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Abstract Near-critical turbulent axisymmetric free-surface flow over a horizontal bottom is investigated.
Assuming that undular hydraulic jumps occur at large radii, an asymptotic analysis of the governing equations
is performed in the double limit of very large Reynolds numbers and Froude numbers close to the critical value
1. The results are kept free of turbulencemodelling due to a specific coupling of the two limiting processes. The
final result of the asymptotic analysis is a new steady-state version of an extended Korteweg–de Vries (KdV)
equation for the free-surface elevation. The extended KdV equation is derived as a uniformly valid differential
equation, describing the flownear the origin of the undular jump aswell as far downstream.Numerical solutions
of the extended KdV equation show that circular undular jumps can develop if the reference state is located
in the region where the effect due to axisymmetry prevails over the effect of friction. In this case, the solution
oscillates over a very long distance until the accumulating friction effects force a breakdown. The comparison
between the theories of undular jumps in turbulent and inviscid flows shows that friction is of minor importance
near the development of the undular jump. However, friction has to be taken into account to describe the flow
further downstream. Remarkably, the extended KdV equation is valid and yields undular solutions for both
turbulent source and sink flow.

1 Introduction

The transition from supercritical to subcritical free-surface flow, without undulations, is known as the classical
hydraulic jump. Circular hydraulic jumps have been studied for more than a century. Since their first investi-
gation by Lord Rayleigh in 1914 [1], various aspects of this phenomenon have been studied experimentally as
well as theoretically and numerically.

Viscosity has been shown to be essential for the development of the classical circular jump, and thus
considering inviscid flow is a rather strong oversimplification [2,3]. Most theoretical investigations aim at
predicting the jump radius as a discontinuity between the super- and subcritical regime by applying the one-
dimensional hydraulic approximation, cf. [2–5]. While in the vast majority of studies laminar flow is assumed,
Watson [6] considered both laminar and turbulent flow by introducing an eddy viscosity.

Laminar circular hydraulic jumps are generally divided into type I and type II jumps [7]. In type I jumps, a
recirculation bubble, which is caused by the abrupt increase in the hydrostatic pressure at the jump, is attached
to the wall [8]. In type II jumps, a so-called surface roller appears, i.e. a second eddy on the free surface. The
surface roller is essentially associated with surface tension. It may be observed if the downstream flow depth
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is relatively large, and thus the transition from super- to subcritical flow causes a strong curvature of the free
surface, cf. [9].

In a surface tension dominated flow, oscillating capillary waves develop upstream of the circular jump
[10–12]. Bush and Aristoff [13] showed that surface tension effects are generally weak in laboratory settings
and become more important in a jump of small radius and height.

In highly viscous liquids, symmetry-breaking hydraulic jumps may occur as steady as well as time-
dependent (i.e. rotating) structures. In their experimental analysis of increasing downstreamflow depth, Bohr et
al. [7] observed hexagonal rotating jumps as the final stage before the jumps disappeared. Stationary polygonal
jumps such as a pentagon were reported by Ellegaard et al. [14]. In both studies, the symmetry-breaking jumps
are characterised by sharp corners that carry large radial flow rates, while the structures’ sides generate resis-
tance to the flow. A new class of even more irregular structures restricted to a very narrow parameter regime
was presented by Bush et al. [15]. This class includes jumps of the shape of cat-eyes, three- and four-leaf
clovers, and butterflies, the latter exhibiting only a single symmetry plane. All symmetry-breaking structures
emerge exclusively from circular type II jumps and show a clear dependence on surface tension as they relax
to circular jumps if a surfactant is added, [15]. Also, Kasimov [5] observed that increasing surface tension acts
destabilising on the laminar circular jump, possibly causing the transition to symmetry-breaking instabilities.

Circular undular hydraulic jumps are hardly discussed in the literature. Thorpe andKavc̆ic̆ [16] investigated
the laminar internal circular jump by introducing a saline solution through a tube into a tank filled with fresh
water. During the initial stage of their transient experiments, undular transitions from super- to subcritical
flow were observed. In the stratified flow of [16], surface tension is of minor importance, and undulations can
develop, in contrast to experiments performed with a free surface, see e.g. [10]. Also, the numerical solutions
of the Navier–Stokes equation by Fernandez-Feria et al. [17] showed circular undular jumps by neglecting
surface tension, while the undulations were suppressed by taking surface tension into account.

Undular hydraulic jumps with curved front can also be observed in natural environments. Figure 1a shows
the photograph of an undular hydraulic jump with a concave front, formed when rainwater was flowing over
the pavement across the street towards the manhole. A photograph of an undular jump with a convex front
is shown in Fig. 1b, where artistic obstacles in a flume triggered the curved undular hydraulic jump. These
photographs serve as motivation for the following analysis, as concave and convex undular jumps are expected
to occur in near-critical axisymmetric source and sink flow, respectively. However, both phenomena were
observed outside of laboratory settings with an irregular curvature radius and inclined bottoms. In contrast,
the analysis in this paper will be restricted to axisymmetric flow over horizontal surfaces.

To the author’s knowledge, the circular undular hydraulic jump in turbulent free-surface flow has neither
been observed in laboratory experiments nor has it ever been analysed theoretically or numerically. The present
paper is dedicated to answering under which conditions such a flow phenomenon may occur. Since even weak
friction effects accumulate with increasing distance from a given reference state, the following analysis aims
at taking this fact into account and describing the flow near the jump’s origin as well as far downstream.

The governing equations, including the boundary and matching conditions for steady turbulent source
flow, are given in Sect. 2. An asymptotic analysis of the governing equations for slightly supercritical Froude
numbers and very large Reynolds numbers is performed in Sect. 3. Numerical results of undular jump solutions
are shown in Sect. 4. In Sect. 5, the theory of circular undular jumps in turbulent flow is compared with the
theory of circular undular jumps in inviscid flow. Undular hydraulic jumps in turbulent sink flow are discussed
in Sect. 6. Finally, the conclusions of the present study are given in Sect. 7.

2 Governing equations of turbulent source flow

We consider steady near-critical turbulent axisymmetric source flow over a horizontal bottom with very large
Reynolds numbers. The cylindrical coordinates r and z are introduced as shown in Fig. 2. The corresponding
averaged velocity components are ū and w̄, respectively. Surface tension is neglected since it is known to be
of minor importance in almost all terrestrial flows [18,19]. Moreover, the circular undular jump is assumed
to arise at a relatively large jump radius, where the effects of both axisymmetry and surface tension are weak
[13]. Therefore, the reference radius rr, being the position of the toe of the jump, is assumed to be sufficiently
large. A more detailed description of what ‘sufficiently large’ means will be given below, see Eq. (14). By
applying a Reynolds decomposition [20, p. 83], to the turbulent flow quantities, time-averaged quantities are
denoted by an overbar and fluctuations around the average by a prime. The time-averaged height of the free
surface above the bottom is h̄.
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(a)

(b)

Fig. 1 a Observation of an undular hydraulic jump with concave front. Photograph taken by R. Kolda in Vienna, Austria on 7
March 2009. b Observation of an undular hydraulic jump with convex front. Photograph taken by H. Steinrück in Karlsruhe,
Germany on 24 March 2010

Fig. 2 Stationary undular hydraulic jump in turbulent axisymmetric free-surface flow over a horizontal bottom

Non-dimensional variables are introduced by referring to the reference state (subscript r):

R = δ
r

h̄r
, Z = z

h̄r
, H̄ = h̄

h̄r
, Ū = ū

ūr
, W̄ = δ−1 w̄

ūr
,

P̄ = p̄

ρgh̄r
, Uτ = uτ

uτ,r
, U ′2 = u′2

u2τ,r
, W ′2 = w′2

u2τ,r
, U ′W ′ = u′w′

u2τ,r
.

