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Abstract— Satellite remote sensing acquisitions are usually
processed after downlink to a ground station. The satellite
travel time to the ground station adds to the total latency,
increasing the time until a user can obtain the processing results.
Performing the processing and information extraction onboard
of the satellite can significantly reduce this time. In this study,
synthetic aperture radar (SAR) image formation as well as ship
detection and extreme weather detection were implemented in
a multiprocessor system on a chip (MPSoC). Processing steps
with high computational complexity were ported to run on
the programmable logic (PL), achieving significant speed-up by
implementing a high degree of parallelization and pipelining as
well as efficient memory accesses. Steps with lower complexity
run on the processing system (PS), allowing for higher flexibility
and reducing the need for resources in the PL. The achieved
processing times for an area covering 375 km2 were approxi-
mately 4 s for image formation, 16 s for ship detection, and 31 s for
extreme weather detection. These developments combined with
new downlink concepts for low-rate information data streams
show that the provision of satellite remote sensing results to end
users in less than 5 min after acquisition is possible using an
adequately equipped satellite.

Index Terms— Constant false alarm rate (CFAR), field-
programmable gate array (FPGA), multiprocessor system on
a chip (MPSoC), onboard processing, sea state detection, ship
detection, synthetic aperture radar (SAR).

I. INTRODUCTION

THE number of Earth observation (EO) satellites is con-
tinuously increasing. New devices are launched contain-

ing either optical or synthetic aperture radar (SAR) sensors.
Whereas formerly most missions consisted of only one satel-
lite, multisatellite missions are becoming more widespread.
Having the same orbit and imaging parameters, such missions
reduce the effective revisit time and allow products to be
acquired more frequently. This high acquisition frequency
increases the usefulness of remote sensing data for time-
critical observations, for example, to support ships at sea,
warning vessels of upcoming storms, or assisting in maritime
situation awareness.

Manuscript received November 19, 2021; revised February 25, 2022;
accepted April 6, 2022. Date of publication April 18, 2022; date of current
version May 2, 2022. This work was supported by the European Union’s
Horizon 2020 Research and Innovation Program under Agreement 776311.
(Corresponding author: Stefan Wiehle.)

Stefan Wiehle and Dominik Günzel are with the German Aerospace Center
(DLR), Maritime Safety and Security Lab, 28359 Bremen, Germany (e-mail:
stefan.wiehle@dlr.de; dominik.guenzelg@dlr.de).

Srikanth Mandapati, Helko Breit, and Ulrich Balss are with the German
Aerospace Center (DLR), Remote Sensing Technology Institute, SAR Signal
Processing, 82234 Weßling, Germany (e-mail: srikantha.mandapati@dlr.de;
helko.breit@dlr.de; ulrich.balss@dlr.de).

Digital Object Identifier 10.1109/TGRS.2022.3167724

However, these situations require quick delivery of the rel-
evant information to the user. Depending on the location,
a satellite might have to travel for several minutes to
reach the next suitable ground station for data downlink, and
then the data have to be processed and made available to the
client. The EO-ALERT project [1] aims to significantly reduce
this time by processing the data onboard of a satellite, then
transmitting the results in the form of alerts to the user via
satellite-to-satellite communications or direct downlink. The
project goal is to make EO products available to the end user
in less than 5 min after acquisition [enhanced near real time
(NRT)].

For that purpose, a system of a total of seven multiprocessor
system-on-a-chip (MPSoC) boards is envisaged. These boards
cover all necessary tasks, such as communication, data
encryption, and compression, as well as processing of optical
and SAR acquisitions. Instead of building the outlined
flight avionics, a test bench consisting of four commercial
off-the-shelf (COTS) MPSoC boards serves as a demonstrator
and is close to a space-ready setup regarding dimensions and
energy consumption.

This article focuses on the application of a single MPSoC
board for the purpose of SAR image formation and processing.
The developments were conducted under the latency require-
ment of 210 s, which was defined in the EO-ALERT project
for image formation and alert generation. The challenge of
implementing SAR processing in satellite-suitable hardware
has rarely been attempted thus far. An onboard SAR image
formation prototype based on optical processing has been
shown in [2]. A GPU-based approach was demonstrated in [3]
and [4]. A pure field-programmable gate array (FPGA) or a
combination of FPGA with application-specific integrated cir-
cuit (ASIC)/CPU-based implementations were also attempted
for onboard image formation [5]–[11]. However, airborne
SAR and spaceborne SAR platforms have different acquisition
geometries, and therefore, they have different special needs.
Due to the lower flight height, pulse rate and swath width
and thus the data rate of airborne SAR are often lower. The
curvature of the range history is stronger, and the flight path
of the airplane is less stable than a satellite orbit. Thus,
a processor for airborne SAR has to process less raw data by a
more complex algorithm. Therefore, it is hard to compare the
performance and latency times of FPGA implementations of
image formation for airborne and spaceborne SAR. Joshi and
Baumgartner [12] implemented an SAR ship detector using
only range compression for use with DLR’s airborne F-SAR
and DBFSAR systems.
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Fig. 1. High-level overview of the integrated SAR image formation and
processing chain. TerraSAR-X data © DLR 2017.

For this article, adapted algorithms for SAR image forma-
tion first generate a level 1 (L1) image from level 0 (L0) raw
data. Then, level 2 (L2) processing algorithms adapted from
established software used at ground segments perform ship
detection or wind and sea state detection. Fig. 1 provides a
high-level overview of the processing chain from SAR raw
data to generated products.

Preliminary results of this work were previously
presented [13]–[15]. This article builds on these previous
publications by presenting final results, more detailed technical
descriptions, and an extensive analysis of the results. In this
context, the performance of our image formation approach
is compared with approaches presented by other teams in
literature.

II. HARDWARE OVERVIEW

SAR image formation and processing were implemented
on a COTS prototyping board socketed with a Xilinx Zynq
UltraScale+ ZU19EG MPSoC. At the time of inception of
the project, radiation-tolerant or even-hardened MPSoCs with
sufficient hardware resources for implementation of the SAR
and optical processing algorithms were not yet available, but
this was expected to change within the near future. Because
the EO-ALERT project did not include the task of building
an actual payload, it was therefore decided to show the
feasibility of onboard processing using COTS prototyping
hardware and make transferability to different platforms a
requirement for hardware and software development. Indeed,
multiple options for low-Earth-orbit space-qualified MPSoCs
with comparable performance to the used prototyping hard-
ware have been released in the meantime, such as ThalesAle-
nia multiMIND [16] or KP Labs Leopard [17].

