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Abstract

Scenario-based testing is state-of-the-art for testing Advanced Driving Assistance
System / Autonomous Driving (ADAS/AD). The challenge in scenario-based test-
ing is the generation and selection of the scenarios. To generate reproducible sce-
narios and to efficiently perform tests of ADAS/AD, simulation environments are
used because the environment is under control. However, an open research question
on this topic is the realism of the emerging scenarios within the simulation. Realism
is a challenge because the ADAS/AD must eventually function in the real world.
To solve this challenge, we contribute a concept (1) to use a simulation environ-
ment to generate realistic synthetic scenarios and (2) to evaluate their realism. We
focus our research on dynamic objects within the scenarios. We parameterize the
microscopic traffic simulation environment SUMO and generate synthetic scenarios
by simulation. We base the evaluation of realism on real scenarios observed by the
testbed Lower Saxony. To measure realism, we define ten different characteristics
in different aspects. With these characteristics, we measure realism by comparing
the characteristics against the real data. As a prototype, we implement this concept
and compare three different methods of parameterization concerning their realism:
(a) expert-based, (b) optimization-based, and (c) clustering-based.
Based on our evaluation, we find that parameterization has a strong influence on
the realism of criticality metrics such as the Time To Collision (TTC). In contrast,
we find that the influence of parameterization on other aspects is comparatively
low. We observe that realism depends on the parameterization and the capabilities
of the simulation model. We discover that expert-based parameterization generates
the most realistic scenes compared to the other methods and about 2.5 times as
many realistic scenes during the same period as without parameterization. Each
parameterization has its own strengths concerning different aspects of realism. We
conclude that SUMO generates realistic dynamic objects in scenarios in many as-
pects.
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1. Introduction

Modern road vehicles are equipped with increasingly comprehensive and powerful
Advanced Driving Assistance Systems (ADASs) for the automation of road traffic
[FKP+20]. They are designed to improve safety and comfort on the road [Tat15].
By delegating further driving functions from the driver to ADASs, the boundary
to Autonomous Driving (AD) vanishes. An essential aspect in the development of
ADAS/AD is the safeguarding of the driving function [HWLZ16]. In the course of
increasingly complex interrelationships and larger systems, the testing of ADAS/AD
is a challenge, as the requirements of the system cannot be fully formulated. The
application of real-world tests is becoming increasingly difficult [WW15, Sch17] and
is not suitable as the only test for release [WW16]. Therefore, we need methods for
verification and validation that limit the number of real test kilometers driven.

The state-of-the-art is scenario-based testing, where real-world traffic is abstracted
by scenarios [NWH+20]. The core idea is to use representative scenarios to test
the ADAS in the real world, or the simulation [Sch17]. As a result, insignificant
sections without action or event should be removed from the validation procedure
[Tat15]. The selection of scenarios determines the tested behavior and the likelihood
of uncovering defects. Therefore, an essential component in this testing process is
generating or collecting the scenarios. Open questions on this topic are: Which
scenarios are needed, and at what point can the driving function is classified as
safe? To determine which scenarios to test, two approaches to scenario selection
have evolved: data-based and knowledge-based [Tat15]. The knowledge-based ap-
proach uses knowledge about how roads are built to derive scenarios [BMKM18]. In
contrast, data-driven approaches use observations to collect or derive scenarios.

Pütz et al. [PZBE17] distinguish between real-world data and traffic simulation data
as a source for scenarios in the data-driven approaches. Real-world data is used to
derive scenarios directly, e.g., collect takeovers. According to Pütz et al. [PZBE17],
simulation environments can be efficiently used to identify critical scenarios, which
are highly relevant for the verification and validation of ADAS/AD. This approach
is cheaper compared to real test kilometers, easier to implement, and allows to
explicitly enforce critical scenarios, which is dangerous in the real world. Yue et al.
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[YSWL20] present a method to generate scenarios using a simulation environment.
Within the development of ADAS/AD simulators are already an established tool
[AWS14] therefore, scenario generation from simulators can be easily performed.
However, it is not clear whether the simulation behavior reflects reality and the
derived scenarios can be used to test real ADAS/AD.

The German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt)
(DLR) built the testbed Lower Saxony in Germany in 2020 [KMKL18]. One of
the key components is the detection system on highway A39 between Brunswick
and Wolfsburg. The detection system is based on stereo-video sensors and detects
objects on a length of approximately 7.45 km around the clock. All objects driving
on the highway are digitally recognized and stored in the form of trajectories. This
infrastructure provides a comprehensive insight into the behavior of road users and
the events happening on the section of the road. The data provided by the testbed
are very well suited for data-driven approaches as they represent a ground truth for
reality.

