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Ultracold quantum gases confined in three-dimensional bubble traps are promising tools for ex-
ploring many-body effects on curved manifolds. As an alternative to the conventional technique
of radio-frequency dressing, we propose to create such shell-shaped Bose-Einstein condensates in
microgravity based on dual-species atomic mixtures and we analyze their properties as well as the
feasibility to realize symmetrically filled shells. Beyond similarities with the radio-frequency dressing
method as in the collective-excitation spectrum, our approach has several natural advantages like
the robustness of the created quantum bubbles and the possibility to magnify shell effects through
an interaction-driven expansion.

Introduction.– Performing many-body physics on a shell
topology opens a new avenue in studying nontrivial quan-
tum phenomena, such as Bose-Einstein condensation [1–
5], atom lasers [6, 7], superfluidity [8], vortices [9–12] and
the Berezinskii-Kosterlitz-Thouless transition [13, 14].
Indeed, quantum gases confined to the surface of a
sphere show lower condensation temperatures than their
filled counterparts and the thin-shell transition between
a three-dimensional and quasi-two-dimensional geome-
try drastically changes the collective excitations [15, 16]
and the dynamics of vortex-antivortex pairs. Nowadays,
radio-frequency (rf) dressing is the primary technique
to realize experimentally shell-shaped Bose-Einstein con-
densates (BECs) in microgravity. This technique, pro-
posed by Zobay and Garraway [17–21], relies on the adi-
abatic deformation of a typically anisotropic static mag-
netic trap by applying a radio-frequency field. Although
rf-dressing has been successful in creating a number of
novel topologies and applications for BECs [22–34], a
three-dimensional hollow sphere of atoms is beyond the
capabilities of Earth-based laboratories due to gravity
pulling the atoms towards the bottom of the trap [22].
However, the recent progress in the development of mi-
crogravity BEC machines including NASA’s Cold Atom
Lab (CAL) [35, 36] and the Bose-Einstein Condensate
and Cold Atom Laboratory (BECCAL) [37] promises to
make shell-shaped BECs experimentally feasible [38, 39].
Nevertheless, it is still a challenging task, because any in-
homogeneity of the rf-field and non-perfect spatial align-
ment with respect to the static field potentially open the
shell up, similar to gravity on Earth.

As an alternative to rf-dressing, in this Letter we pro-
pose to realize shell-shaped BECs employing a mixture
of two atomic species. If the repulsive inter-species inter-
action outweighs the repulsive intra-species one, the mix-
ture separates into two domains, each containing solely
one type of atoms [40, 41]. Confining such a mixture
in a three-dimensional harmonic trap leads to a regime

where one species forms a shell around the other one [42–
44]. The scheme can be realized with an optical dipole
trap [45] to confine the atoms and a homogeneous mag-
netic field to tune the atom-atom interaction via Fes-
hbach resonances [46, 47]. This realization has several
advantages: (i) the atoms condense into the shell-shaped
ground state instead of being adiabatically deformed into
it, (ii) a homogeneous Feshbach field is much easier re-
alized than combining multiple magnetic fields for rf-
dressing, (iii) spherical symmetry of the atom cloud can
be straightforwardly achieved by combining three optical
trapping beams, and (iv) expanding shells are created by
simply turning off the common trap because an inwards
expansion of the outer species is prevented by the core
one.

Here we identify the parameters required to realize
shell-shaped ground states and investigate the transition
signature from a filled sphere into a shell-shaped BEC by
studying the collective excitation spectrum of the mix-
ture. Moreover, we find two distinct scenarios of the free
expansion depending on the inter-species interaction. Fi-
nally, we discuss the feasibility and robustness of the cre-
ated quantum bubbles realized with the proposed method
and contrast them with the rf-dressing ones.
Shell-shaped ground states.– For a BEC well below the
critical temperature, its properties can be described by
a mean-field approach, leading to the Gross-Pitaevskii
equation (GPE) [8, 48] for the condensate wave function
ψ. In the case of BECs containing multiple components
α = 1, 2, . . . (e.g., different atomic species), the GPE for
component α reads [40]

i~
∂ψα(x, t)

∂t
=

hα(x) +
∑
β

gαβ |ψβ(x, t)|2
ψα(x, t).