As shown in the schematic in Fig. 2, the Zynq UltraScale+
MPSoC combines an FPGA, the so-called programmable logic
(PL), with a quad-core ARM Cortex-A53 processing system
(PS), each equipped with 4 GB of DDR4 dynamic random
access memory (DRAM). The PS and PL are connected
via various interconnects following the Advanced eXtensi-
ble Interface (AXI) specification from the ARM Advanced
Microcontroller Bus Architecture 4 (AMBA) standard. The PS
runs a purpose-built embedded Linux operating system (OS)
created with Xilinx PetaLinux Tools, which hosts the nec-
essary software applications for the processing chain, and
is also responsible for the task of communicating with the
up-stream scheduling board in the project via Ethernet and
PCI Express links. Finally, a micro-SD card is attached to

Fig. 2. Components and interfaces of the EO-ALERT prototyping board
with Xilinx Zynq UltraScale+ ZU19EG MPSoC.

the PS as nonvolatile storage for static ancillary data or for
debugging purposes.

While the PS with its common architecture and Linux OS
facilitates rapid implementation of algorithms in software, its
speed is limited due to various constraints onboard of a satel-
lite, such as power consumption or heat dissipation. The PL
may be utilized to accelerate computationally intensive parts
of SAR L1 and L2 processing algorithms by implementing
them in dedicated hardware circuits. Such application-specific
hardware processors can exploit a high degree of parallelism,
for example, with heavily pipelined datapaths, to significantly
accelerate performance. However, the achievable speed-up has
to be carefully weighed against the more complex development
of a dedicated hardware processor compared to a pure software
approach. Furthermore, the extent of designs implemented in
hardware is constrained by the available FPGA resources.

A crucial task at the beginning of the design phase was the
hardware/software partitioning of the algorithms. An algorithm
with low computational complexity but complicated decision
trees is more suited to run on the PS without need of using
specialized hardware. In contrast, a parallelizable algorithm
with large computational complexity benefits from hardware
acceleration. Table I summarizes the processing steps and
the partitioning for SAR image formation, ship detection,
and wind and sea state detection. Except for the parameter
calculations and geo-reference grid computation, all steps of
L1 image formation related to signal processing of the SAR
data are implemented on the PL. In contrast, for L2, only the
initial prescreening step for ship detection was selected for
hardware implementation; all other steps were implemented
in the PS.

Sections III and IV will explain the steps of SAR L1
and L2 processing, provide further details on how the shown
partitioning was reached, and discuss extensively the hardware
and software implementations.

III. IMAGE FORMATION

SAR image formation reconstructs the complex reflectivity
of a scene on ground from the sensor raw data acquired along
the flight path. A common approach is the adoption of the
matched filter concept, where the raw data are convolved
with the complex conjugate and time-inverted range-variant
point scatter response [18]. Most SAR focusing algorithms
efficiently perform this operation in the spectral domain.
Well-known and widely used spectral-domain SAR focusing
algorithms are the range-Doppler algorithm (RDA), the chirp
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scaling algorithm (CSA), and the omega-K algorithm (ωKA).
All three algorithms have been subject to hardware-level
implementation in the past. The adoption of RDA is reported
in [3] and [19]–[24], CSA in [4], [9], [19], [20], and [22], and
ωKA in [5], [23], and [25].

In the context of the EO-ALERT project, the StripMap (SM)
imaging mode is used, since it provides a good compromise
between coverage and resolution for emergency scenarios.
With regard to the application in view, there are only moderate
requirements on resolution (about 6–8 m) and localization
accuracy (better than 10 m) of the focused SAR image. Since
no new SAR instrument is designed or operated in the context
of the project, TerraSAR-X single polarization SM acquisition
data have been selected as a representative source of L0 raw
data. The TerraSAR-X SM mode is characterized by a swath
width of 30 km and an inherent resolution of about 3 m.
The raw data are supplemented by the corresponding radar
instrument settings as well as attitude and orbit data derived
from the output of the satellite’s attitude and orbit control
system (AOCS).

After consideration of the limited onboard hardware
resources, the desired resolution class, and the applications
defined in the project, the monochromatic ωKA was selected
for focusing the SAR raw data on the MPSoC. As lined out
in [26] and [27], the monochromatic variant of the ωKA omits
the cumbersome Stolt interpolation which eases implemen-
tation. The inherent, less accurate correction of range cell
migration for wide swathes is negligible for the considerable
narrow swath and aperture length of the TerraSAR-X SM
mode. The ωKA and its monochromatic approximation allow
the incorporation of pulse replica-based range compression
without the need for additional fast Fourier transforms (FFTs),
whereas the CSA being used in the TerraSAR-X ground
segment requires two additional FFT for an initial replica
precompression step. Due to limited main memory resources
and an FFT intellectual property (IP) core 2n length constraint,
the block size for SM processing is designed to contain exactly
8192 azimuth lines and up to 32 768 range pixels represented
as 8-bit/8-bit complex integer values. This results in a spatial
coverage per block between 375 and 500 km2.

The image generated on the FPGA is a multilook, slant-
range-detected (MSD) σ0-calibrated image with a resolution
of approximately 6–8 m. It is accompanied with a geo-
reference grid, which maps the radar time coordinates of
the image to geographical coordinates. These data serve as
input to subsequent image processing. For debugging and test
purposes, image formation may be reconfigured to generate a
single-look slant-range complex (SSC) image.

A. Hardware and Software Partitioning

The arithmetic operations within the processing steps of
SAR image formation can be separated into two categories
as shown in Table I: computation of focusing parameters and
geolocation reference grid on the PS, and SAR signal process-
ing of sensor data on the PL. With regard to computational
effort, signal processing is by far the dominant part in the
entire SAR chain. Due to moderate requirements with respect
to onboard image accuracy in the project, FFTs and pixelwise

TABLE I

PARTITIONING OF IMAGE FORMATION AND IMAGE PROCESSING
STEPS BETWEEN PL AND PS

filter operations can be efficiently performed using integer
arithmetics. Based on the FFT accuracy analysis reported
in [9], we selected a width of 16 bit for data and filter pixel
representation. But in contrast to [9], we took advantage of
the block floating-point option provided by the Xilinx FFT IP
core. In contrast to signal processing, computation of focusing
parameters and the geolocation reference grid requires less
magnitudes but more complicated operations. In particular,
floating-point operations are needed, so that these steps are
performed in software on the PS. The hardware and software
partitioning of SAR image formation with the monochromatic
ωKA is depicted in Fig. 3.

Three hardware design constraints were investigated w.r.t.
FFT length, cache sizes, and input-output (I/O) throughput of
DRAM for achieving low latency. The designed maximum raw
data block size directly determines the transform length of the
FFT. The target hardware could support a 16 k×32 k raw data
block (azimuth × range), but in that case, integration of SAR
image formation and subsequent image processing on the same
FPGA would not be possible, as the FPGA memory resources
would be almost entirely utilized by SAR image formation.
For this reason, the block size was chosen to be 8 k × 32 k.

