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ABSTRACT

Context. The complex shape of asteroids and comets is a critical parameter in many scientific and operational studies. From the global
irregular shape down to the local surface details, these topographies reflect the formation and evolutionary processes that remould the
celestial body. Furthermore, these processes control how the surface will continue to evolve: from mass wasting on high slopes to
spin-up due to anisotropic re-emission of thermal radiation. In addition, for space missions, the irregular coarse shape and complex
landscape are a hazard to navigation, which must be accounted for in the planning phase.
Aims. In this paper, we propose a novel method to synthesize physically correct 3D shape models of small celestial bodies, such as
asteroids, to support the testing of a wide range of parameters in scientific and operational studies.
Methods. We modeled virtual asteroid shapes using non-uniform sphere packings to represent the coarse shape, define an implicit
surface, and then synthesize high-resolution topography with user-defined, locally controlled spot noise models. This effectively
replaces the random noise model (e.g., Perlin noise) used in traditional approaches and allows us to construct a morphology based on
actual physical shapes of the most common features observed on asteroids and comets. As an example of such a feature, we propose
several kernel functions to add virtual craters to the coarse shape of the asteroid, of which the spatial distribution is controlled by
typical crater production functions (e.g., a power law).
Results. We demonstrate how this technique can be used to generate a variety of asteroid shapes and topographies using different
cratering parameters and distributions. We apply our technique to artificially increase the resolution of existing models of the Didymos-
Dimorphos system, the target of the Double Asteroid Redirection Test, and Hera missions. We show that our approach generates
models that are suitable for typical analysis relying on detailed asteroid shapes, as well as operational scenarios for space missions.
The meshes created with our algorithm can be directly used with existing visualization software and operations or science pipelines
to generate data suitable for mission planning and to validate data analysis techniques.
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1. Introduction

As of 2021, international space missions have visited a total of
16 minor planets and comets. They revealed complex worlds,
shaped by evolutionary processes at different scales: catastrophic
collisions, regolith transport, micro-impacts gardening, and sub-
limation. These objects have been characterized in high resolu-
tion and form the basis of our knowledge of asteroid and comet
topography. However, they represent only a tiny fraction of the
population known from remote observations (i.e., more than one
million asteroids; Mainzer et al. 2015).

Consequently, all scientific investigations that require knowl-
edge of a small body shape must rely on hypothetical objects:
at best, a low-resolution shape model can be derived from light
curves or adaptive optics images, but often that is not the case. In
the next few sections, we describe why this missing shape infor-
mation is a fundamental problem in the science of small bod-
ies, for a variety of investigations, but also for mission planning
and tasks such as close proximity operations. We then present a
numerical approach to constructing virtual objects at a high spa-
tial resolution that can be used to test the influence of morpho-
logical parameters for any scientific or operational investigation
that requires a shape model.

The shape of a small body, for instance, an asteroid or
comet nucleus, is the combined outcome of processes that cre-
ated the object and drove its subsequent evolution. These pro-
cesses transform the object locally and globally in ways that
are not well constrained. For instance, impact cratering is fairly
well described by experiments and has been tested in situ (Deep
Impact, Hayabusa 2), and it is possible to predict the resulting
topography if we know the material properties of the target well
enough (see Sect. 3). Other processes, such as mass wasting or
spin-up deformation, are hypothesized and likely to occur, but
its mechanism is not well known at present. However, by trans-
forming the surface morphology, these processes induce effects
that can be detected even if the asteroid surface features are too
small to be observed from the Earth:

TheYarkovsky-O’Keefe-Radzievskii-Paddackeffect (YORP;
Rubincam 2000) changes the spin rate of an object due to the
anisotropic re-emission of radiation, particularly in the thermal
range. This effect is completely controlled by the shape of the
object. If the net spin acceleration is positive, it can lead to a
deformation of the body up to complete disruption. This is one
of the potential mechanisms leading to the formation of binary
asteroids.
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The Yarkovsky effect alone uses similar arguments to explain
the change in orbital parameter for small asteroids (Bottke et al.
2006). This is particularly relevant for explaining the “V-shape”
dispersion pattern in collisional families (Bolin et al. 2017).

The disk-integrated photometry of an object is generally the
only information available, as most asteroids or comets cannot
be resolved on astronomical imaging data. However, the shape
plays a role here as well. At a high phase angle, a rough topog-
raphy will cast more shadows than a smooth one, introducing an
excess phase-darkening that could not be explained solely with
material properties (Vincent 2019).

In the coming decade, most space agencies are planning excit-
ing missions to a series of asteroids or comets. For instance,
the asteroid deflection project AIDA will impact Dimorphos,
the secondary element of the Didymos binary system, using
NASA’s Double Asteroid Redirection Test (DART) (Cheng et al.
2018), while ESA’s Hera will observe the aftermath (Michel et al.
2018). Together they will measure the change in the binary
system orbit as well as the volume and morphology of the
impact crater. Many other missions to asteroids and comets have
been selected: NASA’s Lucy (Levison & Lucy Science Team
2016) and Psyche (Elkins-Tanton & Bell, 2017), JAXA’s Des-
tiny+ (Fujimoto & Tasker 2019), CNSA’s ZhengHe (Zhang et al.
2019), and ESA’s Comet Interceptor (Snodgrass & Jones 2019).
Those missions are either aimed at carrying out close orbits, land-
ings, or sample return of the corresponding target objects. Each
of these missions face the challenge that their target morphology
and topography is unknown at the time of planning the first opera-
tions, and requires very flexible and powerful simulation tools for
the project planning and deployment.

Having a realistic virtual asteroid or comet allows for test-
ing mission scenarios using an object that looks real and whose
distribution of surface features as well as the material properties
matches the type of object we plan the mission for (at least to the
best of the current state of knowledge about that object). This is
fundamental for many applications such as:

Navigation (Martin et al. 2014): missions using autonomous
navigation may need to test the accuracy of their targeting algo-
rithms depending on the terrain type (many craters, smooth
regolith, boulder field, etc.). At close distance, autonomous nav-
igation requires smart algorithms that can recognize typical sur-
face features and react in the most fuel-efficient manner.

Classification: morphological analysis requires a detailed
mapping of all surface features. A virtual model of a realistic
surface allows for thorough testing of feature analysis and classi-
fication algorithms, which can then help with autonomous land-
ing site selection. This is useful for testing algorithms that may
also be used in different contexts (i.e., asteroid mining, . . . )

Shape reconstruction (Lamy et al. 2008): stereo mapping
and shape-from-shading algorithms require multiple images
from different viewing geometries and specific illumination con-
ditions. Having a realistic model of the topography allows for us
to test whether operations scenarios meet all the requirements.
For instance, at a high phase angle, a smooth terrain may be illu-
minated, but cratered regions can have too many shadows to be
mapped accurately.

In this paper, we present a new approach to synthesize real-
istic asteroid shapes with geospatial features such as craters.
Our system models the coarse shape of an asteroid by a global
implicit surface. Using a discrete global grid system (DGGS),
we then create the features over the coarse shape according to
a power law. We also propose novel kernels to create the mor-
phology of the features so that it follows the observation of real
images.

More precisely, the main contributions of our work are as fol-
lows: 1. We extend 3D spot noise (Li et al. 2020) by introducing
specific spatial kernels to generate typical types of craters; 2. We
introduce several intuitive parameters in the spatial kernels and
form a degradation model that matches the observable morphol-
ogy (changes) to accurately describe their degradation state; 3.
We define an inversion sampling method to replicate the power-
law distribution of craters on an asteroid’s surface and therefore
constrain the age and evolution of a particular terrain or a sur-
face; 4. Finally, our method provides multiple layers of control,
allowing the user to author craters and tune their spatial distribu-
tion rules within each layer.