(1)
Here hα(x) = −~2∇2

x/(2mα)+Vα(x) is the single particle
Hamiltonian of an atom with mass mα and Vα(x) is the
component-dependent external potential. The sum over
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FIG. 1. Shell-shaped ground-state density distribution |ψα|2
of a spherically symmetric 87Rb-41K BEC mixture for the pa-
rameters presented in Tab. I. (a) Cut-open three-dimensional
density plot (colorbar units in µm−3). (b) Density profiles
(solid lines) along the radial direction and corresponding trap-
ping potentials Vα (dashed lines). The interplay between the
harmonic confinement and the inter-species repulsion, due to
a positive s-wave scattering length aRb,K, leads to 41K (or-
ange) forming a shell around 87Rb (blue).

all components in Eq. (1) contains the self-interaction
of the component (β = α) and the interaction between
two components (β 6= α). The interaction parameters
gαβ = 2π~2aαβ(mα + mβ)/(mαmβ) are determined by
the s-wave scattering lengths aαβ = aβα. The condensate
wave function ψα is normalized to the number of particles
Nα =

∫
d3x|ψα(x, t)|2.

To create a shell-shaped BEC, we propose to use a
two-component BEC mixture in a spherically symmet-
ric harmonic confinement Vα(x) = mαω

2
0,αx

2/2 with
the trap frequency ω0,α, created by an optical dipole
trap [45]. Using magnetic Feshbach resonances [46, 47],
we require that g12 ≥

√
g11g22 with gαα > 0. In this

phase-separation regime the inter-component repulsion
outweighs the intra-component repulsion. The system
therefore favors a separation of the components and re-
duces their overlap [41]. Combined with the harmonic
confinements, the ground state of the coupled GPEs (1)
is given by one component forming a shell with the other
one as its core [42–44].

Here we consider the parameters listed in Tab. I as the
reference case of our analysis. Choosing 87Rb and 41K
is inspired by the upcoming BECCAL apparatus [37],
which will provide optically trapped BEC mixtures of

TABLE I. Parameters of our reference case, based on an op-
tically trapped 87Rb-41K BEC mixture with laser wavelength
of 1064 nm and exploiting a Feshbach resonance at 78.9 G to
tune the inter-species interaction. Here a0 = 5.29× 10−11 m
is the Bohr radius.

Species Nα ω0,α (Hz) aαα (a0) aRb,K (a0)

41K 105 2π × 70.0 60
8587Rb 106 2π × 51.3 100

these species in microgravity onboard the International
Space Station. For 87Rb-41K mixtures, there is a mag-
netic Feshbach resonance at 78.9 G [49], around which
the inter-component scattering length aRb,K can be tuned
to a great extent whereas the intra-component scatter-
ing lengths aRb,Rb and aK,K are kept constant at their
background values [47, 50]. Thus, aRb,K is a single
and well-controlled parameter to obtain a large vari-
ety of ground states. To create shell-shaped ground
states, there are lower amin

Rb,K and upper amax
Rb,K limits for

aRb,K. Indeed, the phase-separation regime only occurs
for g12 ≥

√
g11g22, giving rise to amin

Rb,K ≈ 72 a0 [51].
However, for g12 �

√
g11g12, any contact surfaces be-

come energetically unfavorable, resulting in a different
type of ground state with side-by-side components [52].
Using the parameters of our reference case and perform-
ing three-dimensional simulations [53, 54] of the coupled
GPEs (1) for increasing aRb,K, we have located this tran-
sition to asymmetric ground states at amax

Rb,K ≈ 118 a0.
Thus, for 72 a0 . aRb,K . 118 a0, a shell-shaped mix-
ture is realized as displayed in Fig. 1, where potassium
(orange) forms a shell around rubidium (blue).