A major parameter with impact on latency is the number
of raw data lines that are cached simultaneously in the FPGA
from DRAM. Caching is a key concept for continuous stream-
ing of data into FFTs and for efficient corner turning, when
data coming out of the FFTs are streamed back into DRAM.
In this context, the term “corner turning” refers to transposition
of 2-D SAR data from range direction to azimuth direction
or vice versa. This is needed due to alternating application of
range and azimuth FFTs in the signal processing chain. Having
caches before and after the FFTs is less complex with regard
to managing the data, but fewer lines can be stored compared
with a design with one combined cache, which, depending on
the current processing step, serves as either input or output
cache. While a combined cache could store more lines of
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Fig. 3. Hardware/software partitioning of the monochromatic ω-k algorithm
targeted for Xilinx ZU19EG MPSoC.

data, it would require a more complicated design approach
for controlling the FFT input and output and it would need
more resources for handling the data. Again, due to limited
resources, integration of SAR image formation and processing
on the same device did not permit the implementation of such
a combined cache approach.

Data I/O throughput between the hardware core and DRAM
significantly impacts processing latency, because the SAR
signal processing demands large amounts of data to be trans-
ferred repeatedly. For the given raw-data bit width and block
size, approximately 7 GiB of data are transferred between
the caches and PL-side DRAM. As the data transfer rate is
governed by the data width and clock frequency of the AXI
interface connecting the fabric and PL-side DRAM, a width of
512 bit was configured. It is therefore advantageous to store the
SAR data in the PL-side rather than PS-side DRAM, because
the interface between the PS and PL supports a maximum data
width of 128 bit. In addition, the PS-side DRAM is kept free
for the the PetaLinux OS and software applications.

B. Hardware Implementation

A high level of parallelization and pipelining has been
achieved by implementing all the signal processing modules
in hardware.

1) Signal Processing Chain: The SAR signal processing
chain consists of five major blocks, which are raw data
in-phase and quadrature-phase (I/Q) correction, FFT, pixelwise
complex multiplications of focusing filter kernels, detection,
and, finally, multilooking (cf. Fig. 3).

In the initial I/Q correction step, the digitized SAR echo data
are corrected for artifacts that are present due to inevitable
manufacturing tolerances in the analog-to-digital-converters
(ADCs). Signal processing contains four FFT steps and begins
with a range FFT, followed by complex multiplication with the
reciprocal spectrum of the transmitted chirp pulse. Thereafter,
an azimuth FFT transforms the SAR data from range spectral,
azimuth time domain into the full 2-D spectrum, and then,
the monochromatic ω-k kernel is multiplied. Next, the data
are transformed into the range-Doppler domain by a range

Fig. 4. Datapath of the SAR image formation module implemented in the
FPGA.

backward FFT followed by multiplication with the so-called
residual azimuth compression filter. Then, azimuth backward
FFT is performed to transform the focused SAR data back
into 2-D time domain. Detection means the retrieval of the
magnitude of the complex-valued focused SAR image and
thus discarding the phase information, which is not needed for
subsequent image processing, either ship detection or extreme
weather detection. Multilooking is then applied on the detected
data by applying a 2×2 box car filter over range and azimuth,
which improves radiometric resolution at the cost of degrading
the spatial resolution. Both the detection and multilooking
steps reduce the data size of the focused image by a factor
of 8. The detection and multilooking steps can optionally be
skipped if desired by setting a register in the PL in order to
obtain a single-look-complex (SLC) image after the azimuth
backward FFT.

2) Datapath: The building blocks and data flow of the
datapath for signal processing are shown in Fig. 4. The
resources of the FPGA allow for instantiation of a maximum of
four parallel datapaths, limited by the computations involving
FFTs, which require a large number of block RAMs (BRAMs)
for storing the results. Several components of the datapath
have been realized using IP cores from Xilinx, such as FFT,
RAM, coordinate rotation digital computer (CORDIC), data
width converters (DWCs), and floating-point multiplication.
The main advantages of using the Xilinx FFT IP core are its
reconfigurability at runtime for forward and backward FFTs
and the transform length of up to 65 536 points. The FFT
IP core has a pipelined architecture with AXI-Stream I/O
interfaces and was configured as block floating point with
adaptive scaling to avoid the clipping or wrapping of integer
values. The size of available UltraRAM (URAM) in the FPGA
allows for 16 × 32 k range lines or 64 × 8 k azimuth lines to
be cached at a time. Because of this limit, first, subblocks
of SAR data are buffered from PL-DRAM to a group of
cascaded URAMs forming the input cache. URAM is a dual-
port on-chip memory with fixed size of 4 k×72 bit, and has a
single synchronous clock for both read and write operations.
Next, the buffered data go through bit-width conversion and
get streamed to the FFTs. The output of the FFTs is then
multiplied with filter coefficients, and finally, the results are
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Fig. 5. Integration of the dedicated hardware accelerators for L1 image
formation and L2 processing on Xilinx Zynq MPSoC. Only components and
interfaces that are used by the SAR processor are shown.

written to a second group of URAMs forming the output
cache. Caching is done at the beginning and end of the
datapath, because it is an efficient approach to streaming the
data continuously into the FFTs. Corner turning (CT) solves
the issue of the data being unaligned after the previous signal
processing step. Each datapath instance processes 4 × 32 k
range lines or 16 × 8 k azimuth lines stored in the URAM
cache in one go. In total, all four datapath instances process
2 × 8192 × 32 k ranges lines and 2 × 32768 × 8 k azimuth
lines. Running four parallel datapaths significantly decreases
the overall latency. The blocks in the datapath are controlled
by a finite state machine (FSM), which is also responsible for
generating the read and write addresses for the PL-DRAM.

C. Hardware Integration

The integration of the developed SAR image formation
processor into the MPSoc is shown in Fig. 5. The processor
has an AXI interface for data transfers to and from the
PS as well as the PL-side DRAM. SAR raw data, AOCS
data, and initialization data are transferred to the PL-DRAM
via PCIe from the scheduling board. From there, the chirp
replica, which is part of the raw data, the AOCS data, and
the initialization data, are transferred to the PS-DRAM for
parameter calculations. In order to store and process SAR
raw data, a minimum of 2.5 GB of memory is allotted in
the PL-DRAM for image formation. The purpose-built AXI
DRAM bridge IP, which is part of the datapath shown in
Fig. 4, connects to the PL-DRAM to transfer data between
the memory-mapped devices. This DRAM bridge IP can be
connected to the PS-side or PL-side DRAM via AXI and
is controlled by an FSM for generating read/write addresses
and data transfer sizes. All registers in the hardware core are
written from the PS through an AXI interface, and lookup
tables (LUTs) are loaded from the PS as well as with an AXI
BRAM controller. The PS is also responsible for starting the
hardware core once the calculation of processing parameters
has finished, and they have been transferred to the PL. The
hardware core signals the status of completion with an AXI
general purpose IO (GPIO) interrupt connected to the PS.

