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A deep learning based oil spill detector using Sentinel-1 SAR 
imagery
Yi-Jie Yang a,b, Suman Singhab and Roberto Mayerlea

aResearch and Technology Centre Westcoast, Kiel University, Büsum, Germany; bMaritime Safety and 
Security Lab, Remote Sensing Technology Institute, German Aerospace Center (DLR), Bremen, Germany

ABSTRACT
The Eastern Mediterranean Sea has been known as an oil pollution 
hotspot due to its heavy marine traffic and an increasing number of 
oil and gas exploration activities. To provide automatic detection of 
oil pollution from not only maritime accidents but also deliberate 
discharges in this region, a deep learning-based object detector 
was developed utilizing freely available Sentinel-1 Synthetic 
Aperture Radar (SAR) imagery. A total of 9768 oil objects were 
collected from 5930 Sentinel-1 scenes from 2015 to 2018 and 
used for training and validating the object detector and evaluating 
its performance. The trained object detector has an average preci-
sion (AP) of 69.10% and 68.69% on the validation and test sets, 
respectively, and it could be applied for building an early-stage oil 
contamination surveillance system.
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1. Introduction

Marine oil pollution has long been a serious problem for the maritime environment. 
Sources of oil pollution can be categorized into several groups: natural seepage, con-
sumption of petroleum, transportation of petroleum and extraction of petroleum. 
Figure 1 shows the global average contributions of sources in marine waters for the 
years of 1975–1985 and 1990–1999 (Polinov, Bookman and Levin 2021). Most of the large 
oil spills come from tanker accidents, however they cover only around 8% of the total oil 
pollution. Illegal discharges, such as the release of oily ballast water, tanker washing 
residue, fuel oil sludge, engine waste and foul bilge water, account for the majority of 
human-caused oil pollution. Large oil spills in particular pose a great risk of environmental 
damage, but deliberate illegal discharges pose a constant threat to marine wildlife with 
potentially severe long-term consequences. The inhalation of volatile petroleum by 
mammals and birds at sea can cause irritation to their respiratory tract and narcosis 
(Saadoun 2015). Oil spill detection is therefore important not only for those maritime 
accidents, but also for tracking deliberate oil pollution.

Marine oil pollution ‘hotspots’ usually coincide with areas of high maritime traffic 
(Polinov, Bookman and Levin 2021). Offering the shortest shipping route from Asia to 
Europe, approximately 30% of all international merchant vessels pass through the 
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Mediterranean Sea (REMPEC 2002). The Mediterranean Sea is also an important oil transit 
centre for transporting crude oil from the Middle East, North Africa and the Black Sea to 
Europe and North America. Around 20% to 25% of the world’s oil tankers transit the 
Mediterranean Sea (REMPEC 2002). A previous study showed that the frequent oil spills in 
this area are usually related to shipping routes, oil terminals and transboundary shipping 
ports (Abdulla and Linden 2008). After the discovery of natural gas and oil in the Levantine 
basin in late 2010, there has been an increase in offshore oil and gas exploration and 
exploitation activities in the Eastern Mediterranean Sea. The Levantine region has thus 
become known as an oil spill hotspot. The situation is exacerbated by a lack of oversight 
due to the regional political instability (Polinov, Bookman and Levin 2021). One such oil 
spill event, which seriously influenced the coastline of Israel, was reported on 
17 February 2021, but it could actually have already been found on satellite images on 
11 February (Surkes, 28 February 2021). This and other events highlight the importance of 
having a reliable surveillance system for locating oil spills in the early stages in order to 
support the clean-up operations.

With the advantage of wide coverage and the capability of monitoring at night and 
during cloudy weather, spaceborne Synthetic Aperture Radar (SAR) is suitable for setting 
up such an early warning system. Water surface roughness is a key factor for the radar 
sensor to receive enough backscattered microwave energy. Small wind-induced friction 
between the air and the water surface causes gravity-capillary waves in the range of 
millimetres to centimetres (Woodhouse 2006). Oil spills dampen these waves and thus 
reduce radar backscatter, resulting in dark formations in contrast to the surrounding spill- 
free sea surface (Pavlakis, Tarchi and Sieber 2001). However, there are many other 
phenomena, which can also manifest as dark regions in the radar image, such as low 
wind areas, natural films, wave fronts, wind sheltering by land, rain cells, wave current 
interaction along shears, internal waves, upwelling and eddies (Hovland, Johannessen 
and Digranes 1994; Topouzelis 2008). Distinguishing oil spills from these ‘look-alikes’ has 
long been a challenging task for oil spill detection with SAR.

The general procedure of detecting oil spills includes dark spot segmentation, feature 
extraction and classification (Solberg and Solberg 1996). Dark formations on SAR imagery 
are first separated from their surroundings. The features of each dark spot are then 
extracted and used to identify the differences between oil spills and look-alikes. 

Figure 1. Main sources of petroleum entering worldwide marine waters with their average contribu-
tions for the years of 1975–1985 and 1990–1999 (Polinov, Bookman and Levin 2021).
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Commonly used features are statistical, geometric, textural, contextual and SAR polari-
metric characteristics (Al-Ruzouq et al. 2020). The exploitation of polarimetric features, such 
as standard deviation of co-polarization phase difference, entropy, geometric intensity, co- 
polarization power ratio and polarization span, seem to be beneficial (Solberg 2012; Singha 
et al. 2016); however, the unavailability of quad-pol or dual-pol acquisitions on a regular 
basis and the limited swath of those images make it hard to be applied in an operational 
system. With all the extracted features, the dark spots are finally classified using 
a probabilistic approach as possible oil spills or look-alikes (Solberg et al. 1999; Fiscella 
et al. 2000). Depending on the present local sea state, oil spill composition, age of oil spill, 
image resolution and incidence angle of the acquisition, the backscatter properties of oil 
spills vary (Topouzelis 2008). Thus, machine learning algorithms are introduced to solve this 
challenging classification problem. Machine learning algorithms learn the relationships 
between the features given by previous experiences and the class (i.e. oil spill or look- 
alike) of each dark spot. The most commonly applied machine learning algorithms for oil 
spill detection are decision tree (Topouzelis and Psyllos 2012), support vector machine 
(SVM) (Brekke and Solberg 2008) and artificial neural network (ANN) (Singha, Bellerby and 
Trieschmann 2013). Deep learning is also considered as a subset of machine learning 
techniques. Unlike traditional machine learning algorithms, which rely on predefined 
features, deep learning algorithms learn directly from the data. Deep learning networks 
contain many layers, which are capable of constructing a hierarchy of features to increase 
the complexity. As deep learning is completely data driven, it requires large amounts of 
data for training. In the past, most of the spaceborne SAR data was acquired for oil spill 
detection when there were known marine accidents. However, with the advent of the 
Sentinel-1 mission by the European Space Agency (ESA) launched in 2014, it is now 
possible to detect oil spills from different sources on a regular basis with its frequent 
acquisitions. With the increasing volume of accessible SAR data and improvements in 
computational power, deep learning algorithms have been applied in oil spill detection 
as well.

