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Abstract—Multi-agent robotic networks allow simultaneous
observations at different positions while avoiding a single point of
failure, which is essential for emergency and time-critical applica-
tions. Autonomous navigation is vital to the task accomplishment
of a multi-agent network in challenging global navigation satellite
systems (GNSS)-denied environments. In these environments,
agents can rely on inter-agent measurements for self-positioning.
In addition, agents can conduct information seeking, i.e., they can
proactively adapt their formation to enrich themselves with posi-
tion information. Classical signal processing tools can efficiently
exploit the knowledge of system and measurement models, but
are not applicable for long-term objectives. On the other hand,
data-driven approaches like reinforcement learning (RL) are
suitable for long-term action planning but have to face the critical
curse of dimensionality. In this paper, we propose a multi-agent
navigation scheme with RL-enhanced information seeking, which
simultaneously takes advantage of model-based and data-driven
approaches to collaboratively accomplish challenging objectives
while exploring a GNSS-denied environment.

I. INTRODUCTION

Multi-agent networks have attracted an ever increasing at-
tention in sensing and exploration applications, thanks to the
increased exploration efficiency due to collaboration and the
capability of observation from different points of view. The
ability of ubiquitous navigation is essential for a multi-agent
network. A typical navigation problem involves positioning,
i.e., estimating the position of an entity like a vehicle, human
or robot, and goal approaching, i.e., guiding this entity from
one place to another. As specific to multi-agent navigation,
collaboration among agents enhances the navigation capability
by cooperative positioning and formation optimization [1], [2].
Eventually, for multi-agent information seeking [3], [4], agents
can proactively adapt their formation, so that the positioning
uncertainty is actively minimized while approaching a goal.

Classic signal processing methods can be employed for
multi-agent information seeking [3], [5]. In [4], [6], the authors
propose the use of projected steepest gradient descent (PSGD)
for efficient position information seeking. In [7], PSGD is
utilized for dynamic radar networks. The PSGD method utilizes
the closed-form expression of gradients to efficiently exploit

the knowledge of system and measurement models. However,
its step-wise optimization nature makes the PSGD method not
readily applicable for long-term multi-objectives missions.

When positioning is associated with control, data-driven
approaches capable of learning from feedback received from
the environment, such as reinforcement learning (RL), can be
a viable solution. In [8], [9], RL is employed for multi-target
detection, whereas [10] studied the trajectory optimization of
multi-agent-radar for environment mapping and detection using
an RL-based approach. Indeed, data-driven approaches are
appealing as agents can learn a sequence of suitable actions
to achieve multiple mission objectives, but they might suffer
the curse of dimensionality in large-scale multi-agent networks.

In this paper, we propose a RL-enhanced multi-agent naviga-
tion method, combining the PSGD-based information seeking
with Q-learning. This method preserves the advantages of both
approaches in order to collaboratively accomplish challenging
navigational objectives. To demonstrate the effectiveness of
our proposed method, we consider a conceptual Mars swarm
exploration mission shown in Figure 1, similar to that in
[4], [6]. A swarm of rovers (i.e., agents) need to navigate
themselves, with high positioning accuracy, from their landing
site denoted as region A to an exploration site denoted as region
B. In each region three anchor nodes with known positions,
such as a lander and static rovers, are deployed with limited
signal coverage area marked with magenta curves. Agents in
the middle area outside the coverage of anchors cannot conduct
agent-to-anchor measurement. Therefore, this area is referred
to as the blind region. The mission is considered as successful
if all agents reach region B, while keeping their position
uncertainty below a desired limit. To this end, the swarm must
autonomously adapt its formation into a dynamic rigid bridge
[11] connecting regions A and B and enable all agents pass
through the blind region, just like army ants assembling a
“living” bridge to overcome gaps on their foraging trails in
nature [12]. With this investigation, we aim at shedding light
on the generic combination of model-based and data-driven



approaches, which is vital for decision making in a large-scale
autonomous multi-agent network like a robotic swarm.