D. Software Implementation

The software part of SAR image formation comprises all
geometry-related calculations based on the acquisition-specific

orbit state vectors and attitude quaternions. A geoid model,
globally sampled with a posting of 10 km × 10 km and stored
on the internal SD card as a 9-MB file, provides heights of
the sea surface with reference to the WGS84 Earth ellipsoid.
On the basis of this, the following geometry-related parameters
are calculated:

1) effective sensor velocities as a function of range;
2) Doppler centroid frequencies derived from the antenna

pointing geometry;
3) elevation angles and projection of the antenna-pattern

elevation gain profile into the slant-range geometry of
the SAR image;

4) incidence angles for σ0 calibration;
5) the SAR image heading angle;
6) a 1-km laterally spaced geo-reference grid providing

latitude, longitude, and ellipsoidal height for each grid
point, as well as incidence angles of the radar beam
hitting the surface.

Prior to triggering signal processing in the PL, the software
running in the PS computes and fills a set of 1-D LUTs
residing in BRAMs of the PL. The lengths of the individual
LUTs equal either the range or the azimuth size of the raw
data block, in the current implementation of 32 768 and 8192,
respectively. The concept of PS-side precomputed values in
PL-side LUTs, which are addressed and read within the PL
in synchronization with the SAR data samples streaming
through the datapath, substantially reduces the complexity of
the hardware circuitry.

1) replica of the transmitted chirp pulse, represented by the
complex reciprocal of its spectrum;

2) Hamming window to be applied to the range spectrum;
3) range frequency-dependent terms of the phase function

of the matched filter applied in the 2-D spectral domain;
4) azimuth frequency-dependent terms of this phase func-

tion;
5) range-dependent terms of the phase function of the

matched filter applied in the range-Doppler domain;
6) window function consisting of the reciprocal azimuth

antenna pattern of the sensor and of a Hamming window
to be applied to the azimuth spectrum;

7) window function consisting of the reciprocal range
antenna pattern of the sensor to be applied on the
focused image.

With the exception of the complex chirp replica spectrum,
all of these lookup tables contain real floating-point values.
The terms required to compute the 2-D spectral phase filter
are separated into two 1-D LUTs. This has the advantage that
the final filter phase parameter computation adds no latency
to the datapath, because it is synchronous to the FFT IP core
data output.

IV. IMAGE PROCESSING

Once the image has been generated in the image formation
phase, either ship detection or wind and sea state detection
is performed. In the current operational environment on a
ground station, both can be performed on the same scene
consecutively, along with other detection algorithms. For the
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project, however, it is assumed that only one of the tasks is
relevant for the ordering client, and consequently, only one
is performed for each acquisition. Both algorithms used are
adapted from those currently running automatically in the
NRT processing chain at DLR ground station Neustrelitz.
Since these algorithms are already well described in previous
publications, this section focuses on the implementation of the
algorithms on the MPSoC.

A. Ship Detection

The ship detection algorithm is based on [28] and [29],
where a more detailed explanation is provided. It starts
with an initial prescreening, applying a constant false alarm
rate (CFAR) detector on the entire image; Fig. 6 shows a
simplified overview of this method. The second step reap-
plies CFAR only to the initially detected pixels to refine the
detection and retrieve ships that might have been missed [30].
This is followed by azimuth ghost filtering, which removes
aliasing echoes on the sea surface caused by ships or land
objects. As these land objects might be missed when objects
are filtered using a land mask, the land object removal step
is performed after the ghost removal. Finally, the parameters
such as length and width of the retrieved ships are extracted.

1) Hardware and Software Partitioning: As shown in
Table I, the initial prescreening over the entire scene is the
only step implemented in the PL. Initial tests showed that the
processing time on the PS would reach about 16 min; hence,
this was not possible under the project latency requirement
of 210 s for the full SAR processing. The remaining four
processing steps are sufficiently fast even on the PS. Although
the detection refinement uses the same CFAR algorithm as the
initial detection, it is only applied to the comparatively few
detected pixels.

2) Hardware Implementation: The pipelined CFAR
processor presented in [31] served as the basis for hardware
implementation, but it was rewritten in order to allow for
flexible dimensions of the CFAR background and guard
windows and to enable significantly higher throughput than
previously achieved. Fig. 7 shows a schematic of the datapath
of the revised CFAR core, which consists of a BRAM pixel
buffer connected to a 29-stage-long processing pipeline.
After image formation, the L1 products reside in the PL-side
DRAM, and the CFAR processor prefetches the required
pixels into the buffer. It stores up to 1024 columns of the
CFAR window, each containing up to 255 16-bit pixels.
Therefore, with a typical background window size of 750 m,
the minimum pixel size is 2.94 m, sufficient for the products
generated onboard. Since the width and length of the buffer
are configurable at compile time, it can be adapted to higher
resolution products at the cost of increased BRAM utilization.
In the previous version of the core [31], the CFAR dimensions
were fixed in the pipelined datapath, so that the buffer would
have to hold exactly 255 pixels in parallel irrespective of
the actual size of the pixels. This may negatively impact
the accuracy of detection and excluded potential targets
within (255 − 1)/2 = 127 pixels of the image edge from
detection altogether. The datapath was therefore improved by
first adding a multiplexer for each 16-bit pixel after the buffer.

Fig. 6. Simplified illustration of the sliding CFAR window for calculation of
background statistics. Background window pixels are marked in yellow and
guard window pixels in gray. Only changed pixels are updated before mean
calculation, which reduces the processing complexity from O(n2) to O(n)
with respect to the sliding window size. The real background window size is
750 m or about 200 pixels in the onboard implementation. (a) Initial CFAR
window. (b) Update for next pixel.

Each multiplexer is controlled individually and set to output
“0” according to the current dimensions of the CFAR back-
ground and guard. Additionally, the now variable dimensions
are propagated through the pipeline stages, as they are required
to calculate the mean of the background pixel intensities.

The BRAM buffer allows accessing one column of the
CFAR window per clock cycle. As previously explained, four
operations have been defined for the pipeline, which are
addition and subtraction for a background and a guard column,
respectively (cf. Fig. 6).

A fifth operation has been added, which is loading the
target pixel itself from the buffer. This is required for the final
step of the pipeline, where the intensity of the target pixel is
compared against the calculated CFAR threshold. In a typical
queue following the first in, first out (FIFO) principle, elements
are discarded when read, but for the sliding CFAR window,
all columns with the exception of the first one will still be
needed for subsequent windows. Thus, the pixel buffer has
been implemented as an indexed queue, so that an optional
index may be provided to access a certain element without
deleting it. After full accumulation of the first CFAR window
in a row, the pipeline can therefore perform detection on
one target pixel every five clock cycles regardless of the size
of the CFAR dimensions, which is a major advantage over
software processing. This being the case, the complexity of the
CFAR algorithm is O(1) with the hardware core. The results
in Section V will show that this theoretical maximum was
not reached due to throughput limitations from the PL-side
DDR4 DRAM, but still significant speed-up was achieved.

