predictions for the next 2 sizes (140 and 160 μm) are made.
To test the accuracy of the prediction, DAMASK simulations are also made for
SERVES of those 2 sizes and they are compared in the �gure 3.15. This shows
the accuracy of the predictions made by the nerural network. The relative error
curve between the last two sizes of SERVES is drawn which satis�es the criteria
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Figure 3.8: Curves for same RVE with di�erent mesh sizes

Property Gamma
Number of Twin planes 4
stress exponent for twin 15

Reference shear strain twin 0.001
Initia CRSS Twin 40e6

push-up factor for slip saturation 10

Table 3.3: Twin parameters

of less than 1%, shown in the �gure 3.16. Hence an inference is made that for
this microstructure using this particular constitutive law, the acceptable size of
SERVE is 140μm.

3.3.3 Elasto-Plastic (Slip+Twin)

In this case, more complexity is added by introducing twinning in the Gamma
phase to already existing elasto-plastic parameters. The twin parameters are
shown in the table 3.3. The F-P curves (zoomed view) is shown in the �gure
3.17.

Convergence is not seen at 120μm and therefore the deep learning model is
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Figure 3.9: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES
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Figure 3.10: Zoomed in viewDeformation Gradient vs Piola Kircho� Stress Curves
for di�erent sizes of SERVES
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Figure 3.11: Relative error between realizations of size 60μm

trained with the sequence as shown in the �gure 3.19. Predictions for the sizes
140 and 160 μm are made and the accuracy of the predictions are compared to
the curves obtained from simulations.The comparision is shown in the �gure 3.18.
The predictions made almost match with the original simulation values proving
the reliability of the neural network model in this speci�c context. The realtive
error is plotted between the last two realizations shown in the �gure 3.20. The
relative error is slightly larger than that for the plasticity only due to slip case
(which is an expected behaviour) and it is also slightly greater than 1%. Thus
it is safe to infer that 150μm is the acceptable size of SERVE for this particular
microstructure and material model.

3.3.4 Thermo-Elastic

Now in this case, thermal behaviour is modelled to the already existing elas-
tic model by using the constitutive equations of �ux, conductivity and thermal
expansion, the respective parameters are provided in table 3.4. It should be
noted that these values are exaggerated to get appreciable thermal stresses and
therefore only be seen from a simulation perspective but not from experimen-
tal/original values. In DAMASK , thermal boundary conditions can be given as
amount of �ux �owing in and out of the system and initial temperature at the
start of the simulation. The thermal boundary conditions for this particular prob-
lem are an initial temperature of 573K and a constant amount of �ux throughout
the simulation. The mechanical loading for the �rst 10 seconds is de�ned to be
zero deformation gradient and unde�ned stress to observe pure thermal stresses
that will develop due to the free stress boundary condition. The next 10 seconds
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Figure 3.12: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES
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Figure 3.13: Zoomed in viewDeformation Gradient vs Piola Kircho� Stress Curves
for di�erent sizes of SERVES
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Figure 3.14: The sequence of elasto-plastic curves used for training

Figure 3.15: Predictions made by neural network compared with simulation re-
sults

the load is given as deformation gradient of 0.02. The P-t curves look like 3.21.
More deviations are observed at the junction where mechanical loading starts,
hence a zoomed in view at this junction is shown in the �gure 3.22. The relative
error between realizations of size 140μm are shown in the �gure 3.23 shows that
it is within the acceptable limit. Therefore the acceptable size of SERVE for this
material model and microstructure is 140μm.

