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Abstract— We present the DLR Planetary Stereo, Solid-State
LiDAR, Inertial (S3LI) dataset, recorded on Mt. Etna, Sicily, an
environment analogous to the Moon and Mars, using a hand-
held sensor suite with attributes suitable for implementation on
a space-like mobile rover. The environment is characterized by
challenging conditions regarding both the visual and structural
appearance: severe visual aliasing poses significant limitations
to the ability of visual SLAM systems to perform place
recognition, while the absence of outstanding structural details,
joined with the limited Field-of-View of the utilized Solid-State
LiDAR sensor, challenges traditional LiDAR SLAM for the task
of pose estimation using point clouds alone. With this data, that
covers more than 4 kilometers of travel on soft volcanic slopes,
we aim to: 1) provide a tool to expose limitations of state-of-
the-art SLAM systems with respect to environments, which are
not present in widely available datasets and 2) motivate the
development of novel localization and mapping approaches,
that rely efficiently on the complementary capabilities of the
two sensors. The dataset is accessible at the following url:
https://rmc.dlr.de/s3li_dataset

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) tech-
niques can nowadays be considered mature enough to find
applications in many fields such as autonomous driving [1],
[2], automated construction [3] or agriculture [4], [5]. While
typically implemented with the use of multi-camera setups
or RGB-D sensors, the recent democratization of 3D LiDAR
sensors allowed easy integration of range sensing on mobile
robots, enabling robust and large-scale mapping especially
in urban or man-made scenarios.

The wide variety of published visual or LiDAR SLAM
approaches [6]–[8] might suggest that the SLAM problem
could be considered solved. However, we argue that this is
far from the truth, specifically when dealing with environ-
ments that are unstructured and severely aliased [9], [10].
This is especially true in the case of planetary analogous
environments, which are usually located in extreme locations
such as deserts or volcanic surfaces. In this case, the lack
of uniquely identifiable visual or structural features prevents
from performing place recognition in a robust and repeatable
manner. Moreover, when dealing with LiDAR SLAM, the
lack of vertical structures leads to missing constraints for a
robust convergence of ICP-style algorithms [11].

Typical datasets fail to address this extreme case. Among
the most popular, KITTI [12], Oxford RobotCar [13], KAIST
[14] and 4Season [15] tackle the case of autonomous driving

1German Aerospace Center (DLR), Institute of Robotics and Mechatron-
ics, 82234 Weßling, Germany. firstname.lastname@dlr.de

2Department of Aerospace and Geodesy, Technical University of Munich,
80333 München, Germany

15.0060 15.0070 15.0080 15.0090
Longitude [°]

37.7245

37.7250

37.7255

37.7260

37.7265

37.7270

37.7275

L
at

itu
de

[°
]

s3li traverse 1
s3li traverse 2

s3li crater
s3li crater inout

s3li mapping
s3li landmarks

s3li loops

Fig. 1. Bird’s-eye view of the site where the dataset is recorded with
trajectories for each sequence overlaid on top. The Cisternazza crater is
visible on the right. Tiles (C) Esri – Source: Esri, i-cubed, USDA, USGS,
AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP and the GIS
User Community

in urban scenarios. While presenting sequences with signifi-
cant challenges, e.g., dynamic objects or large time intervals
spanning seasons, the point of view of a road vehicle, as
well as the panoramic 3D LiDAR scans captured within
highly structured scenarios, facilitate the tasks of computing
odometry and performing place recognition.

Other datasets, such as TUM RGB-D [16], TUM VI [17]
or the ETH3D SLAM benchmark [18] provide sequences
recorded with hand-held stereo or RGB-D cameras prin-
cipally in indoor environments. Their sequences tend to
be short and frequently re-observing places from similar
viewpoints and under very limited changes in the visual
appearance.