Following initial multiplexing of the incoming pixels, the
pipeline splits into two independent branches (see Fig. 7): the
top branch calculates the squared mean of the pixel intensities,
while the bottom branch calculates the mean of the squared
pixel intensities. In the top branch, the pixels are directly fed
into a pipelined adder tree for accumulation of the intensities.
A pipelined adder tree was necessary, because addition of all
255 16-bit pixels in one clock cycle led to timing violations
during physical implementation on the FPGA. The result is
then added to or subtracted from the stored result as previously
explained. To obtain the mean μb, the sum is divided by
a pipelined divider and finally squared. The bottom branch
works similarly, but pixels are squared first before being
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Fig. 7. Datapath of the hardware CFAR processor for ship detection. Whole columns of 16-bit image pixels are prefetched into a BRAM buffer (left) and
processed in a 29-stage-long pipeline (right). The blue numbers annotate the pipeline delay in clock cycles of the respective functional blocks.

accumulated. Both branches consist of the same amount of
pipeline stages, so that they can be joined again after 16 clock
cycles. This is done by subtracting the squared mean (top)
from the mean of squared pixels (bottom), which yields the
variance of the CFAR background pixel intensities. A Xilinx
CORDIC IP core is then used to obtain the square root of the
variance, i.e., the standard deviation σb. Using the mean μb,
standard deviation σb, and CFAR constant k, in the next stage,
the CFAR threshold T is calculated with

T = μb + k · σb. (1)

Finally, the threshold is compared against the intensity I of the
target pixel. If the target exceeds the threshold, it is deemed
that an object has been detected.

The output of the pipelined datapath is an 8-bit signal
indicating whether the current pixel was detected or not. This
is stored in an output FIFO queue, which is intermittently
written to the PL-side DRAM in chunks of 64 bytes. Should
the output queue fill up, the pipeline is stalled in order to
prevent data loss. Likewise, the pipeline is paused if the input
pixel buffer does not hold enough columns of the CFAR
window. The processor is therefore robust to variations in
DRAM throughput.

3) Hardware Integration: The CFAR processor was inte-
grated in the PL of the MPSoC as shown in Fig. 5. A Xilinx
AXI DataMover IP core is connected to the AXI Interconnect
described in Section III-C for prefetching of the image data
from the PL-side DRAM. With this IP core, data can be
transferred between AXI memory-mapped and AXI-Stream
domains with high throughput, which makes it suitable for
feeding data into the input queue of the CFAR processor and to
write the results from the output queue back into DRAM. The
DataMover is controlled by an FSM in the CFAR processor
itself. One full column of the CFAR window is read from
DRAM per transfer. The highest possible DataMover interface
width, i.e., 512 bit, was chosen to maximize throughput, so that
up to 32 pixels (64 B) can be transferred each clock cycle. The
CFAR processor therefore has to collect the incoming packets
depending on the size of the CFAR dimensions prior to writing
into the BRAM pixel buffer, which accepts a whole column
at a time.

For control and status, an AXI GPIO has been integrated
into the CFAR processor and connected to the PS of the
MPSoC. This enables the PS to start or abort the CFAR
detector by writing the respective registers, and an interrupt
is raised when the current image has been processed by the
hardware core. Furthermore, several AXI registers can be
accessed by the PS in order to configure the core with regard
to memory addresses and metadata, such as image size, CFAR
window dimensions, or the CFAR constant k.

4) Software Implementation: The SAR image processing
software on the ground station was written for Linux OSs
and is intended to run on x86 processors traditionally found
in servers, but the MPSoC used in the EO-ALERT project
is equipped with an ARMv8 PS. Cross-compilation required
removal of certain libraries which were not available on the
target system, but were used mainly for visualization and
debugging purposes. Once it was running on the ARM PS, the
software was extended to support reading the project-specific
binary image and auxiliary data file formats. Transfer of data
between the PS-DRAM, PL-DRAM, and PCIe was enabled
by including a library developed specifically for the onboard
system configuration in the project. With that, the software
could be adapted to reading the L1B products from the PL-side
DRAM, where they are stored after the image formation phase.

When the application binary is executed for ship detection,
the L1B products are first transferred to the PS, and metadata
is read from the image header. From that, the parameters for
CFAR calculation are derived and stored together with the
metadata in the AXI registers introduced in Section III-A3
using a vendor-provided userspace I/O (UIO) library. Then,
the CFAR hardware processor is started, and the program
waits for the hardware interrupt. After the software receives
the interrupt, it checks whether the detection was successful
and transfers the binary mask from the PL- to the PS-DRAM.
Ship detection then continues on the PS with data being
used only from the PS-DRAM. In case any ships have been
detected, so-called alerts are created at the end of the chain
and transferred to the PL-DRAM, where they will be fetched
from by the upstream control and scheduling subsystem. These
binary messages contain parameters of the detected ship, such
as its position, timestamp, length, or width. Additionally,
as requested during user consultation phase in the project, a
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100 × 100 pixel 8-bit ship thumbnail is extracted from the
scene and delivered along with the parameters.

Injecting the AXI data transfers and control of the hardware
core directly into the SAR software allowed keeping the
existing structure of the on-ground software and therefore
reduced development time.

B. Wind and Sea State Detection

Wind and sea state detection are based on [32]
and [33]–[35], respectively. Again, the reader is referred to
these publications for a more thorough description of the
algorithms.

For weather detection, the scene is divided into a processing
grid; one value for wind speed and sea state is calculated per
grid cell. Here, land removal is the first step; grid cells con-
taining more than 10% land are not considered for processing.
The mean ocean backscatter is calculated in the next step.
It is used as input for the wind detection, which is performed
by applying the XMOD2 geophysical model function (GMF)
to retrieve wind speed. This wind speed is also a parameter
for the following wave height detection, which obtains fea-
tures derived from a gray-level cooccurrence matrix (GLCM)
analysis as well as spectral information by FFT.

In current operational use, the processing is done on a
1024 × 1024 pixel FFT size, approximately 1280 m × 1280 m
in TerraSAR-X SM scenes, and a grid spacing (distance
between grid cell centers) of 3 km [33]. As a compromise
between resolution and computational time, a grid spacing
of 2 km × 2 km is chosen for the project. This results in
approximately 75 grid cells for a 375 km2 scene.

