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DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular
mechanisms. The decision-making process controlling DSB repair takes place at the step
of DNA end resection, the nucleolytic processing of DNA ends, which generates single-
stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB
repair mechanism is engaged. Interestingly, nucleosomes—the fundamental unit of
chromatin—influence the activity of resection nucleases and nucleosome remodelers
have emerged as key regulators of DSB repair. Nucleosome remodelers share a common
enzymatic mechanism, but for global genome organization specific remodelers have been
shown to exert distinct activities. Specifically, different remodelers have been found to slide
and evict, position or edit nucleosomes. It is an open question whether the same
remodelers exert the same function also in the context of DSBs. Here, we will review
recent advances in our understanding of nucleosome remodelers at DSBs: to what extent
nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how
these activities affect the DSB repair decision.
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INTRODUCTION

DNA double strand breaks are a highly toxic form of DNA damage, arising from intrinsic and
extrinsic sources (Ciccia and Elledge, 2010). Eukaryotes are equipped with several mechanisms to
repair DSBs, including non-homologous end joining (NHEJ), alternative end joining (alt-EJ),
homologous recombination (HR) and single strand annealing (SSA) (Chang et al., 2017; Ranjha
et al., 2018). Notably, these pathways do not only have different prerequisites (for example HR
requiring a homologous donor sequence), but they also differ in the repair outcome and the potential
to introduce genetic changes (such as mutations and chromosomal rearrangements). The cellular
repair pathway decision is therefore critical for the survival of the affected cell or organism as well as
for the stability of its genome (Symington and Gautier, 2011). Moreover, the fact that DSB repair is
controlled by endogenous factors is a major limitation for genome editing strategies, which can
nowadays involve efficient delivery of DSBs at the gene of interest, but often lead to a heterogenous
outcome of the genome editing reaction across cell populations.

The cellular DSB repair pathway decision is made at the step of DNA end resection, the
nucleolytic processing of DSB ends (Symington and Gautier, 2011; Cejka, 2015; Daley et al., 2015;
Symington, 2016; Bonetti et al., 2018). Resection involves endo- and exonucleolytic cleavage of DNA
ends that reveals 3′ single-stranded DNA overhangs. Notably, resection destroys the substrate for
repair by NHEJ and increasing amounts of 3′ single-stranded DNA (ssDNA) predisposes for repair
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by different mechanisms (alt EJ < HR < SSA, Blier et al., 1993;
Falzon et al., 1993; Ira et al., 2004). The enzymatic process of
resection has been subject of excellent reviews in this issue and
elsewhere (Symington and Gautier, 2011; Cejka and Symington,
2021; Elbakry and Löbrich, 2021; Sanchez et al., 2021). Here we
focus on how resection and thereby the repair pathway decision is
regulated by nucleosomes and nucleosome remodelers, enzymes
that can evict, position and edit nucleosomes. For general reviews
on how DNA damage triggers post-translational histone
modifications, we refer to the following articles (Smeenk and
van Attikum, 2013; Van and Santos, 2018).

Nucleosomes form obstacles to the resection nucleases
(Figure 1). Initial short-range resection is carried out by the
Mre11-complex (Mre11-C in the following, consisting of Mre11-
Rad50-Xrs2 with the Sae2 activator in budding yeast, and
analogously of MRE11-RAD50-NBS1 with CtIP in human)
(Symington and Gautier, 2011; Cejka and Symington, 2021;
Elbakry and Löbrich, 2021; Sanchez et al., 2021).
Endonucleolytic cleavage by Mre11-C occurs preferentially
within nucleosome-free linker DNA, suggesting that
nucleosomal DNA is protected and/or that chromatin binding
of Mre11-C is guided by nucleosomes (Mimitou et al., 2017;
Wang et al., 2017). Moreover, the nucleases that carry out long-
range resection are directly inhibited by the presence of
nucleosomes: biochemical studies with yeast proteins have
shown that the Exo1 exonuclease is unable to act on a
nucleosome substrate and the combined helicase-endonuclease
STR-Dna2 (Sgs1-Top3-Rmi1-Dna2) can only process
nucleosomal DNA, if sufficient nucleosome-free DNA is
present (Adkins et al., 2013). Therefore, nucleosomes are a
barrier to the resection process and resection control factors
are expected to modify the permeability of this barrier.

Nucleosome remodelers have received attention as
regulators of DNA end resection and DSB repair pathway
choice. These nucleosome remodelers are enzymes that in

ATP-dependent fashion catalyze the breakage of histone-
DNA-contacts within the nucleosome and translocate the
DNA relative to histone proteins (Clapier and Cairns, 2009;
Clapier et al., 2017). All eukaryotes possess several
nucleosome remodelers - often in the form of multi-
protein complexes - which are grouped into several sub-
families according to the conservation of their ATPase
subunit (Flaus et al., 2006). Biochemical and structural
data suggest that the overall enzymatic mechanism of
DNA translocation and breakage of DNA-histone contacts
is highly related (Clapier and Cairns, 2009; Clapier et al.,
2017) (with the potential exception of Fun30/SMARCAD1,
see below). Nonetheless, studies on gene transcription and
general chromatin organization have revealed that specific
remodelers appear to have specific enzymatic activities, by
which they slide, evict, position or edit nucleosomes (Clapier
and Cairns, 2009; Clapier et al., 2017). Here, we will
investigate whether such distinct roles can also be found in
the context of DNA double strand breaks and how these
activities may affect DSB repair. A natural focus of this review
will be the budding yeast system, where remodelers have been
studied comprehensively also in the context of DSBs, but we
will additionally address whether the picture emerging from
these studies is conserved in higher eukaryotes.