Altogether, we provide a unified framework1 to reproduce
arbitrary sized craters and allow for the reconstruction of com-
plex surfaces and shapes of asteroids at different ages. Another
advantage of our approach is that it is possible to utilize the
GPU, which allows for very fast generation of the 3D shapes.
Moreover, the implicit surface representation allows for arbitrar-
ily high resolution of the synthesized meshes representing the
shape.

2. Related works

Research into algorithms for generating realistic scenic ter-
rain has a long history. The vast majority of existing tech-
niques addresses only 2.5D heightfield scenic terrain, so that
heightmaps/digital elevation maps can be applied easily on a
plane. An alternative method is to use a mathematical implicit
function to model the coarse terrain, and overlapping terrain fea-
tures (i.e., lines, curves) or textures on the predefined coarse
terrain. However, adding multiscale structures or features on
the coarse terrain is a challenging task as implicit surfaces do
not provide an explicit 2D parameterization. Existing solutions
either rely on interactive authoring or require a parameter-free
texturing method to add features through displacement mapping.

Hyper-textures (Ebert et al. 2003) as a typical parameter-free
texturing method is based on procedural noise, which allows
for the synthesis of a theoretically infinite amount of fractal
multiscale volumetric details. This method works by perturb-
ing an initial, smooth volumetric model or implicit surface by
a fractal noise function. Although this method generates frac-
tal surfaces with self-similar features, such as bedrock, it fails
at reproducing large structures such as craters or rocks shapes.
Cellular textures (Worley 1996) can be easily adapted to gener-
ate Voronoi diagrams and synthesize polygon-like patterns but
are hardly controllable for the user. Another type of procedu-
ral noise is based on the convolution of a spatial filter function
(kernel) with uniform random impulses (points) to generate
sparse convolution noise patterns (Lewis 1987). The advantage
is that spectral control can be achieved by a spectral defini-
tion of the kernel function (spatial filter). Some micro-structural
features, therefore, can be produced by the sparse convolution
noise. van Wijk (1991) and de Leeuw & van Liere (1997) pro-
posed spot noise to generate structural features by replacing
the kernel from spectral-oriented functions into spatial-oriented
functions. More recent procedural noise functions (Galerne et al.
2012; Gilet et al. 2014; Tricard et al. 2019) rely on the power
spectrum to synthesis micro-details of the example textures, but
they hardly capture large structures from the power spectrum.
While such procedural textures can, in theory, synthesize an infi-
nite amount of details by accumulating them, the self-similar

1 The executable version is available at: https://cgvr.
informatik.uni-bremen.de/research/procedural_asteroid/
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geometries resulting from such a fractal process cannot capture
the larger structures and, more importantly, there is no guarantee
to obtain geologically correct patterns observed on real terrains.

More recent works propose a hierarchical, implicit
construction tree combining 3D implicit primitives (e.g.,
arches Becher et al. 2017, caves Paris et al. 2019, sea or rock
cliffs Paris et al. 2020) to model a variety of local landforms,
which can then layed over the 2.5D heightfield or procedural
terrains to author scenic terrain details. While effective for mod-
eling general large-scale landforms with mesoscale or small-
scale details, most existing terrain modeling methods suffer
from a lack of physical precision and fail at reproducing their
effects (3D features) on more complex irregular shapes, such as
asteroids.

Generating physically correct (or realistic) virtual planets or
small bodies has received little attention in the computer graph-
ics community, but it is a current topic of attention in the astro-
nomical sciences. One possible reason to explain this gap is that
the synthetization of virtual planets is a narrow field for the com-
puter graphics community and the lack of focus on methods that
allow for artistic control. However, astronomy science looks to
synthesizing realistic or physically correct objects, which calls
for drawing patterns or physical laws from real observations. For
instance, the rough shape of a celestial body is obtained from
the light curve inversion (Jorda et al. 2010). This was used to
plan the flyby of asteroid 21 Lutetia by ESA’s Rosetta in 2010.
Ideally, each of these missions starts with a scouting phase dur-
ing which the target is mapped at high resolution and a detailed
shape model is reconstructed. This forms the basis of all future
operations and scientific planning. However, that is not always
possible, particularly for fly-by missions that spend only a lim-
ited time in the vicinity of their target.

Therefore, it is important to plan the mission and test data
analysis pipelines with different “plausible” models of the tar-
get that look as realistic as possible to plan for potential con-
tingency. For instance, the bilobate shape of comet 67P created
large shadows that severely affected the sequencing of observa-
tions, originally planned using the best guess convex shape avail-
able before the mission (Lamy et al. 2006). Specific software
had to be developed in the early phase of the mission to account
for this situation and synthesize “virtual” 3D models (Vincent
2018). More recently, Vincent (2019) used an multi-ellipsoids
model to approximate the cometary pits to generate virtual comet
nuclei at different stages of evolution. This leads to a deriva-
tion of the effects of topography on the global phase darkening
reported by ground-based observers.

When generating realistic virtual small bodies, the chal-
lenges stem from the fact that asteroid and comet surfaces are
produced from a host of physical processes (including impact
cratering, seismic shaking, and day and night cycling erosion),
which depends on the materials involved (such as silicate-rich
chondrules, metal-rich matrix) and produces a variety of mor-
phologies (from bowl-shaped depression produced by an impact
to slump deposits, debris chutes or gullies) and scales (from a
few meters to hundreds of kilometers).

3. Our approach

Real asteroid surfaces often feature complex disruptions of the
topography, such as craters or boulder fields. These landscapes
are the result of past and present geological processes, includ-
ing impact melt or debris, crater parts buried by ejecta, mass
wasting due to instability or erosion, all of which yield valuable
information about the formation of the solar system. Usually,

Fig. 1. Rough estimate of the shape of Dimorphos (Didymos B), which
is the target of the Double Asteroid Redirection Test (DART) mis-
sion (Sarli et al. 2017). The estimate of the physical size of Dimorphos
is: long axis 164 m, second axis 126 m, and third axis 105 m, corre-
sponding to the parameters a, b, c in Eq. (1). These are all the details
that are known until a few minutes before the impact.

before a space mission, the targeted small body, S , is approxi-
mated by simple analytical expressions such as ellipsoids (see
Eq. (1)), in cases where the length in three perpendicular axes
can be observed from the telescope or light curve or spheres. In
principle, an implicit sphere or ellipsoid defines a 2D manifold
embedded in the three-dimensional space R3 as:

S =

{
p ∈ R3 | pT

(
a2 0 0
0 b2 0
0 0 c2

)
p− r2 = 0

}
, (1)

where r represents the radius, 0 is the iso-value of the implicit
surface, and a, b, c represent the axial lengths of the ellipsoid. For
instance, we depict the ellipsoidal shape of the DART mission’s
target asteroid Dimorphos B (Sarli et al. 2017) in Fig. 1.

However, Tanga et al. (2009) proposed numerical simula-
tions to explain the formation of asteroid shapes and pointed out
that a significant fraction of the observed asteroids is expected
to consist of fragmented bodies joined together by gravity.
Therefore, real asteroids usually exhibit a much more complex
structure, so that simple representations like ellipsoids are not
sufficient. We chose a different approach based on our two-step
AstroGen algorithm (Li et al. 2018) to synthesize the complex
irregular shape of real asteroids directly, thus avoiding com-
putationally expensive simulations such as Tanga et al. (2009).
The main advantages are: 1. We use non-uniform sphere pack-
ings (Weller & Zachmann 2010) and define an implicit shape
using the metaballs method (Blinn 1982) to represent the coarse
shape (see Fig. 2). One benefit is that an implicit function
can represent any given water-tight constraint shape. Hence, it
is possible to adapt this implicit representation to any exist-
ing polygonal shape like the low-poly models from the aster-
oid database (McMahon 1996) (see Fig. 3). 2. Our method
allows for easy creation of variants by modifying the constraint
shape (see Fig. 3, Didymos A) or by varying parameters in
the implicit function. This enables us to generate diverse look-
alike shapes for various applications, that is, different scenarios
for virtual testbed simulations. 3. Our method allows for mak-
ing a direct representation of the small body’s internal mass
distribution. This can then be used, for instance, to approxi-
mate the gravitational field of such irregularly shaped small bod-
ies (Srinivas et al. 2017).