Although the FFT is a function well suited for being
implemented in an FPGA, no parts of the wind and sea
state retrieval were ported to the PL. Testing had shown that
the additional development efforts were not necessary as the
latency requirements could be met by only using the PS.
Furthermore, some of the PL resources were already exhausted
by the image formation and CFAR hardware implementations.
A thorough performance tuning was done on the code instead
in order to improve performance. This included optimizing
the FFT function, removing the calculation of unnecessary
debugging and output parameters, and optimizing core routines
for use on a reduced instruction set computer (RISC)-type
system, such as the ARM CPU in the PS. As an example
for the latter, multiple loops iterating over every pixel of a
grid cell were combined into one, so that fetching data from
memory would occur less often. On a complex instruction
set computer (CISC) system, such as the Intel CPU, the
operational code is running on, this would have a lower impact
on performance.

Similar to ship detection, the output of the processing is
an alert, which is only created and supplied for pickup on
the PL-DRAM if the threshold for high wind speed, 15 m/s
in the project, or wave height (4 m) is reached. The alert
contains parameters such as location (given as the center of
the respective grid cell), wind speed, and wave height. Unlike
ship alerts, no thumbnail is included here.

TABLE II

RESOURCE UTILIZATION OF THE SAR L1 AND L2 ONBOARD PROCESS-
ING CIRCUITS INTEGRATED INTO THE ZYNQ ULTRASCALE+ ZU19EG

FPGA AT TARGET FREQUENCY OF 125 MHZ

V. RESULTS

The developed algorithms were applied to nine scenes taken
in 2016 and 2017 in the Mediterranean Sea. All scenes were
acquired in TerraSAR-X SM mode. The subsections of this
section describe results with regard to hardware implementa-
tion, to image and product quality, and to processing latency.

A. Hardware Results

The developed hardware processors for SAR image forma-
tion and processing have been synthesized and implemented as
a combined design on the Xilinx Zynq UltraScale+ ZU19EG
MPSoC using Xilinx Vivado. A target clock frequency of
125 MHz was defined for the whole circuit to match the
interface frequency of the Xilinx Ethernet and GPIO modules.
While the clock frequencies of individual hardware blocks
could be raised by implementing clock domain crossing
between different frequency domains, there was little improve-
ment in processing latency for image formation and none
for image processing, because the CFAR core is limited by
throughput of the DDR4 DRAM, which runs at its own
separate frequency.

The created bitstream was imported into the PetaLinux
toolchain to build the OS, which includes all necessary drivers
and software applications. The resulting boot files, which
include the boot loader, bitstream to program the FPGA, and
OS image, were transferred to the SD card attached to the
MPSoC, and the board was booted.

1) Utilization: Table II shows the FPGA resource utilization
of the integrated circuit for SAR L1 image formation and
L2 processing. In total, the hardware design requires only
9.5% of the available slice registers and 19.5% of the LUTs.
However, 82.7% of the 984 BRAM tiles and 100.0% of
the 128 URAM tiles are used for temporary data storage. All
of the URAM and the majority of the BRAM are taken up
by L1 image formation, showing that this part of the SAR
processing chain has been accelerated with priority as much
as possible given the available hardware. Finally, 29.3% of
the available digital signal processing (DSP) slices are used
for efficient implementation of algorithmic functions such as
multiplication and accumulation.

2) Throughput: The throughput of L1 processing is mainly
dependent on the FFTs and the burst access to the PL-side
DRAM using AXI protocol. Regarding the FFTs, the time
difference between the first pixel entering the core and the
last pixel coming out of the core determines the latency. Since
the FFTs are configured in pipelined streaming mode, each
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TABLE III

ACHIEVED THROUGHPUT OF THE CFAR HARDWARE PROCESSOR FOR
SHIP DETECTION WITH DIFFERENT BACKGROUND AND GUARD WIN-

DOW SIZES COMPARED WITH THE THEORETICAL MAXIMUM

THROUGHPUT OF THE PIPELINED CFAR DATAPATH. THE CIR-
CUIT RAN AT 125 MHZ. A SCENE WITH A SIZE OF 3488 ×

8320 PIXELS AND A PIXEL SPACING OF APPROXIMATELY

3.8 m WAS USED

line is streamed continuously from cache and processed in a
pipelined manner. This reduces the time required for the next
line to be fed into the core, but can only work if a sufficient
number of lines can be cached inside the FPGA fast enough.
With the available URAM resources, a maximum of 16 ×
32 k range lines or 64 × 8 k azimuth lines may be cached
at a time. Roughly, 7 GiB of data are transferred between
the PL-side DRAM and cache for the selected raw data block
size. By maximizing the throughput of the AXI link and with
an FPGA clock running at 125 MHz, data transfers contribute
about 1 s to the total latency required for L1 image formation.

For L2 ship detection, the throughput of the CFAR hardware
processor can be derived from the measured latency. With the
optimized CFAR algorithm explained in Section IV-A1, for
each pixel of the image, approximately one column of the
CFAR background window has to be loaded from the PL-side
DRAM if it is assumed for simplicity that pixels near the
image borders can fit a full window around them. For example,
a 3488 × 8320 pixels large image with CFAR background
size of 199 pixels and guard size of 101 pixels requires
3488 · 8320 · 199 · 2 B = 11.55 GB of data to be transferred
from the PL-side DRAM to the input buffer. Table III shows
the results for different background and guard window sizes
compared with the theoretical maximum throughput of the
pipelined CFAR datapath in Fig. 7. This maximum implies
that the input buffer always holds enough data so that the
pipeline is never stalled. In that case, the pipeline would
process a new target pixel every five clock cycles and thus
the processing time would be constant (1.16 s) regardless of
the chosen CFAR window dimensions. As shown in Table III,
in reality, the latency increases linearly with the size of the
CFAR background size from 2.42 s for a very small window up
to 3.01 s for the maximum possible window size of 255 pixels
(see Section IV-A2). This proves that the core is limited by
the data throughput from the PL-DRAM to the pixel buffer
in the CFAR core, as the larger the CFAR window, the more
data have to be transferred. Nevertheless, enormous speed-up
has been achieved over the software implementation on the
ARM quad-core PS, which took 16 min, while the hardware
core needed just 2.71 s with the same settings.

3) Power Consumption: Looking at the ZU19EG MPSoC,
the FPGA on-chip sensors reported just 3.6 W in idle state

with peaks of 6.2 W and 5.0 W during L1 monochromatic ω-k
and L2 CFAR hardware processing, respectively, confirming
the high efficiency of the implemented algorithms. However,
this includes only the power rails of the FPGA fabric and
the PL-side DRAM. For the whole SAR board, power con-
sumption under load of about 24 W was measured, which is
consistent with >20 W presented for the ZU15EG variant of
the multiMIND board [16].

B. Quality Results

Porting the existing algorithms for SAR image formation
and processing to the onboard system required compromises
with respect to image quality and, partially, product quality.
This section compares the images and products generated
onboard with their counterparts created by the regular algo-
rithms in operational use.

1) Image Formation: The accuracy of L1 image formation
was analyzed in detail on two SAR acquisitions, one of
a test site with corner reflectors to get the parameters of
the impulse response function, and one maritime scene to
test the geolocation accuracy under conditions representative
of the intended application.