RESECTION IS AFFECTED BY
NUCLEOSOMES

In many eukaryotes, DNA end resection is carried out by three
resection enzymes, Mre11-C, STR-Dna2 and Exo1, which act
specifically at one of the two stages of the resection process
(short-range resection/resection initiation and long-range
resection/resection elongation, Figure 1). Notably, all three
act by distinct molecular mechanisms and it is therefore
unsurprising that nucleosomes have distinct effects on each
of them. Mre11-C recognizes the DSB end either directly or
through a DSB end-binding protein (most likely the end-
binding factor Ku) and, after activation by Sae2/CtIP,
induces a single-strand break on the 5′-strand (Sartori et al.,
2007; Cannavo and Cejka, 2014; Anand et al., 2016; Deshpande
et al., 2016; Reginato et al., 2017; Wang et al., 2017). From this
point, bidirectional resection occurs: Mre11-C catalyzes 3′-5′
exonucleolytic resection towards the break, while Dna2 and
Exo1 exonucleases catalyze long-range resection with 5′-3′
polarity into undamaged chromatin (Mimitou and
Symington, 2008; Zhu et al., 2008; Cejka et al., 2010; Niu
et al., 2010; Garcia et al., 2011; Shibata et al., 2014).

Preferential cleavage of linker DNA indicates that
nucleosomal DNA may be refractory to endonucleolytic
clipping by Mre11-C (Mimitou et al., 2017; Wang et al.,
2017). However, nucleosomes per se are not a barrier to
Mre11-C. Rather, it can slide or reach over nucleosomes
(Myler et al., 2017; Wang et al., 2017). In cases where such
bypass occurs, the nucleosome located between DSB and
incision site could then potentially constitute a barrier to
the 3′-5′ exonuclease activity of Mre11-C. Given the dual

FIGURE 1 | Eukaryotic DNA end resection in the chromatin context.
DNA end resection is a two step process that can be divided into short-range
resection (orange) and long-range resection (yellow). Mre11-C initiates short-
range resection by nicking the 5′ terminated strand in proximity to the
DSB via its endonuclease activity. Then, Mre11-C generates a short 3′ ssDNA
overhang close to the DSB using its 3′-5′ exonuclease function. Exo1 and
STR-Dna2 carry out long-range resection and extend the length of the
resected ssDNA tract through chromatin.
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endo- and exonucleolytic activities of Mre11-C, this question
has so far been difficult to address.

Long-range resection enzymes are even more strongly affected
by the presence of nucleosomes. For example, in vitro studies
have shown that Exo1 cannot resect through nucleosomes
(Adkins et al., 2013), suggesting that additional activities are
needed to overcome the chromatin barrier. Interestingly,
changing nucleosome composition may be sufficient to allow
Exo1-mediated resection. Incorporation of the H2A-variant
H2A.Z decreases nucleosome stability and increases
accessibility of nucleosomal DNA (Abbott et al., 2001; Zhang
et al., 2005; Jin and Felsenfeld, 2007; Adkins et al., 2013;
Watanabe et al., 2013; Lewis et al., 2021), which may allow
Exo1 to bypass the nucleosomal barrier (Adkins et al., 2013).

In contrast to Exo1, the other long-range resection enzyme
STR-Dna2 is in principle able to bypass nucleosomes. This may
be due to a different enzymatic mechanism. While during long-
range resection STR-Dna2 has the net effect of an exonuclease,
STR-Dna2 utilizes the combined action of the Sgs1 helicase that
unwinds DNA, followed by endonucleolytic cleavage of the
emerging flap structure by Dna2 (Cejka et al., 2010; Niu et al.,
2010). Apparently, the Sgs1 helicase motor is powerful enough to
disrupt nucleosomes, allowing STR-Dna2 to resect nucleosomal
DNA (Adkins et al., 2013). However, in order to carry out
resection of nucleosomal DNA, STR-Dna2 will need as much
as 300 bp of free DNA to be able to traverse through nucleosomes
(Adkins et al., 2013). This distance is greater than the
nucleosomal linker DNA-length and, consistently, STR-Dna2
is effectively inhibited by a nucleosomal array (Adkins et al.,
2013).

Therefore, both long-range resection enzymes are blocked by
chromatin and will require the activity of additional factors. One
factor that could help to overcome the nucleosomal barrier is
Mre11-C. Speculatively, Mre11-C could catalyze further
endonucleolytic incisions downstream of the nucleosome from
which long-range nucleases could (re-)initiate and thereby allow
to bypass the nucleosome barrier. Currently, such an auxiliary
role of Mre11-C in long-range resection lacks experimental
support, but recent data suggest that short-range and long-
range resection nucleases work in a coordinated fashion
(Ceppi et al., 2020).

Alternatively, resection enzymes will need assistance by
chromatin remodelers to get past nucleosomes and it is
therefore important to consider how these enzymes may be
able to modify the nucleosome barrier.

REMODELERS HAVE DISTINCT ROLES IN
CHROMATIN ORGANIZATION

Eukaryotes express several nucleosome remodelers (Flaus et al.,
2006) and chromatin immunoprecipitation (ChIP) and related
techniques have localized several of them to DSBs (Bantele et al.,
2017; Bennett and Peterson, 2015; Bennett et al., 2013; Bird et al.,
2002; Chai et al., 2005; Chen et al., 2012; Costelloe et al., 2012;
Downs et al., 2004; Eapen et al., 2012; Gnugnoli et al., 2021;
Lademann et al., 2017; Morrison et al., 2004; Shim et al., 2005;

2007; Tsukuda et al., 2005; van Attikum et al., 2004; 2007). This
raises the question, whether these remodelers have distinct
functions at DSBs or whether they act redundantly.

Nucleosome remodelers are found to be either single protein
enzymes or multi-protein complexes. Historically, four major
sub-families of remodelers have been proposed (Clapier and
Cairns, 2009), but phylogenetic analysis based on sequence
conservation of the catalytic ATPase subunits showed the
existence of additional sub-families (Flaus et al., 2006). Five
sub-families are found throughout eukaryotes – ISWI, SWI/
SNF, CHD1, INO80 and Fun30/ETL. In contrast, ALC1,
CHD7 and Mi2/NURD sub-families are not found throughout
eukaryotes, with ALC1 and CHD7 orthologues specifically found
in metazoans (Tong et al., 1998; Xue et al., 1998; Zhang et al.,
1998; Ma et al., 2008; Bouazoune and Kingston, 2012). Table 1
summarizes the different remodeler sub-families with their
putative catalytic activities and involvement in DSB repair.