3.3.5 Thermo-Elasto-Plastic

In this case, all the models explained above are together implemented. Within
the context of the thesis, this is the most complex model implemented. The
initial temperature of 273K and external �ux is applied gradually (i.e �ux is 0
at time 0 and it increases linearly with time upto 1.6Wm−2). Since the neural
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Figure 3.16: Relative error between curves of sizes 140 and 160μm

Property Gamma Alpha2
Thermal Expansion Coe�cient 9.8e-5/K 3.2e-5/K
Thermal Conductivity 7e5 W/mK 22e5 W/mK
Speci�c Heat 6.2e8 J/kg.K 6.2e8 J/kg.K
Reference Temperature 273.15K 273.15K
Temperature Dependency of Elastic Constants Yes Yes
Temperature Dependency of Conductivity coe�cients Yes Yes
External Flux 1e13 W/m2 1e13 W/m2

Table 3.4: Thermal Parameters
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Figure 3.17: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES

Figure 3.18: Predictions made by neural network compared with simulation re-
sults

network is tested with actual simulation results to establish the accuracy and
dependability of predictions for the previous cases, here it is used for predicting
even more higher sizes (upto 200μm) which will take around days to get results
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Figure 3.19: The sequence of elasto-plastic curves used for training

from a simulation. The F-P curves are shown in the �gure 3.24. Here thermal
e�ect is zero at the start of the curve and it gradually increases towards the end
of the simulation.

The pattern of sequence used for training the neural network is given in the
�gure 3.25. The model is trained with this sequence and predictions are made
until a convergence is seen. Here the predictions are made until 200μm. The
sequence is plotted with the predictions to have a visualization of the convergence
shown in the �gure 3.26. It is observed that the distance between successive
realizations keeps on decreasing until a point where no gap is seen (convergence).
The relative error between last two sizes is given in the �gure 3.27. Since it is
less than 1 % (our tolerance limit), the acceptable size of RVE for the most
complicated model is 180μm.

3.4 Convergence study on local �elds

The property considered for p-SERVES in this thesis is only the homogenized
P values but not the local �eld values. Even at the acceptable size the local
�eld values may di�er because of the underlying generation process but the
overall homogenized values will be same. Thus acceptability condition does not
ensure that the local values will also be same but it only ensures that the overall
homogenized constitutive response is within the tolerable limits of uncertainty.
The violin plots of local �eld values are given in the �gure 3.28. A better
visualization is given by hexbins which are shown in the �gure 3.29 which show
di�erences in local �elds but the homogenized response is same.
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Figure 3.20: Relative error between curves of sizes 140 and 160 μm.

3.5 RVE-map and Hierarchy

With the di�erent material models implemented and having a look at the ac-
ceptable sizes for each of them, visualized in the �gure 3.30. It shows that, for
the same microstructure, if the material model is purely elastic the acceptable
SERVE (which was already tested for microstructural descriptors) size for which
the uncertainties are minimum is 60μm. This acceptable size increases with
added complexity to the material model. For plasticicty due to slip the accept-
able size is 140μm and if twinning is also added then the acceptable size also
increases to 150 μm. Introducing thermal behaviour for pure elasticity increased
the acceptable size to 140μm .Lastly combining elasticity, plasticity and thermal
altogether gave an acceptable size of 180μm. Looking at the map, an inference
can be made that multi-physics behaviour of material has pronnounced e�ect
on the uncertainties. This can be seen as a strong case to prove the hypothesis
that a more complex material model needs a larger size of RVE to have lesser
uncertainties.
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Figure 3.21: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES
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Figure 3.22: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES

Figure 3.23: Relative error between curves of size 140μm.
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Figure 3.24: Deformation Gradient vs Piola Kircho� Stress Curves for di�erent
sizes of SERVES

Figure 3.25: The sequence of thermo-elasto-plastic curves used for training
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Figure 3.26: Predictions made by the neural network

Figure 3.27: Relative error between realizations
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Figure 3.28: Violin plots showing local �eld values of P, (x axis shows size and
number of realization as size_realization)

Figure 3.29: Hexbins of realizations of size 140 μm (F_11 vs P_11 Hexbins)

Figure 3.30: Hierarchy of acceptable sizes of SERVES of di�erent material models
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Summary and Outlook

In this thesis, an attempt is made to provide a framework for selecting acceptable
size of a Representative Volume Element which can be used for homogenization
and/or multi-scale analysis. This is done by combining the evolved concepts of
m-SERVE and p-SERVE to have an acceptable size which is both microstruc-
ture and property based. Microstructure based analysis provided a comparision
of morphological descriptors to ensure the 2D to 3D reconstruction always leads
to similar morphology and from this the property analysis provided a study of
how the material model impemented makes the size e�ect on uncertainties pro-
nounced. This can be presented as a strong case to the hypothesis stated earlier
that As complexity of the material model increases, the acceptable size to have
minimum uncertainties also increases, elucidated in the �gure 3.30.