Hollowing transition and collective excitation spectrum.–
Decreasing the scattering length aRb,K below 72 a0 leads
to an increasing overlap between the two components. In
other words, the repulsion between 87Rb and 41K atoms
becomes insufficient for 87Rb to push 41K out of the cen-
ter of the system, resulting in a non-vanishing particle
density of 41K at the center. We call this transition of
41K between a filled and a hollow ground state the hol-
lowing transition, in analogy to rf-dressed BECs [15, 16].
It is a simple realization of a topological transition, re-
sulting from the appearance of an inner surface in the
41K density.

We expect signatures of the hollowing transition when
monitoring the dynamics of the mixture and therefore
study its response to perturbations of the ground state.
If perturbed in a sufficiently small manner, a BEC reacts
linearly and oscillates in the trap with different low-lying
collective excitation modes [8, 48]. To obtain the corre-
sponding spectrum, we solve the Bogoliubov-de Gennes
equations [1, 55–57] and perform complementary simula-
tions of the GPEs (1) [58].

A key signature of a BEC changing its ground state
topology from a filled to a hollow sphere has been iden-
tified in the spherically symmetric (l = 0) collective ex-
citations of an rf-dressed BEC [15, 16]. The correspond-
ing frequencies show a minimum at a certain detuning
related to the point of the hollowing transition. The ex-
citation spectrum of a BEC mixture displays a similar
feature. Using our reference case, for which the hollowing
transition is driven by a change of the inter-component
scattering length aRb,K, we see a significant fraction of
mode frequencies having a minimum at aRb,K ≈ 60 a0,
as shown in Fig. 2. This value coincides with the critical
value at which the 41K ground state vanishes in the cen-
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FIG. 2. Mode frequency ω of the lowest-lying spherically
symmetric (l = 0) collective excitations of the whole system
as a function of the inter-species scattering length aRb,K. The
solid lines and dots are determined by the solutions of the
Bogoliubov-de Gennes equations and numerical simulations of
the GPEs (1), respectively [58]. The common minimum of the
frequencies is a clear sign of the hollowing transition marked
by the dotted vertical line, where |ψK(0)|2/max|ψK(x)|2 drops
below 10−2. Top: Two-dimensional cuts of the ground-state
density |ψK|2 corresponding to the marked values of aRb,K

(colormap scaled to respective peak density) illustrating the
hollowing transition. The surface of 87Rb, where |ψRb|2 drops
below 10−2 of its peak density, is indicated by the dashed blue
lines.

ter of the system (vertical dotted line). The excitation
spectrum of the mixture helps therefore to identify a key
signature of the hollowing transition and a subsequent
regime of shell-shaped ground states.

A striking difference between an rf-dressed BEC and
the mixture is the presence of avoided crossings in the
spectrum shown in Fig. 2, which can be traced back to
the collective excitations of the inner core-component. In
our reference case, the disparity of the particle numbers
leads to the ground state of 87Rb barely changing when
increasing the interaction between the components. Con-
sequently, we see excitation frequencies which are almost
independent of aRb,K as well as those which tend towards
or away from the minimum. At each avoided crossing, the
modes exchange the dominant component in the corre-
sponding density oscillations [57] and thus the behavior
of their frequency as a function of aRb,K.

Free expansion.– A special feature of mixture-realized
shells is exhibited in their free expansion after the con-
finement is switched off. Two very distinct expansion
scenarios are possible due to the freedom of controlling
the inter-component interaction. Taking a shell-shaped
ground state and solely switching off the harmonic con-
finement for both components leads to an expanding shell
as displayed in Fig. 3(a). Here the persisting repulsive
inter-component interaction leads to the outwards ex-
pansion of the inner component (87Rb), preventing an

FIG. 3. Time evolution of the spherically symmetric density
distribution |ψK|2 along the x-direction for different free ex-
pansion scenarios using the initial shell-shaped state of Fig. 1.
(a) Solely switching off the external confinement leads to an
expanding shell with its size being proportional to the edge
of the expanding inner rubidium core RRb defined by |ψRb|2
dropping below 10−2 of its peak value. (b) By additionally
switching off the interaction between the two species at t = 0,
the shell can expand inwards until it reaches the center and
shows a self-interference pattern.

inwards expansion of the outer component (41K) and
therefore the shell structure is conserved. A second sce-
nario occurs, if the inter-component scattering length can
be tuned to zero at t = 0. In this case, the two com-
ponents evolve independently and the outer component
can expand inwards until it reaches the center and a self-
interference pattern emerges, as shown in Fig. 3(b).

