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Abstract. The application of AI methods to industry requires a large
amount of training data that covers all situations appearing in practice.
It is often a challenge to collect a sufficient amount of such data. An
alternative is to artificially generate realistic data based on training ex-
amples. In this paper we present a method for generating the electric
current time series produced by railway switch engines during switch-
blades repositioning. In practice, this electrical signal is monitored and
can be used to detect unusual behaviour associated to switch faults. The
generation method requires a sample of real curves and exploits their
systematic temperature dependence to reduce their dimensionality. This
is done by extracting the effect of temperature on specific parameters,
which are then re-sampled and used to generate new curves. The model
is analyzed in different practice-relevant scenarios and shows potential
for improving condition monitoring methods.
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1 Introduction

1.1 Motivation: anomaly detection for railway switches

Railway switches are an essential element of the railway infrastructure: they are
the crossing nodes which allow trains to change tracks. Their condition is safety
relevant, since switch faults can lead to accidents and derailments. In addition,
switch malfunctions have a negative impact on the infrastructure availability and
reputation. Finally, switches are subject to regular maintenance, renewal and re-
pairs, which makes them cost-intensive assets. All of this makes condition-based
and predictive maintenance a desirable goal. In order to achieve it, continuous
monitoring and automatic assessment of the switch condition is required.
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Horizon 2020 research and innovation programme and the Shift2Rail JU members
other than the Union. The authors thank Strukton Rail and Wolfgang Riedler for
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Strukton Rail (SR), a Dutch railway infrastructure maintenance operator,
monitors the condition of thousands of switches in the Netherlands using the in-
house developed system POSS®†. Every time the switch blades are repositioned,
POSS® collects the electric current at the point machine together with the air
temperature at the relay house to which the switch is connected. The electric
current at the point machine is a measure of the power needed by the engine to
move the switch blades from their start to end position. We refer to the current
measured during a single repositioning as current curve. The majority of known
switch defects has an influence on the shape of these current curves [1,2].

Within the Shift2Rail project In2Smart2, the German Aerospace Center and
SR are developing and validating methods for anomaly detection and diagnosis
of switch defects [3]. The goal of these efforts is to support maintenance engi-
neers at SR’s Control Center in identifying faulty switches. The project comprises
electromechanical switches of type NSE (Nederlandsche Spoorwegen Elektrisch).
Current curves of these switches have typically a similar, yet switch- and repo-
sitioning direction dependent shape. However, they all are characterised by a
systematic temperature dependence (see Figure 1, [4]). In addition, the curves
can be split into segments which roughly correspond to the phases of the blades
repositioning (inrush current, unlocking, blades movement and locking, see Fig-
ure 1).

Fig. 1. Upper row: temperature dependence of switch current curves (sampled at 500
Hz). Bottom row: segments of a current curve. The inrush, unlock and lock segments
have pre-defined lengths. The curve start is defined as the global maximum’s position.

† POSS®: Preventief Onderhoud - en Storingsdiagnosesysteem Strukton, http://www.
POSSinfo.com

http://www.POSSinfo.com
http://www.POSSinfo.com
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Anomaly detection (AD) approaches applied to current curves can help to
identify switch degradation at an early stage as well as sudden failures. Some
AD methods (e.g. [4]) employ parameters derived from current curves and their
segments (throughout the paper we use the word “parameter” to denote current
curve quantities such as length, mean, standard deviation, maximum, kurtosis,
etc). Such models are trained with parameters derived from a set of historical
curves for which the switch is assumed to behave normally. The set of historical
curves is required to represent typical temperatures found in all seasons.

The validation of AD models is challenging due to the lack of annotated
data. The amount of labelled current curves is very low and does not cover a
large enough period of time. In this context, the generation of synthetic current
curves can help to validate and compare AD models, and to test and improve AD
algorithms as well as the considered curve parameters. In addition, it can help
to make the current implementation of the AD model more robust by generating
realistic data for sparse temperature bins and applicable even when there is few
historical data to train the model. This is the case e.g. briefly after a new switch is
installed or after maintenance actions on switches, which can strongly modify the
current curve typical shape, making it necessary to retrain the AD model. This
paper focuses on the generation of synthetic current curves which imitate the
normal behaviour of a switch, especially by capturing the temperature dependent
variation of the current curves.