Machine Learning and deep learning techniques are used to accelerate the
decision making by using their sequnece learning and predicting power, e�ectively
reducing both time and computational power. This is an attempt to make the
results of the simulations more reliable by removing size related uncertainity and
dependence on complexity of the material model.

The connection between size and uncertainties can be understood by looking
from an information perspective. A smaller SVE has less amount of information
about the microstructure. A simple model (relatively less complex) of the material
will need relatively less amount of information to represent the microstructure.
For example, if the microstructure is single phase and the material model is
elastic isotropic, then only one material point is enough to fully represent the
microstructure. Each added property, both in terms of microstructure (phases,
grains, orientations, underlying process of generating SVEs) and also material
model will need more information to represent the VE. This can be taken as
intuition to understand why there is a size dependence.

This thesis stops at thermal-elasto-plastic model, but this can be easily ex-
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tended to any type of material model like damage models, dislocation based
plasticity models, atomistically informed plasticity models etc. The acceptable
size for damage models will be greater than what has been covered in the thesis
and it will be useful for actually looking at a simulation closer to real-life scenario.

The use of word framework is to expound the fact that it is not limited to
cases described here both in terms of morphological descriptors, material models,
property under consideration. This thesis is limited to morphological descriptors
like Volume Fraction, orientation and misorientation, equivalent diameter. When
dealing with other materials like composites etc, there might be di�erent descrip-
tors which are more meaningful to quantify the morphology of that particular type
of material. This is one interesting prospect of �nding a conformable set of mor-
phological descriptors for each type of microstructure.

The property is the response of the RVE for a particular boundary condition.
Only F-P curve is covered in this thesis but there are many other responses to
actually compare the convegence behaviour like sti�ness constants etc. It is an-
other interesting prospect to compare di�erent properties and their convergence
behaviours and then to choose the property which gives highest acceptable size
to have a greater reliability of results. It can be assumed that stress-strain curves
are more reliable since they already encapsulate the uncertainties coming from
properties like sti�ness, local �elds etc but this assumption also needs to explored
in depth.

It is once more restated that the uncertainties here are only size related and it
is discussed how the uncertainties related to microstructure and meshing are min-
imized. The proposed RVE-map is for 1 realization with 1% relative error in the
chosen property. This can be extended not only in terms of properties/models,
but also in terms of relaxed condition like 5% relative error, 10% relative error
etc. This will give a more clear picture in terms of practical applications because
every application does not need similar stringent condition.

The use of LSTM neural network for the sequential model learning and for
faster decision making is proven to be very fast and reliable. This can be fur-
ther more optimized by exploring di�erent types of architectures and �netuning
hyperparameters. There are many more types of models for sequence learning
and prediction like Gated Recurrent Units(GRUs), Tranform nets, Convolutional
neural networks(CNNs) etc .



Appendix

Usage of DAMASK

To run a DAMASK simulation, three �les are needed :

1. Geometry �le (.vti)

2. Material �le (material.yaml)

3. Loadcase �le (.yaml)

A number of pre-processing tools are available to create and modify these
�les, some will be discussed here.

The Geometry File Geometry �le is a �le with �.vti�(VTK Image data format)
which contains the information about the geometries present and material IDs.
There are two ways to generate a Geometry �le for Damask Simulation.