(1)
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The shallow-water approximation is applied by using the small contraction parameter δ � 1. The free-surface
height h̄r and the volumetric mean velocity ūr = Q/rr h̄r serve as a reference length and a reference velocity,
respectively. Q denotes the volumeflow rate per unit azimuth angle. The pressure p is referred to the hydrostatic
pressure at the bottom in the reference state, ρgh̄r. Here, ρ is the constant fluid density and g is the acceleration
due to gravity. The Reynolds stresses u′2, w′2, and u′w′ are referred to the square of the reference friction
velocity, u2τ,r, where uτ = √

τ̄w/ρ with the averaged wall shear stress τ̄w at the bottom.
The continuity equation of incompressible flow in non-dimensional form reads

∂Ū

∂R
+ Ū

R
+ ∂W̄

∂Z
= 0 . (2)

In the defect layer, the equations of motion in non-dimensional form are

δFr2r

(
Ū

∂Ū

∂R
+ W̄

∂Ū

∂Z

)
= −∂ P̄

∂R
− Fr2τ,r

[
δ

(
∂U ′2
∂R

+ U ′2
R

)
+ ∂U ′W ′

∂Z

]
, (3.1)

δ2Fr2r

(
Ū

∂W̄

∂R
+ W̄

∂W̄

∂Z

)
= −∂ P̄

∂Z
− 1 − Fr2τ,r

[
δ

(
∂U ′W ′

∂R
+ U ′W ′

R

)
+ ∂W ′2

∂Z

]
, (3.2)

with the reference Froude numbers defined as

Frr := ūr√
gh̄r

, Frτ,r := uτ,r√
gh̄r

. (4)

For largeReynolds numbers, the effect of friction is known to be small.Hence, itwill be assumed that the friction
Froude number is very small, while Frr is slightly above the critical value 1, cf. (13) and (11), respectively.

The governing equations (2), (3.1) and (3.2) are to be solved subject to appropriate boundary and matching
conditions. At the bottom, the conventional boundary condition for the lateral velocity, i.e.

W̄ (R, 0) = 0 , (5)

is prescribed. According to Schlichting and Gersten [21, Section 20.1.2], the logarithmic velocity law for plane
flow also holds for the present turbulent axisymmetric flow. Therefore, matching with the viscous wall layer
yields the boundary condition for U ′W ′ at the bottom, i.e.

−U ′W ′ = U 2
τ as Z → 0 . (6)

A coupling condition for Uτ and H̄ is obtained by using the logarithmic expression for the velocity in the
defect layer [21, p. 544], which reads in the present non-dimensional variables, cf. [22]:

Ū (R, H̄) = Frτ,r
Frr

Uτ

[
1

κ
ln(Reτ,rUτ H̄) + C+ + C̄(R)

]
, (7.1)

C̄(R) =
H̄∫
0

[
Frr

Frτ,rUτ

∂Ū

∂Z
− 1

κZ

]
dZ . (7.2)

The Reynolds number is defined in terms of the reference friction velocity,

Reτ,r := uτ,r h̄r
ν

, (8)

where ν denotes the constant kinematic viscosity. In (7.1), κ is the v. Kármán constant and C+ is another
empirical constant. It will turn out that neither one of these constants will appear in the final result. At the free
surface, conventional kinematic and dynamic boundary conditions are imposed. Thus, a streamline defines the
averaged interface in the averaged velocity field of the turbulent flow, i.e.

W̄ (R, H̄) = Ū (R, H̄)
dH̄

dR
, (9)
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and continuity of the stresses is ensured by the relation

[
P̄(R, H̄) + Fr2τ,r U ′2(R, H̄)

]
δ
dH̄

dR
− Fr2τ,r U ′W ′(R, H̄) = 0 , (10.1)

[
P̄(R, H̄) + Fr2τ,r W ′2(R, H̄)

]
− Fr2τ,r U ′W ′(R, H̄) δ

dH̄

dR
= 0 . (10.2)

3 Asymptotic analysis

3.1 Asymptotic expansion

In the following, we will perform an asymptotic analysis of the governing equations of near-critical turbulent
axisymmetric flow over a horizontal bottom in the double limit of large Reynolds numbers (i.e. Frτ,r � 1)
and Froude numbers close to the critical value 1. The analysis represents a combination of the investigation of
plane turbulent flow over horizontal bottoms [23] and of inviscid axisymmetric flow [24, p. 47]. Thus, a small
perturbation parameter ε is introduced according to

Frr = 1 + 3

2
ε , 0 < ε � 1 , (11)

and the contraction parameter is defined as
δ = 3ε1/2, (12)

where the coefficients 3/2 and 3 serve for later convenience.
The reference state’s deviation from a fully developed flow cannot be assumed to be small as such a state

does not exist for a horizontal bottom. Incorporating this fact and aiming at an analysis that is free of turbulence
modelling but still includes friction effects requires coupling the two small parameters ε and Frτ,r according
to

Fr2τ,r = Bε3, B = const = O(1) . (13)

With the particular scaling in (13), friction will affect the final result only weakly, i.e. as an effect of O(ε1/2)
in (27).

As mentioned above, the reference radius is assumed to be large, i.e.

Rr = R̃ε−n, R̃ = const = O(1) , (14)

with 2 ≤ n ≤ 5/2. The range of the exponent n is carefully chosen such that the terms due to axisymmetric flow
will affect the final result only weakly or, at most, as an order 1 effect. By introducing η as the non-dimensional
distance from the reference state, the non-dimensional radius is decomposed in

R = Rr + η with dR = dη . (15)

All dependent variables are expanded in terms of powers of ε, e.g.

H̄(η) = H0 + εH1(η) + ε2H2(η) + . . . , (16.1)

Ū (η, Z) = U0 + εU1(η, Z) + ε2U2(η, Z) + . . . , (16.2)

for the non-dimensional height and velocity, respectively, neglecting terms of order ε3 and smaller. The leading-
order terms represent the undisturbed reference state and read for the dependent variables:

H0 = 1 , U0 = 1 , W0 = 0 , P0 = 1 − Z . (17)

For the flow over a horizontal bottom, a fully developed flow with a linear Reynolds shear stress profile does
not exist. Thus, the leading order of the Reynolds shear stress is assumed to be of the form

(U ′W ′)0 = Z − 1 + 
U ′W ′(Z) , (18)

with the term 
U ′W ′(Z) = O(1) representing the deviation of the reference state from the linear profile. In
order to satisfy the boundary conditions at the bottom and at the free surface, 
U ′W ′(0) = 
U ′W ′(1) = 0
holds.



D. Murschenhofer

3.2 First-order equations and second-order analysis

In the following analysis, a uniformly valid differential equation for the free-surface elevation H1(η) will
be derived. Following [22,25], this derivation requires collecting terms that are of O(ε) and half an order
of magnitude smaller, i.e. O(ε3/2), in the course of analysing the first-order equations (meaning equations
containing only variables with subscript 1). Consequently, terms of O(ε2) and O(ε5/2) have to be collected
in the analysis of the second-order equations. Note that treating all terms of different orders of magnitude
individually requires a multiple-scale analysis of the governing equations, which was performed for undular
jumps in turbulent open-channel flow by [23,26,27].

Expanding the governing equations by using the leading-order results (17, 18), and collecting the terms of
O(ε) and O(ε3/2) leads to the following relations for the first-order quantities:

U1 = −H1 + ε1/2
√
B
U (Z) , W1 = H1,ηZ , P1 = H1 . (19.1–3)

The subscript η denotes the derivative with respect to η. In the framework of first-order equations, the free-
surface elevation H1(η) remains undetermined. Equation (19.1) contains the non-dimensional velocity defect

U (Z) = O(1). With flows close to separation being excluded, the velocity defect is of the order of the friction
velocity [21, p. 536], i.e. Ūr(Z) = 1 + Frτ,r 
U (Z). Thus, the term containing 
U (Z) in (19.1–3) is half an
order of magnitude smaller than all other terms, which is permitted in the course of deriving a uniformly valid
differential equation for H1. Since a volumetric mean value has been chosen as reference velocity, the integral
of 
U (Z) over the film thickness vanishes per definition, i.e.

1∫
0


U dZ = 0 . (20)

As a consequence, 
U (Z) will not appear in the final result of the analysis.
From the one-dimensional hydraulic approximation of axisymmetric flow, [2,3,17], follows that even

weak friction effects accumulate and eventually lead to a breakdown of the flow, see also [24, Figure 6.3]. To
incorporate this, the present analysis aims at deriving a uniformly valid differential equation, which represents
the initial behaviour of the undular jump as well as the breakdown far downstream. Therefore, the denominator
of the term Ū/R in the continuity equation (2) will not be expanded, and the term reads

Ū

R
= εn

1 + εU1 + . . .