Goal of this Thesis

The detailed trajectory data provided by the testbed Lower Saxony describes the
reality of the traffic on a highway. This data contains realistic scenarios since they
are observed within the real world. We compare these real-world scenarios against
scenarios generated by a simulation environment. By this comparison, we judge
which aspects of the simulation-based scenarios are realistic. Thus, we investigate
whether the simulation-based scenarios reflect reality and contribute to solving the
problem if simulation environments generate realistic scenarios. Our key research
question is: How can a simulation environment be parameterized to create realistic
scenarios?

We contribute a concept that consists of two parts: (1) the generation of realistic
scenarios and (2) the evaluation of their realism. First, we parameterize a simulation
environment using three different parameterization methods. With these parameter-
izations, we generate synthetic scenarios with the simulation environment. Within
a set of ten characteristics, we evaluate the realism of the scenarios and investigate
the ability of these characteristics to judge realism.

Structure of the Thesis

First, we introduce background information in Chapter 2. In Chapter 3 we present
a process chain for generating synthetic trajectories and evaluate their realism. This
chapter introduces different methods for parameterizing the simulation environment
and aspects for measuring realism. We present the implementation of a prototype of
this process chain in Chapter 4. Afterward, we describe the experiments and discuss
the results in Chapter 5. Chapter 6 provides an overview of related work and how
this work differs from theirs. Finally, we summarize our findings in the Chapter 7
and identify potential areas for further research in Chapter 8.



2. Background

In this chapter, we discuss the fundamentals of this thesis. First, a short introduction
to the current concepts for testing in the automotive context is given in Section 2.1.
Within this section, the topic of scenario-based testing is explained. Since this thesis
focus on the dynamic objects within scenarios, Section 2.2 gives a short introduction
about trajectories, the datasets, and their characteristics. We use traffic simulation
to generate synthetic trajectory data. Section 2.3 will explain the fundamentals of
traffic simulation and the configuration.

2.1 Testing in Automotive Context
In this section, we will explain the basics of testing in the context of the automotive
industry. Fist current concepts for testing and their limitations within the context
of AD are shown. This will lead to an introduction of scenario-based testing and its
characteristics.

Current test approach in automotive context

One of the main aspects of developing a new ADAS is the safeguarding of the driving
function. Within the automotive context, different concepts have been established.
Wachenfeld and Winner [WW16] present concepts for driverless, assistive, and semi-
automated systems. The concepts and their targeted automation levels have in
common that they access the driver as a backup level [WW16]. These concepts focus
on ensuring controllability by the driver using a distance-based testing approach.
Wachenfeld and Winner [WW16] argue that (within these levels of automation) it
is sufficient to ensure controllability by the driver in the verification and validation
process since the driver controls the behavior in case the system malfunctions. One
major problem of the distance-based approach is the required traveled distance to
ensure the safety of the ADAS. Wachenfeld and Winner [WW16] calculate that it is
necessary to drive at least 2.1 bn test kilometers in order to reliably demonstrate that
a ADAS reduces the number of fatal accidents by half. Since this enormous number
of test kilometers is not realistic to achieve in reality, Schuldt [Sch17] proposes
scenario-based testing as a solution.
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Scenario-based testing

Scenario-based testing reduces the necessarily driven test kilometers into a rele-
vant subset of scenarios. In order to test an ADAS/AD, a set of scenarios is re-
quired, and the ADAS/AD has to be tested within these scenarios. The tests are
mainly performed in virtual environments [Sch17]. Tatar [Tat15] distinguishes the
scenario generation into data-based and knowledge-based approaches. Knowledge-
based approaches use knowledge about how roads are built to derive scenarios
[BMKM18]. Data-driven approaches use observations to collect or derive scenar-
ios [dGP17, YLW+14, ZdR17]. Ulbrich et al. [UMR+15] define the terms scenario,
scene, and situation as follows:

• Scene: "A scene describes a snapshot of the environment including the scenery
and dynamic elements, as well as all actors’ and observers’ self-representations,
and the relationships among those entities. Only a scene representation in a
simulated world can be all-encompassing (objective scene, ground truth). In
the real world it is incomplete, incorrect, uncertain, and from one or several
observers’ points of view (subjective scene)." [UMR+15]