1. From scratch using Voronoi/Laguerre Tessellation

2. Loading from a Dream3d �le.

A geometry �le can be generated using Voronoi tessellation as.

import damask

import numpy as np

size = np.ones(3)*1e-5

cells = [16,16,16]

N_grains = 200

seeds = damask.seeds.from_random(size,N_grains,cells)

grid = damask.Grid.from_Voronoi_tessellation(cells,size,seeds)

grid.save(f'Polycystal_{N_grains}_{cells[0]}x{cells[1]}x{cells[2]}')
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To get the geometry from a Dream3d �le (a �le with �.dream3d� extension)
use command

damask.Grid.load_DREAM3D(file name)

To get the corresponding material.yaml , use a similar command given below.

damask.MaterialConfig.load_DREAM3D(file name)

Homogenization and phase entries are empty and need to be de�ned sepa-
rately.(more on these in material.yaml �le explanation) NOTE: There is a DAMASK
�lter in Dream3d, this is deprecated. This �lter is no longer valid for DAMASK3.
The output �.dream3d� �le from pipeline is enough to generate the �les required
for DAMASK using the preprocessing tools as shown above.

A short note on yaml and hdf5 and their implementation in DAMASK: From
DAMASK 3, the whole interface and the way to deal with con�guration �les
has been changed to a large extent. The main change is the implementation of
YAML style input con�guration �les and HDF5 style output �les.

YAML is a human-readable data-serialization language. It is commonly used
for con�guration �les and in applications where data is being stored or transmit-
ted. YAML targets many of the same communications applications as Extensible
Markup Language but has a minimal syntax.(Wiki)

HDF5 is a data model, library, and �le format for storing and managing data.
It supports an unlimited variety of datatypes, and is designed for �exible and
e�cient I/O and for high volume and complex data. HDF5 is portable and is
extensible, allowing applications to evolve in their use of HDF5. The HDF5
Technology suite includes tools and applications for managing, manipulating,
viewing, and analyzing data in the HDF5 format.

The material.yaml �le: This �le contains information about Homogeniza-
tion, Phase and Material. The �le can be directly loaded from Dream3d or can
be con�gured from scratch using damask.Con�gMaterial class.
Homogenization:
Homogenization is a dictionary that contains and any number of arbitrary labeled
keys. Each entry contains a key N_constituents which speci�es the number of
homogenized constituents. At least the type of the employed homogenization
scheme for each active �eld (mechanical, thermal, or damage) is given; the fur-
ther con�guration details depend on the selected homogenization scheme. Ex-
ample:
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homogenization:

SX:

N_constituents: 1

mechanical: {type: pass}

SX is the name of the homogenization, Number of constituents is set to 1 and
the employed scheme is mechanical of type pass.(No homogenization is taking
place) Some other types of schemes which are available(modules given in the
source code, no explicit documentation is given):

1. Mechanical - Isostrain

2. Mechanical � RGC

3. Damage-Pass

4. Thermal -Pass

5. Thermal -Isotemperature

Phase:
phase is a dictionary that contains and any number of arbitrary labeled keys. Each
entry contains a key lattice which speci�es the lattice structure in Pearson nota-
tion. At least the type of the employed constitutive model for each active �eld
(mechanical/elastic, mechanical/plastic, mechanical/eigen, thermal/source(s),
or damage) is given; the further con�guration details depend on the selected
constitutive model.

Example:

phase:

Aluminum:

lattice: cF

mechanical:

output: [F, P, F_e, F_p, L_p, O]

elastic: {type: Hooke, C_11: 106.75e9, C_12: 60.41e9, C_44: 28.34e9}

plastic:

type: phenopowerlaw

N_sl: [12]

a_sl: 2.25

atol_xi: 1.0

dot_gamma_0_sl: 0.001

h_0_sl-sl: 75e6

h_sl-sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
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n_sl: 20

output: [xi_sl]

xi_0_sl: [31e6]

xi_inf_sl: [63e6]

There are two entries in the phase named aluminum , the type of lattice � cF
(meaning FCC) , the mechanical properties in which there are two more en-
tries named elastic and plastic. Elastic has the type Hooke and corresponding
independent elastic constants. Plastic is of type phenopower law and their cor-
responding terms like number of slip systems, hardening parameters(slip-slip).
Resistance to Slipping (initial and in�nity) are given.(The parameter list is given
in the phase.f90 �les in src) Available lattice models (list taken from lattice.f90):