R̃ + εnη
, (21)

allowing for εnη � 1. Due to 2 ≤ n ≤ 5/2 in (14), the term Ū/R does neither affect the leading-order nor
the first-order equations.

Finally, a solvability condition for H1(η) is derived from the second-order equations by considering terms
of O(ε2) and O(ε5/2). Thus, the governing equations are expanded up to second-order terms by using the
first-order relations (19.1–3). Integrating the momentum equation’s vertical component (3.2) with respect to
Z , and applying the dynamic boundary condition (10.2) to determine the free function of integration, yields

P2 − H2 = 9

2
(1 − Z2)H1,ηη . (22)

With (22), the second-order momentum equation in radial direction (3.1) reads

U2,η + H2,η = 9

2
(Z2 − 1)H1,ηηη + (3 − H1)H1,η

− ε1/2
[√

B(Z
UZ − 
U )H1,η + B

3

[
1 + (
U ′W ′)Z

]]
. (23)

The subscript Z denotes the derivative with respect to Z . According to the second order of the continuity
equation (2), U2,η is substituted by −W2,Z − εn−2/(R̃ + εnη). Further, (23) is integrated with respect to Z
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from 0 to 1 by applying the boundary condition at the bottom (5) and making use of the integral conditions
(20) and

1∫
0

Z
UZ dZ = 
U (1) , (24)

which follows also from (20). The integration and elimination of U2,η yields:

W2(η, 1) − H2,η = 3H1,ηηη + (H1 − 3)H1,η

+ ε1/2
[√

B
U (1)H1,η + B

3

]
− εn−2

R̃ + εnη
. (25)

On the other hand, the second-order kinematic boundary condition according to (9) reads

W2(η, 1) − H2,η =
[
ε1/2

√
B
U (1) − 2H1

]
H1,η . (26)

Thus, (25) and (26) are compatible if

H1,ηηη + (H1 − 1)H1,η = f (η; n) − γ , (27)

with

f (η; n) = εn−2

3(R̃ + εnη)
= 1

3Rε2
, (28)

γ = ε1/2
B

9
= Fr2τ,r

9ε5/2
. (29)

The solvability condition (27) is a new steady-state version of an extended Korteweg–de Vries (KdV) equation
with two extension terms on the right-hand side. The first term represents the effect of axisymmetric flow and
slowly decays with increasing distance from the reference state. The constant γ = O(ε1/2) is a damping term,
which describes the combined effect of friction and the reference state’s deviation from the critical state (i.e.
ε).

In the case of n = 5/2, i.e. Rr = O(ε−5/2), both terms on the right-hand side of (27) are of O(ε1/2) and
counteract each other. At η = 0, the right-hand side’s sign depends on the particular values of the order 1
constants R̃ and B. Initially, the right-hand side is positive if B R̃ < 3 and negative if B R̃ > 3. These two
distinctions will play an essential role in the analysis of possible undular solutions of (27) in Sect. 4.1. For
B R̃ = 3, the right-hand side vanishes at η = 0, and (27) turns into the classical KdV equation [28, p. 21].

In the case of n = 2, i.e. Rr = O(ε−2), the effect due to axisymmetric flow becomes enhanced, and the
first extension term in (27) is of O(1), while γ = O(ε1/2) is unchanged. This implies a positive right-hand
side at η = 0 for any values of B and R̃.

3.3 Hydraulic approximation of the extended KdV equation and validity condition

For solving the extended KdV equation (27), appropriate initial conditions at the reference state (η = 0) have
to be prescribed. For this purpose, the flow upstream of the jump may be assumed according to the hydraulic
approximation, i.e. considering a one-dimensional flow approximation together with a hydrostatic pressure
distribution, cf. [2,3] and “Appendix A”. A near-critical hydraulic approximation, valid in the vicinity of the
reference state (i.e. for εnη � 1), can be derived from the full hydraulic approximation (A.4), i.e.

(H1 − 1)H1,η = εn−2/3R̃ − γ , (30)

see “AppendixA” for details. Interestingly, (30) is identical to (27)without the third-order termand for εnη � 1.
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Fig. 3 The dotted and dash-dotted line shows the subcritical and supercritical branch, respectively, of the hydraulic approximation
of the extended KdV equation (31.1), with n = 5/2. The solution of the near-critical hydraulic approximation, (30), for n = 5/2
is shown as solid line. The parameter values ε = 0.08, R̃ = 0.75, B = 2 correspond to C = −1.77, ηm = 414, ηs = 1060

However, the extended KdV equation (27) was derived with the aim of being valid also for εnη � 1. As
shown in Sect. 4, the solution of (27) oscillates around the subcritical branch of the solution of (27) without
the third-order term but retaining the term εnη, i.e.

H1 = 1 ∓
√
1 − 2γ η + 2

3ε2
ln

(
1 + εnη

R̃

)
, (31.1)

H1,η = f (η; n) − γ

H1 − 1
, (31.2)

H1,ηη = −[ f (η; n) − γ ]2
(H1 − 1)3

, (31.3)

using the lower sign in (31.1). We will refer to (3.3) as the hydraulic approximation of the extended KdV
equation (27). As shown in Fig. 3, for εnη � 1, the dash-dotted and dotted lines representing the two branches
of (31.1) are very well-approximated by the solid solution of (30). In particular, at η = 0, the solid curve
coincides exactly with both branches of (31.1).

In Sect. 4, we will see that the oscillations of the extended KdV equation’s solution around the subcritical
branch of (31.1) have amplitudes of order 1. Thus, to determine the validity limits for the asymptotic results,
it suffices to analyse the behaviour of the subcritical branch of (31.1), instead of the oscillating solution of the
extended KdV equation (27). Figure 3 shows that the dotted subcritical branch first increases up to the position

ηm = R̃ε−n
(

εn−5/2 3

B R̃
− 1

)
, (32)

where H1 reaches its maximum. Downstream of ηm, H1 decreases and approaches a singularity at ηs as

H1 = 1 ∓ 1

ε

√√√√2

3
ln

(
1 + εnη/R̃

1 + εnηs/R̃

)
, (33)

with the lower sign corresponding to the subcritical branch. A physical interpretation is that upstream of ηm
the effect due to axisymmetric flow prevails over the effect due to friction, and vice versa downstream of ηm.
In Fig. 3, solutions of (30) and (31.1) are presented for n = 5/2. For n = 2, the solutions show the same
qualitative behaviour, and thus the conclusions can be adopted. The condition for the validity of the asymptotic
expansion is H1 = O(1). However, for n = 5/2, it turns out that this leads to the validity condition B R̃/3 = 1,
which is just the case of vanishing right-hand side of the extended KdV equation (27) at η = 0 and does
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not permit undular solutions. Therefore, the weaker condition H1 = O(ε−1/2) is prescribed. Consequently,
applying H1(ηm) = O(ε−1/2) to (31.1) yields the validity condition:

ε5/2−n B R̃

3
= 1 + ε1/2C , |C | = const = O(1) . (34)

For n = 5/2, C ≶ 0 defines whether the right-hand side of (27) is positive or negative at η = 0. The
combination of (32) and (34) gives ηm = −C R̃ε−2 + . . . . Thus, C ≶ 0 corresponds to ηm ≷ 0, meaning that
the reference state (η = 0) lies either upstream or downstream of the position where the subcritical branch of
H1 according to (31.1) reaches its maximum.

For n = 2, the condition (34) requires that the product of the order 1 parameters B and R̃ is B R̃ = O(ε−1/2).
This would violate the basic assumptions of an asymptotic expansion in terms of integer powers of ε. However,
in the present framework of the derivation of a uniformly valid differential equation, deviations of half an order
of magnitude are tolerated.

4 Numerical results

The extendedKdV equation (27) may be solved numerically as an initial value problemwith standardmethods,
using the commercial software MATLAB R2018b. For both n = 5/2 and n = 2, solutions are obtained with
the function ode45, a relative error tolerance of 10−4, an absolute error tolerance of 10−8, and a maximum
step size of 10−4.

4.1 Undular jumps at a reference radius of O(ε−5/2)

A solution of the extended KdV equation (27) with n = 5/2 is shown as black curve in Fig. 4a. The solution is
obtained without any perturbation of the reference state, meaning initial conditions at η = 0 exactly according
to the grey dash-dotted supercritical branch of (3.3). Initially, the black curve closely follows the supercritical
branch of the hydraulic approximation of (27), i.e. (31.1). However, after some distance an undular jump with
oscillations around the grey dotted subcritical branch of (31.1) develops.