It seems expedient to group remodelers not only by
evolutionary conservation, but also by functional similarity
(Figure 2, Table 1). In vitro and in vivo we can discriminate
at least three activities of nucleosome remodelers: 1) sliding/
eviction leads to movement of nucleosomes along DNA that can
even result in the removal of the entire nucleosome (Figure 2A);
2) positioning involves movement of nucleosomes to form
regularly spaced nucleosomal arrays (Figure 2B); 3) editing
involves the exchange of histones (commonly H2A-H2B
dimers) to alter the composition of nucleosomes (Clapier and
Cairns, 2009; Clapier et al., 2017). Based on studies of genome-
wide chromatin organization, we currently think that SWI/SNF
sub-family complexes (SWI/SNF and RSC in yeast) act as major
sliding/eviction enzymes, that ISWI and CHD1 sub-family
remodelers as well as INO80-C act as positioning enzymes
and that INO80 sub-family complexes (SWR1 and INO80 in
yeast) catalyze editing (Table 1, Clapier and Cairns, 2009; Clapier
et al., 2017). In the following, we will investigate whether
nucleosome remodelers carry out the same activities at DSBs.

NUCLEOSOME EVICTION AND
RESECTION ARE COUPLED

With nucleosomes forming a barrier to resection, nucleosome
eviction is the most straight-forward solution to allow spreading
of resection into chromatin (Figure 3). Indeed, nucleosomes are
lost around DSBs in the region where resection occurs (Bantele
and Pfander, 2019; Chen et al., 2008; Mimitou et al., 2017;
Tsukuda et al., 2005; 2009; van Attikum et al., 2007). While it
was proposed that nucleosomes may associate in some form with
resected, single-stranded DNA to form single-stranded
nucleosomes (Adkins et al., 2017; Huang et al., 2018), a
dedicated study did not find evidence to support wide-spread
association of nucleosomes with single-stranded DNA in vivo
(Peritore et al., 2021). But how do nucleosomes become evicted
and how do sliding/evicting nucleosome remodelers of the SWI/
SNF sub-family facilitate this eviction (Figure 3A)? In budding
yeast, the SWI/SNF and RSC complexes are specifically recruited
to DSBs (Chai et al., 2005; Shim et al., 2005, 2007; Kent et al.,
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2007; Liang et al., 2007; Bennett et al., 2013; Bennett and Peterson,
2015; Wiest et al., 2017), suggesting that they may act during DSB
repair or signaling. To interrogate the function of SWI/SNF and
RSC, deletion of non-essential subunits or conditional depletion
of the essential catalytic subunits have been used. Interestingly,
interfering with either SWI/SNF or RSC function induced a defect
already in the association of Mre11-C with DSBs (Shim et al.,
2007; Wiest et al., 2017), suggesting that these remodelers could
act at an early stage of DSB repair. Notably, under single-mutant
conditions, resection and DSB repair were found to be delayed or
reduced, but not abolished. Recently, experimental conditions
were established that allowed to simultaneously induce the
degradation of the ATPase subunits of both SWI/SNF and
RSC (Peritore et al., 2021). Under these double mutant
conditions, we find that nucleosome eviction and resection are
both blocked (Peritore et al., 2021). This indicates that 1) SWI/
SNF and RSC are redundantly required for DNA end resection
and that 2) resection and nucleosome eviction are intrinsically
coupled. Altogether, these data are consistent with SWI/SNF and
RSC complexes playing a major role as nucleosome evictors also

in the context of DSBs. The single mutant data (Shim et al., 2007;
Wiest et al., 2017), which showed defects in recruitment of
Mre11-C, suggest that both complexes play an early role and
evict or move DSB-proximal nucleosomes to allow binding of
Mre11-C as well as resection initiation. Whether SWI/SNF or
RSC influence Mre11-C activity, endonucleolytic clipping in
particular, remains to be tested.

These findings raise the question of how these nucleosome
remodelers sense the presence of a DSB and become recruited
to DSB-proximal chromatin at such an early stage. Notably,
RSC and SWI/SNF localize to the proximity of DSBs
independently of each other and follow different
recruitment kinetics, suggesting that they recognize DSBs by
different mechanisms. RSC is recruited to a DSB within 10 min
and thereby precedes resection initiation (Chai et al., 2005).
While its recruitment kinetics are therefore similar to those of
Mre11-C (Shim et al., 2007), we currently do not understand
which signal is being recognized by RSC. SWI/SNF in contrast
shows significantly slower recruitment (Chai et al., 2005) that
depends on nucleosome modifications. Specifically, histone

TABLE 1 | Overview of nucleosome remodeler sub-families and their members.

Family Sub-
family

Putative activity S.
cerevisiae

H. sapiens
orthologues

Function at
DSBs

Snf2-
like

SWI/SNF Nucleosome sliding/
eviction

SWI/SNF BAF Delamarre et al. (2020), Hays et al. (2020), Hu et al. (2020), Kakarougkas et al.
(2014), Kent et al. (2007), Lee et al. (2010), Meisenberg et al. (2019), Ogiwara et al.
(2011), Peng et al. (2009), Peritore et al. (2021), Qi et al. (2015), Shim et al. (2005),
Shim et al. (2007), Ui et al. (2014), Watanabe et al. (2014), Wiest et al. (2017)

RSC PBAF

ISWI Nucleosome
positioning

Isw1a ACF Casari et al. (2021), Delamarre et al. (2020), Helfricht et al. (2013), Lan et al. (2010),
Nakamura et al. (2011), Pessina and Lowndes, (2014), Sánchez-Molina et al.
(2011), Sheu et al. (2010), Smeenk et al. (2012), Toiber et al. (2013), Vidi et al.
(2014), Xiao et al. (2009)