Conserving the shell structure during the expansion
is an important feature of the mixture compared to rf-
dressed shells, where the typical expansion scenario is
similar to the one presented in Fig. 3(b) [4, 59]. In case
of Fig. 3(a), after t = 20 ms, the shell has a radius 〈r〉K ≈
80 µm and a width

√
〈r2〉K − 〈r〉2K ≈ 8 µm. The natural

occurrence of expanding shells presents a clear advantage
of our proposed scheme, as they offer the possibility of
magnifying dynamical effects like vortex formation and
collective excitations on the shell surface.

Feasibility of generating shell-shaped BECs.– Finally, we
discuss the feasibility of achieving symmetrically filled
shells in the two schemes based on dual-species mixtures
and rf-dressing. Shell-shaped BECs with spherically or
cylindrically symmetric ground state densities are hard to
generate experimentally [17, 21, 22, 28, 38, 39]. System-
dependent effects, e.g., due to gravity or the magnetic
field setup, can deform the ground state. In general, they
tilt the net shell-creating potential towards one direction
which is consequently favored by the atoms. Although
deformations due to small tilts can be compensated by
inter-atomic repulsion, if the difference in the potential
minima is of the order of the chemical potential, the shell
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opens up completely.
Indeed, gravity is a major obstacle for creating shells

with mixtures and is modeled by including an additional
potential Vg,α(z) = mαgz into the single particle Hamil-
tonian hα of each component. Here g denotes the gravita-
tional acceleration. As a result, each total single particle
potential retains its harmonic form, but has its mini-
mum shifted by g/ω2

0,α along the z-axis. A differential
shift g(1/ω2

0,α − 1/ω2
0,β) displaces the two components

from each other, thereby compromising the symmetry of
the shell. Two solutions offer themselves: (i) working in
a microgravity environment to reduce g or (ii) realizing
equal trap frequencies for both components to achieve
equal potential shifts. In our reference case, we exploit
the first option and study the degree of microgravity re-
quired for closed shells. In Earth-based laboratories and
following option (ii), one could realize shell-shaped BECs
by carefully choosing the laser wavelength of the optical
trap [60–63]. This is a promising perspective to create
quantum bubbles made possible by the method presented
in this Letter.

An ideal shell-shaped BEC is point symmetric with
respect to its center. Consequently, we asses the influence
of shell-opening effects by comparing the density maxima
nmax(θ, ϕ) and nmax(π−θ, ϕ+π) of the 41K ground state
|ψK(x)|2 along two opposing directions, characterized by
the spherical angles θ and ϕ. Maximizing the difference
along all possible directions gives the asymmetry

A = max
{θ,ϕ}

∣∣∣∣nmax(θ, ϕ)− nmax(π − θ, ϕ+ π)

nmax(θ, ϕ) + nmax(π − θ, ϕ+ π)

∣∣∣∣ , (2)

which is a measure of how far the shell deviates from the
ideal case. A perfect shell yields A = 0, whereas the
opposite case of a completely opened-up shell gives rise
to A = 1 because there is at least one direction along
which nmax(θ, ϕ) = 0.

Figure 4(a) shows that gravity indeed prevents the cre-
ation of shell-shaped BECs in Earth-based laboratories
for our reference case (yellow). Only for considerably
smaller gravitational accelerations, g ≤ 10−5gE, does the
system form an almost ideal shell (dark blue). An im-
portant aspect influencing this threshold is the available
number of particles. More precisely, higher numbers of
41K atoms lead to an increased robustness against shell-
opening, as exemplified in Fig. 4(a), because the width
and density of the shell become larger.