Since the initial formation of asteroids, impact cratering is
identified as the most significant geomorphic process for altering
their topography (Fassett et al. 2017). Our work comes from the
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Fig. 2. Metaballs (Blinn 1982) modeling pipeline. The upper left image
shows a given constraint shape, which can be an extreme low polygon
mesh. The upper right image shows the result of packing (non-uniform)
spheres into the constraint shape. The bottom left shows the isosurface
of the implicitly defined surface, and the bottom right shows the final
surface after the blending operators. This can then be turned into a high-
resolution, high-detail mesh.

Fig. 3. Results of our shape synthetization system. From the constraint
shape, namely, the real low-poly coarse shape of the asteroid Didymos
A (Naidu et al. 2020) in the top left image, our system (AstroGen) is
able to generate a series of look-alike shapes, here still without craters.

observation that high velocity impactors collide onto the small
body and form craters exhibiting a variety of morphologies (i.e.,
bowl-shaped craters, polygonal craters, floor-fractured craters,
secondary craters, and crater chains) and diverse size-frequency
distributions (SFD). To simulate the impact cratering process,
we first introduce multiple kernels of a locally controlled spot
noise model (Pavie et al. 2016) to synthesize different types of
craters. Second, we use an inversion sampling method to recon-
struct the craters’ spatial distribution on the asteroid’s surface.
In addition, we propose a discrete global grid system (DGGS)
to sample and polygonize the implicit function using marching
cubes (Lorensen & Cline 1987). The DGGS provides an efficient
method to evaluate the locally controlled spot noise model, in
order to synthesize large structures such as craters.

Fig. 4. Visualization of our 3D spot noise pattern on an asteroid sur-
face. We created a 3D grid that partitions the virtual asteroid (Eros, in
this example) into cells, which allows us to distribute 3D noise patterns
across the shape and align them to the surface.

3.1. DGGS

In order to visualize the implicit surface from our approach,
we built a multilayered 3D grid in space. Each layer is a grid
with a different cell size, ranging from very small up to very
large cells. Each layer/grid will be used to create craters within a
specific range of diameters. For convenience, we chose the cell
sizes so that each cell of the coarse layer contains 23 cells of
the next more fine-grained layer. Such a partitioning of space
allows us to partition the 3D shape into a multiresolution hier-
archy of indexed regular cells, which we will call a “discrete
global grid system” in the following. A cell here is kind of a
generalization of the notion of pixel in the traditional 2D spot
noise (de Leeuw & van Liere 1997). The direct benefit of this
data structure is that it simplifies the hierarchical and neighbor
indexing substantially. We also use it to evaluate the implicit
function on each grid point and then extract the surface of the
small body by using, for instance, the marching cubes method
to approximate the isosurface corresponding to the surface. Fur-
thermore, the surface can be partitioned naturally into a set of
distinct patches.

Finally, we can synthesize particular patterns that follow the
implicit surface using the DGGS. In order to superimpose the
implicit surface with the kernel functions, we construct a local
reference frame in each and every cell that is aligned with the
tangent vectors at the center of the cell (Li et al. 2020) (see
Fig. 4). This serves as a reference frame to perform the blend-
ing of terrain features (e.g., craters, boulders). In addition, the
DGGS provides unique indices that indicate each cell’s size and
geospatial location. This allows us to easily associate the partic-
ular patch of the surface with relevant properties (i.e., material
types) by indexing or retrieving from a geospatial database.

3.2. Crater morphology

Impact cratering is an important surface process on most of the
small bodies as well as terrestrial planets in the solar system.
The morphology and formation mechanism of impact craters is
the key process in the field of planetary science. The research of
impact craters mainly focuses on two aspects: crater measure-
ment and numerical simulations. The former studies investigate
the observed real shape and spatial size-frequency distribution
of craters on the surface of asteroids. They are able to provide
us with vital clues about the early collisional history and phys-
ical properties of the target asteroid (see Fig. 5). The latter use
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impact experiments and numerical simulations to quantify the
response of rocks to particular impacts. For instance, the iSALE
shock physics code (Wünnemann et al. 2006) can numerically
model an impact under different material properties or struc-
tures (Raducan et al. 2019).

Using the DGGS, the surface of asteroids is partitioned by
equally sized cells, and within each cell, the locally controlled
spot noise (LCSN) is applied to assign craters. The LCSN model
is a kind of sparse convolution noise introduced by Pavie et al.
(2016). It relies on the summation of spatial kernels at uniform
positions in texture space and the large structure captured in the
spatial kernel can be used to synthesize large spatial structures.
Therefore, the LCSN is able to synthesize bulk spatial structures
that cannot be reproduced from the power spectrum alone. Sub-
sequently, this property was extended by Li et al. (2020) into
3D space to synthesize large 3D terrain primitives, especially
craters. Here, we further improve upon this method by support-
ing realistic and, more importantly, physically correct crater syn-
thesis. In order to generate craters with different morphologies
(i.e., normal, fresh, or complex craters), we introduce four spa-
tial kernels to the LCSN method:

LCSN(p) =

L∑
l=1

ω · kernell(p− pi), (2)

with ω ∈ [0, 1] a user-controllable weight parameter, and kernell
is the spatial kernel that defines the shape of craters. In total,
we define four different kinds of kernels, l = 1, ...4, which will
represent the four different types of craters known in the litera-
ture (Mainzer et al. 2015). Also, pi is an offset impulse follow-
ing a Poisson distribution which randomly shifts the position of
the kernel within each cell (Pavie et al. 2016) and i is the index
of each cell. The image from the Multispectral Image Camera
of the NEAR spacecraft views the surface of Eros at a resolu-
tion of 1m per pixel (see Fig. 5), which can be used as a refer-
ence for the possible morphologies of real craters (Thomas et al.
2002). It can be observed that the real asteroid surface is
marked by abundant evidence of regolith, a dearth of small
impact craters, but many large bowl-shaped craters with clear
and distinctive flat floors. However, larger asteroids such as
Vesta (Marchi et al. 2012) and Ceres (Hiesinger et al. 2016),
observed by the Framing Camera onboard NASA’s Dawn space-
craft, reveal many diverse surfaces with a large number and
variety of crater morphologies, including bowl-shaped craters,
polygonal craters, floor-fractured craters, crater terraces, cen-
tral peaks, smooth crater floors, craters with lobate flow fea-
tures, and secondary craters and crater chains (Hiesinger et al.
2016). Simple craters range in size from centimeters to tens of
kilometers; the maximum size is inversely related to the plan-
etary mass (Dombard et al. 2010). Simple craters are charac-
terized by a consistently concave-upward shape with a nearly
parabolic or conical interior profile. Craters larger than 40km
usually exhibit special morphologies not observed at smaller
craters, such as central pits, possible pit floors, and floor frac-
tures (Hiesinger et al. 2016).