• Situation: "A situation is the entirety of circumstances, which are to be con-
sidered for the selection of an appropriate behavior pattern at a particular
point of time. It entails all relevant conditions, options and determinants for
behavior. A situation is derived from the scene by an information selection
and augmentation process based on transient (e.g. mission-specific) as well
as permanent goals and values. Hence, a situation is always subjective by
representing an element’s point of view" [UMR+15]

• Scenario: "A scenario describes the temporal development between several
scenes in a sequence of scenes. Every scenario starts with an initial scene.
Actions & events as well as goals & values may be specified to characterize
this temporal development in a scenario. Other than a scene, a scenario spans
a certain amount of time." [UMR+15]

Schuldt [SSL+13] introduces a model to describe the structure of scenarios in four
different levels, which is adapted by Bagschik et al. [BMKM18] to a 5-level model.
These levels are shown in Figure 2.1. Level 1 (L1) describes the static road model,
including the geometry and the surface properties. Level 2 (L2) describes the struc-
tural boundaries and traffic signs. Level 3 (L3) introduces temporal manipulation
of L1 and L2, for example, road works. The fourth level (L4) describes objects
that behave dynamically or statically and their interactions. The fifth level (L5)
describes environmental factors, for example, weather conditions.

2.2 Trajectories
In this section, we first present the available real-world reference datasets. After-
ward, we explain the term trajectory.
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Figure 2.1: 5-level model scenario model of Bagschik et al. Source: [BMM18]

(a) Location of the testbed Lower Sax-
ony. The section highlighted in blue
marks the area of the detection system
on the highway. Source: [DLR22]

(b) A mast with two stereo-camera sen-
sors from the testbed Lower Saxony.
Source: [DLR22]

Figure 2.2: Testbed Lower Saxony

Real data

Different trajectory datasets are publicly available. The most popular datasets are
from the project NGSIM [FHW07] or the HighD [KBKE18] dataset. In this thesis,
we use highway trajectory data from the testbed Lower Saxony [KMKL18]. The
testbed was build in 2020 by the DLR. The data is captured by a static infrastruc-
ture comparable to the NGSIM infrastructure [FHW07]. It covers two lanes and the
emergency lane in each direction on a length of 7.45 km and is captured by 142
stereo-camera systems. The testbed is located in Germany - Lower Saxony between
Brunswick and Wolfsburg. The detection location is shown in Figure 2.2(a). The
blue highlighted part marks the detection area on the A39 highway. Figure 2.2(b)
shows one mast from 71 equipped with 2 stereo-camera sensors. The two boxes at
the top of this figure contain two cameras combined into a stereo-camera system.
The hardware and antennas in the lower part of the figure are V2X communication
devices, which are not of further interest in this work. The detection system recog-
nizes every object within the detection range and stores it digitally as trajectories.
The trajectories are represented in a global coordinate system (Universal Transverse
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Figure 2.3: Trajectory data visualized from birds eye perspective. The boxes mark
the detected object, the lines the followed trajectory. Above the objects, a small
pixel map is a visualization of the objects’ identifier.

Mercator (UTM)) and absolute time (Coordinated Universal Time (UTC)) with a
sampling frequency of 20 Hz. Figure 2.3 shows an excerpt from the detected data
visualized from a birds’ eye view. The detected objects are visualized by boxes.
The different types of vehicles are identified by their color. The distance traveled is
represented by a line. While the data semantically represents a situation shown in
Figure 2.3, the underlying dataset is presented in a database.

Trajectories

A trajectory in traffic describes the path that an object takes. A distinction is
made between discrete-time and continuous-time trajectories. While functions rep-
resent continuous-time trajectories, discrete-time trajectories are described by sam-
ple points at specific time steps. In the context of this thesis, only discrete-time
trajectories are of interest. Wagner et al. [WMR+13] define a trajectory T as an
ordered list of spatiotemporal measurements p1, p2, ...pn. Each point pi consists of
the spatial coordinates xi, yi and a timestep ti: pi = (xi, yi, ti). The trajectory
T = (p1, p2, ..., pn) is ordered by time t1 < t2 < ... < tn. In the real world, spatial
coordinates often describe global coordinates, while relative coordinates are often
used in the simulation context. The same applies to the temporal dimension. The
individual points pi may contain further information derived from their temporal
progression, for example, velocity, acceleration, or heading. A trajectory may also
contain general information about its classification or object dimensions.