In rf-dressed systems gravity essentially prevents the
creation of shells in Earth-based laboratories due to the
atoms pooling at the bottom of the shell-creating poten-
tial, opening the BEC up at the top [22]. In addition to
gravity, rf-dressing is very sensitive to an inhomogeneity
of the rf-field and non-perfect alignment with the static
magnetic field. Both issues result in a spatially depen-
dent Rabi frequency, which affects the depth of the shell
potential [38] forcing the atoms toward positions of lower
Rabi frequency.

FIG. 4. Asymmetry A, Eq. (2), for a BEC mixture (a) and
an rf-dressed BEC (b) as a function of the gravitational ac-
celeration g (gE = 9.81 m/s2) and the number of potassium
atoms NK or a linear gradient γ of the Rabi frequency act-
ing perpendicular to gravity, respectively. The cases A = 0
and A = 1 correspond to symmetrically filled and opened-up
shells. (a) The mixture-based shell opens up for increasing
g due to differential gravitational sag, which can be partially
compensated by larger atom numbers. (b) The rf-dressed
shell opens up both for increasing gravity and Rabi frequency
inhomogeneity. The parameters of the rf case [58] are chosen
such that for γ = g = 0 the ground state density resembles
the one for the mixture reference case shown in Fig. 1.

To compare shell-opening effects in mixture and rf-
dressed shells, we consider 105 atoms of 41K in a conven-
tional bubble trap [17] with parameters reproducing simi-
lar shell radius and thickness as our reference case, shown
in Fig. 1 [58]. In addition to the gravitational poten-
tial Vg,K(z) = mKgz, we model the position-dependent
Rabi frequency in the bubble trap by a linear function
Ω(x) = Ω0 (1 + γx/x0). Here x0 is the position of the po-
tential minimum along the x-axis and at x = (±x0, 0, 0)
the Rabi frequency has a relative deviation of γ compared
to its value Ω0 at x = 0. A γ > 0 tilts the potential to-
wards negative x-direction.

Figure 4(b) displays how an rf-dressed shell gradu-
ally opens up due to either gravity or a gradient in the
Rabi frequency. Although both effects are completely
decoupled in our simplified model, which generally is
not the case, we can give estimates to create reason-
ably filled shells of the same size as our mixture-based



5

reference case. Obviously, microgravity conditions are
required as well as rather homogeneous Rabi frequencies
with γ ≤ 10−3. Current experiments operate above this
threshold with γexp ≈ 5 × 10−3 for a trap diameter of
71 µm [38, 39], where the degree of symmetry in the
ground states strongly depends on the number of parti-
cles in the BEC.

Summary.– We have proposed an alternative method
to create spherically symmetric shell-shaped BECs with
dual-species atomic mixtures in a microgravity environ-
ment. Similar to the conventional rf-dressing scheme,
both the ground state and the collective excitations iden-
tify the topological transition from a filled sphere to a
shell-shaped BEC. Moreover, the shell structure of our
mixture is conserved by the repulsive inter-species inter-
action during free expansion, allowing for a magnifica-
tion of the dynamics on the shell. Additionally, we have
quantified the effects of gravity and the atom number on
the feasibility of achieving symmetrically filled shells and
contrasted our results to the case of rf-dressing.

We emphasize that our scheme based on dual-species
mixtures has straightforward applications to related re-
search areas, e.g., few-body physics in mixed dimen-
sions [64, 65], as well as spinor [66, 67] and dipolar [68–70]
BECs on curved manifolds.
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Supplemental material for
Shell-shaped Bose-Einstein condensates realized with dual-species mixtures

BOGOLIUBOV-DE GENNES EQUATIONS

In this Letter we use the Bogoliubov-de Gennes equa-
tions (BdGEs) to describe collective excitations and to
obtain the corresponding spectrum. Both the GPE (1)
and the BdGEs

Euα = Lαuα +
∑
β

gαβ
[
|ψβ |2uα + |ψα||ψβ |(uβ + vβ)

]
−Evα = L∗αvα +

∑
β

gαβ
[
|ψβ |2vα + |ψα||ψβ |(uβ + vβ)

]
(S.1)

for component α of a multi-component BEC can be de-
rived by extending the calculation presented in Ref. [48].
Here we have suppressed the spatial arguments in the
ground state solution ψα(x) = |ψα(x)|eiSα(x) of Eq. (1),
the quasiparticle mode functions uα(x), vα(x) as well as
the linear operator

Lα(x) = − ~2

2mα
[∇+ i∇Sα(x)]2 + Vα(x)− µα. (S.2)

The chemical potential µα is obtained together with the
ground state by solving the time-independent GPE nu-
merically. Since the wave functions of the ground states
considered throughout this Letter are real, Sα are con-
stants, ∇Sα(x) = 0, and L∗α = Lα.