1.2 Challenge: sampling from a complex high-dimensional
distribution

The task of generating new current curves based on real ones can be reformu-
lated as sampling from a high-dimensional distribution. This is a well-known
and extremely difficult problem in modern data science (see e.g. [5]).

In our application, temperature is found to be responsible for the main varia-
tion in current curves, see Figure 1. Thus temperature can be used for dimension-
reduction. Further, the effect of temperature on the current curves is well cap-
tured by three parameters: the curve length, its maximal height, and its median
height in the movement segment. In other words, if we take any two curves at
different temperatures and manipulate them such that these three parameters
match, then they look approximately equal. Two caveats are due here: first,
switch condition may change or degrade over time, so this holds for curves mea-
sured not too far apart from each other; second, we have tested this phenomenon
by taking into account curves from four switches of type NSE. Since switches can
vary a lot from one type to another, we do not claim that these three parameters
plus temperature are enough to characterize all switch types.

With these observations, the task of sampling from the distribution of curves
can be reduced to sampling from their temperature distribution, and then for
each temperature, sampling from their parameter distributions, which are all
one-dimensional distributions. Finally, the sampled parameters are imposed into
an “ideal curve”, see Section 2. Altogether, this method allows to sample from
a complex high-dimensional distribution. Since it is quite flexible, the method
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can potentially be used in other applications involving electromechanical com-
ponents.

2 Generation method and hyperparameters

2.1 Method description

Our current curve generation method is based on the sampling methodology
discussed in Section 1.2, and thus on the effect of temperature on specific pa-
rameters (i.e., maximum, length, and median of the movement segment). The
underlying assumption is that if the switch is in perfect condition, the shape of
the curve does not change and only the three aforementioned parameters vary
in dependence on the temperature. In practice, sampling and resolution have an
additional impact on the resulting current curves. Due to these assumptions, the
curve manipulation for generating new current curves of a given switch is as fol-
lows (see Figure 2 for a schematic workflow visualization): an input curve, which
is assumed to be ideal and to represent the current condition of the switch, is
chosen per repositioning direction - e.g., the respective first curves of the time se-
ries - and serves as model pattern for the synthetically generated ones. Then, the
three named parameters are randomly sampled from a temperature-dependent
distribution which is learned from real data; details are given in Section 2.2.
Subsequently the model curve is stretched to have the target length. The result-
ing curve is then multiplied by a spatially varying scaling function that sets the
maximum and the median of the movement segment to the target values.

Fig. 2. Description of the process of generating synthetic current curves.

POSS® usually samples current curves at 50 Hz. This sampling rate has a
non-negligible effect on the current curves, as it induces discretization issues that
add undesired variation and may ruin the generated curves. A way to mitigate
this problem is to work with current curves sampled at a higher rate (we employ
500 Hz), which are available only for a few switches. Alternatively the data
are up-sampled from 50 to 500 Hz using a section-wise quadratic and linear
interpolation, see [3] for details.

2.2 Hyperparameters

In this section we discuss several hyperparameters and variants of our method.
As shown in Section 3, these variants can have a significant effect on the per-
formance of the simulation results in terms of e.g. distribution similarity of real
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and synthetic current curve parameters. Moreover, certain variants are specially
suitable for particular applications.

Linear vs empirical sampling One key ingredient of the method is the way
in which we sample new parameters for a certain temperature given real data.
We present two variants here:

1) Empirical method: the new parameter is generated by randomly drawing
from the distribution of real parameters in a temperature bin containing the
target temperature.