Because of a rather large simple-to-complex transition
diameter, most small asteroids display simple craters, namely,
bowl-shaped depressions produced by an impact. Simple
craters can exhibit a bench-like step in the walls or a cen-
tral mound if formed on a surface with layers of varying
strength (Hiesinger et al. 2016). Otherwise, they show few
other internal topographic features, with the exception of
slump deposits, debris chutes, gullies, or sporadic boulder
trails (Hiesinger et al. 2016). Therefore, we first introduce the

Fig. 5. Asteroid Eros as observed by NASA’s NEAR/Shoemaker mis-
sion in 2000 (Thomas et al. 2002). The surface is covered with craters
of different sizes and stages of degradation.

following two kernels to represent the simple bowl-shape nor-
mal craters:

kerneli(p) = −
1
√

2πσ
e−

(pT p)qi

2σ2 = −ae−b(pT p)qi
, i ∈ {1, 2}, (3)

where kernel1 is the standard Gaussian function (q1 = 1, see
Fig. 6, blue line) and σ represents the standard deviation (a =

1
√

2πσ
, b = 1

2σ2 ). We can define two parameters Ht,Da to rep-
resent the height (true height) and the apparent crater diame-
ter of the simple bowl-shape crater. The parameter q can be
used to tune the smoothness of the blending of the boundary
of the crater with the terrain and σ controls the length of the
flat floor in the simple crater. Another type of simple crater may
have a central flat floor of crater-fill deposit that originates from
mass wasting and eolian or fluvial infilling or ponding of impact
melt (Dombard et al. 2010). To create those, we set q2 = 2 and
obtain kernel2 to represent this type of simple crater (see Fig. 6,
red line). We therefore evaluate the height and diameter of two
kernels (see Eqs. (4) and (5)) and this evaluation is motivated by
the full width at half maximum (FWHM) of Gaussians where
FWHM = 2

√
2 ln 2σ (Bovik et al. 1990).

Ht =
1
√

2π

1
σ

= a, kernel1 & kernel2. (4)

Da =

2.5FWHM = 5
√

2 ln 2σ = 5
√

ln 2
√
πa , kernel1,

2FWHM = 4
√

2 ln 2σ = 4
√

ln 2
√
πa , kernel2.

(5)

Another interesting characteristic of craters on asteroids, dis-
tinct from other terrestrial planets, is that they appear deprived of
impact melts due to the lower average impact speeds. Therefore,
they better show the morphology of the floor (kernel2 contains
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Fig. 6. Profile lines of all kernels used to generate the different mor-
phologies of different types of craters. The simple crater 1 (blue line),
simple crater 2 (red line), fresh crater (green line), and complex crater
(yellow line) correspond to kernel1,2,3,4, resp. The kernel1 is a standard
Gaussian function with the true height Ht = 1, the apparent diameter
Da = 5

√
ln 2
√
π

. In kernel2, Ht = 1 and Da = 4
√

ln 2
√
π

(see Eqs. (4) and (5)).
The fresh crater is created using kernel3 with Ht = 1, Da = 1.31 and
extra parameters Drim ≈ 2, Hrim ≈ 0.309, which represent the rim-to-
rim diameter and the rim height, respectively (see Eqs. (7)–(11)). The
new degradation length, the rim-to-rim diameter and the rim height of
the complex crater are defined as Drim = 2, Hrim = 0.471, Hc = 0.2 (see
Eqs. (13)–(16)).

the central floor) and walls (Marchi et al. 2015). Consequently,
another type of crater we are aiming at is typically bowl-shaped
but with a small rim (bulge effects on the edge, named walls)
called “fresh crater”. The height of the rim (walls) depends
strongly on the material properties and internal structure of the
subsurface (Marchi et al. 2015). Fresh craters are polygonal to
circular bowl-shaped depressions with smooth to ragged raised
rims and surrounded by a layer of continuous ejecta that overlies
the uplifted crater rim and flanks, usually extending about one
crater diameter from the rim (Hiesinger et al. 2016). Hence, we
specially designed kernel3 to generate younger fresh craters with
rim and flanks:

kernel3(p) = κ · e−β·(ln(γ·pT p))2
− a · e−b·(pT p)2

, (6)

where κ and b control the height above the 0-plane; β and γ
define the radii of the rim above the 0-plane; and a controls the
depth of the crater under the 0-plane.

Similarly, we can define five variables Hrim, Ht, Drim, Da,
Ld to represent the accurate morphology of a fresh bowl-shape
crater (see Fig. 6, green line). Since the parameters of kernel3
are controlled by our method, we let kernel3 = 0 and in that way,
we obtain the crater morphology (W is the Lambert W func-
tion; Corless et al. 1996):

Hrim ≈ κ − e−
b
γ , (7)

Ht = a, (8)

Drim ≈
2
√
γ
, (9)

Da = 4

√
β

b
W

1
2

√
b
βγ

 , (10)

Ld ≈ −2

√
β

b
W(−

1
2

√
b
βγ

) −
1
√
γ
. (11)

Often we can simplify the evaluation by setting κ = a.
Simple craters mostly lack the central uplift, peak rings, or

terraced wall of larger, complex craters. The transition diameter

from simple craters to complex craters, termed the “simple-to-
complex transition”, varies according to different planetary bod-
ies. In order to synthesize such large complex craters with central
uplift, we propose kernel4 to be:

kernel4(p) = κ · e−β·(ln(γ·pT p))2
+ a · e−b·(pT p)2

, (12)

where κ and b control the height above the 0-plane, β and γ
define the radii of bulge above the 0-plane, a controls the depth
of the crater under the 0-plane. From kernel4, we can derive four
variables, Hrim, Hc, Drim, Ld, to accurately define the morphol-
ogy of the complex crater with central uplift (see Fig. 6, yellow
line). In the following, we set a threshold kernel4 = 0.01 as the
border of the complex crater to evaluate the parameter Ld:

Hrim = κ, (13)
Hc = a, (14)

Drim =
2
√
γ
, (15)

Ld =

√
1
r

e
√

ln(100k)
p −

1
√
γ
. (16)

The definition of our four kernels enables us to accurately
control the morphology of different crater types. The easy-to-use
parameters may help to study the impact mechanisms, impact
effects, or even the evolutionary history of craters. For instance,
the numerical simulation of impact cratering on different mate-
rials (e.g., granite, quartzite) shows a similar curve in peak pres-
sure, but different densities will result in subtle differences in the
crater morphology (Raducan et al. 2019).

We procedurally generate different types of craters as
implicit primitives (kernels) on the implicit surface (see Fig. 7).
The algorithm can easily generate more shapes; the user has con-
trol over what is most relevant to his or her scenario (e.g., only
simple craters on small asteroids).

3.3. Crater degradation model

The degradation of impact craters on the surface of airless bod-
ies under the cumulative effects has been a subject of interest
for a long time. It can be used to estimate the age of the sur-
face and is very useful for assessing the evolution of small body
surfaces. In general, the research of craters is focused on deal-
ing with simple craters and regardless of erosion or collapse of
the border. Pelletier (2008) proposed a diffusive and theoretical
model of the degradation process to predict the interior or exte-
rior slopes of craters at a given size. The basic assumption is:
the older the surface, the more advanced the degradation of the
craters. This model has been frequently applied to simulate the
retention age of terrestrial hillslopes, namely, the time elapsed
since its formation or global surface reset.

More recently, Fassett & Thomson (2014) developed a more
accurate diffusive crater degradation model which can be com-
pared directly to the real profile of craters on Mercury. For this
purpose, first, they extracted the real crater profile from the dig-
ital terrain models obtained from the space mission. Then, they
built a numerical model to fit the real crater profiles, which
enables the estimation of various types of a crater’s degradation
state (see Fig. 11). Craters from the diffusive model display a
wide range of shapes, which can be translated into a wide range
of crater depth-to-diameter ratios. Based on Marchi et al. (2015),
we usually expect the variation of depth with respect to diame-
ter to follow a near linear power law, depth = ratio · Dn, where
n ≈ 1 and ratio is a constant for a given terrain.
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Fig. 7. Examples of different crater types that can be generated on a
small body. The uppermost image shows the simple crater (type 1 and
2) using kernel1,2. The middle image represents fresh craters generated
from the kernel3, and the bottom image depicts the morphology of the
complex crater from kernel4.