The BdGEs (S.1) are an eigenvalue problem for the
quasiparticle mode functions {uα, vα} and the corre-
sponding energies E = ~ω. The low-frequency modes
of the BdGEs describe collective excitations [1], with ω
being the frequency of the corresponding density oscilla-
tions. Everywhere in the supplemental material we sup-
press mode indices. For more details on the BdGEs we
refer to Refs. [1, 48].

For our discussions of collective excitations, all poten-
tials and ground states are spherically symmetric. This
enables us to perform a separation of variables in the
BdGEs by expanding the angular parts in terms of spher-
ical harmonics. The BdGEs thus reduce to a system of
linear one-dimensional differential equations with respect
to the radial coordinate r, including a centrifugal poten-
tial ~2l(l+1)/(2mαr

2). In Figs. 2 and S2 (solid lines) we
show the first few (positive) mode frequencies ω corre-
sponding to l = 0, with the parameters given in Tab. S1
and excluding Goldstone modes.

NUMERICAL SIMULATIONS

In this Letter we have performed three different types
of numerical simulations: (i) finding the ground state

solution of the GPE, (ii) propagating the ground state
wave function in time, and (iii) solving the BdGEs. To
find the ground states in either one or three dimensions
on a discretized grid, we have used the imaginary-time
and split-step methods, giving rise to the results pre-
sented in Figs. 1, 4 and S1 [53, 54]. A similar simulation
but with real time can be used to propagate the ground
state wave function in time, which enables us to consider
the free expansion scenarios shown in Figs. 3 and S3.
Additionally, the collective excitation frequencies can be
accessed by direct simulation of the GPE (1) and per-
forming a Fourier transformation of a quantity such as
the expectation value and variance of the radial coordi-
nate over time. These results are presented by dots in
Figs. 2 and S2. Finally, for solving the BdGEs we use an
eigensolver based on the finite element method.

COMPARISON WITH RF-DRESSING
APPROACH

To compare the mixture-based scheme with the rf-
dressed one, we employ the rf-dressed potential [17, 19]

Vrf(x) =
MF gF
|gF |

√√√√(mω2
0,rf

2F
x2 − ~∆

)2

+ (~Ω0)2, (S.3)

where MF denotes the projection of the total momen-
tum F of a dressed state in the hyperfine manifold with
corresponding Landé factor gF . The trap frequency ω0,rf

of the static magnetic trap is chosen such that the po-
tential of the highest trapped bare state is given by
Vst(x) = mω2

0,rfx
2/2. Moreover, ∆ is the detuning of

the rf-field with respect to the transition between neigh-
boring bare states at the center of the trap, and Ω0 is
the corresponding Rabi frequency. Here we only consider
single-component BECs in rf-dressed traps and therefore
drop all component-related indices.

Ground states

In order have a fair comparison between the shells cre-
ated in both systems, we simulate the rf-dressed scheme
with the same amount of 41K atoms as in the mixture
case. A shell-shaped BEC in the mixture-based ap-
proach results from the combination of the harmonic
trapping potential and the repulsion provided by the
inner 87Rb core, giving rise to an effective potential
Veff(x) = gRb,K|ψRb(x)|2 +mKω

2
0,Kx

2/2 for 41K. To have
an rf-dressed shell with the same geometrical parameters,
we fit the potential Vrf, Eq. (S.3), to Veff(x) and thereby
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obtain the corresponding values for ∆ and ω0,rf. All other
parameters are chosen beforehand and the complete set
of parameters is listed in Tab. S1.