In Fig. 4b, the black solution of the extended KdV equation (27) in terms of the local Froude number Fr
shows that the transition from super- to subcritical flow happens within the first two undulations. Both Eqs.
(27) and (31.1) were derived for near-critical flow. Their solutions are plotted in terms of Fr(η) by applying
the relation

Fr = Q

r
√
gh3

= 1 + 3ε(1 − H1)/2

1 + εnη/R̃
, (35)

which is obtained by introducing the expanded non-dimensional variables according to (1) and (14–16.1,2),
expanding for ε � 1 but allowing for εnη = O(1). Due to the η-term in the denominator of (35), with
increasing distance from the reference state, the oscillations’ amplitude decays in terms of Fr, while it remains
almost constant in terms of H1.

This effect becomes visible by comparing the behaviour of the black solution of the extendedKdV equation
at large radii in terms of H1 and Fr shown in Fig. 5a and b, respectively. Due to the strongly skewed scales of
the abscissa and the ordinate, individual oscillations are hardly distinguishable. The solution of (27) appears as
a thick black bar. Moreover, the relation (35) implies that along the allegedly supercritical (grey dash-dotted)
branch of (31.1), the local Froude number is larger than unity only for a small part of the solution, see Fig. 5b.
The dependence of the local Froude number on the radial coordinate η also impacts the validity of the present
theory for near-critical turbulent axisymmetric flow. The solution of (27) in terms of H1 remains of order 1
from the beginning until the breakdown. However, the solution in terms of Fr approaches the limit of near-
critical flow, indicated by the horizontal dashed line for the local perturbation parameter that is determined by
substituting Frr with Fr(η) in (11).

As shown in Fig. 5, at large radii, the black curves oscillate around the corresponding subcritical branch of
the hydraulic approximation of the extended KdV equation (31.1), almost up to the position where the dash-
dotted and dotted branches of (31.1) coalesce. Shortly before the coalescence, the solution of the extended
KdV equation breaks down, which represents the maximum admissible radius of the bottom plate for the
specific parameters of the reference state. At the breakdown, the black curve approaches the singularity at ηs
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(a)

(b)

Fig. 4 Initial behaviour of an undular hydraulic jump in turbulent axisymmetric flowwith Rr = O(ε−5/2); ε = 0.067 (Frr = 1.1),
R̃ = 0.8, B = 2.4, i.e. C = −1.39. a Non-dimensional surface elevation, H1, b Local Froude number, Fr. Black: Numerical
solution of the extended KdV equation (27) for initial conditions according to (3.3) with n = 5/2, i.e. H1(0) = 0, H1,η(0) =
−3.87×10−2, H1,ηη(0) = 1.50×10−3. Grey dash-dotted and dotted: Super- and subcritical branch, respectively, of the hydraulic
approximation of the extended KdV equation (31.1)

(a)

(b)

Fig. 5 Behaviour of an undular hydraulic jump in turbulent axisymmetric flow with Rr = O(ε−5/2) at large radii; ε = 0.067
(Frr = 1.1), R̃ = 0.8, B = 2.4, i.e. C = −1.39, ηm = 392. a Non-dimensional surface elevation, H1, b Local Froude number,
Fr. Black: Numerical solution of the extended KdV equation (27) for initial conditions according to (3.3) with n = 5/2, i.e.
H1(0) = 0, H1,η(0) = −3.87 × 10−2, H1,ηη(0) = 1.50 × 10−3. Grey dash-dotted and dotted: Super- and subcritical branch,
respectively, of the hydraulic approximation of the extended KdV equation (31.1)
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Table 1 Reference values corresponding to the (chosen) parameters of the Figs. 5, 7, and 11; ν = 10−6 m2/s

Figure 5 Figure 7 Figure 11

Chosen Frr 1.1 1.2 1.12
Frτ,r 2.7 × 10−2 8.3 × 10−2 3.9 × 10−2

Rr 697 73 945
Q 2.3 m3/s 0.13 m3/s 3.5 m3/s

Computed Rer 4.6 × 104 4.0 × 104 5.2 × 104

Reτ,r 1.1 × 103 2.8 × 103 1.8 × 103

h̄r 5.6 cm 4.9 cm 6.0 cm
rr 50.39 m 3.24 m 67.02 m
ūr 0.82 m/s 0.83 m/s 0.86 m/s
uτ,r 2.0 × 10−2 m/s 5.8 × 10−2 m/s 3.0 × 10−2 m/s

Fig. 6 Numerical solutions of the extended KdV equation (27) with n = 5/2, for ε = 0.08 (Frr = 1.12), R̃ = 1.71, B = 3, i.e.
C = 2.5. Initial conditions: H1(0) = 0, H1,η(0) = 3.91 × 10−2; black dashed: H1,ηη(0) = 1.53 × 10−3, black dash-dotted:
H1,ηη(0) = 1.83 × 10−3, black solid: H1,ηη(0) = 2.29 × 10−3. Grey dash-dotted and dotted: Super- and subcritical branch,
respectively, of the hydraulic approximation of the extended KdV equation (31.1)

as H1 = −12/(ηs − η)2, in the same way as in the case of near-critical turbulent open-channel flow over a
horizontal bottom, see [23]. The reference values of Fig. 5 are listed in Table 1 for the discharge Q = 2.3 m3/s,
which was chosen to obtain an appropriately large Reynolds number. Since the local Reynolds number Re
is inversely proportional to the radius, in Fig. 5 Re = Q/rν decays from 4.6 × 104 in the reference state to
2 × 104 at the position of the breakdown.

As discussed in Sect. 3.3, the reference state is located either far upstream or far downstream of the position
ηm where the solution of (31.1) reaches its extremum, depending on B R̃ ≶ 3, equivalent to C ≶ 0 in (34).
This strongly affects the solution of (27). While in Figs. 4 and 5 the parameters correspond to C < 0, in Fig. 6
the parameters are chosen such that C = 2.5 > 0. This results in a reference state located just upstream of the
position where the grey sub- and supercritical branches of (31.1) coalesce. Solving the extended KdV equation
(27) for initial conditions exactly according to the supercritical branch of (3.3) yields a breakdown shortly
after the reference state, shown as a black dashed curve in Fig. 6. Increasing the initial curvature by 20% only
shifts the breakdown further downstream; see the black dash-dotted curve. Increasing H1,ηη(0) by as much as
50%, a single wave crest develops with immediate breakdown afterwards.

Note that for C > 0, the extended KdV equation (27) with a negative right-hand side is of a very similar
form as in the case of near-critical turbulent open-channel flow over a horizontal bottom, cf. [23]. Thus, the
solutions are similar, and regardless of the value of Frr, extremely large initial curvatures are necessary to
obtain undulations at all.

The analysis of the results for C ≶ 0 shows that C < 0 corresponds to a reference state in the region where
the effect due to axisymmetric flow prevails, which enhances the development of undular jumps as in the case
of inviscid axisymmetric flow, see Sect. 5. However, as η increases the solution of the extended KdV equation
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(a)

(b)

Fig. 7 Behaviour of an undular hydraulic jump in turbulent axisymmetric flow with Rr = O(ε−2) at large radii; ε = 0.13
(Frr = 1.2), R̃ = 1.3, B = 2.9, i.e. C = −1.48, ηm = 86. a Non-dimensional surface elevation, H1, b local Froude number, Fr.
Black: Numerical solution of the extended KdV equation (27) for initial conditions according to (3.3) with n = 2, i.e. H1(0) = 0,
H1,η(0) = −0.14, H1,ηη(0) = 1.93 × 10−2. Grey dash-dotted and dotted: Super- and subcritical branch, respectively, of the
hydraulic approximation of the extended KdV equation (31.1)

(27) reaches the region η > ηm of prevailing friction effects, which ultimately force a breakdown, see Fig. 5.
For C > 0, the reference state is located in the region where the prevailing friction effects tend to suppress the
development of an undular jump as in the case of turbulent open-channel flow over horizontal bottoms [23].

4.2 Undular jumps at a reference radius of O(ε−2)

From a smaller reference radius of O(ε−2) follows that the two extension terms on the right-hand side of the
extended KdV equation (27) are of different orders of magnitude. This implies that, according to (32), for any
combination of R̃ and B, the reference state is located upstream of ηm, in the region where the effect due to
axisymmetric flow is dominant and promotes the development of undular jumps.

