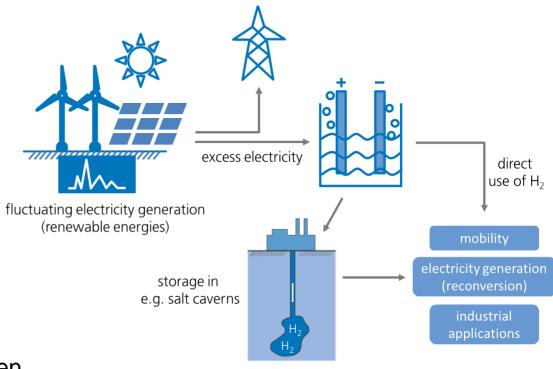
Analysis of the Purity of Hydrogen at Public Hydrogen Refuelling Stations

Holger Janßen, Michael Kröner, Alexander Dyck, Michael Wark, Carsten Agert

Istanbul, 28th June 2022


World Hydrogen Energy Conference 2022

Motivation and Objective

- High purity requirements of hydrogen for fuel cell applications demand precise analytics, reasonable sampling devices and probing procedure
- H₂ as potential storage medium to compensate for volatility (seasonal)
- → Gas analysis according to ISO/EN standards
- → Investigation of factors influencing the purity of hydrogen
 - Synthesis process (steam reforming, electrolysis, ...)
 - Storage of hydrogen in salt caverns
 - Influence of used materials (high-pressure pipelines, sealings, ...)

Analysis of Contaminants in Hydrogen with Mass Spectrometry According to EN 17124 and ISO 14687

- High-performance gas analyser V&F, CombiSense
 - Measurement principle: Combined Ion Molecule Reaction (IMR) and Electron Impact (EI) Mass Spectrometry
 - Necessary amount: 10-15 L gas volume for values ± 2 % (fast analysis with 5 L possible)
- Detectable gases from EN 17124 [1]: H₂O, total hydrocarbons, O₂, CO₂, CO, total sulphur, HCHO, HCOOH, NH₃, HCl, N₂, He, Ar
 - Measuring range: 0 100 ppm
 - Daily calibration with 10 test gases and H₂ 6.0

	EN 17124 ^[1] [ppm]	CombiSense [ppm]
H ₂ O	5	0.61
Total Hydrocarbons	2	0.01
CH ₄	100	0.02
O_2	5	0.11
CO ₂	2	0.05
CO	0.2	0.17
Total Sulphur	0.004	0.003
HCHO	0.2	0.01
НСООН	0.2	0.01
NH_3	0.1	0.01
Halides	0.05	HCI: 0.04
N_2	300	0.81
He	300	1.38
Ar	300	0.10

EN 17124:2019-07 Hydrogen fuel - Product specification and quality assurance - Proton exchange membrane (PEM) fuel cell applications for road vehicles, 2019.

Sampling Device for Hydrogen to Investigate the Purity at Hydrogen Refuelling Stations

- Composite type IV high-pressure hydrogen tank (37 L)
- Design similar to tanks in fuel cell vehicles
- Sensors for inner temperature, pressure and flow rate
- Receptacle to use standardised dispenser at HRS for FCEV-independent refuelling up to 875 bar, electronic controlled outlet valve with safety equipment
- Specific sampling procedure developed for analysis of contaminants in H₂

Specific Sampling Procedure Developed for Reliable Analysis of Contaminants in Hydrogen

- Minimum pressure of tank system: 1.8 MPa
- Evacuation of sampling device and open end purging not possible (potential damage of PE liner)

Sampling procedure according to ASTM D7606 [2]

- Emptying of sampling device to 1.8 MPa
- Flowing 1 kg through sampling device
- Emptying of sampling device to 1.8 MPa
- Filling of sampling device to amount necessary for analysis in the laboratory

• Short line lengths, passivated stainless steels

First Successful Sampling and Analysis of H₂ from a (Non-Public) Research HRS in Groningen, Netherlands