Some studies applied U-Net to classify each pixel into a different class, such as oil spill, 
look-alike, ship, land and sea (Shaban et al. 2021) or simply oil spill and sea (Ronci et al. 
2020). U-Net follows an encoder-decoder architecture, where the encoder gradually 
extracts features from low-level details to high-level information as it becomes deeper, 
and the decoder propagates information back to the original image dimension. As the 
encoder-decoder structure helps capture features at different scales, several architectures 
have been applied on image segmentation. DeepLabv3+ outperformed the other deep 
convolutional neural network (DCNN) models, U-Net, LinkNet, PSPNet and DeepLabv2, 
with its improvements in producing distinctive object boundaries (Krestenitis et al. 2019). 
Adapting the network from DeepLabv3+, an improved version was carried out and 
achieved better capability for multi-scale targets (Ma et al. 2022). Another study presented 
CBD-Net; it includes spatial and channel squeeze excitation, which collects contextual 
information and enhances the network’s ability to distinguish boundary details. With this 
optimization, CBD-Net showed better completeness and correctness than U-Net, 
D-LinkNet and DeepLabv3 (Zhu et al. 2022). For applying deep learning-based methods, 
the preparation of a labelled dataset is usually the most time-consuming work, especially 
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for training pixel-based classifiers, which require a pixel-based mask of different classes. 
Therefore, there were only 35 and 21 SAR scenes used in Ma et al. (2022) and Zhu et al. 
(2022), respectively.

Object detectors on the other hand can only provide a detection of oil spills at 
a target level, but the dataset labelling work is less complex for each image, which 
means a larger dataset can be compiled in the same amount of time. Thus, more oil 
spills from different sources and of different types and sizes could be included, which 
might result in a higher ability to detect not only maritime accidents but also regular 
deliberate oil pollution. A previous study investigated a two-stage CNN to perform an 
initial coarse detection of objects, and based on that applied a precise pixel-wise 
detection on side-looking airborne radar (SLAR) imagery (Nieto-Hidalgo et al. 2018). 
The study pointed out the feasibility of detecting oil spills with object detection 
algorithms. Two other studies applied Mask-region-based convolutional neural net-
work (Mask-RCNN) and used a total of around 2000–3000 images (Emna et al. 2020; 
Yekeen and Balogun 2020). Mask-RCNN can be regarded as a combination of object 
detection and semantic segmentation, as it first detects objects along with their 
classes and further segments objects into masks. However, to build a near real-time 
(NRT) oil spill detection system, highly efficient one-stage object detection algorithms 
such as You Only Look Once (YOLO) may be considered to keep the processing 
latency at a minimum. Following the idea that humans can easily recognize objects 
in an image at a glance, the YOLO object detection algorithm only looks at an entire 
image once to detect all objects inside along with their class probabilities (Redmon 
et al. 2016). It has been used in ship detection with SAR images in previous studies 
(Chang et al. 2019; Devadharshini et al. 2020), and one other study applied it on oil 
spill detection with optical imagery (Ghorbani and Behzadan 2021). However, apply-
ing YOLO on oil spill detection with SAR imagery is presented for the first time in this 
study.

This study developed a deep learning-based oil spill detector for the Eastern 
Mediterranean Sea using the YOLOv4 object detection algorithm. The object detector 
was trained with a total of 5930 Sentinel-1 images from 2015 to 2018, including 9768 oil 
spills from different sources and with different sizes collected and labelled as oil objects. 
With the use of such a large dataset, the capability of detecting deliberate oil spills is 
highlighted. CleanSeaNet is an existing service provided by the European Maritime Safety 
Agency (EMSA) using spaceborne SAR data to detect possible oil spills on the sea surface in 
European waters and sending oil spill alerts to national authorities (European Maritime 
Safety Agency 2017), but it is highly reliant on manual inspection, which is costly and time 
consuming. Therefore, this study aims to develop a deep learning-based oil spill detector 
for setting up an early-stage surveillance system. Different scenarios are carried out for 
training the object detector, and the detection results are discussed in the following 
sections.

The paper first introduces the used data and methods in section 2. Detailed informa-
tion about the acquired SAR images is shown in subsection 2.1. Collecting oil spills and 
procedures of building the dataset are explained in subsections 2.2 and 2.3, respectively. 
The deep learning-based object detection algorithm YOLOv4 is introduced in subsection 
2.4. Subsections 3.1 and 3.2 describe different scenarios for training the object detector. 
A further improved trained model and examples of detections are provided in subsection 
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3.3; the subsection also includes a comparison between the YOLOv4 custom trained 
model with one trained with another object detection algorithm, Faster RCNN. 
Section 4 summarizes the findings in this study.

2. Methodology

Oil spills in different areas might have varying patterns due to different origins, meteor-
ological conditions, currents and circulation systems. This study focused on oil spills in the 
Eastern Mediterranean Sea, between longitudes 30–36°E and latitudes 31–34.7°N. The 
enclosed area with blue outline in Figure 2 shows the location of the study area, together 
with the number of collected oil spills between 2015 and 2018.

Figure 3 gives an overview of the workflow. Sentinel-1 SAR data was first pre-processed 
with a series of corrections, and oil spills in the images were labelled as oil objects. Then 
the pre-processed results were cropped into smaller images to fit the image input size of 
the object detector. The cropped images were categorized into different size groups (i.e. 
small, medium and large) to enable performing extra data augmentation on specific 
groups in order to increase the complexity of oil objects in the dataset. The labelled 
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Figure 2. Visualization of study area with heat map of the amount of oil spills collected inside. The 
blue outline marks the study area. The red color map shows numbers of oil spills collected and 
manually annotated in this study from 2015 to 2018; see subsection 2.2 for detailed descriptions of 
manual inspection. Note that the oil spills were annotated with rectangular bounding boxes showing 
their extent, which are not exact polygons showing the oil spill positions. The basemap was obtained 
from Stevens (2020).