To demonstrate that our model can describe morphologies
such as those expected from erosion physics, we present a degra-
dation model derived from Lunar studies, for example. It can be
applied to other terrains covered in loose regolith, for instance,
on large asteroids. However, this would not apply to comets,
which experience very different types of erosion, mostly driven
by sublimation – and this is an ongoing topic of research.

Degradation models, such as the one proposed
by Fassett & Thomson (2014), can be easily integrated
into our crater degradation model: by mapping the variations of

Simple Crater 1 Simple Crater 2

Fresh Crater  Complex Crater

H
ei

g
h
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H
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h
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Diameter Diameter

Fig. 8. Profile lines showing crater degradation. We can model the
degradation status of craters by changing the parameters in our kernel
functions. In simple craters 1 & 2, the solid line represents the original
crater, while the dashed line represents the same crater but with a lower
(degraded) depth-to-diameter ratio (ratio of solid/dashed line = 0.4/0.1).
In fresh craters, we set the degradation vector α = (∆k = −0.3,∆γ =
−0.4,∆a = −0.25) (defined in Sect. 3.3). For complex craters, we set
the degradation vector α = (∆k = −0.05,∆γ = −0.2,∆a = −0.1).

depth
Diameter all over the surface (in our case, mapping to each cell
of the surface), we can bring the constraint on the degradation
status of simple craters, which reflect the relative age and
surface properties of different regions. So we can easily define
the depth-to-diameter ratio for simple craters 1 & 2 as (see
Eqs. (4) and (5)):

ratio =
depth

Diameter
=

Ht

Da
=

√
πa2

5
√

ln 2
.

An advantage of our method is that we can assign ran-
dom range values to the variable a to constrain the degradation
state all over the surface. For instance, in Fig. 8 the solid and
dashed simple craters 1 and 2 were obtained by different depth-
to-diameter ratios to simulate the degradation state (also see the
degradation model in Fig. 11 on the simple crater with diam-
eter D = 300 m). Accordingly, our degradation model for the
simple crater can be defined as: degrade_simple_crater(∆a) =

∆ratio =
√
π(∆a)2

5
√

ln 2
, where ∆a represents a small change of the vari-

able a. Therefore, we can tune the variable a to a specific value
that corresponds to the crater’s degradation state.

The degradation of fresh craters and complex craters can
be divided into different parts (also see the degradation model
in Fig. 11 with craters of diameter D = 1 km and 3 km,
respectively). For the fresh crater (modeled by kernel3), the
rim height, Hrim, will degrade as H′rim = κ − ∆κ − e−

b
γ , and

the interior part will also degrade. In other words, the diame-
ter of the rim, Drim, will increase as D′rim = 2√

γ−∆γ
, the crater

depth, Ht, will become shallower as H′t = a − ∆a, and the
wing of the crater, Ld, will blur with the decrease of the rim
height. Therefore, we can define the degradation model of fresh
craters as: degrade_ f resh_crater(∆a,∆κ,∆γ) = (a − ∆a, κ −
∆κ − e−

b
γ , 2√

γ−∆γ
). In case of complex craters (kernel4), we can

similarly define the rim height, Hrim. Accordingly, the central
uplift area, Hc, will decrease and the rim diameter, Drim, will
increase. Finally, to model the degradation of fresh and com-
plex craters, we can build a degradation vector α = (∆a,∆κ,∆γ)
to change parameters in the corresponding kernel functions
(kernel3, kernel4). In Fig. 8, we show the effect of our degra-
dation models applied to each kernel (simple, fresh, or complex
craters).
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4. Evolution of cratered asteroid surface

Cratered asteroid surfaces provide time-integrated snapshots of
the cumulation of impacts over a certain time frame. Therefore,
the cumulative number of craters superposed on a given ter-
rain should monotonically increase over time. Thus, the number
of observed craters (ideally) can be interpreted as evidence to
bound the age of the terrain. In general, a higher density of shal-
low craters mostly involves much older surfaces, as craters usu-
ally get shallower or even get wiped out with age due to erosion,
infilling, or seismic shaking. However, under different circum-
stances, craters can evolve in different ways. For instance, two
identical craters of similar age and size have different depths
on different terrain types (i.e., materials). Therefore, making
a one-to-one correlation between fresh-eroded and young-old
is not always accurate. As a result, the temporal evolution of
cratered terrain is rather complex and, its correct interpretation
involves considering various special mechanisms. However, in
theory, the production of craters is primarily due to the flux
of incoming impactors and is susceptible to temporal varia-
tions reflecting variation in the impact rates or impactor SFD
(or both). Crater degradation is a natural result of the topog-
raphy over time. For the sake of simplicity, we only consider
the natural degradation of craters and the monotonic increase of
craters on the surface to deduce the age, and regardless of com-
plex physical events such as impact erosion, filling, or seismic
shaking. Here, we use prior research on the mechanism of crater
degradation numerically, with the aim to derive a correlation
between the surface evolution and the parameters in our kernel
functions.

4.1. Crater size-frequency distribution

Once the coarse shape of the asteroid has been created, craters
of different sizes can be assigned to each cell. We use inver-
sion sampling to simulate the crater’s size-frequency distri-
bution based on the assumption of the equal possibility of
collision events within each cell of the surface (see Fig. 4).
The SFD of craters can serve to invert the distribution of
impactor’s sizes, densities, and velocities, and, furthermore,
reconstruct the target’s properties such as surface gravity and
strength (Marchi et al. 2015). The high resolution images from
spacecraft not only manifest the real morphology of craters,
especially their sizes, but also reveal another fundamental prop-
erty of a group of craters: the ratio between the number of
small and large craters, namely, the size-frequency distribu-
tion (SFD; Marchi et al. 2015). The crater’s SFD is commonly
approximated as a power law, N(D) = k ·D−B, where N(D) is the
cumulative number of craters greater than or equal to a particular
diameter D, and k, B are empirically determined (Neukum et al.
2001).

There exist various mechanisms that will affect the measure-
ment of the SFD at a given surface. For instance, the ejecta from
the impactor will form secondary craters and occasionally erase
existing craters or alter their morphology (i.e., mass wasting).
Moreover, SFDs are also intensely affected by the physical prop-
erties of the target surface (i.e., hard rock, rubbly megaregolith,
and icy or volatile-rich material) (Marchi et al. 2015). There-
fore, the slope of an SFD usually varies spatially across the tar-
get asteroid’s surface, suggesting lower (lower slope) or higher
(higher slope) energy-density events (Belton et al. 1994). As a
result, the synthesis of different SFDs may eventually help crater
studies to expose many properties of asteroid interiors, surfaces,
or even the history of geological processes.

The early observation of König et al. (1977) and subsequent
laboratory experiments suggest that the fragments from the col-
lisional breakup or impact cratering events have more com-
plex SFD curves than a single power law (Fassett et al. 2017;
Strom et al. 2005). Therefore, the SFD curve can be fitted either
by segments of individual power laws or more complex polyno-
mial curves instead of a straight line in the logarithmic coor-
dinate system. For sake of simplicity, we will still use the
single power-law function, namely, N(D) = k · D−B, as the
crater production function instead of the accurate global model
by Neukum et al. (2001), but more complex SFD’s can be inte-
grated into our simulation just as well.

In our asteroid model, we have subdivided the surface into
equally sized cells (see Fig. 4) and within each cell the upper
bound of the size of the craters is given by s. Therefore, in our
method the total number of craters is determined by the number
of cells and the parameter s. We partition the total range of crater
diameters for a given asteroid (based on the scaling factor s) into
a number of sub-ranges; within each range, we generate a num-
ber of craters, as specified by the production function (power-
law). For instance, in Fig. 9 we assume that on the given asteroid,
Didymos B, there exists one large crater with a diameter of 100 m
(this basically determines parameter s). We also defined three
bins of crater sizes [10 m, 30 m], [30 m, 70 m], [70 m, 100 m].
For each bin, we then evaluated the corresponding cumulative
number of craters corresponding to the cumulative power-law
distribution (B = 3).