The selected test site in Oberpfaffenhofen, Germany,
is equipped with four corner reflectors and was imaged with
TerraSAR-X. The resulting scene data were processed both by
the operational TerraSAR-X processor and by the EO-ALERT
onboard processor. The output of the operational TerraSAR-X
processor was an SSC image.

A point target analysis was performed on the basis of
the four corner reflectors both for SSC images and for the
MSD image. Table IV lists the parameters of the impulse
response function. The 3 dB width in azimuth and range of
the onboard products is increased because of the reduced
processing bandwidth in the EO-ALERT processor. There is an
inverse proportionality between the chosen processing band-
width and the resulting peak width. The azimuth processing
bandwidth of the EO-ALERT processor amounts to 2 kHz in
azimuth and 82.5 MHz in range (compared with 2.765 kHz
and 100 MHz in the operational TerraSAR-X processor).

Hence, an increase in the 3 dB width by 38% in azimuth and
by 21% in range is expectable and provides an explanation for
almost all of the observed peak broadening. As a consequence
of the peak broadening, peak power also differs between
operational and onboard processing. Peak phase and peak
position were compared on the basis of single corner reflectors,
and the found differences were averaged (as an average
position or phase of all corner reflectors does not hold any
meaningful information). On average, the peak phase differs
in the range of one degree, while the peak positions show
only slight differences in the order of a few centimeters. Peak-
to-sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR)
of the SSC images are similar, whereas PSLR and ISLR
of the MSD image are degraded as a consequence of the
detection step. Regarding average signal energy, both SSCs are
within 0.2 dB m2 of each other, indicating correct radiometric
calibration of the EO-ALERT processor. The same is true for
the main lobe energy.
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TABLE IV

RESULTS OF THE POINT TARGET ANALYSIS ON CORNER REFLECTORS AT THE DLR TEST SITE IN OBERPFAFFENHOFEN, GERMANY. THE MEASURED
POINT TARGET PARAMETERS FROM THE TERRASAR-X IMAGE AND FROM THE EO-ALERT IMAGE ARE COMPARED AGAINST EACH OTHER

TABLE V

RESULTS OF THE POINT TARGET ANALYSIS PERFORMED ON A SCENE IN THE GULF OF NAPLES. THE DEVIATIONS OF THE POSITIONS OF SHIPS IN THE

EO-ALERT IMAGE RELATIVE TO THE RESPECTIVE POSITIONS IN THE TERRASAR-X IMAGE ARE DETERMINED

The geolocation accuracy of the generated image is mea-
sured w.r.t. the position of some bright scatterers onboard
of ships which are observed in an example scene acquired
in the Gulf of Naples. The radar coordinates (range and
azimuth) of the onboard generated image are compared with
the coordinates in the original TerraSAR-X product, which is
well known for its high localization accuracy at centimeter
level [36], [37]. Thereafter, on the basis of the same points,
the accuracy of the geolocation grid is cross checked against
the one of the TerraSAR-X products. By visual inspection,
three ships were clearly noticeable in the example scene.
At each of the ships, one dominant scatterer was selected for
the measurement.

The results are presented in Table V. On average, the
difference between the measured coordinates from the Ter-
raSAR-X and EO-ALERT images is at decimeter level w.r.t.
azimuth and range. The standard deviation of the difference is
below 2 m. Thus, the localization accuracy excels the project
requirement of 10 m. Furthermore, the same test site features
the high contrast scenery of Naples and its port. The hardware-
focused image proves, as depicted in Fig. 8, that the block
floating-point FFT operations do not cause visible artifacts
such as smear out of bright targets into the darker image areas.

2) Ship Detection: The ship detection algorithm proved
robust to the changes in image quality caused by onboard
processing. Differences in detection results occur due to the
coarser product resolution. From the 21 ships with automatic
identification system (AIS) data included in all test scenes,
three were rather small with 20, 20, and 21 m, respectively.
These three ships were not detected in the onboard algorithm.
The next larger ship was above 60 m and was successfully
detected, as were all remaining 17 ships on the test scenes.

Fig. 8. Hardware-processed TerraSAR-X image detail depicting parts of the
city of Naples and its port. The 10 km×5 km detail is extracted from a focused
azimuth block covering 32 km in range and 13 km in azimuth direction.

Fig. 9 shows thumbnails of different-size ships, as they are
included with the alerts from onboard processing (left) with the
same thumbnail extracted from on-ground TerraSAR-X Multi-
look ground range-detected (MGD) imagery (right). Onboard
thumbnail dimensions are 100 px × 100 px with pixel size
of approx. 3.80 m, so that each thumbnail covers an area of
380 m×380 m. The MGD thumbnails have the same coverage
in meters, but pixel size is smaller at 2.75 m. Thus, they
contain 138 px×138 px. The shown ships with lengths 70, 115,
and 180 m were detected by both the on-ground and onboard
processor using their respective image products; however, the
20-m-long ship could not be detected by the onboard processor
as previously mentioned.

With the onboard system, more false positives are detected
on water originating from land structures. This is a direct result
of the reduced scene size in azimuth: while a full TerraSAR-X
SM scene has a length of 60 km, the onboard scenes have a
reduced length of 12.5 km, and coastal areas were selected
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Fig. 9. Ship example thumbnails of different sizes for a scene acquired on
February 2, 2017 at the coast of Naples, Italy. Onboard generated products
are shown in the left column, with on-ground TerraSAR-X MGD imagery in
the right column for comparison. The latter reveals smoother appearance and
better speckle reduction due to its more elaborate highly accurate multilook
processing. (a) 20 m length, onboard. (b) 20 m length, MGD. (c) 70 m length,
onboard. (d) 70 m length, MGD. (e) 115 m length, onboard. (f) 115 m length,
MGD. (g) 180 m length, onboard. (h) 180 m length, MGD.

from the full TerraSAR-X scene. As a result, the onboard
scenes do not contain enough land to include the source of
azimuth ambiguities appearing on the water. Hence, these
cannot be filtered out by the algorithm. This is of course only
a problem near land and does not affect scenes on open water
with no land nearby. The operational processing has generally
the same problem; however, it is not as frequent as the full
TerraSAR-X SM scene, which often contains large enough
sections of land.

A fourth point, which holds true also for the extreme
weather scenario, is the land mask used. The onboard system
uses the global self-consistent, hierarchical, high-resolution
shoreline database (GSHHS) land mask in full resolution
(about 60 m posting, about 80 MB file size) as a compromise
between resolution and storage space; the operational system
uses a land-water mask derived from OpenStreetMap data
(resolves features down to about 5 m, about 1 GB file size)
which also includes many harbor structures not resolved in
GSHHS. Errors in the land masking might lead to real ships
on water being filtered out, or false positives when objects on
land are not removed.