INTERNATIONAL JOURNAL OF REMOTE SENSING 4291



data was then split into training, validation and test sets with proportion of 7 : 2 : 1. There 
is no common definition on the proportion of different sets, but all training, validation and 
test sets need to be representative for the task (i.e. covering different types of oil spills in 
different sets). Afterwards, the annotations of oil objects smaller than certain sizes were 
regarded as tiny objects and were removed to avoid confusing the model with 

Figure 3. Workflow of this study. Oil spills inside Sentinel-1 SAR data were manually inspected and 
labelled as oil objects after a series of corrections in the pre-processing step. In order to fit the defined 
model input size for training the YOLOv4 object detector, the images were cropped into N� N px 
according to the object sizes and model input size. Then, images containing larger oil objects were 
augmented with rotation in order to increase the complexity of oil spills in the dataset; the 
corresponding scenario is shown in subsection 3.2. Afterwards, the dataset was split into training, 
validation and test sets for training, fine tuning and evaluating the model. To avoid that some labelled 
oil objects are too small to be detected by the object detector, the annotations of oil objects below 
certain threshold were removed; the corresponding scenario is shown in subsection 3.1.
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undetectable oil objects. During the training stage, the training set was used to train the 
object detector, and the validation set was used to find the optimal values for the hyper- 
parameters of the model and avoid model over-fitting on the training set. Finally, the 
model performance was evaluated with the test set.

Detailed information on the Sentinel-1 data used in this study can be found in 
subsection 2.1. The labelling work is explained in subsection 2.2. Subsection 2.3 gives 
the details of building up the dataset, and the object detection algorithm is introduced in 
subsection 2.4.

2.1. Sentinel-1 data

Sentinel-1 SAR Level-1 Ground Range Detected (GRD) Interferometric Wide mode products 
covering the study area were obtained from Copernicus Open Access Hub, which provides 
data within 24 h after observation without special subscription. For establishing an NRT 
warning system, the DLR collaborative ground segment will also be considered in the 
operational stage of the study as data inside its reception cone could be acquired within 
an hour. There were in total 5930 scenes from January 2015 to December 2018 used. 
Sentinel-1 GRD data provides dual polarization VV-VH products in the study area. In practice, 
cross-polarization (i.e. VH and HV) has much lower intensity and is influenced more by 
background and instrument noise than the co-polarization (i.e. VV and HH) (Woodhouse 
2006). For this reason, SAR data from VV channel was used. The data was pre-processed with 
a series of corrections, including border noise removal, thermal noise removal, calibration, 
ellipsoid correction and conversion to decibels (dB). Note that continuous scenes in the same 
track were merged during the pre-processing. The pre-processing step was done automa-
tically in a series of Python programs with the use of the Sentinel Application Platform 
(SNAP) Python API provided by ESA (European Space Agency 2020). The resolution of the 
pre-processed SAR results is 20 m × 20 m, which is similar to the original products.

2.2. Manual labelling work

To prepare the oil spill dataset for the training procedures, all the oil spills inside the pre- 
processed images were labelled as oil objects jointly by two authors who are experienced 
human interpreters. The oil objects were defined by bounding boxes, which show the 
extent of oil spills, with the open-source image annotation tool LabelImg (Tzutalin 2015). 
Note that look-alikes were not labelled but regarded as background information. Manual 
inspection of oil spills is based on experience and prior information including location, 
wind and weather condition, the period of the year and differences in their shapes 
compared to surroundings (Solberg et al. 1999; Topouzelis 2008). In the Eastern 
Mediterranean Sea, algal bloom is a common reason for look-alikes due to nutrient 
sources of coastal origins (e.g. increasing use of fertilizers) and strong current systems 
(Barale, Michel Jaquet and Ndiaye 2008). Figure 4 shows an example of preprocessed data 
including look-alikes due to different reasons along with some visible land sourced oil 
spills. Algae blooms appear as dark formations with spiral patterns, which are driven by 
surface currents (e.g. north of the image). Dark formations surrounded by algal blooms 
might be low wind areas. The blue rectangle marks a region with regular oil spills from 
land sources. Red bounding boxes show locations of oil spills, and dark formations near 
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coastal areas are possibly induced by wind and waves. Look-alikes make it more difficult 
to tell if there are oil spills in the scene and to annotate them correctly. Oil spills can be 
distinguished from look-alikes due to their different patterns, and also from experience of 
collecting regular oil spills from the area (see Figure 5 for examples).

Figure 2 shows a heat map based on the amount of oil spills collected and annotated in 
this study; there are in total 9768 labelled oil objects from 2015 to 2018. Regions with 
frequent oil spills might be related to shipping routes, locations of oil fields and oil 
terminals, and some regular pollution from land sources. The figure shows relatively 
frequent oil spills at the northern access of the Suez Canal, which has high density of 
ship traffic especially due to tankers transiting between Suez Canal and ports in the 
Eastern Mediterranean or Western Europe (O’Hagan 2007). It shall be noted that the 
amount of oil spills was calculated from the labelled oil objects, which are not exact 
polygons showing the oil spill location but the extent of the spill defined by its bound-
ing box.