The relatively small Froude number Frr = 1.1 used in Fig. 5 requires a large discharge to obtain a large
Reynolds number in the reference state. Therefore, the reference values in Table 1 are given for Q = 2.3 m3/s,
but a reference radius of about 50 m appears unfeasible for practical applications. However, by increasing the
reference Froude number to Frr = 1.2, a much smaller discharge Q = 0.13 m3/s is sufficient to maintain a
large Reynolds number but rr is significantly reduced to a realistic value of rr = 3.24 m, see Table 1. The
corresponding solution of the extended KdV equation (27) with n = 2 is shown as black curve in terms of H1
and Fr in Fig. 7a and b, respectively.

The characteristics of the black curve are the same as in the case of Rr = O(ε−5/2) in Fig. 5. Past the
transition from super- to subcritical flow, the extendedKdVequation’s solution oscillates around the grey dotted
subcritical branch of (31.1). With increasing distance from the reference state, the effect of axisymmetric flow
decays, and friction becomes dominant, eventually leading to a breakdown.

In Fig. 7, the perturbation parameter in the reference state is doubled with respect to Fig. 5. As a con-
sequence, already the first undulation exceeds the previously introduced validity limit |ε(η)| = 0.4, see the
horizontal dashed line in Fig. 7b. Nevertheless, this case shows that undular solutions are possible for parame-
ters corresponding to reference values that are close to the estimated values (rr ≈ 2÷ 3 m) of the observation
shown in Fig. 1a. The large supercritical region upstream of the jump, visible in the photograph, seems to be
caused by the slightly inclined street. Thus, it cannot be represented by the present version of the extended
KdV equation (27), derived for horizontal bottoms. The upstream coalescence of the grey dash-dotted and
dotted curves in Fig. 7 indicates that the flow according to the hydraulic approximation has to emerge within
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a moderate distance upstream from the jump’s origin. Thus, a vertically impinging jet, often considered as
the source of the flow, seems unrealistic in the present case. However, a large circular slit nozzle may be an
appropriate way to realise the flow, cf. [29].

5 Comparison between undular hydraulic jumps in turbulent and inviscid axisymmetric flow

5.1 Extended KdV equation describing undular jumps in inviscid flow

In the present theory of undular jumps in turbulent axisymmetric flow over horizontal bottoms, the effect of
friction is assumed to be small, i.e. Fr2τ,r = O(ε3), which stems from the analysis of turbulent plane flow over
horizontal bottoms [23]. With increasing distance from the reference state, the effect of friction accumulates
and gains importance. In comparison with the theory of turbulent flow, a theory of undular jumps in inviscid
axisymmetric flow is justified for Fr2τ,r = O(ε7/2) or smaller. Then, the effect of friction is too small to appear
in the analysis of terms up to order ε2, and the equations of motion (2) reduce to the Euler equations

Fr2r

(
U

∂U

∂R
+ W

∂U

∂Z

)
= −∂P

∂R
, (36.1)

δ2Fr2r

(
U

∂W

∂R
+ W

∂W

∂Z

)
= −∂P

∂Z
− 1 , (36.2)

with the continuity equation (2) remaining unchanged.
At the bottom, the vertical velocity is prescribed via an impermeability condition,

W (R, 0) = 0 , (37)

whereas the assumption of inviscid flow does not require a condition for the radial velocity. At the free surface,
the interface is defined by a streamline,

W (R, H) = U (R, H)
dH

dR
, (38)

and the pressure is set to zero,
P(R, H) = 0 . (39)

Performing the asymptotic analysis of the above equations in the same manner as described in Sect. 3
shows that the free-surface elevation is described by the extended KdV equation,

H1,ηηη + (H1 − 1)H1,η = εn−2/3R̃ , (40)

cf. [24, p. 50]. The leading-order results (17) and the first-order equation (19.1–3) are the same for inviscid
flow, except that a free function of integration, defining the velocity profile, takes the role of the velocity defect
in the equation for the first-order velocity in (19.1–3). Similar to (20), the integral of the function of integration
over the film thickness vanishes per definition. In the analysis of terms of O(ε2) in Sect. 3, the reason for not
expanding the denominator in (21) was the aim to describe the flow far downstream, where friction effects
accumulate and lead to a breakdown. However, friction is absent in inviscid flow, and this argument ceases to
be valid. Thus, (21) becomesU/R = εn/R̃ + . . . , and consequently the η-term of (28) does not appear on the
right-hand side of (40).

The near-critical hydraulic approximation for inviscid axisymmetric flow is obtained by setting the friction
coefficient cf = 0 in “Appendix A”, which leads to (A.5) or (30) without γ . Integration yields

H1 = 1 ∓
√
1 + 2εn−2η/3R̃ , (41)

from which a limit for the local validity of the theory, i.e. εn−2η = O(1), follows by demanding H1 = O(1).
Thus, the theory of inviscid flow is locally restricted to moderate distances from the reference state and in
terms of parameters restricted to Fr2τ,r = O(ε7/2) or smaller, see the discussion above.

The difference between the solutions of both (27) and (40) shall be explored for Rr = O(ε−5/2) in the
following. For Rr = O(ε−2), the results may be adopted qualitatively.
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(a)

(b)

Fig. 8 Comparison between undular jump solutions of the extended KdV equation of turbulent (black) and inviscid (orange)
axisymmetric flow with n = 5/2, i.e. (27) and (40), respectively; ε = 0.08 (Frr = 1.12), R̃ = 0.75, B = 2. a Comparison near
the reference state, b comparison at large radii. Initial conditions: H1(0) = 0, H1,η(0) = −6.29×10−2, H1,ηη(0) = 3.95×10−3.
Grey dotted: Hydraulic approximation of the extended KdV equation (27), i.e. (31.1). Grey dash-dotted: Near-critical hydraulic
approximation of inviscid flow, i.e. (41)

5.2 Comparison between solutions of (27) and (40)

In Fig. 8, the black curves show a solution of the extended KdV equation for turbulent flow, (27), with
n = 5/2. The initial conditions are chosen to be in accord with the supercritical branch of the dotted hydraulic
approximation (31.1) at η = 0. For comparison, the same initial conditions and identical parameter values of
ε and R̃ are used to solve the extended KdV equation of inviscid flow, (40), with n = 5/2, shown as orange
curves. The orange curve in Fig. 8a develops into an undular jump almost one entire wavelength before the
black curve. For the orange curve, the driving force for the development of an undular jump is the effect due
to axisymmetric flow, represented by the right-hand side term of (40). The small effect of friction taken into
account by the black solution delays the transition from super- to subcritical flow. Moreover, the wavelength is
slightly increased by the presence of friction, as can be observed by comparing the distance between successive
wave crests of both curves. The black and orange curves both oscillate around the corresponding grey subcritical
branch of the hydraulic approximation, i.e. (31.1) and (41), respectively. Since these two subcritical branches
are of different forms, the orange and black curves diverge as η increases, see Fig. 8b. However, considering the
validity condition, ε1/2η = O(1), for the theory of inviscid axisymmetric flow with Rr = O(ε−5/2), restricts
the comparison to a region of moderate distance from the reference state. The validity limit is indicated by the
black vertical dashed lines.
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Fig. 9 Stationary undular hydraulic jump in turbulent sink flow over a horizontal bottom. Flow from right to left

While indeed minor differences are identifiable in the detailed comparison between the solutions of (27)
and (40), the overall behaviour within the validity limit of the latter is very similar. Large deviations occur
further downstream as shown in Fig. 8b, where the oscillations of the black and orange solutions appear as
thick bars due to the strongly skewed ordinate and abscissa. At very large radii, the black curve remains finite
for a large distance before it eventually breaks down. On the other hand, the orange curve grows beyond all
bounds as η → ∞. This comparison shows that in the vicinity of the reference state, friction is of minor
relevance, whereas downstream of this region the effect of friction slowly accumulates and has to be taken into
account.

It is remarkable to obtain that—in contrast to inviscid plane flow—undular hydraulic jumps are possible
in inviscid axisymmetric flow.