CHRAC
Isw1b NoRC

RSF
Isw2 WICH

NURF
CERF

CHD-I Nucleosome
positioning

Chd1 CHD1, CHD2 Delamarre et al. (2020), Gnugnoli et al. (2021), Kari et al. (2016), Luijsterburg et al.
(2016), Zhou et al. (2018)

CHD-II ? - Mi-2/NuRD Chou et al. (2010), Goodarzi et al. (2011), Larsen et al. (2010), Luijsterburg et al.
(2012), Pan et al. (2012), Polo et al. (2010), Qi et al. (2016), Smeenk et al. (2010),
Smith et al. (2018), Spruijt et al. (2016)

CHD-III ? - CHD6, CHD7, CHD8,
CHD9

Rother et al. (2020)

ALC1 ? - ALC1 Ahel et al. (2009), Blessing et al. (2020), Juhász et al. (2020), Sellou et al. (2016)
Swr1-
like

INO80 Nucleosome editing INO80 INO80 Adkins et al. (2013), Alatwi and Downs, (2015), Bennett et al. (2013), Brahma et al.
(2017), Chen et al. (2012), Downs et al. (2004), Kalocsay et al. (2009), Lademann
et al. (2017), Morillo-Huesca et al. (2010), Morrison et al. (2004), Oberbeckmann
et al. (2021b), Papamichos-Chronakis et al. (2006), Tsukuda et al. (2005), van
Attikum et al. (2004), van Attikum et al. (2007)

Nucleosome
positioning

SWR1 SRCAP
TRAPP/Tip60

Fun30/
ETL

? Fun30 SMARCAD1 Bantele et al. (2017), Chen et al. (2012), Costelloe et al. (2012), Densham et al.
(2016), Eapen et al. (2012)

Nucleosome remodelers are grouped into two families based on conservation of the ATPase subunit: Snf2-like and Swr1-like. Both families have several sub-families.
Snf2-like: The SWI/SNF (switch/sucrose non-fermentable) sub-family consists of two members in budding yeast - SWI/SNF and RSC (remodels the structure of chromatin) – as well as in
human – BAF and PBAF. For human BAF variant complexes can be found harbouring ATPase subunit paralogs (Mittal and Roberts, 2020). The ISWI (imitation switch) sub-family in yeast
contains 3 active complexes – Isw1a, Isw1b, Isw2 - that combine 2 different catalytic subunits - Isw1 and Isw2 - with different sets of proteins. For humans the setup with 2 catalytic
subunits is similar, but with a higher number of different complexes: ACF, CHRAC, NoRC, RSF, WICH, NURF, CERF (Aydin et al., 2014). The CHD (chromodomain helicase DNA-binding)
sub-family has a single member in yeast – Chd1 - and 3 subfamilies with in total 9 members in human: CHD1-2, CHD3-5 – forming NuRD/Mi-2 complex and CHD6-9 (Marfella and
Imbalzano, 2007). The ALC1 sub-family carries a macrodomain for poly(ADP-ribose)-binding instead of a chromodomain and is found in human (Ahel et al., 2009).
Swr1-like: The INO80 (inositol requiring) sub-family has twomembers in yeast: INO80 and SWR1. In humans again there is additional complexity of this sub-family with INO80, SRCAP and
TRAPP/Tip60 complexes (Willhoft and Wigley, 2020). The Fun30/ETL sub-family contains Fun30 in yeast and SMARCAD1 in human (Bantele and Pfander, 2019). Even though
nucleosome remodelers appear to follow a highly similar enzymatic mechanism, they appear to exhibit distinct activities in chromatin organization. These putative activities are given along
studies showing possible functions at DNA double strand breaks.
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acetylation is recognized by SWI/SNF and appears to lead to its
DSB recruitment, consistent with the presence of several
acetylation-binding bromodomains in the SWI/SNF
complex (Bennett and Peterson, 2015; Cheng et al., 2021).
Notably, the histone acetyltransferase NuA4 is specifically
recruited to DSBs and this recruitment was shown to
depend on Mre11-C (Cheng et al., 2021). The fact that
SWI/SNF was found to be required for recruitment of
Mre11-C, but at the same time also dependent on Mre11-C
activity (Shim et al., 2005, 2007; Wiest et al., 2017) is not

necessarily a contradiction, but could suggest the presence of a
positive feedback loop that promotes resection initiation.

Biochemical data suggest that long-range resection should be
particularly dependent on nucleosome eviction (Adkins et al.,
2013). Consistently, SWI/SNF appears to stimulate long range
resection (Wiest et al., 2017), but this has yet to be correlated with
nucleosome eviction. Altogether, these data show that RSC and
SWI/SNF complexes promote DNA end resection in budding
yeast and likely do so by acting as nucleosome evictors. Detailed
biochemical and cell biological analysis will however be needed to

FIGURE 2 | Nucleosome remodeler activities and their effects on chromatin. The activity of different nucleosome remodelers (shades of green) can result in three
principal effects on nucleosomes. (A)–Nucleosome sliding and eviction. While all remodelers have the propensity to slide nucleosomes, eviction of nucleosomes from
double-stranded DNA is catalyzed mainly by the SWI/SNF sub-family of nucleosome remodelers. (B)–Nucleosome positioning. Some nucleosome remodelers have the
ability to slide and position nuclesomes on DNA in a controlled fashion that leads to the formation of regularly spaced arrays. In the budding yeast system this activity
is catalyzed mainly by ISW1a-, ISW1b-, Chd1 and INO80-complexes. (C)–Nucleosome editing. Nucleosome editing is defined as the exchange of canonical histones
(grey) for non-canonical histone variants, like H2A.Z (purple), within the nucleosome and vice versa. In budding yeast H2A/H2A.Z exchange is performed by the INO80
sub-family of remodelers: the SWR1-complex catalyzes the incorporation of H2A.Z-H2B dimers, while the INO80-C is thought to catalyze the reverse reaction.