2.3. Dataset

The pre-processed images cover areas with dimensions of around 18796� 24521 px and 
18455� 24521 px for the ascending and descending tracks, respectively. However, most 
of the labelled oil objects only occupy areas of less than 128� 128 px, which makes it 
difficult for the object detector to target objects. In addition, the object detector requires 
a certain model input size, which might change the aspect ratios of images. To avoid 
training the object detector on distorted images, the pre-processed images were cropped 
into smaller sizes to fit the model input size. The images were cropped based on the 
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Figure 4. An example of look-alikes shown in Sentinel-1 SAR data along with some visible land 
sourced oil spills. The blue rectangular area has regular land sourced oil spills, which are annotated 
with red bounding boxes. Apart from oil spills, there are dark formations due to algae blooms (spiral 
patterns), low wind areas (near algae blooms) and possible wind and wave effects (in coastal area near 
oil spills).
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positions of the labelled oil objects. Each oil object has one corresponding cropped 
image; however, it might happen that there are several oil objects in one cropped 
image generating several cropped images with similar coverage. To avoid the same oil 
objects appearing in multiple images, this study filtered out most of the duplicated ones 
manually. Checking the labels in the dataset and filtering out the duplicated oil objects 
required around 40 h of work for each year (e.g. from 1 January 2017 to 31 
December 2017). As the cropped images were designed based on labelled oil objects, 
each cropped image includes at least one oil object. Note that this does not mean that 
every image must contain an object during the detection process. The object detector 
learns not only the given objects but also the regions without annotations as background 
during training. Therefore, it is expected to return no object if there is none to detect. The 
cropped images have dimensions of N� N px, where N is equal to the maximum of the 
model input size and the edge lengths of the object bounding box. The model input size 
in this study is 640� 640 px. Large oil objects could therefore result in images with sizes 
greater than the model input size, so they will be resampled when put into the model. 
With this approach, however, long and slim oil objects in such images might become 
undetectable when they are resampled. Figure 6 shows examples of long and slim oil 
spills, which possibly resulted from ships. The images cover areas of around 1220 km2 and 
770 km2, respectively. These kinds of oil spills are usually discharged from moving ships. In 
the beginning, there is a larger amount of oil released, and as the ship keeps moving the 
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Figure 5. An example showing clear oil spills coming from land sources. This figure has the same 
extent as the blue outlined area shown in Figure 4.
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amount decreases resulting in the oil trace becoming gradually slimmer. The slimmer part 
of oil spills might be barely visible to the object detector. Hence, these kinds of images 
were manually examined again, and images with long and slim oil objects were tiled into 
several sub-images in order to avoid the oil spills becoming undetectable. On the con-
trary, if the oil objects inside the image were long and wide, they were not altered to let 
the model learn the entire shape of the oil spill.

The cropped images (including the tiled images after examination) were then put into 
different size groups based on the sizes of the largest oil objects inside. Oil spills in 
bounding boxes with an area smaller than 12,500 px (i.e. 5 km2) were categorized as small 
oil objects, and those with bounding boxes greater than or equal to 100,000 px (i.e. 40  
km2) were categorized as large oil objects. The rest of the oil spills with areas in-between 
were regarded as medium objects. However, certain small objects were regarded as 
undetectable tiny objects and had their annotations removed. In this study, tiny objects 
were defined as follows: 

if hobj < himg � Ttiny=hmodel ½px�[
wobj <wimg � Ttiny=wmodel ½px� ) Obj 2 Objtiny

(1) 

where hobj, himg and hmodel respectively refer to the heights of the object, image and 
model input; w refers to the corresponding width. Ttiny is the pixel threshold for defining 
tiny objects. The first scenario in subsection 3.1 aims to find a suitable value for Ttiny.

Table 1 shows the amount of oil objects per size category in the dataset after removing 
the tiny objects with Ttiny ¼ 20 px. An imbalance with regard to the amount of objects per 
category can be observed because there are comparatively fewer larger oil spills than 
smaller ones. In addition, the larger oil spills seems to have higher shape complexity, 
which might be more difficult to detect. To alleviate the imbalance of oil spills in different 
sizes and enhance the ability of detecting larger oil spills, data augmentation was applied, 
focusing on images with larger oil objects. The idea of data augmentation is to increase 

Figure 6. Examples of long and slim oil spills. The areas of the images are around 1220 km2 and 
770 km2, respectively.
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the amount of data by applying slight modifications to the original dataset. The second 
scenario in subsection 3.1 provides a comparison of model performance when applying 
rotation data augmentation on specific groups before model training.

After data augmentation, the whole dataset was split into training, validation and test 
sets. Different-sized oil objects were balanced between the sets and the objects were put 
into the different sets with a relative proportion of 7 : 2 : 1. Considering that there are 
seasonal algae in the study area, it was ensured that training, validation and test sets all 
contained images from different seasons and images in different sets should not originate 
from the same SAR acquisitions.

2.4. Yolov4 object detection algorithm

Deep learning-based object detection algorithms work in three essential stages: feature 
extraction, object localization and classification. Feature extraction, the so-called back-
bone of an object detector, finds the representation of the input images as feature maps 
by using a backbone network. The network has different layers to learn multiple levels of 
features, and is usually trained on a large labelled dataset (e.g. ImageNet (Deng et al. 
2009)). The object localization stage finds the area of the image that potentially contains 
an object, which is also known as the region of interest (ROI). Then, the classification stage 
fine tunes the proposed region and outputs the final prediction with the class of the 
objects. The object localization stage and the classification stage are usually called the 
head. An additional stage for collecting feature maps might also be included between the 
backbone and the head, which is regarded as the neck.

Two-stage object detection algorithms refer to those using two different networks to 
achieve object localization and classification in two different steps, which means that the 
classifier needs to detect the object class in each ROI. This step makes the object detection 
comparatively slow and uses a high amount of computational resources. However, one- 
stage object detection algorithms combine object localization and classification into one 
step with only a single deep neural network. YOLO is an example of a one-stage object 
detection algorithm (Redmon et al. 2016). One-stage object detectors are usually 
regarded as more efficient but less accurate. However, the accuracy and speed of the 
recent one-stage object detector YOLOv4 has been improved by implementing a new 
architecture, introducing Bag-of-Freebies (BoF) and Bag-of-Specials (BoS), and including 
mosaic, a new data augmentation method (Bochkovskiy, Wang and Mark Liao 2020; 
Wang, Bochkovskiy and Mark Liao 2021). In the preliminary stage, this study compared 

Table 1. Amount and percentage of oil objects with different 
sizes in the dataset from 2015 to 2018 after removing tiny 
objects.

Category Size (px) # Objects %

Small < 12500 7885 72.3
Medium 12,500–100,000 2420 22.2
Large � 100000 595 5.5
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the model performance of the trained objectors with and without applying mosaic data 
augmentation; the AP of the trained detectors on test set is 55.54% and 30.34%, respec-
tively. The results highlight the improvement of the model from applying mosaic.

Figure 7 shows the overall structure of YOLOv4. YOLOv4 uses CSPDarknet53 as its 
backbone, which applies Cross Stage Partial Network (CSPNet) (Wang et al. 2020) to 
update the previous YOLOv3 backbone Darknet53. It further reduced the need of com-
putational resources as CSPNet proposes a richer gradient combination while reducing 
the requirement of computational resources to solve the vanishing gradient problem 
during the training stage (Wang et al. 2020). CSPDarknet53 extracts feature maps through 
five residual blocks (Bochkovskiy, Wang and Mark Liao 2020), followed by Spatial Pyramid 
Pooling (SPP) and a modified Path Aggregation Network (PANet) as the neck. SPP 
enhances the receptive field, which represents all the pixels from feature maps with an 
impact on results. PANet has the ability to keep spatial information in order to improve 
the object localization. In the last stage, three yolo layers are applied as the head. Feature 
maps of different scales are collected in order to find objects with different sizes. The 
model input size in this study is 640� 640 px, and detection feature maps down-sampled 
by factors of 8, 16 and 32 are generated. Therefore, the detection feature maps have 
dimensions of 80� 80, 40� 40 and 20� 20 px. In order to picture how much information 
can be obtained in different scales, Figure 8 shows the down-sampled images. The idea is 
that large objects can be detected with smaller scale (e.g. 20� 20 px) and small objects 
need larger scale (e.g. 80� 80 px) to include the necessary details.