Note that the form of the extended KdV equation for inviscid axisymmetric flow (40) with n = 5/2
is conspicuously similar to the extended KdV equation describing plane turbulent free-surface flow over a
horizontal bottom, see [23] and [24, p. 12]. In both cases, the right-hand side is a constant of order ε1/2,
yet with a different sign. For plane flow, solving the extended KdV equation with a negative right-hand
side requires extremely large initial curvatures to obtain undular solutions. Thus, it is remarkable that in the
axisymmetric inviscid case undular solutions are obtained without perturbing the reference state according
to (41). Considering the origin of the positive extension term in (40), we can conclude that the effect due to
axisymmetric flow acts enhancing for the development of undular jumps.

Moreover, the extended KdV equation for inviscid axisymmetric flow (40) with n = 5/2 can be solved
analytically by means of a multiple-scale analysis. The detailed analysis and a comparison of the result with
the numerical solution of (40) with n = 5/2 are given in “Appendix B”.

6 Undular jumps in turbulent sink flow

6.1 Problem formulation and asymptotic analysis

The investigation of near-critical turbulent sink flow over a horizontal bottom is a coherent continuation of
the analysis of source flow. In turbulent sink flow, the radial flow direction is towards the axis, see Fig. 9. As
a consequence, the governing equations of turbulent source flow (2–2) can be adopted by simply changing
the signs of the radial velocity component, Ū , and the Reynolds shear stress, U ′W ′. The same holds for the
matching conditions at the bottom (5–8) and the boundary conditions at the free surface (9–2).

The asymptotic analysis is performed analogously to Sect. 3with only a few results affected by the changing
signs. The leading order of the Reynolds shear stress becomes

(U ′W ′)0 = −Z + 1 + 
U ′W ′(Z) , (42)

and the first-order relation for the vertical velocity component reads

W1 = −H1,ηZ . (43)

All other results throughout the analysis remain unchanged. The analysis of the second-order equations results
in a solvability condition, obtained from the equation of motion in the radial direction and the kinematic
boundary condition. In both these equations, the appearing vertical velocity componentW2 has a different sign
with respect to source flow. However, the effect cancels such that the solvability condition is unaffected. Thus,
the extended KdV equation (27), which is valid for both Rr = O(ε−5/2) and Rr = O(ε−2), is recovered as
final result also for turbulent sink flow. Moreover, all other results, (27–34), can be applied.
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(a)

(b)

Fig. 10 Initial behaviour of an undular jump in turbulent sink flow with Rr = O(ε−5/2). Flow from right to left; ε = 0.08 (Frr =
1.12), R̃ = 1.71, B = 3, i.e. C = 2.5. a Non-dimensional surface elevation, H1, b local Froude number, Fr. Black: Numerical
solution of the extended KdV equation (27) for initial conditions according to (3.3), i.e. H1(0) = 0, H1,η(0) = 3.91 × 10−2,
H1,ηη(0) = 1.53×10−3. Grey dash-dotted and dotted: Super- and subcritical branch, respectively, of the hydraulic approximation
of the extended KdV equation (31.1)

6.2 Numerical results and discussion

For turbulent sink flow, the extended KdV equation (27) is solved numerically as an initial value problem with
the same MATLAB function and the same error tolerance values as mentioned in Sect. 4. In contrast to source
flow, the computational domain [0, ηend] is to be defined with a negative end value ηend < 0.

In Fig. 10a and b, a numerical solution of (27) for turbulent sink flowwith Rr = O(ε−5/2) is shown as black
line in terms of the free-surface elevation H1 and the local Froude number Fr, respectively. The flow direction is
from right to left. The prescribed initial conditions are in accord with the grey dash-dotted supercritical branch
of the hydraulic approximation of the extended KdV equation (31.1). The parameters ε, B, and in particular
the value of C , which was defined in (34), are chosen to the same as in Fig. 6, where in the case of source
flow, C > 0 led to no undular solutions of the extended KdV equation. However, for the development of an
undular hydraulic jump in sink flow, the opposite flow direction not only permits, but also requires C > 0,
which in this case corresponds to a reference state upstream of ηm, see Fig. 11a. This means that, for instance,
the parameter configuration with C < 0 for which undular source flow solutions of (27) are shown in Fig. 4
will lead to an immediate breakdown of the solution of (27) in the case of sink flow. In Fig. 10, the undular
solution of the extended KdV equation reaches a fully subcritical state after about five undulations.

Figure 11 shows the solutions of Fig. 10 at large distances from the reference state. Due to the strongly
skewed scales of the abscissa and the ordinate, the solution of (27) appears as a thick black bar rather than as
multiple oscillations. Interestingly, the flow remains well within the limits of near-critical flow, indicated by the
horizontal dashed lines, for a considerable distance from the reference state. At η ≈ −354, the flow becomes
again supercritical.While the free-surface elevation inFig. 11a changes only slightly, the convergingflowcauses
acceleration, and thus a rapidly rising local Froude number eventually violates the assumption of near-critical
flow, see Fig. 11b. The black curve oscillates around the grey dotted branch of the hydraulic approximation,
(31.1), until a breakdown at η ≈ −660 occurs. Similar to turbulent source flow, the characteristic behaviour
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(a)

(b)

Fig. 11 Behaviour of an undular jump in turbulent sink flow with Rr = O(ε−5/2) far downstream of the reference state. Flow
from right to left; ε = 0.08 (Frr = 1.12), R̃ = 1.71, B = 3, i.e. C = 2.5. a Non-dimensional surface elevation, H1, b local
Froude number, Fr. Black: Numerical solution of the extended KdV equation (27) for initial conditions according to (3.3), i.e.
H1(0) = 0, H1,η(0) = 3.91 × 10−2, H1,ηη(0) = 1.53 × 10−3. Grey dash-dotted and dotted: Super- and subcritical branch,
respectively, of the hydraulic approximation of the extended KdV equation, (31.1)

of a sink flow solution of the extended KdV equation (27) with Rr = O(ε−2) does not change with respect to
the sink flow solution with Rr = O(ε−5/2) shown in Figs. 10 and 11. Results with Rr = O(ε−2) will thus not
be discussed individually.

In Figs. 10 and 11, the parameters Frr = 1.12, B = 3, R̃ = 1.71 were used. The reference values for these
parameters together with a discharge of Q = 3.5 m3/s are listed in Table 1. The reference radius is rr = 67 m,
and the breakdown occurs at a radius of r ≈ 20 mwith Re = 1.7×105. Like in turbulent source flow, the large
radii are caused by the small reference Froude number, which requires a large discharge to obtain sufficiently
large values of Rer and Reτ,r. For comparison, with the same values of B and R̃, but Frr = 1.2, a discharge of
Q = 0.5 m3/s suffices to obtain h̄r = 5 cm, rr = 12 m, ūr = 0.84 m/s, Rer = 4.2 × 104, Reτ,r = 2.9 × 103.
In this case, the breakdown occurs at a realistic radius of r ≈ 3.5 m with Re = 1.4 × 105.

It is interesting to note that whereas undular hydraulic jumps are possible in both turbulent and inviscid
source flow, this is not true for sink flow. It turns out that the solutions of the near-critical hydraulic approx-
imation for inviscid flow, (41), are always convex with respect to the axis, such as the dash-dotted curves in
Fig. 8. This means, the flow direction of any flow, which originates from the critical or a near-critical state
and follows the solution of (41), can only be away from the centre. Thus, in the case of inviscid axisymmetric
flow, undular hydraulic jumps can only originate from source flow, cf. [24].

7 Conclusions

In the present paper, undular hydraulic jumps in steady turbulent axisymmetric free-surface flowover a horizon-
tal bottomwere investigated. The jumpwas assumed to originate at a relatively large non-dimensional reference
radius Rr from the centre of the cylindrical coordinate system. Particularly, the two cases Rr = O(ε−5/2) and
Rr = O(ε−2) with ε � 1 were examined.

The asymptotic analysis in the limit of very large Reynolds numbers and Froude numbers close to the
critical value 1 could be kept free of turbulence modelling due to a specific coupling of the two limiting
processes. The main result of the asymptotic analysis is a new version of an extended KdV equation , i.e. (27),
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describing the free-surface elevation. Remarkably, the homogeneous part of (27) is identical to the classical
KdV equation for inviscid plane flow, which is incapable to yield undular jump solutions. However, the two
extension terms represent the effect due to axisymmetric flow and the effect of friction, according to (28) and
(29), respectively. By restricting the extension terms’ parameters to a specific regime, (27) was derived as a
uniformly valid differential equation describing the free surface over a wide range from the reference state.
However, the overflow at the plate’s edge far downstream cannot be expected to be accurately represented by
the breakdown of the extended KdV equation’s solution.