II. MULTI-AGENT NAVIGATION

A. Network and Measurement Models

We assume a network composed of N+M nodes in a set V ,
including N agents in set A and M anchors in set B. Agents
aim at navigating themselves from region A, centered at pA,
to region B, centered at pB . All positions are constrained
on a horizontal two-dimensional (2D) surface. Autonomous
agents are the core components of a multi-agent navigation
network. At time instant k, an agent u ∈ A is located at a
position p

(k)
u = [x

(k)
u , y

(k)
u ]T , which needs to be estimated.

The transition of an agent’s position between two consecutive
time instants is described by a mobility model

p(k+1)
u = f

(
p(k)
u ,b(k)

u

)
+ ω(k)

u , ∀u ∈ A, (1)

where b
(k)
u ∈ U is the control command of agent u within a

feasible control set U at time instant k, and ω
(k)
u is additive

state transition noise. We combine the control commands of all
agents to b(k) = vec{b(k)

u : ∀u ∈ A}, and denote the collective
feasible control set as U . The operator vec{· · ·} arranges the
variables into a column vector. An agent u emits a signal and
receives the signals emitted from anchors and agents within
its coverage. These nodes are included in the neighbor set of
u, denoted as Vu. A collection of all agents’ positions at time
instant k is denoted as p(k) = vec{p(k)

u : ∀u ∈ A}.
An agent u obtains a vector of measurements z

(k)
u from the

signals emitted by neighbors. Each measurement contains the
geometric relationship between u and v with v being a node
in the neighboring set of u, i.e., v ∈ Vu. We assume time-
based ranging measurements. Hence, the measured distance
z
(k)
uv between agent u and its neighboring node v at time

instant k is modeled as the true distance d
(k)
uv distorted with

zero mean additive white Gaussian noise. The noise variance
is quadratically proportional to d

(k)
uv until reaching the cov-

erage limit, and then rapidly increases [4], [13]. This model
captures, with simplicity, the main properties of time-based
ranging under line-of-sight (LOS) condition and is sufficient
for our study of multi-agent navigation. A collection of all
measurements in the network at time instant k is denoted as
z(k) = vec{z(k)u : ∀u ∈ A}.

B. Objectives of Multi-Agent Navigation

Cooperative positioning aims at finding a position estimate
p̂(k) at time instant k, that minimizes, for example, the overall
mean-square error of the agents’ positions, given the already
obtained measurements z(k). For information seeking, instead
of passively utilizing the already obtained measurements,
agents proactively move with a control command b(k) into
new positions p∗(k+1). At those positions, future measurements
z∗(k+1) can be acquired, which minimize the (weighted) mean-
square error of the agents’ new position estimates p̂(k+1). We
apply the Fisher information theory and utilize the Cramér-Rao

Figure 1: A conceptual Mars swarm exploration mission.

bound (CRB) to predict the expected mean-square error at the
new positions [1]:

CRB[p∗(k+1)] ≼ E
[
(p̂(k+1) − p∗(k+1))(p̂(k+1) − p∗(k+1))

T
]
,

where ≼ reads as ‘less positive semi-definite’. Note that
CRB[p∗(k+1)] is expressed as a function of the control com-
mand b(k) in closed-form in [4], which is advantageous for
analytical assessment. Then, the information seeking criterion
can be formulated as minimizing, with best effort, a scalar
function of CRB[p∗(k+1)], for example

fs(b
(k)) = tr

[
Λ(k) CRB[p∗(k+1)]

]
, (2)

where the diagonal weighing matrix Λ(k) = diag{λ(k)
u ⊗12×1 :

∀u ∈ A} assigns different significance to agents according to
their positions in the network. The operator diag{· · ·} arranges
variables into a diagonal matrix. For safety-related objectives,
like collision avoidance, position uncertainty has to be limited
with a higher priority. In this case, the information seeking
criteria can be formulated as constraints, i.e.

hs,u(b
(k)) = ε− tr

[
Γ(k)
u CRB[p∗(k+1)]

]
≥ 0, ∀u ∈ A,

where ε is the maximum tolerated mean square error and
Γ
(k)
u = diag{[01×u−1, 1,01×N−u]

T ⊗ 12×1}. Besides infor-
mation seeking, other navigation criteria could be introduced
including the goal approaching objective defined by

fg(b
(k)) =

∑
u∈A

∥∥∥p∗(k+1)
u (b(k))− pB

∥∥∥, ∀u ∈ A. (3)