2) Linear method: first we perform a linear regression of the real parameters
against temperature. Then the new parameter is randomly sampled from
a normal distribution whose mean is given by the linear prediction at that
temperature, and whose variance is estimated from real data.

Fig. 3. Temperature dependence of three parameters (length, maximum and median
of movement segment) for empirical method (left), linear method (middle), and real
data (right).

Both methods have their advantages and shortcomings. The empirical method
performs well when a lot of data is available, and poorly for few training curves.
Additionally, the empirical method will naturally mimic the empirical distribu-
tion of the real data, hence making the generated curves arguably more realistic
(Figure 4). On the other hand, the linear method tends to overregularize, thus
yielding a different feature distribution than the real data (see Figure 3). How-
ever, through this implicit regularization, the linear method is able to extrap-
olate from few curves to a new temperature range, as discussed in Section 3.2.
This makes the linear method attractive when few training curves are avail-
able. In addition, when outliers are already present in the parameter training
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data, the empirical method will reproduce them and abnormal curves may be
contained in the synthetic data, too. This problem can be solved by filtering
out statistical outliers before using the parameters for simulation. In contrast,
the linear sampling method makes the assumption that the parameters used
for curve manipulation follow a linear relationship to temperature and produces
ideal distributions and curves. Note that a certain variation is naturally caused
by measurement uncertainty related to the fact that the temperature measured
at the relay house is only a proxy of the asset temperature.

Updating the reference curve Synthetic curves can be generated by only
using one reference curve per repositioning direction and a few samples of the real
parameters length, maximum and median of the movement phase. Sometimes
the typical shape of the current curves from a given switch can vary over time
without this change being a critical development (e.g. slowly developing changes
in track geometry), especially when looking at a long time-span or at a frequently
used switch. When the objective is to replicate the current curves and related
distributions for such a time-span, the synthetic curves benefit from an update
of the reference curve after e.g. some fixed time interval. In practice, an update
should be performed by a switch maintenance analyst when the reference curve
begins to differ from real curves that are deemed normal.

Local vs global In practice, the temperature dependence of real current curves
can develop over time. This is, the input parameters belonging to a narrower time
span exhibit a lower variance per temperature bin than the whole parameter set
and the slope and intercept of the linear regressions of the parameters in depen-
dence to temperature slowly develop over time (see Figure 7). This leads to the
artifact that a randomly generated parameter set which used the whole avail-
able time span as training (“global”) possesses a similar parameter distribution
as the real data, but the parameter time series varies too much. Alternatively,
linear regressions and variance estimations can be fitted for chronological data
subsets (“local”), as is done in Section 3.1. This improves the parameter time
series while the whole parameter distribution is still well represented.

3 Applications

In this section we illustrate the performance of our simulation machinery in two
scenarios: 1. we generate data following the same distribution as in the given
training data. And 2. we extrapolate from the training data to generate current
curves at unseen temperatures. The performance of the simulation is evaluated
in temperature windows of width 2°C using different quality measures.

3.1 Scenario 1: replicate the observed distribution

We consider a two years long sequence of current curves corresponding to the
blades movement in one direction of a switch (about 22.000 current curves). The
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challenge is to generate a new sequence of synthetic curves covering the same
time interval. We present the results from the linear and the empirical methods
as discussed in Section 2 in Figure 3.

Fig. 4. Current curves generated by empirical (top) and linear (middle) methods, com-
pared to real curves (bottom), in temperature range (−6,−4)°C (left), (14, 16)°C (mid-
dle) and (34, 36)°C (right). The vertical axes show electric current measured in Ampere.
In each temperature window we display 20 randomly sampled curves.

In a nutshell, we observe that the distribution of parameters is more realistic
for the empirical method. We verify this in Figure 4, where synthetic curves
generated by the empirical and linear methods are compared with real curves
in three temperature windows. Here, the linear method is seen to overregularize
sometimes (see middle temperature window), while the empirical method yields
visually correct results. This mirrors the intuitive recommendation to use the
empirical method when plenty of training samples are available.