To overcome the limitations related to the practical real-
ization of the sensor setup, but also to model several motion
characteristics and environments, many synthetic datasets
have been recently released such as ICL-NUIM [19] or
TartanAir [20]. While this has many advantages for the de-
velopment of SLAM algorithms, e.g., the diversity of motion
patterns and scenes is beneficial towards training of learning-
based approaches, we believe that, especially for robots
operating in the field, unstructured natural environments still
offer the most challenging conditions for the implementation
of visual or LiDAR-based SLAM.

Several datasets have been proposed which are recorded
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TABLE I
SLAM DATASETS IN UNSTRUCTURED ENVIRONMENTS

Ref Sensors N seq Length GT Obs4

[24] Stereo
LiDAR (3D) 3 ∼ 2 km

∼ 100 min D-GNSS R

[22] Stereo
RADAR (2D) 431 ∼ 2 km LiDAR2 R

[29] Stereo 2 ∼ 1 km D-GNSS R
[21] Stereo 233 ∼ 10 km D-GNSS R

[28] Stereo
Omni 35 ∼ 9.2 km D-GNSS

Heading H

Ours Stereo
LiDAR (Solid St.) 7 ∼ 4.3 km

∼ 90 min D-GNSS H

1 Sequences with traverses, other 44 are static LiDAR scans
2 High-res LiDAR scans captured statically at 30-40 meters distance
3 Splits of a long traverse without revisiting places
4 R: Rover, H: Handheld sensor assembly

from the perspective of a mobile robot operating in the field
[21]. The Chilean Underground Mine dataset [22] provides
sequences recorded in a mine with a stereo camera, a 3D
LiDAR and a radar. The Visual-Inertial Canoe dataset [23]
provides sequences where the main challenge is represented
by reflections on the water. The Katwijk beach dataset [24]
is recorded on a beach with artificial landmarks from a
planetary-like rover equipped with a stereo camera that has
similar characteristics to the one of the ExoMars rover.
However challenging, the environment of caves and mines is,
as was also shown during the DARPA SubT Challenge [25]–
[27], particularly suited for LiDAR-based SLAM, as are the
stone replicas on the flat sandy surface of the Katwijk beach.
The MADMAX dataset [28], collected in the Morocco desert
using a hand-held stereo unit with accurate ground truth,
offers stereo sequences which are particularly challenging
for traditional place recognition, but does not provide LiDAR
data, which could be beneficial as it can provide information
for localization invariant to the visual appearance. Similarly,
[29] provides two sequences recorded on Mt. Etna with a
mobile rover, which was only equipped with a stereo camera
mounted on a pan-tilt unit.

We fill this gap and present here a dataset collected on the
volcanic surface of Mt. Etna, Italy, a planetary analogous
environment characterized by extreme visual aliasing and
lack of distinct structural features. The dataset has been
collected with a hand-held sensor assembly that includes
a stereo monochrome camera setup, a Solid State LiDAR
and an IMU. The setup replicates the typical height and
point of view of the sensors mounted on a mobile robot.
Although influenced by the walking pattern, the recordings
look smooth and free of sharp or high-frequency motions.
Seven sequences, 8 to 30 minutes long and covering dis-
tances up to 1.3 kilometers, have been recorded in order to
evaluate the ability of SLAM algorithms:

1) to accurately estimate odometry under harsh lighting
conditions and lack of unique features,

2) to rely on different sensing modalities, depending on
the structure and appearance of the environment,

3) to use visual and structural information to robustly

perform place recognition under severe aliasing.
In summary, this paper presents the following contribu-

tions:
• We release a dataset to challenge SLAM algorithms

in an natural, extremely unstructured environment, that
resembles the conditions of planetary-like scenarios.

• We evaluate a selection of state-of-the-art visual, and
visual-inertial SLAM algorithms.

• We provide examples of using the data in unconven-
tional manners, leveraging the interaction of cameras
and LiDARs towards more robust SLAM in severely
unstructured scenes.