Figure 7. Overall structure of YOLOv4. The backbone CSPDarknet53 extracts feature maps through 5 
residual blocks. SPP and PANet are applied to enhance the respective field and improve the object 
localization, respectively. Feature maps of different scales are extracted by three yolo layers in the last 
stage in order to detect objects with different sizes. The figure incorporates elements modified from 
(Li et al. 2020; Hu and Wen 2021).
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3. Results

This section presents the results obtained from training the deep learning model for oil 
spill detection. Different scenarios are considered and shown in the following subsections. 
Subsection 3.1 determines the parameter Ttiny in Equation (1) to find a suitable measure to 
remove tiny oil objects. Subsection 3.2 then investigates if adding additional rotation data 
augmentation can help improve the model performance. For training the model an Nvidia 
GeForce RTX 3080 GPU with 10 GB VRAM was used, which took around 7.5 h for each 
training run with 6000 iterations. As an initial estimation, it would require at least around 

(a) 640 × 640 px (b) 80 × 80 px

(c) 40 × 40 px (d) 20 × 20 px

Figure 8. Images with oil spills in different scales. The images were downsampled to different 
dimensions. Note that the original image has a size of 1145� 1145 px, which is greater than the 
model input size; thus, the image was downsampled to 640� 640 px as shown in (a) (see 
Subsection 2.3 for detailed explanation).
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1838 image patches with a size of 640� 640 px and overlap of 40 px to cover the whole 
study area. Detecting oil spills in these images by the trained model would take around 
1 min.

To evaluate the performance of an object detector, its predictions are compared to 
ground truth data. As there is no real-world ground truth oil spill data available, ground 
truth data refers to the manually inspected objects described in subsection 2.2 in this 
study. The comparison between predictions and ground truth can be summarized by 
a confusion matrix with four components: True Positive (TP), False Positive (FP), False 
Negative (FN) and True Negative (TN). TP shows oil objects that are correctly detected by 
the object detector. FP refers to cases where oil objects are detected but they do not 
match the ground truth. On the contrary, undetected oil objects are regarded as FN. TN is 
generally not applied in object detection as background is not defined in ground truth 
and also not present in detections.

Figure 9 shows different detections of the same oil spill. The red bounding box denotes 
the manually inspected oil object and the yellow bounding boxes mark the detections. 
Figure 9(c) is the best match because it shows the largest overlap with the ground truth 
data. However, a concrete definition of correct detection should be defined. Intersect over 
union (IoU) is therefore used as it indicates how close the predicted area of an object is to 
the ground truth bounding box. It is defined as follows (Everingham et al. 2010): 

IoU ¼
areaðBp \ BgÞ

areaðBp [ BgÞ
(2) 

where Bp \ Bg and Bp [ Bg respectively refer to the intersection and union of the bound-
ing boxes of the prediction (Bp) and the ground truth (Bg). The IoU threshold is usually 
applied to define whether a detection is TP or FP. In this study, the IoU threshold is 
defined as 50%, which means that only detections with IoU � 50% and have the same 
class prediction (i.e. oil) are TP.

Based on TP, FP and FN, the recall and precision measures are used and given as 
follows (Goutte and Gaussier 2005): 

(a) IoU = 30% (b) IoU = 45% (c) IoU = 75%

Figure 9. Examples showing detections with different IoU.
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Recall ¼
TP

ðTPþ FNÞ

Precision ¼
TP

ðTP þ FPÞ

(3) 

Recall represents the sensitivity to detect objects, that is, among all the ground truth data, 
the amount of objects that are correctly detected. Precision describes the number of 
correctly detected objects in comparison to the ground truth data. It is desirable that the 
object detector has both high precision and recall. Based on these two measures, AP is 
defined as an average of precision values from a set of recall for a single class as follows: 

AP ¼
ð1

0
PðRÞdR (4) 

where R is recall, P Rð Þ is the precision at discrete recall values R. In this study, AP is 
calculated as an average of precision values from 11 equally spaced recall values as 
discrete approximation of Equation (4) analogous to the VOC2007 challenge 
(Everingham et al. 2010).

The trained models are evaluated by a comparison of their AP on the test sets with an 
IoU threshold of 50%, which was calculated with the help of a tool developed in Cartucho, 
Ventura and Veloso (2018) and modified by the authors. Based on results emerging from 
different scenarios, an improved trained model along with a selection of detection results 
on different types of oil spills are described in subsection 3.3. This study also compares the 
performance of the models trained by YOLOv4 and the well-known two-stage object 
detection algorithm Faster RCNN.

3.1. Remove annotations of tiny objects

In the preliminary stage of the study, the trained model generated spurious detections 
where no oil spill was visible. One possible explanation is that during the training 
procedure of the object detector, the input image is down-sampled by factors of 8, 16 
and 32 in the object detection stage. Small objects need a larger scale (i.e. smaller 
downsampling factor) to capture their features, and objects below a certain size might 
be undetectable. There are tiny oil spills regularly released in the Eastern Mediterranean 
Sea, and hence it is possible that some of the labelled objects are invisible for the model 
but their annotations are in the training dataset. As a result, the trained model lacks the 
capability of detecting the extents of objects correctly and generates some random 
detections with oil spills improperly framed or even exceeding the image boundary (see 
Figure 10(a)).