The overall navigation problem can then be formulated as a
constrained multi-objective optimization problem:

minimize
b(k)∈U

{
fs(b

(k)), fg(b
(k))

}
(4a)

s.t. hs,u(b
(k)) ≥ 0, ∀u ∈ A. (4b)

III. RL-ENHANCED INFORMATION SEEKING

A. PSGD-based Information Seeking

The multi-agent navigation problem formulated in (4) is a
high dimensional non-convex optimization problem. Instead of
finding the optimal solution in one step, a PSGD method with
low complexity is proposed, which is suitable for large-scale



multi-agent navigation [4], [7]. We generate control commands
with negative gradients of the cost functions of information
seeking fs(b

(k)) and goal approaching fg(b
(k)), respectively,

and linearly combine them to obtain an unconstrained control
command b∗(k), i.e.,

b∗(k) = −µW(k) ∇b(k)fs
∥∇b(k)fs∥

− µ(I−W(k))
∇b(k)fg
∥∇b(k)fg∥

, (5)

where µ is the step size and W(k) = diag{w(k)
u ⊗ 12×1 :

∀u ∈ A} is the trade-off weight between information seeking
and goal approaching. Then we identify the activated constraint
vector h(b(k)), i.e., a collection of constraints that are being
violated or at the boundary of violation [14, Ch. 5]. The
constraint gradient matrix N(k) is defined as

N(k) = ∇b(k)h(b(k))T |b(k)=0. (6)

The projection matrix P(k) defined by

P(k) = I−N(k)
(
(N(k))TN(k)

)−1

(N(k))T (7)

projects the unconstrained control command b∗(k) onto the
tangent space of the activated constraints, i.e.,

b(k) = P(k)b∗(k) −N(k)
(
(N(k))TN(k)

)−1

h(0). (8)

The PSGD-based multi-agent navigation exploits the domain
knowledge of signal processing where control commands can
be generated efficiently for large-scale agent networks. How-
ever, it is a greedy approach with step-by-step optimization,
which cannot guarantee convergence to the global optimum
for non-convex problems. Besides, it cannot explicitly involve
multi-step or long-term objectives like “all agents reaching the
goal”. Last but not least, the control parameters like the weight
on each agent’s position in information seeking λ

(k)
u and the

trade-off between information seeking and goal approaching
for each agent w

(k)
u have to be chosen manually at the

beginning and are often fixed during the mission. It becomes
a bottleneck when the control rules have to be adjusted due to
situation changes. These drawbacks of a PSGD-based method
can be overcome by data-driven approaches like RL, where
the ultimate mission objectives like goal approaching can be
explicitly set as a long-term reward.

B. Information Seeking Enhanced by Q-Learning

Q-learning is the most popular model-free algorithm for
tabular-based reinforcement learning [15]. The main goal of
Q-learning is to learn a, so called, Q-function that maps a state-
and-action pair to a return value, i.e., Q-value, evaluating the
benefit, in terms of learning objectives, of taking such an action
at the given state. One of the most successful applications of
Q-learning is goal directing such as path planning and maze
solving, which share great similarity with our goal approaching
mission objective. In most of the applications, the actions are
directly set as movements of agents, e.g. a step in a cardinal

direction like {N,E,S,W}. This action choice is not exploiting
any model knowledge, ergo a model-free approach.

We propose a combination of PSGD and Q-learning in order
to benefit from the efficiency of model-based approaches and
the long-term reward seeking ability of data-driven methods.
Instead of learning directly favourable movements, we propose
to employ Q-learning on formulating dynamic navigational
objectives, i.e. (4). Then, the agents’ movements are generated
with PSGD method given the learnt objectives. With this
approach, agents simultaneously benefit from the efficiency of
model-based methods and the long-term reward seeking ability
of data-driven methods.

a) State
It is well known that Q-learning is impractical for systems

with high dimensionality like our multi-agent network. There-
fore we need to choose a low-dimensional training state space
which captures essential situation information of an agent. We
select the agent-to-destination distance d

(k)
uB = ∥p(k)

u −pB∥ and
the mean distance to destination d

(k)
SB =

∑
u∈A∥p(k)

u −pB∥/N as
the training state, i.e. s∗(k)u = [d

(k)
uB , d

(k)
SB ]