In order to reconstruct the power-law distribution from the
inversion sampling (Devroye 1986), we need to compute the
probability density pdf(D) from the cumulative power-law dis-
tribution (Clauset et al. 2009), where:

N(D) = k · D−B =

∫ ∞

DL

pdf(D) dD. (17)

This gives the probability density distribution as pdf(D) = c ·
D−B−1, where c is a constant. In each crater size range [DL,DR],
we can do inversion sampling on the variable D ∈ [DL,DR] and
the variable D follows the power law distribution (D ∼ cdf−1(u),
where u ∼ uniform distribution:

∫ DR

DL

cD−B−1 dD = c

[
D−B

]DR

DL

−B
= 1, D ∈ [DL,DR], (18)

so

c =
−B

D−B
R − D−B

L

, (19)

cdf(D) =
c
−B

(D−B
R − D−B

L ), (20)

cdf−1(u) =
[
(D−B

R − D−B
L )u + D−B

L

] 1
−B , (21)

where k is a constant, B is the power law index, DL, DR represent
the lower and upper bound of the crater size, and u is the uniform
distribution. Overall, we can thus generate corresponding diam-
eters of craters that follow the power law distribution from the
uniform distribution u.

For the simple crater, the diameter D = 5
√

ln 2
√
π

a−1 (see
Eq. (5)), and the power law distribution of the diameter D fol-
low ∼ ((D−B

R − D−B
L )u + D−B

L )
1
−B (see Eq. (21)), which can be

rewritten with the parameter a as a ∼ ((aB
R − aB

L)u + aB
L)

1
B . As a

result, we can use the kernel parameter a to generate the power
law distribution of craters within each crater size range.
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Fig. 9. Example of crater populations generated for an asteroid of
size comparable to Dimorphos. We constrain the distribution by setting
exactly one crater at the largest size (here 100 m). We then estimate the
number of craters at smaller sizes with a cumulative power-law distribu-
tion (dotted line). Discrete points show several crater populations gen-
erated from our inversion sampling method. Deviations from the ideal
power law are due to the nature of fitting a discrete population to a
continuous cumulative function. The colored area represents the 95%
confidence interval.

As mentioned above, a single power-law approximation
hardly matches the SFD curve seen on the surface of a real small
body. To accomodate this, we can simply assign different power-
law indices to different crater size ranges to approximate a more
complex SFD curve (consist into a more complex piece-wise
SFD curve).

Burchell & Leliwa-Kopystynski (2010) showed that, for
small solar system bodies (in a size range of 1–500 km), the
ratio of the largest crater’s diameter, D, to their mean radius,
R, is a nearly constant value: D/R = 0.9 ± 0.05, averaged
over rocky and icy bodies. However, whilst a shape model
may exist for the body, it is difficult to determine its mass, so
the overall porosity can hardly be obtained. From a group of
small rocky bodies with clear densities and porosities, we can
observe the relationship between the ratio D/R and the total
porosity which could be interpreted using a weighted linear
model (Burchell & Leliwa-Kopystynski 2010). Therefore, the
maximum size of a crater on a particular small body will “indi-
rectly” ascertain the porosity of the parent body. Usually, the size
of the largest crater can be determined by a camera very well,
but the huge number of smaller craters cannot be observed well
given the limited resolution of cameras. Our method can close
this gap very well by setting the size of the largest crater, then
synthesizing a massive number of smaller craters on the small
body’s shape from different power laws through inversion sam-
pling (see Fig. 10).

Our fitting of the power-law was done in log space. Counting
the precise number of craters is, up to now, difficult, because usu-
ally the surface is covered with boulders, rocks, and dust. Also,
many craters are very shallow and hard to distinguish. Overall,
the difference on the final SFD curve is not that huge (no more
than 5%).

4.2. Crater aging

Marchi et al. (2015) show that the simple crater’s depth-to-
diameter ratio follows a near-linear law, h

D ∼ k, where k for aster-
oids is approximately in [0.2, 0.05] and the variation reflects the
different states of degradation. The newly formed simple craters

Fig. 10. Application of the size-frequency distribution (SFD) defined
in Fig. 9 to the asteroid Dimorphos. Both images have been generated
using the same crater production function (cumulative power-law distri-
bution with B = 3). Due to randomization, we can generate an infinite
number of similar “look-alike” shapes.

usually own higher depth-to-diameter ratios (in [0.2, 0.25]), then
suffer erosion and evolve into much shallower craters (k ≈ 0.05).
Small craters have typically a lower depth-to-diameter ratio.
Similar morphometric relationships exist for the type of fresh
craters where the decay of their ejecta forms the rim at the bor-
der. The fresh crater with sharper rims usually contains a higher
depth-to-diameter ratio (0.14) than small craters. These relation-
ships exist because most fresh, primary, simple craters in the size
range considered here have consistent morphologies.

Furthermore, Marchi et al. (2015) find the overall distribu-
tion of h

D ratio usually peaks near a particular value, and more
complete statistics reveal that the average h

D varies from region
to region. For instance, on Vesta a double peak value (at 0.15 and
0.19) is observed in the global distribution of h

D with about 25%
of difference between peaks (Vincent et al. 2014). The same
effect can be seen on Lutetia, with up to 40% of difference
in the average h

D ratio between different regions (Vincent et al.
2012). The morphology of craters on Eros is measured through
the NEAR Laser Rangefinder data, which indicates that many of
the freshest craters typically possess h

D near 0.2 for D > 100 m.
For D < 100 m, fresh craters on Eros are shallower than those
on the Moon. The average h

D of all craters on Eros indicates that
most are degraded and follow a pattern akin to what is observed
from Vesta, Steins, and Lutetia. This variation means that differ-
ent surface regions suffer different collisions and possess non-
homogeneous physical properties. Here, we assume the physical
property of an asteroid will remain stable and the modification
of the morphology of a crater is only due to its degradation rate.

Consequently, we can design a function to link the degrada-
tion state with the crater’s age and, furthermore, link the ratio
h
D with age. For instance, the dispersion of h

D for small craters
on regions of similar physical properties on Vesta implies a
degradation rate of ∼3 × 10−7 m · yr−1 (Vincent et al. 2014).
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Fig. 11. Crater aging: We applied the crater degradation model
of Fassett & Thomson (2014) to three craters of different diameters
(D = 300 m, 1 km, 3 km) from an age of 0 to 3 Gyr. Each line in those
figures corresponds to a certain age interval ∼1 Gyr (0 Gyr, 1.0 Gyr,
2.0 Gyr, and 3.0 Gyr). After 3 Gyr of evolution, the smallest crater is
almost indiscernible, the 1 km crater is flattened but still has distinct
relief, and the 3 km crater only shows apparent changes near its rim and
interior floor.

Schmedemann et al. (2020) estimate an erosion rate of 6 ×
10−8 to 3 × 10−6 m · yr−1 for kilometer-sized asteroids. We can
estimate that over each Gyr, the crater’s diameter will erode
about 3km (i.e., its depth will decrease) at the rate of ∼3×10−7 m·
yr−1. We can easily approximate this rate with our degradation
vector α: each Gyr, α = (∆k = −0.1k,∆γ = −0.1r,∆a = −0.1a)
(see Sect. 3.3, degradation model). We also estimate the degra-
dation rate from the degradation model of Fassett & Thomson
(2014) in Table A.1. Their model simulates morphometric vari-
ation of newly formed craters like fresh craters from real mea-
surements, and we approximate their results with our kernel3.
Figure 11 depicts the morphometry of simple, fresh craters of
specific diameter (from 300m to 3km) with our kernels, which
allowed for a database of crater profiles in various states of dif-
fusive evolution to be established.