As an initial test for removing the annotations of objects satisfying Equation (1) with 
Ttiny equal to 0, 28 and 48 px, Figure 10 shows examples of detections from different 
trained models (Yang, Singha and Mayerle 2021). In Figure 10(a) the model regards the oil 
object to cover an area larger than the oil spill of interest. It seems that the model was 
‘guessing’ the extent of the oil object as it could not find the margin of the object well. 
Generally, applying a pixel threshold seems to help prevent excess detections when 
comparing Figure 10(a) with Figure 10(b) and Figure 10(c). Comparing Ttiny equal to 28 
and 48 px, the trained object detector in Figure 10(b) more clearly defines the extents of 
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oil spills than the one in Figure 10(c). Based on this result, the removal of the annotation 
for tiny objects with smaller thresholds was examined further. Table 2 shows the amount 
of objects used in different cases and the model performance achieved. The four test 
cases are all, rm_tiny_14, rm_tiny_20 and rm_tiny_28 where Ttiny equals 0, 14, 20 and 28 px, 
respectively. When no object annotation is removed (all), the AP on the test set was 
61.64%. After removing tiny objects, the AP was slightly improved. However, with Ttiny ¼

28 px the model performance actually decreased to 55.54% AP on the test set. A possible 
reason is that there were some removed objects observable in the image but without any 
annotation, so the model was misled. Overall, the test case rm_tiny_20 with Ttiny ¼ 20 px 
showed the best performance.

This scenario outlines the limitation of the object detector when targeting tiny objects. 
Small oil spills are not always clearly distinguishable from their surroundings due to the 
resolution of satellite imagery, making it difficult to properly define their extents. 
However, this limitation is in line with the capability of human observers who may 
disregard the detected tiny oil spills because of the described uncertainty. Nevertheless, 
the imbalance among oil spills of different sizes (see Table 1) might lead to a lower 
capability of detecting larger oil spills although they lead to more serious environmental 
damage. Therefore, decreasing the false-negative rate on detecting larger oil spills seems 
to be more important than increasing the ability of tiny object detection. The following 
subsection compares the model performance on oil spills of different sizes and provides 
scenarios to improve the oil spill detector.

(a) Ttiny = 0 px (b) Ttiny = 28 px (c) Ttiny = 48 px

Figure 10. Examples for removal of tiny objects with varying Ttiny from a previous study. The yellow 
bounding boxes denote the detections with the confidence scores, and the red bounding boxes mark 
the ground truth oil spills (Yang, Singha and Mayerle 2021).

Table 2. Amount of objects in the training, validation and test sets for 
different cases that were used in scenario 1 (subsection 3.1), along with 
the AP of the trained models on the respective validation and test sets.

# Objects AP@IoU=0.5%)

Case (train/val/test sets) (val set) (test set)

all 9947/2863/1443 64.85 61.64
rm_tiny_14 9026/2597/1308 69.12 64.08
rm_tiny_20 7616/2185/1099 64.60 65.69
rm_tiny_28 6063/1741/870 71.99 55.54
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3.2. Additional data augmentation

Table 1 shows the absolute and relative amount of oil objects used after the annotations 
of the tiny objects have been removed with Ttiny ¼ 20 px. As there are small oil spills 
regularly appearing in the study area, 72.3% of all oil objects in the dataset have 
a bounding box area smaller than 12,500 px (i.e. 5 km2). In order to let the model detect 
oil spills of different sizes, additional rotation data augmentation was applied to images 
with larger oil objects in this scenario. All images were first categorized into large, medium 
and small image groups in relation to the size of the largest oil object inside. Images in the 
groups large and medium were rotated by 90° along with their annotations; the augmen-
ted image sets are noted as L90_aug and M90_aug, respectively. Table 3 shows the model 
performance for three different cases and the amount of oil objects per size group. The 
case orig is the same as case rm_tiny_20 in subsection 3.1. The cases L90 and L90_M90 
include the images from the case orig along with the additional augmented images from 
L90_aug and both L90_aug and M90_aug, respectively. Note that these different cases 
were tested on the same test set for model performance assessment. In these cases, there 
were in total 576 images in the test set.

Among the three cases, the case L90 shows the best model performance with an AP of 
69.53% and 70.55% on the validation and test sets, respectively. On the other hand, the AP 
of the trained object detector in the case L90_M90 on the validation and test sets is 
69.99% and 65.05%, respectively, which shows that the model is not well generalized and 
indicates possible model over-fitting to random patterns in the validation set. To further 
examine the models for their behaviours when detecting oil spills of different sizes, the 
test set was then split into three different subsets according to oil spill sizes (following the 
definition in Table 1). There were 387, 141 and 48 images in small, medium and large test 
subsets, respectively. Table 4 shows AP in the different cases and on the three subsets. The 

Table 3. Amount of objects in the small, medium and large size groups 
for different cases that were used in scenario 2 (subsection 3.1), along 
with the AP of the trained models on the respective validation and test 
sets.

# Objects AP@IoU=0.5%)

Case (small/medium/large) (val set) (test set)

orig 7785/2500/615 64.60 65.69
L90 9076/2718/1255 69.53 70.55
L90_M90 11,162/5188/1272 69.99 65.05

Table 4. The AP of the trained models on the test sets with oil spills of 
different sizes in scenario 2 (subsection 3.1).

AP@IoU=0.5 [%] (test set)

Case all small medium large

orig 65.69 74.16 56.49 38.85
L90 70.55 80.65 60.00 36.99
L90_M90 65.05 71.66 57.81 43.09
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results in L90 are better on small and medium oil spills but worse on large oil spills in 
comparison to the case orig, which does not fulfil the aim of improving the model 
performance on larger oil spills. In the case L90_M90, which not only considered the 
large subset but also included the medium subset for data augmentation, the model was 
trained on a higher complexity of oil spills. The model performance has improved for 
detecting large oil spills; however, it appears to be worse on small and medium subsets. 
Supporting this observation, Figure 11 shows different sizes of oil spills detected in the 
three different cases with the confidence scores as well as the manual inspections out-
lined in red.

Figure 11(a) shows a large oil spill, which is manually labelled as three oil objects as 
they were not connected with each other. The oil spill was detected by the models from 
the cases orig and L90 as one object; however, the extents were not well predicted. One 
possible reason could be that images covering large areas with slim and long oil spills 

Figure 11. Examples of oil spills in (a) large and (b) medium subsets detected in different cases 
described in subsection 3.1. The red bounding boxes denote the manually inspected oil spills; the 
detection results are shown with different colors along with confidence scores. As detection results 
from the cases orig and L90 show high consistency with the manual inspection in (b), the detections 
are not shown in the image to avoid confusion.
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were tiled into several sub-images for training (see Subsection 2.3). With this approach, 
the model did not properly learn the entire shape of these oil spills and how they were 
separated from their surroundings. The IoU of the largest labelled oil object and detec-
tions from these two cases is 47.46% and 34.95%, respectively. On the other hand, the 
case L90_M90 has IoU of 71.70% and 71.61% for the upper and bottom detections, 
respectively. As the case L90_M90 included more medium oil spills, the ability of detecting 
margins seems to be improved. Figure 11(b) shows examples of small and medium oil 
spills. As predictions in cases orig and L90 are similar to the manually labelled oil objects, 
only the case L90_M90 is shown. Regarding the oil spill on the left-hand side, all the 
models detect it as two oil spills; one small bounding box covers the bottom part of oil 
spill and the other large one covers the whole oil spill. The IoU of the three detections 
covering the whole oil spill from cases orig, L90 and L90_M90 is 64.67%, 76.67% and 
81.57%, respectively. Regarding the two oil spills in the middle, the model from case orig 
has respective IoU of 75.06% and 81.03% for the two oil spills (from left to right); the 
model from case L90 has IoU of 74.60% and 79.77%, respectively. However, in the case 
L90_M90 they were not detected.