FIGURE 3 | Nucleosome eviction at DSBs. (A)–Resection nucleases (Exo1/Dna2) are inhibited by the presence of nucleosomes. Thus, eviction of nucleosomes
from dsDNA is required to facilitate resection. This reaction may be catalyzed by nucleosome remodelers with evicting activity (light green). Moreover, binding of the
Mre11-C to the DSB ends might be inhibited by nucleosomes (not shown). Therefore, eviction by nucleosome remodelers might be additionally required also for
resection initiation. (B)–Incorporation of H2A.Z (purple) into nucleosomes by nucleosome remodelers with editing activity (dark green) leads to a reduced stability of
nucleosomes. H2A.Z-containing nucleosomes may therefore be directly evicted by long-range resection nucleases, but nucleosome remodelers with evicting activity
(light green) may be additionally involved (see “?”).
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pinpoint exactly at which steps of DNA end resection these
nucleosome remodelers act. These studies also need to account
for the fact that RSC and SWI/SNF may also influence the long-
range chromatin response to DSBs (on the 10 kb–1 Mb range).
Indeed, γH2A - the long-range chromatin mark of DSBs - was
found to be reduced in RSCmutants (Kent et al., 2007; Shim et al.,
2007), but it is unclear whether this effect relates to nucleosome
eviction.

Lastly, SWI/SNF is also required later during HR, as SWI/SNF
mutants show defects in synapsis and strand invasion (Chai et al.,
2005). It is currently unclear whether this is due to defects in
resection, due to a second “late” role in HR or due to long-range
chromatin changes on the broken chromosome.

Nucleosome eviction appears to be conserved in human
remodeler complexes. Human BAF and PBAF complexes are
recruited to sites of DSBs (Park et al., 2006; Hays et al., 2020).
Moreover, they appear to promote resection, possibly by acting
on the Mre11-C activator CtIP (Hays et al., 2020). This suggests
an early role in resection and it will be interesting to investigate
whether this function is linked to nucleosome eviction.

While SWI/SNF and RSC are the major players in nucleosome
eviction, it could be possible that also other nucleosome
remodelers evict nucleosomes during DSB repair and
resection. In particular, the INO80 complex has been linked to
the eviction of nucleosomes at sites of transcription and DSBs as
well (Tsukuda et al., 2005; van Attikum et al., 2007; Qiu et al.,
2020), but given several functions of INO80 during DSB repair
(see below) this activity is particularly challenging to ascertain.
Additionally, whatever this INO80 complex function is, it appears
to act differently from SWI/SNF and RSC complexes (Peritore
et al., 2021). In all, we therefore conclude that 1) histone eviction
occurs at DSBs, that 2) it is critical for DSB resection and repair
and that 3) it appears to bemediated by the major cellular eviction
activities of the SWI/SNF sub-family complexes.

THE ROLE OF NUCLEOSOME
POSITIONING AT DOUBLE STRAND
BREAKS REMAINS TO BE DETERMINED
Nucleosomes are positioned in a non-random fashion
throughout the genome. In particular, a specific
organization is seen at sites of transcribed genes, where a
nucleosome-free region marks or neighbors the transcription
start site, followed by regularly spaced nucleosomal arrays
(Yuan et al., 2005; Weiner et al., 2010; Baldi et al., 2020).
Positioning remodelers are responsible for the characteristic
spacing of nucleosomes within such nucleosome arrays (Baldi
et al., 2020). To generate the specific spacing of nucleosomes
within the array, positioning remodelers use intrinsic ruler
mechanisms as well as sensing of DNA shapes (Yamada et al.,
2011; Krietenstein et al., 2016; Oberbeckmann et al., 2021a;
Oberbeckmann et al., 2021b). The generation of nucleosome
arrays has been extensively studied in budding yeast, where a
combination of in vitro and in vivo studies suggests that four
remodelers – Chd1, ISW1a, ISW2 and INO80 – can
specifically position nucleosomes to form nucleosome

arrays (Gkikopoulos et al., 2011; Krietenstein et al., 2016;
Ocampo et al., 2016; Kubik et al., 2019; Oberbeckmann et al.,
2021b). Importantly, these remodelers also sense the presence
of barrier-factors bound at specific sites in the genome to
which the array is aligned to or “phased” (Eaton et al., 2010; Li
et al., 2015; Krietenstein et al., 2016; Kubik et al., 2018; Rossi
et al., 2018). Typical barrier factors are DNA-binding factors,
like the abundant general regulatory factors Abf1, Rap1 or
Reb1 in budding yeast or genome organizing factors like
CTCF in mammals or Phaser in flies (Fu et al., 2008;
Wiechens et al., 2016; Baldi et al., 2018). Importantly,
recent in vitro work suggests that also DSBs are sensed as
a barrier-factor by nucleosome remodelers and guide the
formation of nucleosome arrays (Oberbeckmann et al.,
2021a).

The finding that regularly spaced nucleosome arrays can form
around DSBs in in vitro systems raises two questions: do
remodelers position nucleosomes to form arrays around DSBs
also in vivo and would such arrays promote DNA end resection?
Experimentally, nucleosome positioning is typically investigated
using micrococcal nuclease (MNase), which cleaves preferentially
non-nucleosomal DNA. Several studies that used MNase to
investigate nucleosome localization around a single DSB
showed eviction of DSB-proximal nucleosomes, but came to
different conclusions as to whether DSB-distal nucleosomes
would shift their position (Kent et al., 2007; Shim et al., 2007;
Tsabar et al., 2016). While these results are seemingly
contradictory, this may simply be due to the fact that results
from a single DSB are difficult to interpret. For example the newly
formed array can be indistinguishable from the initial
nucleosome positions, if the DSB and initial barrier factor are
located at the same position. To overcome these limitations, a
recent study utilized the PHO5 gene, with its well characterized
nucleosomal array and found evidence for eviction of the break-
proximal nucleosome as well as repositioning of further distal
nucleosomes (Tripuraneni et al., 2021). Further studies will need
to show whether repositioned nucleosomes are indeed aligned to
the DSB and whether the DSB itself or DSB-associated proteins
serve as barrier. Furthermore, studies need to identify, if arrays
are generated by positioning remodelers Chd1, ISW1a, ISW2 or
INO80.