TABLE S1. Parameters for the comparison of the two
schemes resulting in shells of the same species and with the
same geometrical sizes. Note that the parameters for the BEC
mixture are the same as in Tab. I.

Species N
ω0/(2π)

(Hz)
aRb,K

(a0)
∆/(2π)
(kHz)

Ω0/(2π)
(kHz)

rf-dressed
BEC

41Ka,b 105 152.3 3.78 2.5

BEC
mixture

41Kb 105 70
8587Rbc 106 51.3

a The atoms are prepared in the |F = 2,MF = 2〉 dressed state
with gF = |gF |.

b aK,K = 60 a0
c aRb,Rb = 100 a0

Figure S1 presents the ground states of both systems
for the parameters given in Tab. S1 and clearly shows
that the ground-state density distributions of 41K (or-
ange) in the BEC mixture, Fig. S1(b), and the rf-dressed
BEC, Fig. S1(d), are almost identical.

FIG. S1. Spherically-symmetric shell-shaped ground-state
density distributions |ψα|2 of a 87Rb-41K BEC mixture (a),(b)
and an rf-dressed 41K BEC (c),(d) using the parameters pre-
sented in Tab. S1. (a),(c) Cut-open three-dimensional density
plots (colorbar units in µm−3). (b),(d) Density profiles (solid
lines) along the radial direction and corresponding trapping
potentials (dashed lines) Vα(x) = mαω

2
0,αx

2/2 and Vrf(x),
Eq. (S.3). The mixture forms a shell due to the interplay be-
tween the harmonic confinements and a repulsive inter-species
interaction governed by the s-wave scattering length aRb,K. In
contrast, the rf-dressed shell-shaped BEC relies on the trap-
ping potential being a double-well in all directions.

Collective excitation spectrum

In Fig. S2 we show the collective excitation frequencies
for the first few l = 0 modes as a function of aRb,K, (a),
or ∆, (b). In the rf-dressed case, this spectrum has a
minimum at a certain ∆ corresponding to the transition
between a filled sphere and a hollow sphere [15, 16]. In
the mixture case, this spectrum displays a similar feature
albeit at a certain value of aRb,K.

Further similarities can be seen in the limit of the har-
monically trapped single-component BEC. In the mix-
ture scheme, this limit corresponds to aRb,K = 0, where
both components are completely decoupled, and are re-
duced to the well-studied case of a BEC in a spherically
symmetric harmonic trap. The collective excitation spec-
trum

ωα = ω0,α

√
2n2 + 2nl + 3n+ l (S.4)

can be obtained analytically using the Thomas-Fermi ap-
proximation [48].

Hence, the spectrum depends on the two numbers
n = 0, 1, 2, . . . and l = 0, 1, 2, . . . as well as the corre-
sponding harmonic trap frequency ω0,α. In Fig. S2(a) we
mark the first nonzero excitation frequency for 41K and
87Rb, respectively. At aRb,K = 0 all shown excitation
frequencies agree with Eq. (S.4) and can be matched to
either of the components.

In the rf-dressed scheme, the harmonic limit corre-
sponds to ∆ < 0 with Ω0/|∆| � 1, where the potential,
Eq. (S.3), reduces to a harmonic potential with an offset

Vrf(x) ≈ −MF gF
|gF |

~∆ +
MF gF
|gF |

mω2
0,rf

2F
x2 +O

(
Ω2

0

∆

)
.

(S.5)
In this limit, the collective excitations of the highest
trapped state withMF gF = |gF |F are thus also described
by Eq. (S.4). Due to the scaling in the respective trap
frequency in Fig. S2, the excitation frequencies of the rf-
dressed BEC, Fig. S2(b), start at the same value as the
excitation frequencies of 41K in the mixture, Fig. S2(b).