In Figure 5 we compare the distributions (histograms) of several parameters
obtained from real and synthetic curves generated by the empirical sampling
method. Beyond the visual similarity, the p-value for the Kolmogorov-Smirnov
test between the two distributions (see Chapter 14.2 in [6]) is shown, and indi-
cates that the distributions are indeed similar in a statistically rigorous sense.
Similar yet slightly worse results are obtained for the linear method, as expected.

We compute another quality measure based on the Hausdorff distance. This
is a well-known metric in mathematics that can be used to compare the geome-
try of quite general objects and sets. The Hausdorff metric provides a measure
of distributional similarity. It does so by comparing individual points with an
underlying metric, and then aggregating the individual distances into a global
quantity (details can be found in Chapter 4 in [7]). Here, we want to measure
the Hausdorff distance between the real and synthetic data. If we measured the
distance directly, we would just get one number with no reference of whether it
is big or small. We circumvent this problem by a bootstrap-type argument [8],
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Fig. 5. Histograms of parameters from curves generated by the empirical method (blue)
and from real curves (orange). The curves belong to the temperature range (14, 16)°C.

that is by measuring the Hausdorff distance between several randomly sampled
subsets of our sets, and then comparing the distances. Specifically, we randomly
sample two subsets and measure their distance, and we do so in three different
fashions: sampling both subsets from the real data (R), both from the synthetic
data (S), and one from each set (RS). Each of these three distributions of dis-
tances can be plotted as a histogram, as done in Figure 6. If the distances from
the RS category are much larger than from the R and S categories, it means that
the distances between the real and synthetic sets are larger than within those
sets. In that case, we interpret the synthetic data to be significantly different
from the real data.

On the other hand, if all three distributions of distances were identical, it
would mean that it does not make a difference to sample from the real or from
the synthetic set of curves, concluding that their distributions are similar.

Figure 6 includes the distribution of distances for both real and synthetic
empirical data for two different underlying metrics (L2-norm and Wasserstein
distance). Both metrics indicate similarity between distributions in the three
central temperature windows, but not in the extreme temperatures.

3.2 Scenario 2: extrapolate to unseen temperatures

We consider a short sequence of curves in a limited temperature range, and
our task is to generate a longer sequence with temperatures outside this range
and time span. Specifically, the input consists of a three month long sequence
(comprising winter and spring), thus the parameters span a limited temperature
range (from −2.7 to 18.3°C). The task consists of extrapolating the observed
temperature dependence to unseen temperatures.
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Fig. 6. Histograms of Hausdorff distances for subsets of the empirical synthetic data
(blue), for the real data (orange) and between them (green), computed for different
temperature windows and underlying metrics: L2-norm and Wasserstein distance.

As discussed in Section 2, the linear method is able to extrapolate to unseen
temperature ranges while considering only few data points.

Fig. 7. Curve parameters as function of temperature for synthetic (left) and real (right)
curves. The linear regression (black line) is computed with a limited amount of training
curves (green dots) belonging to a small time interval and amounting to 15% of the
real curves.

Figure 7 shows a linear regression performed on the three input parameters
derived from real curves (green points) and the generated synthetic parameters
(blue points). We identify that the final distribution of the synthetic parameters
is quite different from the real distribution, specially for extreme temperatures,
but also regarding its overall shape. Still, the synthetic curves generated with
those parameters are visually good, as shown in Figure 8 for three temperature
windows. However, we also see that some parameters of the synthetic curves are
different from those of the real curves. This is due to the fact that the method
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Fig. 8. Synthetic and real current curves from use case 2 for three temperature win-
dows: (−4,−6)°C degrees (left), (14, 16)°C degrees (middle), and (34, 36)°C degrees
(right). In each temperature window we display 20 randomly sampled curves.

does not have enough samples for all temperatures to ”learn” the distribution
correctly (see e.g. parameter length in Figure 7) and that the slope and intercept
of the linear regression obtained at the beginning of the time series do not hold
for the following year and half (see e.g. parameter maximum).