� aP: Isotropic

� cF: FCC

� cI: BCC

� oP: Orthorhombic primitive

� hP: Hexagonal

� tI: Body centered Tetragonal

The Available plasticity models(the name is the keyword, which are easily under-
standable):

� Dislocation based on tungsten

� Dislocation based on twin

� Isotropic

� Kinematic hardening

� None

� Nonlocal

� Phenomenological Power law

The Available damage models:

� Anisobrittle

� Isobrittle
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� Isoductile

The Available Eigen models:

� Cleavage opening

� Slip plane opening

� Thermal expansion

The Available Thermal models:

� Dissipation

� External Heat

Material:
Material is a list. The number of entries is at least as long as the maximum mate-
rial ID reference in the employed geometry. Each entry contains the speci�cation
of the employed homogenization referenced by its label and a list of constituents
whose length matches N_constituents. Each constituent entry contains the spec-
i�cation of the employed phase referenced by its label, v, the volume fraction,
and O the crystallographic orientation as a unit quaternion. Example:

- homogenization: SX

constituents:

- phase: Aluminum

v: 1.0

O: [1.0, 0.0, 0.0, 0.0]

- homogenization: SX

constituents:

- phase: Aluminum

v: 1.0

O: [0.7936696712125002, -0.28765777461664166,

-0.3436487135089419, 0.4113964260949434]

For every material ID given in geometry �le, one entry should be speci�ed con-
taining the reference to homogenization name , phase name(these should already
present in the �le), volume fraction and orientation as unit quaternion.

The Loadcase �le (.yaml): Though the �le extension is .yaml, the format
of load �le is not actually YAML but an undocumented proprietary format. The
loading can be given as deformation gradient(F), velocity gradient(L), Second
Piola Kircho� stress(P) These can be used individually or in combination. When
used in combination, care must be taken such that the load case follows the rules
given below: Mixed boundary conditions need to ful�ll the following requirements:
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� Stress and Deformation BCs are mutually exclusive.

� The stress boundary conditions must not allow for rotation, e.g. the op-
posite o�-diagonal elements cannot have stress components at the same
time.

� If a velocity gradient is prescribed, each row of the tensors must either
contain stress or velocity gradient.

Why these rules ? Except for special cases (simple shear, rotation, etc.), a load
case prescribing all components of F will lead to a non-volume preserving load.
Therefore, the deformation should be unde�ned at least one component of the
3x3 tensor F and a stress must be prescribed at those components to get a unique
solution. To leave a component of the deformation unde�ned, use an `x' at the
corresponding position.

Example of a load case:

loadstep:

- boundary_conditions:

mechanical:

dot_F: [[1.0e-3, 0, 0],

[0, x, 0],

[0, 0, x]]

P: [[x, x, x],

[x, 0, x],

[x, x, 0]]

discretization:

t: 10

N: 40

f_out: 4

This load case is applying deformation gradient in XX direction(tension). Some
values in tensor are left unde�ned and corresponding Piola-Kircho� stress is
de�ned to get a unique solution (prescribed rules ). t=10 meaning the load
is applied for 10 seconds , N=40 meaning there are 40 load increments and
f_out=4 shows that the solution is saved for every four increments.



Bibliography

[1] W.C. Lenthe M.P. Echlin. Three-dimensional sampling of material structure
for property modeling and design. Integrating Materials and Manufacturing
Innovation, 2014.

[2] http://dream3d.bluequartz.net/. Dream3d documentation.

[3] Michael Groeber and Michael Jackson. Dream.3d: A digital representation
environment for the analysis of microstructure in 3d. Integrating Materials
and Manufacturing Innovation, 3:5, 02 2014.

[4] F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong,
T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friák,
N. Fujita, N. Grilli, K.G.F. Janssens, N. Jia, P.J.J. Kok, D. Ma, F. Meier,
E. Werner, M. Stricker, D. Weygand, and D. Raabe. Damask � the düs-
seldorf advanced material simulation kit for modeling multi-physics crystal
plasticity, thermal, and damage phenomena from the single crystal up to the
component scale. Computational Materials Science, 158:420�478, 2019.

[5] https://paulvanderlaken.com/2017/10/16/neural-networks-101/.