Interestingly, several studies in both yeast and human cells,
point towards a function of these specific remodelers in
promoting homologous recombination (Lan et al., 2010;
Nakamura et al., 2011; Smeenk et al., 2012; Toiber et al., 2013;
Kari et al., 2016; Zhou et al., 2018; Rother et al., 2020; Casari et al.,
2021; Gnugnoli et al., 2021). In particular, remodelers of ISWI,
CHD1 and CHD7 sub-families appear to be recruited to sites of
DNA damage and to stimulate resection (Smeenk et al., 2012;
Toiber et al., 2013; Kari et al., 2016; Delamarre et al., 2020; Rother
et al., 2020; Gnugnoli et al., 2021). The precise mechanism by
which these remodelers promote resection and HR is however
uncertain. Moreover, even if these remodelers established
nucleosome arrays around DSBs, it is at this point entirely
unclear whether such arrays will have a positive function in
DSB repair or whether they are simply a consequence of the
enzymatic mechanism of positioning remodelers (Baldi et al.,
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2018). Therefore, despite first hints that nucleosome arrays could
form in the proximity of DSBs, the role of positioning remodelers
in DSB repair still needs to be determined.

NUCLEOSOME EDITING AND H2A.Z
EXCHANGE GUIDE DOUBLE STRAND
BREAK REPAIR
Nucleosome editing describes the activity of exchanging canonical
histone subunits with non-canonical histone variants and vice versa
(Das and Tyler, 2013; Venkatesh and Workman, 2015). Nucleosome
remodelers can facilitate editing by catalyzing the exchange of histone
dimers. In eukaryotes, several histone variants exist primarily for H2A
andH3 (Draizen et al., 2016; Talbert andHenikoff, 2010; 2017; 2021).
While the principal mechanism for the incorporation of H3 and its
variants is via de novo assembly of nucleosomes, H2A and its variants
can be incorporated into existing nucleosomes by H2A-H2B dimer
exchange (reviewed in Luger et al., 2012). In this chapter, we will
therefore concentrate on nucleosome editing of H2A. Nucleosome
editing has been extensively studied in budding yeast, where twoH2A
variants exist: H2A (which includes features of H2A.X) and H2A.Z
(Santisteban et al., 2000). The SWR1 complex catalyzes the
incorporation of H2A.Z-H2B dimers (Krogan et al., 2003;
Mizuguchi et al., 2004). Furthermore, the INO80 complex is
thought to catalyze the reverse reaction, the exchange of H2A.Z-
H2B with H2A-H2B dimers (Papamichos-Chronakis et al., 2011;
Brahma et al., 2017). This model of INO80 function is based on the
principal finding that deletion of the H2A.Z gene HTZ1 genetically
suppresses many phenotypes of mutants deficient in INO80 function
(Lademann et al., 2017; Papamichos-Chronakis et al., 2006; 2011).

The SWR1 complex is the prototypical nucleosome editing
remodeler: mechanistically, it is able to translocate short stretches
of DNA with no changes in nucleosome position, which then allows
H2A-H2B dimers to be exchanged for H2A.Z-H2B dimers (Wu et al.,
2009; Luk et al., 2010; Ranjan et al., 2015; Willhoft et al., 2018; Singh
et al., 2019). In budding yeast, the SWR1 complex incorporatesH2A.Z
into chromatin around DSBs, as indicated by 1) the recruitment of
SWR1 to DSB sites (van Attikum et al., 2007; Morillo-Huesca et al.,
2010) and 2) a transient increase in H2A.Z occupancy in the DSB-
surrounding chromatin shortly after DSB induction (Kalocsay et al.,
2009). A transiently increased incorporation of H2A.Z into DSB-
proximal chromatin was observed also in human cells (Xu et al., 2012;
Nishibuchi et al., 2014; Alatwi and Downs, 2015; Gursoy-Yuzugullu
et al., 2015). Compared to canonical nucleosomes, H2A.Z-containing
nucleosomes aremore labile (Abbott et al., 2001; Zhang et al., 2005; Jin
and Felsenfeld, 2007) suggesting that their presence will promote
DNA end resection. Consistently, yeast cells lacking H2A.Z show a
pronounced resection defect (Kalocsay et al., 2009; Lademann et al.,
2017). In contrast, the absence of SWR1 causes a much milder
resection phenotype (van Attikum et al., 2007; Chen et al., 2012;
Adkins et al., 2013). These data suggest that either 1) H2A.Z becomes
incorporated at DSB sites by an SWR1-independent mechanism or
that 2) H2A.Z-incorporation into DSB-surrounding chromatin is not
a major regulator of resection and that H2A.Z regulates resection by
means independent from its incorporation in DSB-surrounding
chromatin.

If H2A.Z-incorporation into DSB-proximal chromatin
promotes resection, there are two putative mechanisms by
which it could do so. First, the aforementioned reduction of
nucleosome stability may allow remodelers or even resection
nucleases to bypass and evict H2A.Z-containing nucleosomes
(Adkins et al., 2013). Second, H2A.Z could serve as binding
platform for associated factors (Xu et al., 2012) as has been shown
for nucleotide excision repair (Yu et al., 2013). Binding of factors
to H2A.Z or SUMO-modified H2A.Z is for example thought to
lead to relocalization of DSBs to the nuclear periphery (Nagai
et al., 2008; Kalocsay et al., 2009; Oza et al., 2009; Horigome et al.,
2014). Relocalization of DSBs is also observed in Drosophila,
where heterochromatic DSBs are first brought to the periphery of
the heterochromatic domain (Chiolo et al., 2011) and then to the
nuclear pore complex (Ryu et al., 2015). Similarly, in mammalian
cells DSB relocation to discrete clusters in the periphery of
heterochromatin has been observed (Jakob et al., 2011;
Tsouroula et al., 2016; Schrank et al., 2018), but a connection
between DSB relocation and H2A.Z has not been shown so far.
Therefore, nucleosome editing and H2A.Z incorporation are used
to regulate DSB repair, but the underlying molecular mechanisms
warrant further investigation.