2.3 Traffic Simulation
In this section, we first describe the fundamentals of traffic simulation. Afterward,
we describe the traffic simulator SUMO in more detail. Since SUMO is a micro-
scopic traffic simulator, we briefly describe how the microscopic traffic simulation
is performed. In order to simulate traffic, the simulation parameters have to be
determined. This process is called calibration. Finally, we give a short introduction
to traffic simulation calibration.

Fundamentals of Traffic Simulation

Simulations allow modeling reality and provide an abstraction used to study the
modeled characteristics. Traffic simulations model the traffic on different levels of
abstraction. Within the context of scenario-based testing, traffic simulators are
used to apply the testing [Sch17] and also to derive the scenarios from it [SBW+16].
Krauss [Kra98] distinguishes simulation environments into three different classes of
abstraction:
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Figure 2.4: SUMO GUI

• Microscopic: models each vehicle on its own. Mainly by the behavior of how
one vehicle follows another and when it performs a lane change.

• Macroscopic: in contrast, it does not model the dynamics of individual vehicles
but the traffic flow, for example, by average speed and traffic density.

• Mesoscopic: a mixture of microscopic and macroscopic modeling.

Additionally, traffic simulations are also classified as submicroscopic [MBWvA+20].
These types extend the microscopic vehicle models, for example, by the yaw value
(also called heading) and thus the lateral positioning of the vehicle. In contrast, a
microscopic traffic simulation mainly models the longitudinal behavior of vehicles
along a lane in combination with lane-change decisions [MBWvA+20]. For this work,
microscopic simulators are of interest because they allow the individual observation
of single road users.

SUMO

SUMO is an open-source microscopic traffic simulation [LWB+18]. It is developed
by the DLR and provides a fully-featured traffic simulation suite for various use
cases [BBEK11]. The main component: the simulator is either executed with a
Graphical User Interface (GUI) or with the Command Line Interface (CLI) with
only the simulator. The GUI is shown in Figure 2.4.

In order to execute the simulation, SUMO provides a tool to generate networks (net-
generate), edit (netedit), or import road networks (netconvert). These road networks
are stored in a SUMO specific eXtensible Markup Language (XML)-format. Addi-
tionally, a XML route file is required to start the simulation. This file contains the
information about the vehicle types, their parameters and the traffic flow. SUMO
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provides different ways to describe traffic flows. The Listing 2.1 shows the method
used in this thesis.

Listing 2.1: SUMO route configuration file
1 <routes>
2 <vType id="pkw0" vClass="passenger" speedFactor="1.0" tau="1.5

" probability="0.5" />
3 <vType id="pkw1" vClass="passenger" speedFactor="1.5" tau="

0.66" probability="0.2" />
4 ...
5
6 <vTypeDistribution id="td0" vTypes="pkw0 pkw1 ..." />
7
8 <flow id="0" type="td0" begin="0" end="100" vehsPerHour="500"

from="edge0" to="edge0" />
9 </routes>

First, two different vehicle types with the tag <vType> are created. These refer
to a set of vehicles that have the same parameters in common. The attributes
shown in Listing 2.1 Line 2 tells SUMO, the vehicles of type pkw0 are from the class
passenger and typically drive at the speed limit (speedFactor="1.0"). While
vehicles of type pkw1 (Line 3) will drive at 150 % of the speed limit. The parameter
tau indicates the desired time headway for this vehicle type. Finally, the setting
of the parameter probability results in 50 % of the inserted vehicles being of this
type. The parameters shown describe only a subset of the available parameters.
The <vTypeDistribution> (Line 6) tag tells SUMO to use a distribution to insert
vehicles (instead of specifying individual vehicles and routes). Eventually, the traffic
flow is defined by the tag <flow> (Line 8), it describes that between simulation
times 0− 100 s, 500 vehicles travel between the edges edge0 and edge1. These are
generated according to the specified vehicle type distribution.

The output of the simulation is stored in an XML-file (with the possibility of different
levels of detail). There are two Application Programming Interfaces (APIs): Traffic
Control Interface (TraCI)1 and LibSUMO2 which are designed to programmatically
interact with SUMO. These APIs allow dynamic interaction with the simulation
environment and bypass static file-based configuration. TraCI is a control interface
for SUMO over network. LibSUMO is a library to directly interact with SUMO via
C++ function calls. TraCI is the recommended2 way to interact with SUMO since
it is more flexible in terms of multiple platforms and languages. LibSUMO has,
in comparison, a lower overhead which increases the performance drastically when
used, for example, to collect datasets. With both APIs, it is possible to manipulate
single vehicles and change their parameters. These APIs also allows the collection
of the generated output directly into other data formats.