In summary, by applying additional rotation augmentation on images with large and 
medium oil objects (i.e. case L90_M90), the detection of large oil spills has improved. It is 
likely that including data augmentation on differently shaped oil spills could help the 
performance of the object detector. However, in the dataset most of the large oil spills 
appear along with small oil spills, which means that the rotation data augmentation was 
also applied on some small oil objects. It is possible that the model was over-fitting on oil 
objects with similar shapes, especially for small oil spills, which usually appear as round 
shapes as shown in Figure 12. As there are drawbacks for either the case L90 or the case 
L90_M90, it was decided to not apply the additional data augmentation before further 
examination. A possible approach would be to apply additional data augmentation on oil 

Figure 12. Examples of small round oil spills in the study area. The shown images cover areas of 
around 164 km2 each.
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spills with high complexity and to use fewer small round objects from the dataset and 
balancing different-sized oil objects, but the total amount of objects used for training 
should also be considered.

3.3. Oil spill detection with YOLOv4

According to subsection 3.1, objects regarded as tiny objects following Equation (1) with 
Ttiny ¼ 20 px were removed. Though additional rotation augmentation was proven to be 
beneficial for large oil spill detection, it might cause over-fitting on small and medium oil 
spills based on the results in subsection 3.2; as a result, this technique was not applied in 
the following. YOLOv4 offers several built-in data augmentation techniques, which, unlike 
the rotation data augmentation discussed in the previous subsection, are applied to all 
input images. Overall, colour space data augmentation (e.g. saturation, exposure and hue 
values) seems to be beneficial in this study. Figure 13 shows the average loss calculated 
during the training in blue and the mean average precision (mAP) on the validation set in 
red after 1000 iterations. The average loss indicates the differences between the ground 
truth values and predicted values from the model. In general, the training stops after the 
average loss no longer decreases. Note that mAP is the mean of the AP on different 
classes. As only one class was in use, mAP is equal to AP in this study. The AP on the 
validation and test sets is 69.10% and 68.69%, respectively. The model performance is 
similar on the validation and test sets, which indicates that the object detector is not 
dependent on the given training or validation datasets.

Figure 13. Average loss calculated during the training (blue), and AP on validation set (red) after 1000 
iterations.
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As mentioned in subsection 2.4, one-stage object detection algorithms are usually 
considered to have high efficiency but low accuracy compared to two-stage methods. To 
evaluate the performance of the YOLOv4-based model, this study uses a two-stage object 
detection algorithm, Faster RCNN, as a baseline assessment. Faster RCNN with feature 
pyramid networks (FPN) as backbone was trained with the help of the Detectron2 frame-
work, which is implemented in PyTorch (Wu et al. 2019). Table 5 shows training informa-
tion along with the AP on the validation and test sets of the two object detection 
algorithms. The iterative training was stopped when the average loss converged. As 
Faster RCNN requires more training iterations, it took almost double the time of 
YOLOv4. The Faster RCNN-based model has its AP on the training and validation sets of 
70.33% and 70.26%, respectively. Comparing the two trained models, the performance 
seems to be similar; however, the faster training time of YOLOv4 is advantageous for 
development stage where training has to be performed several times.

In the following, various examples of oil spills detected by the YOLOv4-based model 
will be shown in Figures 14–17. Manually inspected oil spills are denoted as red bounding 
boxes and the detection results are outlined in yellow along with confidence scores. Note 
that some oil spills are separately annotated as they are not actually connected, but may 
appear like a continuous oil spill in the figures due to scaling.

Figure 14 shows examples of relatively long oil spills, which are generally detected. 
Figure 14(a,b) are examples of wide and long oil spills, which were detected similarly to 
the given annotations. Considering slim and long oil spills, Figure 14(c,d) show that they 
were not as confidently detected as the wider ones and their margins were not well 
detected. These kinds of oil spills usually cover a large area and form complicated shapes 
due to ocean currents (see also Figure 6). As previously explained (see subsection 2.3), 
slim and long oil spills were tiled into several sub-images in case the oil spills might 
otherwise be too thin for the model to learn and to detect. Therefore, the full shape of 
these kinds of oil spills was not well learned, especially as large oil spills only occupied 
5.5% of the collected oil objects (see Table 1), so there were even less long and slim oil 
spills. As a result, especially long and slim oil spills were not as well detected as wider 
ones.

As mentioned in section 1, small oil spills regularly occurred in the study area, so 
detecting oil spills of this kind is also an aim of this study. Figure 15 shows examples of 
those oil spills, which were small but numerous. Note that there were some oil spills 
detected by the object detector but not annotated as they were regarded as tiny objects 
defined by Equation (1) with Ttiny ¼ 20 px and removed from the annotations. It seems 
that the object detector possesses a good capability of detecting these small oil spills and 
it could actually detect tiny objects below the given Ttiny. Based on the comparisons 

Table 5. Training information along with the AP of the trained models on the 
validation and test sets from YOLOv4 and Faster RCNN, the two well-known object 
detection algorithms.

AP@IoU=0.5%)

Method # Iteration Training Time (val set) (test set)

YOLOv4 6000 7.5 h 69.10 68.69
Faster RCNN 160,000 14 h 70.33 70.26
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between different Ttiny shown in subsection 3.1, applying Ttiny ¼ 20 px resulted in the best 
AP. Objects are defined as tiny when either dimension is smaller than the given Ttiny in 
Equation (1). However, the aspect ratio of the object was not considered so that the model 
might be able to detect objects even if one dimension is smaller than Ttiny. Examining the 
behaviour of the model for detecting small oil objects more closely might help, such as 
providing some man-made oil objects with different sizes and aspect ratios and designing 
a more rigorous rule for tiny object definition.