The importance of nucleosome editing for DSB repair raises
the question whether H2A.Z incorporation becomes reversed at
some point. Indeed, studies in budding yeast have shown that the
INO80 complex is not only recruited to DSBs (Downs et al., 2004;
Morrison et al., 2004; van Attikum et al., 2004; Bennett et al.,
2013), but that it also counteracts H2A.Z incorporation
(Papamichos-Chronakis et al., 2011). Also in human cells
H2A.Z is removed from chromatin surrounding DSB sites (Xu
et al., 2012; Nishibuchi et al., 2014; Alatwi and Downs, 2015;
Gursoy-Yuzugullu et al., 2015; Clouaire et al., 2018). While
INO80’s role as nucleosome editing and H2A.Z removal
enzyme was initially controversial (Papamichos-Chronakis
et al., 2011; Watanabe et al., 2013; Jeronimo et al., 2015;
Tramantano et al., 2016; Wang et al., 2016; Watanabe and
Peterson, 2016), recent structural work showed that besides its
nucleosome positioning activity, the INO80 complex may be able
to catalyze translocation of short stretches of DNA without
nucleosome sliding, consistent with histone dimer exchange
activity (Ayala et al., 2018; Eustermann et al., 2018). This
suggests that at DSBs INO80 may have at least two activities:
1) a nucleosome positioning activity (see above) and 2) a
nucleosome editing activity (Papamichos-Chronakis et al.,
2006; Alatwi and Downs, 2015; Brahma et al., 2017;
Lademann et al., 2017). Consistent with INO80 antagonizing
the SWR1 complex and removing H2A.Z from chromatin,
mutants deficient in INO80 complex function accumulate
H2A.Z around DSBs (Papamichos-Chronakis et al., 2006;
Alatwi and Downs, 2015; Lademann et al., 2017). The dual
remodeling activity of the INO80 complex complicates the
interpretation of ino80 mutant phenotypes. To overcome this
issue, deletion of the H2A.Z gene HTZ1 has been used, because it
suppresses phenotypes arising from an H2A.Z removal defect.
Using this approach, an H2A.Z removal function of the INO80
complex was found to promote the formation of the
Rad51 nucleo-protein filament downstream of resection
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(Lademann et al., 2017). In contrast, a resection-promoting
function of the INO80 complex was found to be independent
of H2A.Z (Lademann et al., 2017) and therefore unrelated to
nucleosome editing. Moreover, also in human cells, nucleosome
editing by the INO80 complex is important for DSB repair and
acts after DNA end resection (Alatwi and Downs, 2015). Taken
together, a picture emerges whereby nucleosome editing and
H2A.Z incorporation by the SWR1 complex is involved in
regulation of DNA end resection in yeast, while generally and
throughout eukaryotes H2A.Z removal in DSB-surrounding
chromatin is important for DSB repair, but likely acts only
after resection.

FUN30/SMARCAD1 PROMOTE
RESECTION BY ANTAGONIZING
RESECTION-INHIBITORY FACTORS
Fun30 (from budding yeast), ETL1 (from mouse) and
SMARCAD1 (from human) are the prototypical members of a
sub-family of nucleosome remodelers that is evolutionary
conserved throughout eukaryotes (Clark et al., 1992; Adra
et al., 2000; Flaus et al., 2006). Historically they have not been
considered major nucleosome remodelers and their molecular
mechanisms have not yet been entirely elucidated (Bantele and
Pfander, 2019). Recently, a study by the Luger lab suggested that
SMARCAD1 evicts and also assembles entire nucleosomes by a
mechanism that involves unique contacts between remodeler and
nucleosome (Markert et al., 2021). Work with yeast Fun30
suggests that it can slide nucleosomes and mediate histone
dimer exchange (Awad et al., 2010).

A key function of yeast Fun30 and human SMARCAD1 appears to
be the stimulation of long-range resection (Chen et al., 2012; Costelloe
et al., 2012; Eapen et al., 2012). For example, in budding yeast cells
lacking Fun30, long-range resection of a non-repairable DSB is 2-3-
fold slower than in WT cells (Eapen et al., 2012; Bantele et al., 2017).
Accordingly, fun30 mutants scored similarly to mutants deficient in
the long-range resection nucleases, when they were initially found in
screens for resection-dependent repair of DSBs (Chen et al., 2012;
Costelloe et al., 2012). Moreover, an evolutionary conserved pathway
facilitates recruitment of Fun30 to sites of DNA end resection. This
pathway requires the 9-1-1 complex as recruitment platform at the
ssDNA-dsDNA junction and is activated during cell cycle phases
(S-M phase), when also resection is activated (Chen et al., 2016;
Bantele et al., 2017).