II. THE DATASET

The dataset was recorded on the volcanic environment of
Mt. Etna, Sicily, an active stratovolcano, which is denoted
as a planetary analogous site for Moon and Mars due to
its peculiar geological features [30]. The dataset includes 7
sequences, that were recorded on a slope at 2650 meters
above sea level and in proximity to the Cisternazza crater
(see Fig. 1). Each sequence is located far from hiking trails
and provides views of an extreme environment characterized
by a surface of smooth dark lava ash, due to the frequent
eruptions that happened overnight at the time of recording
the data, extreme visual contrast, due to the darkness of the
soil and the brightness of the sky, and scarcity of geological
features that might facilitate localization with respect to prior
observations of the same places. In comparison with other
similar datasets, listed in Table I, we provide an honest multi-
sensory look at an environment, analogous to potential sites
for robotic planetary exploration, without alterations, e.g. by
introducing artificial landmarks, and without a prior selection
based on properties that help specific sensing modalities, i.e.,
flatness of the soil, presence of outstanding structural details,
or presence of distinct visual textures on the ground.

A. Sequences

The 7 sequences provided can be categorized according
to the challenges they pose for localization algorithms.
s3li traverse 1, s3li traverse 2 and s3li crater test the ability
of localization methods or SLAM algorithms to provide
accurate pose estimation during traverses. The first two
observe mainly ash slopes, with the sporadic presence of
rocks or boulders, while the third is a long traverse, that starts
and ends at the initial location, around the rim of the crater,
providing long range features for which depth is unknown.
s3li loops and s3li crater inout are, instead, recorded with
the purpose of evaluating the ability of SLAM algorithms
to perform place recognition, exploiting either the visual
or structural similarity. While the first revisits mainly un-
structured slopes, that might be recognized through carefully
tuned visual loop closure detectors, the second includes short
repeating traverses within the rim of the crater, that could be
exploited with both sensing modalities. s3li mapping instead
tests the ability of SLAM algorithms to produce a complete
and consistent map of the environment relying on stereo
as well as LiDAR depth measurements, as a confined area
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Fig. 2. Collection of shots from the 7 sequences of the dataset. For each sequence, two examples are shown that include an image from the left camera,
the stereo disparity and the closest LiDAR scan in time. All images are shown after applying CLAHE (Contrast-Limited Adaptive Histogram Equalization),
to enhance the contrast, and the disparity images are produced using OpenCV’s SGBM with numDisparities = 96 and blockSize = 11.

is explored multiple times and there should be plenty of
loop closure opportunities. Finally, s3li landmarks allows
testing of segmentation techniques for natural landmarks,
with the aim of either semantic mapping or segment-based
loop closure detection [31]. An overview of the sequences,
including D-GNSS tracks, is provided in Table II.

B. The hand-held setup (S3LI)

The sensor setup used to collect the data, depicted in
Fig. 3, is designed to be compliant to a potential implemen-

tation on a planetary-like rover [32] and comprises:
Stereo Camera: two AVT Mako cameras are configured in
a stereo setup with baseline 20 centimeters. The cameras are
triggered at a frequency of 30 Hz to capture monochromatic
images with resolution of 688× 512 pixels using automatic
exposure control to cope with the harsh lighting conditions
on the mountain. Their timestamps are synchronized to the
system time using the PTP protocol, where cameras function
as slave to the master clock of the laptop. Compared to other



TABLE II
OVERVIEW OF THE SEQUENCES

Name Length D-GPS Track1 Description

s3li traverse 1 371 m
9 min

25 50
East [m]

-100

-50

0

N
or

th
[m

]

• Traverse along a ridge of stones on a slight downhill. The environment is
nicely contrasted, however the severe aliasing undermines the chances for
visual place recognition.

• The path intersects briefly in the middle section but there are no evident
loop closure opportunities, except at the very end.

• Challenging LiDAR clouds mainly due to the slope and the absence of
distinct structures.

s3li traverse 2 300 m
8 min

50 100 150
East [m]

0

25

N
or

th
[m

] • Short traverse from the starting point to the rim of the Cisternazza crater
and back.

• Several panning motions during the traverse help to cover more area for
purposes of mapping. There are basically no loop closure opportunities.