Numerical solutions of the extendedKdV equation (27) were analysed in terms of the free-surface elevation
and in terms of the local Froude number. Undular jump solutions are obtained if the effect of axisymmetric
flow prevails over the effect of friction in the reference state. With increasing distance from the reference state,
friction effects accumulate and eventually force the solution’s breakdown. However, by choosing the reference
state in the region of dominant friction, the development of an undular jump is suppressed. The comparison
of numerical solutions of (27) for both Rr = O(ε−5/2) and Rr = O(ε−2) revealed a sensitive dependence
on the parameters describing the flow in the reference state, i.e. the Froude number Frr, the friction Froude
number Frτ,r, and Rr. On the one hand, maintaining near-critical flow from the reference state until the
solution’s breakdown is only possible if Frr is very close to 1. On the other hand, relatively large reference
Froude numbers (e.g. Frr = 1.2) are necessary to obtain undular solutions with parameters corresponding to
reasonably small reference radii in the order of a few metres, as observed in the natural occurrence shown in
Fig. 1a.

A comparison between solutions of the extended KdV equation for turbulent and inviscid flow showed
that friction is of minor relevance in the vicinity of the jump’s origin. However, to accurately describe the flow
over a wide range, friction must be taken into account. While for the analysis of turbulent flow Fr2τ,r = O(ε3)

was assumed, the consideration of inviscid flow corresponds to Fr2τ,r = O(ε7/2) or smaller, such that friction
terms do not appear in the analysis. The observation of undular jump solutions for inviscid axisymmetric flow
is remarkable, since these solutions do not exist for inviscid plane flow.

An asymptotic analysis of near-critical turbulent sink flow was performed analogously to the analysis
of turbulent source flow. Interestingly, the resulting extended KdV equation for the free-surface elevation is
identical to the case of turbulent source flow, i.e. (27). However, the opposite flow direction has a significant
impact on the undular jump solution of (27), which inherently remains near-critical for a considerable distance
from the reference state. The continuous acceleration of the flow towards the centre causes an undular transition
from sub- to supercritical flow before the solution breaks down far downstream.

Comparisons with experiments are very desirable. The related problem of stationary solitary waves in
turbulent open-channel flow, which are also described by an extended KdV equation, has been experimentally
verified by [30,31]. Note that for circular undular jumps the two cases Rr = O(ε−5/2) and Rr = O(ε−2) cannot
be distinguished in experiments since the dimensional reference radii differ only by a factor of the order 1.
Thus, experiments designed based on the present theory for circular undular jumps in turbulent flow should
be compared with numerical solutions of (27) for both Rr = O(ε−5/2) and Rr = O(ε−2). This means using
different values for the order 1 constant R̃ according to the reference radius used in the experiment. The two
numerical solutions are to be interpreted as upper and lower bounds for the comparison.
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Fig. 12 Hydraulic approximation of turbulent axisymmetric free-surface flow over a horizontal bottom

Appendix A: Hydraulic approximation

The hydraulic approximation is a one-dimensional flow approximation considering a hydrostatic pressure
distribution, cf. [2,3], see Fig. 12. Thus, the continuity equation reads

r h̄ūm = Q = const , (A.1)

where ūm(r) is the local volumetric mean velocity. For turbulent axisymmetric free-surface flow, the equation
of motion in radial direction is

ūm
dūm
dr

+ g
dh̄

dr
= −cf

2

ū2m
h̄

, (A.2)

using a hydrostatic pressure distribution p̄ = ρg(h̄ − z), and the effect of friction represented by the friction
coefficient cf = 2τ̄w/ρū2m. The local Froude number is defined as

Fr(r) := ūm√
gh̄2

. (A.3)

Combination of (A.1–A.3) leads to the differential equation for the local Froude number,

dFr

dr
= Fr3

2(Fr2 − 1)

[
1

r

Fr2 + 2

Fr2
− 3

cf
2

(
g

Q2

)1/3

(rFr)2/3
]

, (A.4)

which has a singularity at Fr = 1. The singularity shows the incapability of the hydraulic approximation to
yield a continuous transition from supercritical to subcritical flow, as it is necessary for describing undular
hydraulic jumps.
A near-critical version of the hydraulic approximation in terms of the free-surface elevation H1 is obtained from
(A.4) by using the relation cf = 2u2τ /ū

2
m = 2Fr2τ /Fr

2 together with Fr = 1+3ε(1−H1)/2+. . . , which follows
from introducing the expanded variables according to (16.1,2) into (A.3). Introducing the non-dimensional
radial coordinate according to (14, 15) and expanding the resulting equation for ε � 1 and εnη � 1 yields
the near-critical hydraulic approximation,

(H1 − 1)H1,η = εn−2/3R̃ − γ . (A.5)

Appendix B: Multiple-scale analysis of the extended KdV equation for inviscid flow

B.1: System of first-order ODEs

Considering the extended KdV equation for inviscid axisymmetric flow (40) with n = 5/2, the right-hand side
term of O(ε1/2) suggests solving the equation by means of a perturbation method, i.e. a multiple-scale analysis
accounting for both the fast oscillations and the slowly changing amplitude and wavelength. This approach
was also chosen by [32] for solving a different type of an extended KdV equation, which describes plane flow
over an inclined bottom. Moreover, a multiple-scale analysis of the basic equations governing turbulent plane
flow was performed by [26,27] for an inclined and by [23] for a horizontal bottom.
As mentioned in Sect. 5.2, (40) with n = 5/2 is of the same form as the equation describing turbulent plane
flow over a horizontal bottom, see [23] and [24, Section 2.3]. In fact, the two equations are identical if the
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similarity parameter B of equation (2.36) given by [24] is identified by the coupling parameter R̃ of (40), i.e.
B = −3/R̃. Thus, the multiple-scale analysis follows the same lines as briefly described by [24, Section 2.3]1.
Integrating (40) with respect to η, multiplying the result with H1,η and integrating once again yields the system
of first-order ODEs

3H2
1,η = −H3

1 + 3H2
1 + 6RH1 + 6S , (B.6.1)

Rη = ε1/2/3R̃ , (B.6.2)

Sη = −ε1/2H1/3R̃ , (B.6.3)

where R and S are functions of integration.

B.2: Multiple-scale analysis

The system of ODEs (B.6) serves as starting point of a multiple-scale analysis according to [32]. Therefore,
the original coordinate η is substituted by a fast and a slow variable ξ and , respectively, and the spatially
slowly changing wave number

ω() = dξ

dη
= 1

ε1/2

d

dη
, (B.7)

is introduced. Then, H1(ξ, ), R(ξ, ) and S(ξ, ) depend on both variables and are defined to have period
1 with respect to ξ . Derivatives with respect to η become a sum of two partial derivatives, i.e.

d

dη
= ω

(
∂

∂ξ
+ ε1/2

∂

∂

)
. (B.8)

Applying the relation (B.8) to the system of ODEs (B.6) and strictly separating the orders O(1) and O(ε1/2),
gives R = R() and S = S() as leading-order results from (B.6.2) and (B.6.3), respectively. The leading
order of (B.6.1) turns into

3ω2
(

∂H1

∂ξ

)2

= p(H1;R,S) , (B.9)

with the polynomial
p(H1;R,S) := −H3

1 + 3H2
1 + 6R()H1 + 6S() . (B.10)

From the O(ε1/2)-terms of (B.6.2) and (B.6.3) follows, respectively,

ω
dR
d

= 1

3R̃
, (B.11.1)

ω
dS
d

= − 1

3R̃

1∫
0

H1dξ . (B.11.2)

B.3: Analytical expression of H1(ξ,)

Aiming at an analytical solution of H1(ξ, ), it will be convenient to represent the third-order polynomial
defined in (B.10) in terms of its three ordered roots h1 ≤ h2 ≤ h3, i.e. p(H1;R,S) = [H1 − h1(R,S)][H1 −
h2(R,S)][h3(R,S)−H1].Differential equations for the three roots can be deduced from (B.11) by applying the
algebraic relations betweenR(), S() and h1(), h2(), h3(), summarised in “Appendix C”. Moreover,
we have to use the fact that the integral from 0 to 1 with respect to ξ corresponds to twice the integral from h2
to h3 (i.e. a half period) with respect to H1. Thus, with the definition

I j :=
h3∫

h2

H j
1 dH1√

(H1 − h1)(H1 − h2)(h3 − H1)
, j = 0, 1, (B.12)

1 In the Eqs. (2.24, 2.37a, A.1) given by [24], the factor 6 is missing in front of S.
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the ODEs for the roots are

dh1
d

=4
√
3

R̃

I0h1 − I1
(h1 − h2)(h1 − h3)

, (B.13.1)

dh2
d

=4
√
3

R̃

I0h2 − I1
(h2 − h3)(h2 − h1)

, (B.13.2)

dh3
d

=4
√
3

R̃

I0h3 − I1
(h3 − h1)(h3 − h2)

. (B.13.3)

Note that one of the three ODEs is redundant since the relation h1 + h2 + h3 = 3 holds. The integrals (B.12)
can be expressed analytically [32], i.e.