Let us now consider the behavior as we move away from
the respective harmonic limit by looking at the lowest ex-
citation frequencies, as marked in Fig. S2. In the mixture
scheme, increasing the interaction between the compo-
nents leads to an immediate decrease of the frequencies
belonging to 41K. In contrast, the excitation frequencies
of 87Rb stay almost constant. This can be explained
by the fact that the ground state of 87Rb barely changes
while 41K ultimately transforms into a shell which in turn
is due to the large disparity between the particle numbers
of both components. A consequence of these two differ-
ent behaviors of the excitation frequencies is the display
of avoided crossings. In the rf-dressed scheme, a second
component is absent. Furthermore, the behavior of the
excitation frequencies is different to those of 41K in the
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mixture scheme, as they start to decrease only slowly.
This is due to the fact that the potential is deformed
away from its harmonic form rather slowly and it is only
obtaining a double-well-like structure for ∆ > 0.

FIG. S2. Mode frequency ω of the lowest-lying l = 0 collec-
tive excitations for a 87Rb-41K BEC mixture (a) and an rf-
dressed 41K BEC (b) as a function of the inter-species scatter-
ing length aRb,K and detuning ∆, respectively. The solid lines
and dots are determined by the solutions of the BdGEs (S.1)
and numerical simulations of the GPEs (1), accordingly. In
both systems the common minimum of the frequencies is a
clear sign of the hollowing transition marked by the dotted
vertical lines, where |ψK(0)|2/max|ψK(x)|2 drops below 10−2.
Moreover, in the respective harmonic limit, where both sys-
tems reduce to single-component BECs in spherically sym-
metric harmonic traps, the excitation frequencies are given
by Eq. (S.4) and the lowest frequencies are marked accord-
ingly.

Free expansion

In Fig. S3 we compare the free expansions of both
ground states displayed in Fig. S1. This is done by
switching off the optical dipole trap in the mixture
scheme and both the static magnetic and rf field in
the rf-dressed scheme. Unsurprisingly, if the interac-
tion between 87Rb and 41K is additionally tuned to zero,
aRb,K = 0, Fig. S3(a), the free expansion of the density
distribution |ψK|2 is similar to the one reported for the
rf-dressed BEC [4, 59], Fig. S3(c), due to the fact that

both ground states have almost identical shells. In con-
trast, at aRb,K = 85 a0, Fig. S3(b), the free expansion
of |ψK|2 is completely different and features an expand-
ing shell. Moreover, for the expansion scenarios shown in
Fig. S3(a)-(c), we track the time-dependent expectation
value 〈r〉K = 4π

∫∞
0

dr r3|ψK(x, t)|2 of the radial coordi-
nate for 41K and present the results in Fig. S3(d). Here
we see the similarity of the two expansion dynamics dis-
played in Fig. S3(a) and (c) as well as the much faster
expanding shell scenario in Fig. S3(b).

FIG. S3. Free expansion of the spherically symmetric density
distributions |ψK|2, which are initially prepared in the form
presented in Fig. S1, along the x-direction for a 87Rb-41K
BEC mixture (a),(b) and an rf-dressed 41K BEC (c) (color-
bar units in µm−3). (a) By switching off both the confine-
ment and the interaction between the two species, the shell
can expand inwards until it reaches the center and shows
a self-interference pattern. (b) Leaving the interaction at
aRb,K = 85 a0 leads to an expanding shell with its size being
proportional to the edge of the expanding inner rubidium core
RRb defined by |ψRb|2 dropping below 10−2 of its peak value.
(c) Switching off all magnetic fields in the rf-dressed BEC re-
sults in a similar free expansion as the mixture case in (a).
(d) Tracking the expectation value 〈r〉K over time reveals the
similarity between (a) and (c) as well as the increasing radius
of the expanding shell in (b).

Feasibility

Finally, in order to compare shell-opening effects in
both schemes, Fig. 4, we modify the Rabi frequency in
Eq. (S.3) and replace Ω0 by Ω(x) = Ω0 (1 + γx/x0). In
this way, we can model the inhomogeneity of the Rabi

frequency. Here x0 =
√

2F~∆/(mω2
0,rf) is the position

of the minimum of the potential Vrf(x), Eq. (S.3), along
the x-direction. Using the parameters listed in Tab. S1
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and the displayed values for g and γ, we calculate first the
ground state of the system and afterwards the asymmetry
A, Eq. (2).
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