T . These two dimen-
sions describe the situation of the agent under investigation
with respect to (w.r.t.) the multi-agent network and the explo-
ration environment. The agent distance can be estimated with
a positioning algorithm. The mean distance can be obtained
in a decentralized fashion through a consensus algorithm. If
needed, higher order statistical moments of the multi-agent
formation can be added into the state space that more collective
characteristics of the formation can be considered. For a tabular
approach like Q-learning, the state is discretized to s

(k)
u .

b) Action
Instead of choosing a cardinal direction to move, we propose

a multi-agent Q-learning, where each agent learns to select
appropriate control parameters, namely the agent’s informa-
tion seeking weight λ(k)

u and the information seeking-to-goal
approaching trade-off ratio w

(k)
u . By doing so, agents are

constantly adapting their implicit roles between explorers and
supporters. The action space contains the discretized control
parameters, i.e., a(k)u = [λ

(k)
u , w

(k)
u ]T .

c) Q-table update
In the investigated scenario, we focus on a homogeneous

multi-agent network, where the agents’ explicit roles are iden-
tical, even though they may have different implicit roles based
on their current situation. Hence, the agents are interchangeable
also from a learning perspective. Therefore, every agent main-
tains its own Q-table Qu(s

(k)
u , a

(k)
u ),∀u ∈ A and exchanges

it with neighboring agents to achieve a Q-table consensus
over the network. We utilize the advantage of Q-learning and
directly set the instantaneous reward according to the ultimate
mission objective, for example, all agents reaching region B
with a continuous exponential reward function:

r(s(k)u ,a(k)u )= β exp
(
−max

{
(d(k+1)

uB )
2

/d2
R:∀u ∈ A

})
,

where β is a scaling factor and dR is the radius defining the
proximity of the destination point. The Q-table is updated, for



example at agent u, with the following procedure. First, if the
state has changed, i.e., s

(k)
u ̸= s

(k−1)
u , generate new actions

a
(k)
u with an ϵ-greedy algorithm [15] either randomly with

probability ϵi or from the Q-table with probability 1− ϵi. The
subscript i indicates the training runs i = 1, · · · , E, also known
as episodes. Second, apply PSGD-based navigation with the
chosen λ

(k)
u and w

(k)
u and get the new state s

(k+1)
u . Third, if

the state has changed, i.e., s(k+1)
u ̸= s

(k)
u , update the Q-table

according to the Bellman equation [15]:

Qu(s
(k)
u ,a(k)u )←αi

(
r(s(k)u ,a(k)u ) + γ max

a
Qu(s

(k+1)
u ,a)

)
+ (1− α(k))Qu(s

(k)
u ,a(k)u ) , (9)

where αi is the learning rate, decaying over episodes to
guarantee convergence to an optimal solution [16], and γ is
a discount factor. The convergence of the Q-table will be
achieved after multiple episodes.

IV. NUMERICAL RESULTS

We verify the proposed RL-enhanced multi-agent navigation
by simulating the Mars swarm exploration mission illustrated
in Figure 1. We use a similar simulator as in [4] with a further
developed Q-learning ingredient. Areas A and B are 3000 m
apart from each other. A 30× 30 grid is used to discretize the
training state. Signals from the anchors can be detected and
exploited for ranging by an agent up to 1000 m. Hence, the
blind region spans over 1000 m between regions A and B. The
agents can effectively range with each other up to a distance of
400 m. Eight agents depart around the origin pA = [0, 0]T and
need to reach the proximity of the destination pB = [3000, 0]T

with d
(K)
uB < dR,∀u ∈ A within K = 2000 steps, where

dR = 100m. The position CRB of every agent is constrained to
ε = 100m2. The agents are trained for E = 10, 000 episodes,
with a learning rate, at the ith episode, αi = i−1/2 and an
exploration factor ϵi which linearly decreases from 1 to 0.1 in
the first 2000 episodes and remains 0.1 till the end of training
for ϵ-greedy action selection. The discount factor γ is set to
0.9. The entities in Q-table initialized at the first time instant of
the first episode uniformly within the interval (0, 10−2]. The
scaling factor of the instantaneous reward is β = 104. The
agent’s weight for information seeking λ

(k)
u can be selected

from the discrete set {0.01, 0.99}, whereas the information
seeking-to-goal approaching from {0.3, 0.7}.