In conclusion, we can use the ratio of depth-to-diameter
( h

D ) and the degradation vector(α) to control the morphology of
simple craters, complex, and fresh craters. From those, we can
derive a spatial distribution function (crater SFD) to manipulate
the density of craters of different sizes on the surface. In that way,
we can synthesize an asteroid surface which corresponds to dif-

Fig. 12. Simulated Dimorphos-like asteroid, with low crater density.
We add several layers of craters on the surface, e.g., simple crater types
1 and 2, and fresh craters. The total saturation is nearly 20% and the
slope of power law is B = 3. The depth-to-diameter, h

D , ratio of simple
craters is in the range [0.15, 0.25].

Fig. 13. Simulated Dimorphos-like asteroid, with high crater density.
As in Fig. 12, we add several layers of craters (simple craters 1 and 2,
fresh craters). The total saturation is nearly 30% and the slope of the
power-law is B = 4. The depth-to-diameter ratio, h

D , of simple crater is
in [0.12, 0.19]. In fresh craters, we set the degradation vector as: α =
(∆k = −0.15,∆γ = −0.1,∆a = −0.25).

ferent ages. More specifically, we can easily synthesize “young”
(see Fig. 12, low-density crater surface) and “old” (see Fig. 13,
i.e., high-density crater surface) asteroid surfaces, respectively.

We would like to point out that we also added a dust details
layer on the final result in order to improve the appearance.
Therefore, some of the very small craters could disappear under
the dust layer. Since modeling dust is not the focus of this
paper, we just used conventional lattice-based random noise, as
described in Li et al. (2018). We do not that other, more complex
noise models such as Gabor noise, could produce more realistic
dust patterns.

5. Results

We implemented our asteroid modeling system in C++ using
OpenGL and GLSL. All examples in this paper were created on
a desktop computer equipped with Intel 3.8 GHz Core i7 with
64GB RAM and an NVIDIA TITAN V. In order to generate a
watertight mesh, we extracted the isovalue points from the 3D
grid and used a screened Poisson surface reconstruction algo-
rithm (Kazhdan & Hoppe 2013) to generate the final mesh from
the extracted point cloud. The output mesh was then loaded
into Blender to render photo-realistic asteroid surfaces using
ray-tracing.
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Fig. 14. Simulated Didymos-A-like asteroid, with low crater density.
We added several layers of craters on the surface with different types
(i.e., simple crater types 1 & 2, complex, and fresh craters). The slope
of power-law is B = 3. The depth-to-diameter ratio, h

D , of simple craters
and fresh craters is in [0.1, 0.2].

Fig. 15. Simulated Didymos-A-like asteroid, with high crater density.
We add several layers of craters, like simple crater 1 & 2, complex and
fresh crater, on the surface. The slope of power law is B = 3. The depth-
to-diameter ratio, h

D , of simple craters is in [0.08, 0.16], and for fresh
craters is in [0.12, 0.19]. For fresh craters, we set the degradation vector
α = (∆k = −0.2,∆γ = −0.2,∆a = −0.38). For complex craters, we set
the degradation vector α = (∆k = −0.04,∆γ = −0.4,∆a = −0.2).

Figures A.1–A.4, 14, and 15 show example results of our
method for synthetic shapes tuned to resemble Eros, Bennu, and
Didymos A. In these examples, we have set parameters such that
the diameter of the craters varies between 10–100 m (follow-
ing the power-law). When accumulating the layers, the weights
should be chosen carefully to avoid unwanted morphologies
such as overhangs.

The 3D meshes generated with our algorithm are well suited
for scientific analysis: we can generate models with specific
sets of parameters to describe the surface under different test
hypotheses, for example, by selecting particular crater size dis-
tributions that are representative of what we expect for a young
or evolved surface. Once the mesh is generated, we can export
it in standard formats (e.g., OBJ, PLY) that can be processed by
other analysis tools. To illustrate such an approach, we show in
Fig. 16 the distribution of shadows on an Eros-like virtual aster-
oid for different phase angles. The shadow fraction in each image
is an important parameter when trying to understand the effect
of large-scale roughness on the thermal evolution of asteroids,
and must be accounted for in the photometric analysis (Vincent
2019). Figure 17 shows the modeled effective gravity (gravita-
tional acceleration plus centrifugal force on the surface) calcu-
lated with the approach described in Cheng et al. (2012) and 433
Eros’ physical parameters, as well as the gravitational slopes on
the surface. We can use such calculations to evaluate the effects
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Fig. 16. Simulated Eros-like asteroid, observed at different phase angles
(solar elevation). The shading is Lambertian and does not attempt to
describe complex processes such as the opposition effect, but rather
aims to display the extent of shadowed areas as a function of the phase.

Fig. 17. Effective gravity and gravitational slopes on a simulated Eros-
like asteroid.

of regolith migration through local ejections and mass wasting.
Another application of our method is training and testing of algo-
rithms for navigation on spacecraft: using different synthesized
asteroid surfaces, we can provide realistic synthetic sensor input,
which correctly simulates shadowing of craters depending on a
given solar elevation, in order to train and test the robustness and
resilience of the navigation algorithms.

We also investigated the performance of our method with
respect to the number of layers, namely, the number of different
ranges of crater sizes. Figure 18 shows the mean average com-
putation time for asteroids with respect to the particular layers
of craters. Computation times include all steps of our method,
including converting the implicit surface into a mesh. (Here, the
resolution of the meshing was set to around 200 000 polygons.)
The time increases almost linearly with an increasing number
of layers; it varies a great deal among different asteroids, which
is mostly due to the different number of spheres needed in the
metaballs representation. The creation of craters can be paral-
lelized on the GPU thanks to the partitioning with the 3D grid
(one thread per cell). Obviously, the analytical expression of the
ellipsoid allows for much better performance than the metaballs.

Obviously, these computation times are two high for interac-
tive experimentation with the parameters of our method. On the
one hand, however, for interactive usage, we think that render-
ing by simple ray casting will be feasible and much faster. On
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Fig. 18. Computational time of our algorithm to generate different
asteroid models with different layers (crater bins). For each asteroid
(Ellisoid, Eros, Bennu) we tested 1, . . . , 5 layers. The bulk of the time
is spent on extracting the polygonal mesh.

Fig. 19. Simulated views of asteroids Didymos and Dimorphos, as they
will be observed by the Hera mission (ESA). Left panel: using the
object’s shape according to current best knowledge, obtained from radar
observations (Naidu et al. 2020). Right panel: same models, upscaled to
high resolution topography with the technique described in this paper.

the other hand, extracting meshes is useful for other purposes,
once a good set of parameters has been found, such as importing
the shape into virtual testbeds.

6. Conclusions

In this paper, we present a novel technique to synthesize realistic
3D shapes of small celestial bodies such as asteroids. Such real-
istic surface features as craters are defined by kernel functions
and their spatial distribution is governed by laws well-known
from the literature, such as the power law. Those laws are ini-
tially parameterized by results from the extensive literature, mis-
sion data, and existing numerical simulations, but can easily be
modified by the user to be adapted to specific use cases.

We can generate shapes of asteroids and some types of
comets that are suited to the planning and preparatory data anal-
ysis of future missions, for which the shape and morphology of
the target are essentially unknown until arrival. For instance, the
upcoming Hera mission (Michel et al. 2018) will measure the
morphology of the impact crater and trajectory deflection pro-
duced by the DART mission (Sarli et al. 2017) and assess the
hazard and effect of the impact on the binary asteroid system.
They could use our tool to test operational scenarios and data
analysis techniques under realistic conditions (see Fig. 19). In
addition, the integrated photometric signal of a surface or the

thermal inertia are parameters strongly affected by the rough-
ness of the surface and may require different types of orbit for a
spacecraft to acquire conclusive data (i.e., images of the termi-
nator orbit could be compromised by too many shadows). Our
model can simulate surfaces with different types of crater shapes
and size distributions, generating meshes that can be used to test
operations under those different conditions. Although this paper
focuses on craters as the major type of topographic features,
our method is also suitable for generating rubble pile asteroids
that are covered with boulders of various sizes, which could be
described by a different group of kernel functions; this will be
implemented in a future version of our tool.