• As for s3li traverse 1, LiDAR clouds have limited extent and do not
include many useful structures.

s3li crater 1010 m
19 min

100 200 300
East [m]

-100

0

N
or

th
[m

]

• First long sequence around the rim of the crater, returning to the starting
location.

• The visual appearance is diverse, as many different terrain types are
observed including sandy slopes and the rocky walls within the crater
rim.

• Opportunities for mapping the insides of the crater using the LiDAR, more
predominant structures are present, although none can be used to close
loops as they are not revisited.

s3li loops 587 m
13 min

25 50
East [m]

-100

-50

0

N
or

th
[m

]

• Loopy sequence around the rocky ridges observed also in s3li traverse 1
and s3li traverse 2, plenty of opportunities for visual loop closure detec-
tion and/or for visual or structure-based segmentation of natural features.

• Less monotonous visual appearance than s3li traverse 1 and
s3li traverse 2, a few salient rocky features are observed in ”orbiting”
motions.

• Structure is less interesting than visual appearance.

s3li crater inout 1338 m
28 min

0 100 200
East [m]

-200

-100

0

N
or

th
[m

]

• Long traverse around the crater, that also includes a short travel below the
rim to observe some geological formations. They are revisited after com-
pleting the first traverse, offering opportunities for loop closure detection.

• Challenging visual appearance characterized by sharp changes in illumi-
nation due to the exploration of the insides of the crater, often lying in the
shadows

• Interesting sequence to map geological formations with the LiDAR, to be
exploited also towards structure-based place recognition.

s3li mapping 242 m
8 min

0 20
East [m]

–10

0

10

20

N
or

th
[m

]

• Sequence of limited spatial extent targeted at mapping, where the sensors
observe the environment to cover as much area as possible. The terrain is
characterized by ash slopes with few small boulders.

• Plenty of loop closure opportunities are available, however the contrast
between the dark lava ash and harsh lighting challenges traditional visual
methods.

• LiDAR measurements cover a dense area and can be interesting for
complementing the mapping ability of the stereo camera as well as for
providing solid ground constraints in the context of multi-modal SLAM.

s3li landmarks 482 m
9 min

0 100
East [m]

0

50

N
or

th
[m

] • Sequence of traverses between large and isolated rock formations, some of
which are re-observed to allow for an easy recognition of structures and
visual features.

• As for s3li mapping, the visual appearance is challenging due to the harsh
contrast between dark lava ash and the bright sky. During the traverses,
the ground offers limited visual details.

• The rock formations are observed from many viewpoints allowing for a
complete reconstruction. Salient structures can easily be segmented for
semantic mapping or matching.

1 The green color denotes D-GNSS estimates under RTK-FIX (ε ∼ 1cm), while the yellow color denotes RTK-FLOAT (ε ∼ λcarrier).



Fig. 3. The Stereo, Solid-State LiDAR, Inertial (S3LI) sensor setup

datasets based on stereo images [28], [29], we do not include
depth images, as the computation of disparity is not intended
as a sensor output, but as part of the utilization of the
stereo images. Many SLAM architectures [33]–[35], in fact,
although relying on a stereo image stream, do not make use
of dense disparity images, but instead perform sparse feature
matching when needed. Nevertheless, as an example and
for the purpose of visualization, Fig. 2 presents a collection
of disparity images obtained with OpenCV’s SGBM stereo
algorithm. Due to the automatic exposure control that, in
combination with the extreme intensity differences between
the dark soil and the bright sky, often compresses the ground
details into dark patches, we recommend the usage of auto-
matic contrast enhancement algorithms such as OpenCV’s
CLAHE.
LiDAR: we use a Blickfeld Cube-1 LiDAR, which employs
a MEMS-actuated beam deflection mirror, instead of tradi-
tional 360◦ LiDARs, as this type of construction is more
suited for potential space applications due to increased me-
chanical robustness and reduced weight and power consump-
tion. For all sequences, the LiDAR is configured to capture
point clouds with a maximum number of 17400 points with
a Field-of-View of about 70◦H × 30◦V, which results in a
scan rate of 4.7 Hz. Each data point is timestamped with
respect to the origin of the scan and contains additional
intensity information that can be used, for instance, to
identify low-quality measurements. The synchronization of
the scan timestamps with respect to the time of the laptop is
realized with NTP.
IMU: an XSens MTi-G 10, connected via USB, provides
linear acceleration and angular velocity at a rate of 400 Hz.
GPS receiver: an Ublox f9p GNSS receiver mounted on the
hand-held setup provides accurate differential estimates in
conjunction with a base station. The data logs are processed
in a later stage using the RTKLIB to obtain ground truth po-
sitions at a frequency of 5 Hz and centimeter-level accuracy.