Figure 2 depicts the learning traces of the state, including
the agent-to-destination distance d

(k)
uB along the x-axis and the

mean distance to destination d
(k)
SB along the y-axis. In total of

500 unsuccessful episodes in black and 100 successful episodes
in green are plotted. The magenta dashed lines indicate the
borders of regions A and B with the blind region. In one
episode, the traces evolve from the lower left corner (around
the origin) aiming to reach the upper right corner (around the
destination). There are two areas marked in red at the borders
where the green traces diverge from the black traces. These
areas reveal a decisive moment to the success of the mission

Figure 2: Traces of learning state of 500 unsuccessful episodes in
black and 100 successful episodes in green.

corresponding to the establishment of the bridge connecting
regions A and B. Next, the agents behind (in the left marked
area) need to be ready to step outside the coverage of region
A, i.e., in favor of goal approaching. In the meantime, the front
agents (in the right marked area) have to wait and support the
agents behind on their positioning.

In Figure 3, two unfavorable formations from PSGD-only
approach are shown. After the front agents pass the blind
region, they do not wait and support the remaining ones
crossing the blind region. In the first case shown in Figure 3a,
all agents except the left one will reach the goal, whereas in the
second case shown in Figure 3b, all agents remain in these final
positions and are unable to approach the goal under constrained
positioning uncertainty.

In Figure 4 we selected two crucial formation snapshots
resulted from the RL-enhanced information seeking. Agents
are illustrated with black and white markers. Markers’ colors
show the trade-off factor between information seeking and goal
approaching. A white marker indicates wu = 0.7 whereas a
black marker indicates wu = 0.3. The markers’ sizes show
the weight of the agent in information seeking. A small
marker indicates λu = 0.01, whereas a large marker indicates
λu = 0.99. At time instant 1470, the agents behind are the
“pillars” for keeping the bridge rigid, but yet ready to move
forward. The agents in front just reach region B. At time
instant 1500, the front agents change their implicit roles from
goal approaching to information seeking with a main objective
of supporting the agents behind to cross the blind region.

Last, but not least, we analyse the statistical behavior of
learning by plotting the number of total episodes versus the
successful episodes in Figure 5. The numbers above the curves
denote the slopes of the curve, i.e., the successful rates. Here
we can see that the successful rate starts from 16% at the
beginning of learning, i.e. applying the PSGD-only method,
increases from 4500 episodes on and converges to 64%. This



(a) Failure case 1.

(b) Failure case 2.

Figure 3: Formations from PSGD-only information seeking with
agents illustrated with gray markers.

(a) Time instant 1470

(b) Time instant 1500

Figure 4: Formations from RL-enhanced information seeking. Agents
are illustrated with black and white markers whose colors and sizes
indicate the taken actions, i.e. w(k)

u and λ
(k)
u , respectively.

result verifies the effectiveness of our proposed RL-enhanced
multi-agent information seeking scheme. For a real-world
mission, we may conduct training in simulated environment
first to learn an initial Q-table to speed up online training
during the operation.

V. CONCLUSION

In this paper, we investigate a multi-agent navigation prob-
lem. Due to highly varied scenarios and the high system
dimensionality, neither classic model-based signal processing
approaches nor emerging data-driven RL approaches are solely
suitable to solve this navigation problem. We propose a RL-
enhanced multi-agent information seeking method, which ben-
efits from the efficiency of model-based PSGD method and
the long-term objective compatibility of model-free RL. As an
outcome, the agents effectively learn to change their implicit
roles under different situations in order to collaboratively
accomplish a challenging navigation task. In a case study of
a conceptual Mars swarm exploration mission, the successful
rate increases from 16% with the PSGD-only approach to 64%
with the RL enhancement.

Figure 5: Number of total episodes versus number of successful
episodes. Numbers above the curve indicate the successful rates.

More importantly, with this paper we shed light on the
generic combination of model-based and data-driven ap-
proaches, which becomes increasingly important for decision
making in an autonomous large-scale multi-agent system.
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