Of course, it is possible to perform such analyzes using shape
models derived and re-scaled from previous missions. But that
approach would not allow for blind testing of potential scenar-
ios in which the surface may radically differ from expectations.
Thus, it seems critical to be able to rapidly generate new shape
models that allow for testing varieties of observed conditions.

Our discrete global grid system (DGGS) is able to digitize
the small body and provide a framework to visualize, analyze
and combine various types of datasets of given small bodies. For
instance, geospatial imagery datasets (such as aerial or satellite
photographs) could be used to texture the surface.

Our method opens up a number of avenues for future works.
One main avenue is to improve the method itself, for instance,
by introducing other crater and erosion models applicable to
comets, by simulating more erosion factors (such as thermal ero-
sion or boulder mass wasting), or by adding more realistic noise
functions to model dust on the surface.

Another avenue for future work are a number of potential
applications of our method and tool, which would enable future
studies of asteroids and comets that require a high-resolution
shape model. Such studies are beyond the scope of this paper,
but here we introduce a couple of examples that highlight direct
potential applications in asteroid and comet science:

– Disk-integrated photometry and phase function: We men-
tioned in the introduction that the phase darkening of
comets can be partly attributed to topographic roughness.
Vincent et al. (2017) and Vincent (2019) have shown that this
topography is a function of the dynamic age of a comet, and
can be parameterized with a power law. The study was con-
ducted by generating virtual comets using an algorithm that
is akin to a simplified version of what we presented in this
manuscript. For each virtual object, we generated a phase
curve using ray-tracing modeling to accurately account for
all the shadows. This effect has not yet been studied on aster-
oids, but we expect that it might also play a role and could
be used to better assess the evolutionary state of the objects
(e.g., how eroded the craters are). Figure 16 shows an exam-
ple of a virtual asteroid generated with our model, using the
phase- or ray-tracing modeling introduced in Vincent (2019).

– Gravity and slopes: From the shape and internal density, one
can easily calculate the gravitational field on the surface of a
small body, using for instance the algorithm by Cheng et al.
(2012). Figure 17 shows how the slope distribution would
look like on an Eros-like asteroid generated with our tool.
The angular distribution of slopes is a characteristic measure
of the roughness and can be used to predict areas more likely
to experience mass-wasting or ponding. It is also a neces-
sary parameter to assess the safety of areas under considera-
tion for landing or sampling. Using a virtual asteroid allows
operations experts to prepare for any possible scenario.

– Thermal modeling: High-resolution topography and multi-
scale roughness are necessary for precisely modeling the
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distribution and evolution of temperatures on an asteroid.
Figure 19 shows that pre-encounter shape models provide
a very low-resolution description of the topography at best,
which is not suited for thermal studies. Features added by the
algorithm presented in this paper provide a realistic surface
that allows in-depth investigation of the asteroid properties.
We can, for instance, apply different crater size distributions
and morphology to test the influence of topography on the
regional thermal inertia and to model the signal that would
be observed from ground- or space-based instruments.

Another issue is boulders, which ought to be generated with a
method similar to the one we have presented here. It remains,
however, an open question as to whether our approach could
yield a similar (easy) method, since boulders are formed by
rather different astrophysical processes. Some boulders are
formed by impacts and are subsequently distributed in the ejecta
blanket (Enos & Lauretta 2019). Others may have been cre-
ated when the parent asteroid breaks into pieces and re-accrets
(a common process for small asteroids) (Hergenrother et al.
2019). The spatial distribution of these boulders must account
for the complex gravitational field of the asteroid and require
much more complex modeling than what we typically do in
the case of craters. Even after formation, boulders will con-
tinue to fragment and “migrate” due to thermal stresses and
gravity (Hergenrother et al. 2019). These effects should also be
accounted for, going beyond what our current method for craters
can achieve. Recently, several works of research from the mis-
sions to Ryugu and Bennu revealed that the boulders are moving
on the surface (with low gravity) and we plan to find new meth-
ods to simulate those effects.
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Appendix A: More results for different types of
asteroids

In this appendix, we provide more results from our algorithm.
More specifically, we have applied our algorithm to two big fam-
ilies of asteroids: the ones similar to Eros and those similar to
Bennu. Figures A.1, A.2 show simulations of the ”young” or
”old” Eros-like asteroid surface, while Figs. A.3, A.4 show the
”young” or ”old” Bennu-like asteroid surfaces. In all cases, we
added several layers of craters on the surface, consisting of the
types simple crater 1 & 2, complex crater, and fresh crater. We
also list the kernel parameters in Table A.1 (kernel in Fig. 11) to
help us inverse the crater’s age by using our kernel parameters.

Fig. A.1. Simulated Eros-like asteroid, with low crater density. Just as
in Figs. 14 and 14, we added several layers of craters (the surface par-
titioned into nearly 1500 patches). The total saturation is nearly 11%
and the slope of power law B = 3. For both simple and fresh craters,
h
D ∈ [0.15, 0.25].

Fig. A.2. Simulated Eros-like asteroid, with high crater density (the sur-
face partitioned into nearly 1500 patches). The total saturation is nearly
18% and the power law index B = 3. For simple craters, h

D ∈ [0.1, 0.2],
while for fresh craters h

D ∈ [0.12, 0.19]. For fresh craters, we set the
degradation vector α = (∆k = −0.15,∆γ = −0.2,∆a = −0.38). In
complex crater, we set the degradation vector α = (∆k = −0.2,∆γ =
−0.3,∆a = −0.25).

Fig. A.3. Simulated Bennu-like asteroid, with low crater density. The
total saturation is nearly 19% (the surface partitioned into nearly 2000
patches) and the slope of power law B = 3. For both simple and fresh
craters, h

D ∈ [0.15, 0.25].

Fig. A.4. Simulated Bennu-like asteroid, with high crater density. The
total saturation is nearly 25% (the surface partitioned into nearly 2000
patches) and the slope of power law B = 3. For simple craters, we have
h
D ∈ [0.1, 0.2], while for fresh craters h

D ∈ [0.12, 0.19]. For fresh craters,
we set the degradation vector as α = (∆k = −0.2,∆γ = −0.2,∆a =
−0.38). In complex crater, we set the degradation vector as α = (∆k =
−0.04,∆γ = −0.4,∆a = −0.2).

Table A.1. Parameters used in kernel3 in Fig. 11.

Diameter(m) Year All parameters in kernel3

κ β γ a b

300 0 Gyr 16.3 5.0 0.000042 −55.1 0.00009
1 Gyr 1.5 5.0 0.000042 −8.1 0.00007
2 Gyr 0.7 5.0 0.000042 −5.1 0.00005
3 Gyr 0.0 5.0 0.000042 −2.4 0.00003

1000 0 Gyr 40.3 5.0 0.0000045 −180.1 0.000016
1 Gyr 15.3 5.0 0.0000045 −142.1 0.000016
2 Gyr 3.3 5.0 0.0000045 −120.1 0.000016
3 Gyr 1.3 5.0 0.0000045 −110.1 0.000016

3000 0 Gyr 190.3 7.0 0.00000045 −563.1 0.00000088
1 Gyr 175.3 5.5 0.00000045 −558.1 0.00000088
2 Gyr 172.3 5.2 0.00000045 −553.1 0.00000088
3 Gyr 169.3 4.9 0.00000045 −548.1 0.00000088
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