C. Sensor calibration

Stereo camera and IMU: The intrinsic and extrinsic
parameters of the stereo camera pair are calibrated using
Calde/Callab [37], while the IMU to camera calibration is
performed with Kalibr [38]. In order to facilitate the playback
of data, the stereo images are provided already rectified.

Fig. 4. Alignment of LiDAR and (left) camera reference frames. In the
top row: examples of binary edge images and projected LiDAR scans
after extrinsic calibration. The color scheme of the projected LiDAR
points reflects the direction of the normal vectors. The other rows show
examples of LiDAR scans, projected on the left camera image, respectively
from sequences s3li traverse 1, s3li mapping and s3li crater inout. Point
clouds are downsampled to avoid cluttering the images and color-coded
according to the depth of points.

In fact, as the lenses do not have a particularly wide field
of view, the images corrected for distortion do not lose a
significant amount of visual detail.
LiDAR-Camera extrinsic calibration: the LiDAR is ex-
trinsically calibrated with respect to the left camera. As
the solid-state LiDAR that we employed is characterized
by quite a large minimum measurable depth of about 4
meters, traditional techniques for LiDAR to camera cali-
bration proved either non-effective, e.g., in the case of a



TABLE III
RMSE* (NORMALIZED) AND RATIO OF COMPLETION OF THE COMPARED SLAM ALGORITHMS

Algorithm s3li traverse 1 s3li loops s3li crater s3li crater inout s3li landmarks s3li mapping s3li traverse 2
ORB-SLAM3 (S) [33] 0.86 (100) 0.21 (100) 0.87 (56.5) 0.19 (69.5) - 0.71 (41.2) 0.38 (84.1)
VINS Fusion (S) [36] 1.41 (100) 6.23 (100) 2.25 (100) - 3.25 (50.1) 2.01 (62.5) 1.33 (100)
VINS Fusion (SI) [36] 0.62 (100) - - 0.25 (100) 0.36 (100) - 1.90 (100)
OPEN VINS (SI) [35] 0.54 (100) 0.41 (80.3) 0.54 (42.6) 0.16 (86.9) 0.77 (83.9) - 0.39 (100)
BASALT (S) [34] 0.75 (100) 0.35 (100) 2.81 (100) 1.08 (100) 1.34 (100) 0.47 (100) 0.57 (100)
BASALT (SI) [34] 0.66 (100) 0.46 (100) 1.64 (100) 0.41 (100) 0.86 (100) 0.44 (100) 0.38 (100)
* In bold are highlighted the best results, from those algorithms that completed the sequence

checkerboard pattern printed on planar target [39], or too
impractical to perform on the field, e.g., methodologies that
rely on non-planar geometries [40], [41]. For this reason,
the transformation between the camera and LiDAR reference
frames is determined by fixing the translation component to
the one obtained by a CAD model of the sensor assembly,
while the rotation component is optimized in an automatic
edge alignment scheme [42], [43]. More specifically, n
pairs of left camera images and LiDAR scans are man-
ually selected from recording of an indoor environment,
characterized by structural regularity and scarcity of evident
textures. From each image, strong Canny edges are selected
to obtain binary images, where the identified edges are an
input to the optimization scheme. From each corresponding
LiDAR scan, we estimate the local curvatures, using the PCL
library, and edge points, which lie in correspondence to depth
discontinuities between neighboring points in the sequence
of measurements of the LiDAR beam. Formally, the extrinsic
calibration is solved as a non-linear least squares problem,
where the goal is to find the optimal rotation between LiDAR
and left camera, that aligns the projections of LiDAR points,
lying on edges or discontinuities, to edges in the image:

argmin
R

Cl
L

n∑
i=1

mi∑
k=1

ωikρc
(
‖xik − π

(
RCl

L (pL
ik − tL

Cl
)
)
‖
)
, (1)

where n is the number of image-scan pairs, mi is the number
of correspondences for the i-th pair, π is the camera projec-
tion function, pL

ik and xik are, respectively, 3D LiDAR and
2D image points on edges, RCl

L and tL
Cl

are the rotation (to be
optimized) and translation (known form CAD model) of the
LiDAR in the left camera reference frame, ρc is a Cauchy
robust loss function, and ωik is a weight proportional to the
local curvature of the point cloud. The association between
LiDAR and image edge points is performed iteratively in a
nearest-neighbor approach, and the problem is solved a few
consecutive times reducing the value of parameter c for the
Cauchy loss.

III. USE-CASES

A. Visual SLAM

A major application area of this dataset is to evaluate
the performances of SLAM algorithms in environments with
challenging visual appearance. While the texture of the
terrain can ease the task of, for instance, sparse optical
flow, feature matching and place recognition are particularly
challenged by the severe visual aliasing. The algorithms

compared here are ORB SLAM3 [33], VINS Fusion [36],
OPEN VINS [35] and BASALT [34] in stereo or stereo-
inertial configuration. The estimated path is correlated to
the D-GNSS ground truth using time correspondences. After
this step, we align all pairs of matching positions using
Horn’s algorithm, and compute the root mean square of all
the residuals. To be comparable amongst all sequences, the
RMSE is normalized by the length of the associated ground
truth trajectory. Furthermore, as the RMSE is affected by
the length of the estimated trajectory (shorter trajectories
exhibit less translational and rotational drift) we provide,
as an additional performance indicator, the proportion of
each sequence for which poses are estimated from Visual
SLAM. This value is computed as the length of the ground
truth, associated to SLAM estimates, over its total length.
Table II-C reports these metrics for all algorithms and for
every sequence of the dataset. Compared to the others,
ORB SLAM3, where camera tracking depends heavily on
ORB descriptors matching, exhibits very good accuracy in all
datasets, but frequently fails to estimate the whole sequence,
especially when the observed environment is characterized
almost completely by a very repetitive terrain, without the
presence of rocks or features of unique appearance. The
other algorithms, where the localization front-end depends
on tracking strong corners through optical flow, do not suffer
from this specific problem, but are generally more prone to
pose drift.

As expected, the lowest errors are scored from stereo-
inertial configurations, as the inertial measurements help
significantly to deal with high accelerations and rotational
velocities, typical of the walking motion patterns when
recording with hand-held devices. However, compared to
their stereo counterparts, the delicate procedures to initialize
IMU parameters leads often to lose significant portions of the
initial parts of the sequences. Furthermore, we experienced
random behaviours of this step, especially with VINS Fusion
and OPEN VINS, often initializing the state estimation at
very different points after the beginning of sequences. For
this reason, Table II-C reports the best results obtained during
different runs of the same sequences, and omits results for
which less than 30% of the trajectory was estimated.

Overall, there is no apparent winner among all the algo-
rithms compared, in terms of lowest RMSE values, although
for robustness, indicated by the proportions of sequences
successfully processed, the approach of BASALT would
be the most successful. Hence, this dataset can help the



(a) s3li traverse 1 (b) s3li landmarks (c) s3li traverse 2 (d) s3li crater inout (detail)

Fig. 5. Dense maps produced by assembling LiDAR point clouds using pose estimates of OPEN VINS, shown as a thin green line. (a-c) show maps
produced on full sequences, the extent of the trajectories are visible in Table II. (d) shows a detail from the map of s3li crater inout, that highlights the
inner rim of the Cisternazza crater and includes several examples of rock formations.

development of Visual SLAM approaches, considering the
challenges provided by this type of environment, which are
often missing in traditional datasets for Visual SLAM.