I0 = 2K (m)√
h3 − h1

, (B.14.1)

I1 = 2√
h3 − h1

[h1K (m) + (h3 − h1)E(m)] , (B.14.2)

with K (m) and E(m) denoting the complete elliptic integral of the first and second kind, respectively, and the
parameter m being defined as m = (h3 − h2)/(h3 − h1); cf. [33, p. 569].
In the course of deriving an analytical expression for H1(ξ, ), (B.9) is used twice. First, by means of a
definite integral to obtain an analytical expression for ω(), and second, by means of an indefinite integral
to obtain the final result for H1(ξ, ). Therefore, integration of (B.9) over one period by making use of the
above-mentioned relation between the integrals with respect to ξ and H1, together with (B.14.1), gives for the
wave number

ω() =
√
h3 − h1

4
√
3K (m)

. (B.15)

Furthermore, following, e.g. [28], pp. 26–29, the indefinite integration of (B.9) yields the classical cnoidal
wave solution for the free-surface elevation,

H1(ξ, ) = h2 + (h3 − h2)cn
2 [2K (m)(ξ − ξr)|m] , (B.16)

where cn is the cnoidal Jacobian elliptic function, see [33], Ch. 16. The constant of integration, ξr, is chosen
such that H1(ξ = 0,  = 0) = H1(η0), i.e.

ξr = sig[H1,η(η0)]
2K (m)

cn−1

[ √
h2 − H1(η0)

h2 − h3

∣∣∣∣∣m
]∣∣∣∣∣

=0

, (B.17)

with sig[x] := 1 if x ≥ 0, and sig[x] := −1 if x < 0; cf. [34, p. 53]. H1(η0) is the initial value for the
multiple-scale solution at the initial position in terms of the original coordinate η0.
The free-surface elevation in terms of the original coordinate, H1(η), is found by the following solution
procedure. First, the roots h1, h2, h3 are determined by solving (B.13). Therefore, initial conditions h1(0),
h2(0), h3(0) are derived from the algebraic relations between the roots, and R, S, given in “Appendix C”,
(C.31–C.33), by substituting

R(0) = H1,ηη(η0) + H1(η0)

(
H1(η0)

2
− 1

)
, (B.18)

S(0) = H2
1,η(η0)

2
+ H1(η0)

(
H2
1 (η0)

6
− H1(η0)

2
− R(0)

)
. (B.19)

With the solution of the three roots, both ω() and H1(ξ, ) are determined according to (B.15) and (B.16),
respectively. From (B.7) follows that the fast and slow variables are not independent of each other. Thus,
H1(ξ, ) may be rewritten as H1() using ξ = /ε1/2. Eventually, the original coordinate η follows from

η = 1

ε1/2

∫
0

d

ω()
, (B.20)

which relates H1(η) to H1().
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Fig. 13 Comparison between a numerical solution of the extended KdV equation for inviscid axisymmetric flow (40) with
n = 5/2 and the corresponding multiple-scale solution (B.16) shown as black and red solid curves, respectively. Parameter
values: ε = 0.08, R̃ = 1.2. Initial conditions for the solution of (40) are chosen according to the hydraulic approximation (41)
at η = 0, i.e. H1(0) = 0, H1,η(0) = −7.9 × 10−2, H1,ηη(0) = 6.2 × 10−3. Initial conditions for the multiple-scale solution are
H1(η0) = 3.98, H1,η(η0) = −2.3 × 10−4, H1,ηη(η0) = −3.2 with η0 = 9.4

B.4: Comparison between themultiple-scale solution and the numerical solution of the extended KdV equation

The extended KdV equation for inviscid axisymmetric flow (40) as well as the system of ODEs (B.13) are
solved numerically by using the same MATLAB function and error tolerance values as described in Sect. 4. In
Fig. 13, the black solid curve shows the solution of (40)with n = 5/2 and the parameters ε = 0.08 (Frr = 1.12),
R̃ = 1.2. The initial conditions are chosen to be in accord with the near-critical hydraulic approximation (41)
in the reference state at η = 0. For comparison, a multiple-scale solution according to (B.16) for the same
parameters ε and R̃ is shown as red solid curve. The roots h1, h2, h3 are obtained by solving the system (B.13)
for initial conditions according to the black curve at the first wave crest, i.e. H1(η0) = 3.98 with η0 = 9.4.
Solving (B.13) in negative direction from η0 yields the red curve’s upstream behaviour.
The red curve is in excellent agreement with the black curve for a very large distance. However, upstream of
η0 the two curves deviate from each other. At η ≈ 5.8, the real roots h1 and h2 coalesce. This point confines
the region of possible multiple-scale solutions [22], which expresses the incapability of the multiple-scale
solution to represent the initial development from a free-surface according to the hydraulic approximation into
an undular jump. Moreover, the multiple-scale solution ceases to be valid in the region where the two roots
approach each other, since h2 − h1 → 0 leads to a singularity in (B.13.1) and (B.13.2). This violates the
request that both sides of the equation are of the same order of magnitude and implies that the roots are no
longer slowly changing. Thus, the validity condition reads

1

h2 − h1
= O(1) , (B.21)

which is the reason for choosing H1(η0) at the black curve’s first wave crest rather than at the toe of the first
wave. The downstream validity condition, ε1/2η = O(1), holds for both the black and the red curve and is
indicated by the vertical dashed line.

Appendix C: Algebraic properties of the polynomial p(H1;R,S)

The following algebraic relations are adopted from [34, p. 24]. The polynomial defined in (B.10), i.e.

p(H1;R,S) := −H3
1 + 3H2

1 + 6R()H1 + 6S() , (C.22)

may be written in terms of its ordered roots h1(R,S) ≤ h2(R,S) ≤ h3(R,S) as

p(H1;R,S) = (H1 − h1)(H1 − h2)(h3 − H1) . (C.23)
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Whether the roots are real and independent of each other is determined by the discriminant D, cf. [33, p. 17],

D(R,S) = (1 + 3R + 3S)2 − (1 − 2R)3 , (C.24)

or
D(h1, h2, h3) = −[(h1 − h2)(h1 − h3)(h2 − h3)]2/108 . (C.25)

The three roots are real if D ≤ 0 and independent of each other if D < 0. In the case of real roots, the following
relations hold:

h1 + h2 + h3 =3 , (C.26)

1/h1 + 1/h2 + 1/h3 = − R/S , (C.27)

h1h2h3 =6S , (C.28)

or alternatively

R =[h22 + h2h3 + h23 − 3(h2 + h3)]/6 , (C.29)

S =(3 − h2 − h3)h2h3/6 . (C.30)

The inverse of (C.29) and (C.30) read

h1 =1 − 2
√|1 + 2R| cos [

(ϕ − (sgn + 1)π/2)/3
]
, (C.31)

h2 =1 − 2sgn
√|1 + 2R| cos [(ϕ + π)/3] , (C.32)

h3 =1 + 2
√|1 + 2R| cos [

(ϕ + (sgn − 1)π/2)/3
]
, (C.33)

with the definitions

sgn := sign(1 + 3R + 3S) , (C.34)

cosϕ := |1 + 3R + 3S|/|1 + 2R|3/2 > 0 . (C.35)
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