3) Extreme Weather: An example of extreme weather
processing is shown in Fig. 10. While ship detection relies
mostly on the CFAR algorithm, which is rather robust to
image quality, especially the sea state algorithm using GLCM
and spectral analysis is expected to be more sensitive to
the minor quality degradation of the onboard scenes. Also,
the operational processing chain in the ground station can
compute the wind direction from models even before the
scheduled acquisition take place and provide a wind field
for the scene at the start of near real-time processing. While
the support for such precomputed wind fields is available
also to the onboard algorithm, the required preparation time
and data transfer do not make this feasible for a quick-react
onboard system as envisaged in EO-ALERT. Hence, the
onboard algorithm is always run with a fixed input wind
direction.

A direct comparison of detected wind speeds and wave
heights is not possible due to different integration areas, where
always 1024 ×1024 pixels are taken, which results in a larger
area onboard than on the original MGD products due to the
higher pixel sizes. Also, the scene centers are not exactly
aligned due to the different sizes and boundaries of the scenes.
Fig. 11 shows a comparison of the detected wind speeds U10
and wave heights Hs including all values retrieved from the
scenes in Table VI. The apparent differences are caused partly
by the different radiometric accuracies of the onboard product
as discussed in Section V-B1, and also by different integration
areas as stated earlier. Additionally, the sea state algorithm was
trained on hundreds of original TerraSAR-X SM scenes with
reference to buoy data [33], and it is very sensitive to changes
in product quality and resolution. Hence, for operational use,
the algorithm would need to be retrained with a large number
of onboard processed scenes; this high effort was not foreseen
for the demonstrational character of this project.

For wind, a general tendency toward too high values is seen
in Fig. 11, especially for low wind speeds < 5 m/s, but a minor
overestimation remains also for higher wind speeds. The root-
mean-square deviation (RMSD) is 0.7 m/s.

Sea state shows a similar tendency toward slight overesti-
mation for low wave heights, but tends to be underestimated
for higher wave heights. These discrepancies are likely caused
by the missing retraining. The RMSD for sea state is 0.2 m.

C. Latency Results

Minimizing the processing latency was a core development
goal in the EO-ALERT project. The total system latency goal,
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Fig. 10. Wind and sea state processing for a scene around Naples, Italy (scene #7 in Table VI). Red points show invalid grid cells on land, for which
no calculation is performed. White crosses mark valid grid cells with the respective results for wind speed U10 (white) and mean wave height Hs (blue).
TerraSAR-X data © DLR 2017.

TABLE VI

SCENE PARAMETERS FOR THE NINE SELECTED TEST ACQUISITIONS AND RESULTING PROCESSING LATENCIES

including all processing and data transfers to the end user,
was set to a maximum of 5 min. This requirement allowed
up to 210 s for SAR processing and product generation.
Table VI shows processing times achieved in the different
scenes.

Image formation achieves an average processing time of
3.7 s with only minimal variation depending on the small
differences in scene size. The image processing algorithms,
on the other hand, show larger variations in runtime depending
on scene properties. For ship detection, land filtering is only
applied after the initial CFAR detections to allow filtering of
azimuth ambiguities on water originating from land objects.
This leads to a large number of detected and processed
objects in scenes with high land content, as there are many
bright reflectors on land. Consequently, the algorithm performs
slowest on scenes with much land and fastest if only water
with few ships is in the scene.

The opposite is true for wind and sea state detection. Land
masking is performed before other processing steps, and grid
cells with land are not calculated. This reduces the processing
time for scenes with high land percentage, and the longest

Fig. 11. Comparison of (a) wind speed U10 and (b) wave height Hs
derived from original TerraSAR-X MGD and onboard scenes, respectively.
The differences are a result of different radiometric accuracies, of different
integration areas (depending on pixel size) and, in case of Hs, also of
outstanding retraining of parameters.

processing times are recorded for scenes where all grid cells
are evaluated.

Compared with the latency requirement, even the higher
average for wind and sea state with 34.5 s (image formation
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and processing) is way below the 210 s requirement. However,
this also had to be achieved in the so-called max strip scenario
of the project, which consists of three raw data blocks instead
of one. For SAR, this is implemented by simply running
the processing chain three times in a row on a single board.
This choice was made, since even three scenes with a total
latency of 103.5 s are processed in less than half of the
latency requirement.

VI. DISCUSSION

In this article, on-board SAR image formation and image
processing were implemented on one MPSoC. The algorithm
implementations of both image formation and image process-
ing on a single hardware have not been attempted so far in
any on-board SAR platform. The other major advancement of
this work is the achieved speedup for L0 to L1 processing.
L1 product generation took 3.7 s in the MSD case and 4.3 s
in the SLC case, using a monochromatic ω-KA. Hence, the
processing speed of the SLC product is 28.3 Mpx/s. In case
of the MSD product, the multilooking means a reduction
of image size by a factor of 4, and the increased speed
is caused by the reduced data volume written to memory.
Thus, for MSD data, the throughput is 8.1 Mpx/s, which,
however, corresponds to 32.4 Mpx/s of SLC data at the input
of multilooking. With respect to raw data, using an input size
of 8192 × 32768 samples, the processing speed is 68.8 mega
samples per second ( MSPS).

In comparison with the previous work, the current imple-
mentation is significantly faster. In [7], the authors presented
spaceborne on-board SAR processing with four Xilinx FPGAs
and six 8-GB DDR3 DRAMs. The authors give the processing
speed of their RDA-based SSC image formation as 18 Mpx/s.
The CSA was used by [8] and [9] to generate an SSC product.
The authors performed SAR image formation of raw data
with 16384 × 16384 samples within 10.6 s on an FPGA with
reconfigurable architecture and 12.1 s on an FPGA-ASIC PS,
corresponding to 25.3 and 22.2 MSPS, respectively. Latency
reduction in our implementation results from running four
datapaths in parallel. This parallelization is possible, because
the monochromatic ω-KA is computationally less complex and
requires less resources per datapath in hardware.

The presented work demonstrates that satellites with
onboard SAR focusing and product generation for enhanced
NRT product delivery are feasible with current technology. The
resulting processing times from L0 raw data to L2 products
vary between 11.8 and 42.2 s per scene of about 375 km2 when
distributing the workload between PL and PS with adapted
processing algorithms. In the EO-ALERT project, the full
chain starting from acquired raw data up to the end user
receiving alerts was developed, including data processing as
described in this article, data compression, and encryption,
as well as transfer to the end user. In some scenarios, such
as SAR ship detection, total latencies for the full chain below
1 min were achieved. The project goal of a maximum latency
of 5 min was achieved in every realistic scenario. This low-
latency availability of alerts will become even more important
with increasing frequency of EO satellite overflights, offering

new applications for EO technology for a large group of end
users reliant on almost real-time data.
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