Figure 16 shows examples of oil spills near look-alikes. In Figure 16(a), oil spills were 
detected well even with look-alikes nearby. However, it is not clear in Figure 16(b) if the 
object detector detected the oil spill correctly as it was covered by look-alikes. Note that in 

Figure 14. Examples of long oil spills detected by the trained object detector described in subsection 
3.3 . Some long and wide oil spills were well detected in (a) and (b); however, some slim oil spills were 
not confidently detected in (c) and (d).
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order to not mislead the model, oil spills covered by look-alikes were not annotated (as 
shown in the figure). As look-alikes were included in the dataset only when they appeared 
near oil spills, the trained detector might recognize only limited types of look-alikes. 
Increasing the amount of look-alikes used as background information during training 
might help improve the ability of distinguishing oil spills and look-alikes.

Figure 15. Examples of areas covering numerous small oil spills, which were mostly well detected. 
Note that some oil spills were detected by the trained object detector (in yellow) but not marked as 
manually inspected oil spills (in red). These oil spills satisfy the definition of tiny object in Equation (1) 
with Ttiny ¼ 20 px and their annotations were removed.

Figure 16. Examples of oil spills which appeared near look-alikes. Oil spills were well detected in (a), 
but it was not clearly if it detected oil spills or look-alikes in (b).
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In the Eastern Mediterranean Sea, active transponders are commonly used for security 
reasons and interfere with the SAR signal, in some regions constantly. When the active 
transponders happen to be operating in similar frequency domain as SAR signal, it might 
lead to constructive or destructive interference. Figure 17 shows oil spills covered by 
these interfering signals. However, the object detector could still detect the main parts of 
the oil spills. Regular oil spills in certain areas are likely caused by the same or similar 
sources, which result in less complexity in types and shapes of oil spills. Hence, the object 
detector was able to learn and detect them well.

4. Discussion and conclusion

To tackle the need of an early warning system for detecting oil spills on a regular basis 
in the Eastern Mediterranean Sea, this study evaluated the possibility of using 
a YOLOv4-based object detection algorithm for automatic detection of oil spills. In 
this study, a total of 5930 Sentinel-1 scenes from 2015 to 2018 were used, which contain 
9768 oil spills. After carrying out a variety of scenarios to find suitable parameters and 
data augmentation methods in subsections 3.1 and 3.2, the trained object detector was 
presented in subsection 3.3 . The AP of the object detector, with IoU threshold equal to 
50%, on the validation and test sets is 69.10% and 68.69%, respectively. Comparing it to 
the Faster RCNN-based model, which has AP of 70.33% and 70.26% on the validation 
and test sets, respectively, the two models have similar performance. However, training 
the Faster RCNN model took almost twice as long. In recent years, more studies have 
focused on machine learning and deep learning techniques using large amounts of SAR 
data. Some well-performing deep learning-based oil spill detection methods are dis-
cussed in the following. Note that different studies used different measures to evaluate 
the model performance, and the definitions of these measures may even be slightly 
different.

Figure 17. Examples of oil spills with interference caused by active transponders, which influence 
certain regions constantly. However, the object detector was still able to detect these oil spills well.
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One previous study used a total of 1112 SAR images and trained with different 
semantic segmentation methods. IoU for different classes is used as performance metric 
in the study, and U-Net and DeepLabv3+ achieve IoU of 53.79% and 53.38% on the class 
oil spill, respectively (Krestenitis et al. 2019). Another study presented an improved 
DeepLabv3+ and used a total of 35 Sentinel-1 scenes; it obtains IoU of 91.58% for the 
class oil spill (Ma et al. 2022). One other study used 14 ALOS PALSAR and 7 Sentinel-1 
scenes and trained the CBD-Net, where it reached 84.20% and 91.20% precision on 
datasets from the two different satellite missions, respectively (Zhu et al. 2022). As 
a small amount of images leads to a lack of complexity in types, shapes and backscatter 
values of oil spills in SAR images, the models trained with fewer images performed better 
than the ones with larger datasets. However, two previous studies applied Mask-RCNN on 
similar amounts of data (i.e. 2000–3000 images) and achieved 98.7% precision on oil spill 
detection and 65% mean IoU for different classes in (Yekeen and Balogun 2020) and 
(Emna et al. 2020), respectively. The various sources of oil spills, purposes of those studies 
and even the difficulties of obtaining ground truth oil spills make it difficult to compare 
the results from these different studies.

With reference to the previously mentioned studies, the trained oil spill detector 
has reasonably good performance, especially for detecting oil spills with different 
sizes and even when oil spills were covered by the interference of active transpon-
ders. However, long and slim oil spills as well as their extent were not confidently 
detected. As shown in subsection 3.2, it is hard to train a model which performs well 
with a wide variety of object sizes. Increasing the amount of long and slim oil spills 
and balancing different size oil spills used for training might help improve the model 
performance in future.

Oil spills near look-alikes were also distinguished well, but oil spills covered by look- 
alikes were not always clearly detected. It appeared that the model was misled as in these 
cases, it detected the whole look-alike and the oil spill covered by it as one big oil spill. In 
this study, all images used for training contained at least one oil object. This means the 
patterns of look-alikes were only learned when there were oil spills nearby, so that adding 
images with only look-alikes (i.e. without any annotation) into training as background 
information might help the object detector to differentiate better between oil spills and 
look-alikes caused by various sources.

The collected oil spills were mostly related to shipping routes, oil terminals and 
transboundary shipping ports, and depending on the circulation systems in different 
regions oil spills may drift differently. It is possible that the detector may have inferior 
performance in other areas, where the majority of oil spills originate from different 
sources (e.g. oil platforms and natural seepage). To detect oil spills in other regions, it is 
possible to apply transfer learning, which uses the knowledge of the existing model in 
new tasks. Instead of learning from scratch, the existing model will be regarded as a pre- 
trained model and further trained on additional datasets with oil spills of different 
origins. Likewise, the capability of the current detector on different SAR sensors cannot 
be guaranteed, but applying transfer learning for different SAR sensors is feasible and 
should be straightforward for C-band sensors (e.g. RADARSAT Constellation Mission). 
Nevertheless, the provided trained object detector is a suitable module to set up an oil 
spill surveillance system in the Eastern Mediterranean Sea. The results of this study are 
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the basis of an improved oil spill detector, which lays the ground for building an efficient 
early warning system in the near future.
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