B. LiDAR Mapping

As Figs. 2 and 4 show, each LiDAR scan covers a small
portion of the environment, which is located in front of
the sensor setup within a relatively narrow Field-of-View.
Furthermore, the geometry of the environment, which is
characterized by soft slopes and small objects, does not
provide structures of great extent in the vertical direction
as it is, instead, very common in datasets targeted at au-
tonomous driving [13], [44]. For these reasons, traditional
LiDAR SLAM can not be employed successfully on this
data. Compared to the stereo camera, however, where the
depth uncertainty grows quadratically with the distance, the
LiDAR sensor allows to measure accurately the shape of
farther landscapes that might not be possible to reach, e.g.,
with a mobile system. It is, therefore, of great interest
to develop SLAM pipelines where the LiDAR and visual
sensing approaches are combined.

Meant purely as an example, we developed a simple
mapping pipeline, that assembles LiDAR scans synchronized
to pose estimated from a Visual SLAM approach. For
this, we used OPEN VINS. Fig. 5 shows four examples
of LiDAR maps from the s3li traverse 1, s3li landmarks,
s3li traverse 2 and s3li crater inout sequences, respectively.
Observing these maps, it is evident that the predominant
geometries are slopes, with the exception of sparse and rela-
tively small rocks and stones. Other more evident structures,
i.e., big rock formations, are visible in Fig.5(b), which are
re-observed twice. Fig 5(d), instead, shows the reconstruction
of the rim of the Cisternazza crater, to an extent and detail
that is not possible to achieve with a stereo camera alone.
This dataset, therefore, intends to challenge visual-LiDAR
SLAM algorithms to robustly perform pose estimation and
mapping by developing novel approaches for place recogni-
tion that depart from traditional global LiDAR descriptors
[45] or segmentation of structures with strong ground plane
assumptions [46].

In order to illustrate what may lead to such methods, we
employed the Instance Stereo Transformer (INSTR) [47], to
detect instances of unknown objects in a scene (see Fig. 6 for

Fig. 6. Examples of instance segmentation of unknown objects, in this case
small stones, using INSTR [47]. Shown are original left camera images (left
column) and instance predictions as colored overlays (right column).

two examples). Note that the network has not been trained
on this specific data. The segmentation masks can be used
as an input for isolating objects in, otherwise complicated
to process, LiDAR scans and accurately generate geometric
models with the goal of realizing landmark-based [46] or
metric-semantic [48] SLAM.

IV. CONCLUSIONS

We presented a dataset, recorded in a planetary analogue
environment, that comprises stereo, LiDAR and inertial mea-
surements, and allows to assess localization and mapping
frameworks under challenging visual and structural appear-
ance. We, furthermore, evaluated a variety of visual-inertial
SLAM algorithms on the sequences, highlighting strengths
and limitations, and provided examples of potential use-
cases for this data, that depart from traditional visual-LiDAR
SLAM approaches. This dataset, therefore, provides a mean
to evaluate and overcome limitations of traditional SLAM
algorithms, that are usually developed and tested on datasets
which lack elements of visual aliasing and ambiguous ge-
ometries, typical of extremely unstructured environments.
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[46] Dubé, et al., “SegMap: 3D segment mapping using data-driven de-
scriptors,” arXiv preprint arXiv:1804.09557, 2018.

[47] Durner, et al., “Unknown object segmentation from stereo images,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 4823–4830.

[48] Tian, et al., “Kimera-multi: Robust, distributed, dense metric-semantic
slam for multi-robot systems,” IEEE Transactions on Robotics, 2022.

http://www.robotic.dlr.de/callab
http://www.robotic.dlr.de/callab

	I INTRODUCTION
	II THE DATASET
	II-A Sequences
	II-B The hand-held setup (S3LI)
	II-C Sensor calibration

	III USE-CASES
	III-A Visual SLAM
	III-B LiDAR Mapping

	IV CONCLUSIONS
	References