In contrast, Fun30 did not stimulate Exo1’s ability to resect
through a nucleosome in an in vitro system (Adkins et al., 2013).
This finding raises the possibility that a crucial factor was missing
from these reconstituted systems. Consistently, fun30 mutant
phenotypes can be suppressed by the additional depletion of the
resection inhibitor Rad9 from yeast cells (Chen et al., 2012; Bantele
et al., 2017). These data indicate a functional antagonism between
Fun30 and Rad9. Notably, also in human cells SMARCAD1 acts as
resection activator, while the Rad9 orthologue 53BP1 is a resection
inhibitor (Lazzaro et al., 2008; Bunting et al., 2010; Bothmer et al.,
2011; Costelloe et al., 2012; Densham et al., 2016), suggesting that the
antagonism of both factors is conserved throughout eukaryotic

evolution (please see (Sanchez et al., 2021)) in this issue for a
detailed review on the interaction between 53BP1 and BRCA1 in
the DSB repair decision). Notably, Rad9, 53BP1, as well as the fission
yeast orthologue Crb2 associate with chromatin and have all been
shown to bind to nucleosomes, where they recognize specific histone
modifications (Huyen et al., 2004; Nakamura et al., 2004; Sanders
et al., 2004; Wysocki et al., 2005; Botuyan et al., 2006; Du et al., 2006;
Toh et al., 2006; Grenon et al., 2007; Hammet et al., 2007; Fradet-
Turcotte et al., 2013; Wilson et al., 2016; Hu et al., 2017; Kilic et al.,
2019). Rad9 orthologues appear to recognize distinct histone marks,
but in each case two or more histone marks are bound (reviewed in
Marini et al., 2019; Panier and Boulton, 2014), suggesting that Rad9
orthologues aremultivalent histone binders.We therefore hypothesize
that both Fun30 and Rad9 influence DSB-surrounding chromatin in
an antagonistic fashion and that Fun30 specifically acts on Rad9-
bound nucleosomes (Bantele and Pfander, 2019).

In budding yeast cells lacking both Fun30 and Rad9, resection
and nucleosome eviction are fully functional (Peritore et al.,
2021), suggesting that Fun30 is not required to overcome the
general nucleosome barrier and that it is not the essential
nucleosome evictor at DSBs. Alternatively, Fun30 may rather
catalyze the direct removal of Rad9 from nucleosomes
(Figure 4A) or it may counteract Rad9 association with
nucleosomes by catalyzing histone dimer exchange which may
remove one or more binding site(s) for Rad9 (Figure 4B). Lastly,
it is possible that Fun30 slides or even entirely evicts Rad9-bound
nucleosomes (Figure 4C). Given that Rad9 and Fun30 antagonize
each other on multiple levels, including also the competition for
binding to the scaffold protein Dpb11 (Granata et al., 2010;
Pfander and Diffley, 2011; Bantele et al., 2017), future
biochemical and structural studies will be needed to reveal the
mechanism by which Fun30 promotes DNA end resection.

Also human SMARCAD1 antagonizes 53BP1. Depletion of
SMARCAD1 stabilizes 53BP1 around DSB sites (Densham et al.,
2016). However, resection regulation in human cells is more
complex compared to yeast as besides SMARCAD1 a second
resection promoting factor exist, the BRCA1-BARD1 complex
(reviewed in Densham and Morris, 2019; Sanchez et al., 2021).
BRCA1-BARD1 form an E3 ubiquitin-ligase complex that
mediates ubiquitylation of H2A (Kalb et al., 2014; Densham
et al., 2016; Leung et al., 2017; Nakamura et al., 2019).
BRCA1-BARD1 is likely to act upstream of SMARCAD1, as
ubiquitin-modified H2A promotes SMARCAD1 binding to
nucleosomes around DSBs (Densham et al., 2016). Therefore,
SMARCAD1 function has to be seen in the context of post-
translational histone modifications, which affect DSB-
surrounding chromatin. DSB-localized SMARCAD1 may also
become post-translationally modified itself, including
phosphorylation by the ATM kinase and ubiquitylation by the
RING1 ubiquitin ligase (Chakraborty et al., 2018), which appears
to activate the pro-resection function of SMARCAD1. These
factors need to be taken into consideration for biochemical
studies that ultimately will allow to understand whether the
Fun30/SMARCAD1 sub-family remodelers facilitate resection
by nucleosomes sliding and eviction, positioning or editing
and whether it acts on nucleosomes or rather on nucleosome-
associated proteins.
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CONCLUSION

In all, we think that previous studies collectively indicate that
nucleosome remodelers may serve similar roles during DSB repair
as during gene transcription with nucleosome eviction, editing and
potentially even positioning taking place at DSBs. Knowledge of the
specific activities of individual nucleosome remodelers and of their
redundancies thereby offers the potential to get to grips with
chromatin changes occurring at DSBs. Moreover, we think that
studies of DSB resection and repair may be generally inspired by
analogies to gene transcription. Both processes appear to be similarly
affected by the presence of chromatin, with nucleosomes forming a
dynamic barrier and nucleosome remodelers facilitating its bypass.

Importantly, while nucleosomes clearly form a barrier to the
resection nucleases, nucleosome remodelers equip cells with
multiple ways to overcome this barrier. In this review, we have
outlined several putative mechanisms of how bypass may occur.
These include eviction, sliding and editing of nucleosomes. While
we are still only beginning to understand how the nucleosome barrier
is overcome, a key future question will be which bypass mechanism is
chosen inwhich cellular scenario. Importantly, the nucleosome barrier
and its dynamic nature offers additional possibilities to regulate
resection and DSB repair. Moreover, critical factors of the DSB
repair decision, such as 53BP1 and BRCA1, are proteins that bind
and modify nucleosomes. Therefore, we propose that convergence of

resection-regulatory pathways on nucleosomes is a central part of the
cellular DSB repair decision.
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FIGURE 4 | Potential mechanisms by which Fun30 may promote resection. Long-range resection is controlled by the antagonism between the resection-
promoting nucleosome remodeler Fun30 and the resection-inhibiting nucleosome binder Rad9. The precise mechanism of this antagonistic relationship is still elusive,
but the following models are possible: (A)–Fun30 directly removes Rad9 from nucleosomes thereby removing the factor inhibiting resection. (B)–Fun30 counteracts
Rad9 association with nucleosomes by exchanging histone dimers. It either incorporates histones lacking modifications necessary for Rad9 association – for
example unmodified H2A, missing phosphorylation on S129 (γH2A), or the histone variant H2A.Z; both of which eliminate Rad9 binding sites. (C)–Fun30 slides and/or
evicts Rad9-bound nucleosomes, freeing the DNA from the resection-inhibitory effects of Rad9 to allow the subsequent resection.
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