[6] Shruti Jadon. Introduction to di�erent activation functions for deep learning.
Medium, Augmenting Humanity, 16, 2018.

[7] Cambridge Coding Academy. Deep learing for complete beginners: Recog-
nising handwritten digits.

[8] https://towardsdatascience.com/optimizers-for-training-neural-network
59450d71caf6. Various optimization algorithms for training neural network.

[9] Julius Schuster and Martin Palm. Reassessment of the binary alu-
minum�titanium phase diagram. Journal of Phase Equilibria and Di�usion,
27:255�277, 06 2006.

61



62 BIBLIOGRAPHY

[10] Claudio Renato Zambaldi. Micromechanical modeling of γ-tial based alloys.
Master's thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen,
2014.

[11] Guangyan Li, Gary Lamberton, and J. Gladden. High temperature resonant
ultrasound spectroscopy methods. International Journal of Spectroscopy,
2010, 01 2010.

[12] Swantje Bargmann, Benjamin Klusemann, Jürgen Markmann, Jan Eike
Schnabel, Konrad Schneider, Celal Soyarslan, and Jana Wilmers. Gener-
ation of 3d representative volume elements for heterogeneous materials: A
review. Progress in Materials Science, 96:322�384, 2018.

[13] I.M. Gitman, H. Askes, and L.J. Sluys. Representative volume: Existence
and size determination. Engineering Fracture Mechanics, 74(16):2518�
2534, 2007.

[14] R. Hill. Elastic properties of reinforced solids: Some theoretical principles.
Journal of the Mechanics and Physics of Solids, 11(5):357�372, 1963.

[15] W.J. Drugan and J.R. Willis. A micromechanics-based nonlocal constitutive
equation and estimates of representative volume element size for elastic
composites. Journal of the Mechanics and Physics of Solids, 44(4):497�
524, 1996.

[16] T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of
the size of the representative volume element for random composites: statis-
tical and numerical approach. International Journal of Solids and Structures,
40(13):3647�3679, 2003.

[17] Shriram Swaminathan, Somnath Ghosh, and N. J. Pagano. Statistically
equivalent representative volume elements for unidirectional composite mi-
crostructures: Part i - without damage. Journal of Composite Materials,
40(7):583�604, 2006.

[18] M. Pinz, G. Weber, W.C. Lenthe, M.D. Uchic, T.M. Pollock, and S. Ghosh.
Microstructure and property based statistically equivalent rves for intragran-
ular γ-γ' microstructures of ni-based superalloys. Acta Materialia, 157:245�
258, 2018.

[19] Martin Diehl. A spectral method using fast fourier transformto solve elas-
toviscoplastic mechanical boundaryvalue problems. Master's thesis, Tech-
nische Universität München, 2010.



BIBLIOGRAPHY 63

[20] A. Al-Aradi, Adolfo Correia, D. Nai�, G. Jardim, and Yuri F. Saporito.
Solving nonlinear and high-dimensional partial di�erential equations via deep
learning. arXiv: Computational Finance, 2018.

[21] Sai Karthikeya Vemuri. Personal programming project- solving di�erential
equations using neural networks.

[22] A.Henderson. ParaView Guide, A Parallel Visualization Application. Kitware
Inc, 2007.


	Introduction
	Tools, materials and methods
	DREAM.3D for 2D to equivalent 3D generation
	DAMASK – The Düsseldorf Advanced Material Simulation Kit
	Concept
	Spectral Method and FFT Solver
	Material Models

	Machine Learning and Deep Learning
	Neural Networks
	Recurrent Neural Networks (RNNs) Long Short Term Memory (LSTM) Networks
	Implementation in current problem:

	Titanium Aluminide

	Results and Discussions
	Comparision of Microstructural Descriptors
	Mesh convergence study
	Property based analysis on different material models
	Pure Elastic
	Elasto-Plastic (Slip)
	Elasto-Plastic (Slip+Twin)
	Thermo-Elastic
	Thermo-Elasto-Plastic

	Convergence study on local fields
	RVE-map and Hierarchy

	Summary and Outlook