Contaminant	Concentration [ppm]	EN 17124 ^[1] [ppm]
H ₂ O	19.23 ± 4.24	5
CH ₄	Below LOD	100
Total Hydrocarbons	0.34 ± 0.07	2
O_2	2.86 ± 0.54	5
CO ₂	2.90 ± 0.09	2
CO	((1.62 ± 0.11))	0.2
Total Sulphur	0.002	0.004
НСНО	Below LOD	0.2
НСООН	0.01 ± 0.001	0.2
NH ₃	Below LOD	0.1
Halides	HCI: Below LOD	0.05
N_2	761.68 ± 22.72	300

Sampling and Analysis of Hydrogen from the HRS in Huntorf, Germany

Contaminant	Concentration [ppm]	EN 17124 ^[1] [ppm]
H ₂ O	3.56 ± 0.73	5
CH ₄	Below LOD	100
Total Hydrocarbons	0.01 ± 0.003	2
O_2	2.76 ± 0.68	5
CO ₂	0.27 ± 0.01	2
CO	0.36 ± 0.09	0.2
Total Sulphur	0.002 ± 0.001	0.004
HCHO	Below LOD	0.2
НСООН	Below LOD	0.2
NH ₃	Below LOD	0.1
Halides	HCI: Below LOD	0.05
N_2	163.60 ± 5.01	300

DIN EN 17124:2019-07 Hydrogen fuel - Product specification and quality assurance - Proton exchange membrane (PEM) fuel cell applications for road vehicles, 2019.

Second Sampling and Analysis of Hydrogen from the HRS in Huntorf, Germany

Contaminant	Concentration [ppm]	EN 17124 ^[1] [ppm]
H ₂ O	0.94 ± 0.35	5
CH ₄	Below LOD	100
Total Hydrocarbons	Not analysed	2
O_2	1.61 ± 0.44	5
CO ₂	0.11 ± 0.01	2
CO	Below LOD	0.2
Total Sulphur	Below LOD	0.004
НСНО	Below LOD	0.2
НСООН	Below LOD	0.2
NH ₃	Below LOD	0.1
Halides	HCI: Below LOD	0.05
N_2	9.20 ± 1.40	300

Are Synthesis and Processing of Hydrogen at HRS Directly Influencing the Quality of Hydrogen?

- Hydrogen obtained via electrolysis has the potentially highest purity, minor contamination: N₂, O₂, H₂O [3, 4]
- HRS sampling in **Groningen**, **NL** (on-site PEM electrolysis, atm. pressure): contamination in form of N₂ (≈ 761 ppm), H₂O (≈ 19 ppm) and CO₂ (≈ 3 ppm)
- First HRS sampling in **Huntorf**, **DE** (on-site alkaline electrolysis, high pressure): contamination in form of H₂O (≈ 4 ppm) and CO (≈ 0.36 ppm)
 - Compression via piston compressor and long-term storage at 500 bar
- Second HRS sampling in Huntorf, DE showed very high purity!
 - No compression and storage, H₂ directly sampled from electrolyser (outlet pressure ≈ 100 bar)
- Compression (piston compressor) and processing (storage) at HRS influence the purity of hydrogen

[3] T. Bacquart et al. J. Power Sources 2019, 444, 227170. [4] T. Bacquart et al., Int. J. Hydrogen Energ. 2018, 43, 11872-11883.

More Sampling of Hydrogen is Necessary for Further Insights of Influencing Factors

- Sampling at different HRS with varied synthesis routes (e.g. SMR) necessary for final conclusions [5]
- Performing round robin tests for validation of lab equipment in compliance with ISO 21087
- Investigation of the influence of the storage of hydrogen in salt caverns
 - High-pressure experiments with test reactors to **simulate cavern conditions** in the laboratory
- Which impact do the materials used for conducting and processing hydrogen have on the purity?
 - Investigation of sealings, cements and steels under elevated temperature and pressure
- Which purification steps and sensors are essentially needed to guarantee high quality at every single refuelling of a fuel cell vehicle?

[5] ISO 21087:2019-06 Gas analysis – Analytical methods for hydrogen fuel – Proton exchange membrane (PEM) fuel cell applications for road vehicles, 2019.

Thank you for your kind attention! Questions and discussion are welcome

Contact:

Holger Janßen, Sector Integration Mobility

Mail: Holger.Janssen@dlr.de

Phone: +49 441 99906-341

Web: www.DLR.de/VE

Knowledge for Tomorrow