In Figure 9, we illustrate the real and synthetic parameters as a function of
time, together with temperature. We observe that the parameter distributions
are generally similar in temperature ranges that span across training tempera-
tures (winter period); especially for the parameter length, the real distribution
for higher temperatures outside the training set is underestimated. In addition,
performance decreases with time, especially for the parameter maximum. This
presumably results from a long-term change in temperature dependence. Never-
theless, the similarity between curves in Figure 8 is specially remarkable in the
temperature window (34, 36)°C since the synthetic method was not trained with
curves in that range, and it is however able to produce quite realistic results.
This similarity can be quantified statistically: in this temperature window, the
Kolmogorov-Smirnov test applied to the distribution of the maximum, median
and length, returns following p-values: (0.003, 0.012, 0.000).

4 Discussion

In this paper we formulate and motivate the problem of generating realistic syn-
thetic current curves. A method for solving that problem is presented, and its
performance with respect to several metrics is shown in two scenarios. In the
first scenario, we compare the performance of the linear and empirical method,
finding that the empirical method is able to match the real distribution better.
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Fig. 9. Time evolution of three parameters: length (top), maximum (middle), and
median of movement segment (bottom). The datapoints to the left of the vertical
black line are the observed training data, as described in scenario 2 in Section 3.2. The
synthetic datapoints are generated with the linear method.

In the second scenario we only employed the linear method, since the empirical
method is not suitable for that setting. Here we find that the linear method
is able to generate realistic curves in unseen temperature regions, as shown in
the third column of Figure 8. In other words, the temperature extrapolation is
performed well.
Overall, we developed a method that can generate data from a complex distri-
bution. Here we want to stress that, even though our method is applied to a very
specific type of data (current curves with temperature dependence), the idea be-
hind the method may be applied to other types of data, e.g. current curves with
a similar structure from other applications. This opens up interesting possibili-
ties for a general anomaly detection methodology in electromechanical systems.
Since our method successfully generates synthetic current curves, it can assist
anomaly detection models. Specifically, the method can be used to enlarge the
training data of an anomaly detection model in order to cover rare situations
(such as extreme temperatures) or even unseen conditions (as in Section 3.2
above). This can make anomaly detection models more robust.
It is an arguably difficult task to compare two sets of complex objects, such as
current curves. We choose to split this task into two parts and consider sev-
eral similarity measures. On one hand, we compare individual synthetic and real
curves, and test whether they are similar (as in Figure 4). On the other hand, we
compare the two sets of curves as a whole by looking either at their statistical
distributions (as in Figure 5) or at their geometry (in terms of the Hausdorff
metric, as in Figure 6). One further similarity measure that could be used is an
anomaly detection algorithm that is trained in the real data and then applied
to the synthetic data. In that setting, the percentage of found anomalies (“false
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positives”) would provide a good error measure.
There are further extensions of our work that we want to discuss. First, other
interesting use cases can be considered. This includes the validation of anomaly
detection methods, but also the retraining of an anomaly detection method after
the switch conditions have changed (either by degradation or due to maintenance
actions). Second, other generation methods can be used. We have presented what
we call a parametric method, since the curves are reduced to a set of parameters
that are modelled. Alternatively, one could use nonparametric methods, where
the curves are generated as a whole. We have explored this idea using Gener-
ative Adversarial Networks (GANs) with good preliminary results, which offer
an interesting and flexible alternative, although at the price of requiring more
training samples. Another idea is to use dictionary learning to extract more
accurate parameters, and then perform linear regression against temperature.
Preliminary results show this to be a promising approach, as it automatically
determines the dimensionality reduction to be performed, which can be useful
when analyzing different switch types. And third, here we presented the gener-
ation of “normal” curves by modelling their temperature variation. In a future
paper, we will discuss how to also generate synthetic abnormal curves related
to different fault types and degrees of anomaly. These abnormal curves can be
used to train anomaly detection methods in a better way.
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