1https://sumo.dlr.de/docs/TraCI.html
2https://sumo.dlr.de/docs/Libsumo.html

https://sumo.dlr.de/docs/TraCI.html
https://sumo.dlr.de/docs/Libsumo.html


2.3. Traffic Simulation 9

SUMO simulates the vehicles time-discrete and space continuous [BBEK11]. This
behavior leads to arbitrary positions of vehicles within the time-discrete domain.
The global simulation parameter --step-length determines the time interval.

Microscopic Traffic Modelling

Microscopic traffic simulations break down the behavior of individual drivers in
terms of how they follow another vehicle and when they make a lane change [Kra98].
The longitudinal behavior is explained by the Car of Following Model (CFM). The
CFM will determine the speed behavior through time. Vehicles are modeled to drive
at the desired velocity vdes. It is assumed that they change their velocity only when
they deviate from vdes [Kra98]. Given a relaxation time τ and the current velocity
v, Krauss [Kra98] defines a basic CFM as:

dv(t)
dt

= vdes − v

τ
(2.1)

According to Equation 2.1 a velocity change is also introduced by a change of vdes.
Car-following aims to model the interaction between vehicles. Therefore, the target
is to model the velocity change introduced by other vehicles. The interaction is
limited to the vehicle ahead in almost any CFM [Kra98]. Currently, SUMO support
16 CFMs3. In the context of SUMO, each CFM has two parameters in common.
These are: τ (different from Equation 2.1) and minGap. τ denotes the desired time
headway of a following vehicle and minGap the minimal gap between follower and
leader at standstill. The concrete interpretation of these parameters may change by
individual models. The speed of the following vehicle v is used to infer a desired
distance by:

d = minGap + v · τ (2.2)
Further parameters of the concrete follow behavior are dependent on the CFM.

According to Krauss [Kra98], lane-changing behavior is far less researched in com-
parison to CFMs. This behavior is based on a rule set that determines when the
lane change should be performed [Kra98]. SUMO uses a lane change model from
Erdmann [Erd15] by default. This will perform lane changes instantaneously. In
order to model lane changes as smooth changes and accurate lateral movement, the
sub-lane model has to be activated.

Calibration

Calibration is the process of modifying the simulation parameters to reduce the
difference between simulation and reality [CLOR03b]. Therefore, it is necessary
to have ground-truth data and measurements to compare it against simulation-
generated data. This process is carried out until conformity between simulation and
reality is achieved [CLOR03b]. Wagner and Antoniou [ABB+14] define the final
goal as "minimizing the difference between reality [...] and the model results [...]"
[ABB+14, p. 59]. Different guidelines are available on how to calibrate traffic sim-
ulations [ABB+14]. Wagner and Antoniou [ABB+14] summarize that the following
four steps should be performed to use a traffic simulation:

3https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.
html#car-following_models

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_models
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1. Building / collecting the road network

2. Calibrate the traffic flow, demand, and capacity

3. Fine-tune parameters: for example, car-following, lane-changing

4. Validation with a different dataset used for calibration



3. Concept

This thesis aims to generate realistic scenarios within a simulation environment
and assess their realism. To simulate, we need to determine the parameters of the
simulation environment. The challenge is identifying methods to determine these pa-
rameters and defining what realistic means in scenario-based testing. We present in
this chapter a generic concept that allows the generation of synthetic scenarios and
compares these in terms of realism. Therefore, we use a simulation environment
to generate the synthetic scenarios. We compare the synthetic scenarios against
real scenarios by examining the trajectories within the scenarios. In Figure 3.1 we
present the overall concept. The concept consists of trajectory generation (blue) and
evaluation (orange). During parameterization, we use the real dataset to generate
simulation parameters. We use these parameters to generate synthetic trajectories
via the simulation environment. This process is described in Section 3.1. For eval-
uation, we use the generated synthetic trajectories for comparison with the real
dataset. We use characteristics that describe the trajectories within these datasets
for comparison. The evaluation process is described in Section 3.2.

3.1 Synthetic Trajectory Generation
Within this section, we present a concept to generate synthetic trajectories. We use
a simulation environment to generate these trajectories. In order to simulate, simu-
lation parameters must be determined. We use a real dataset in order to determine
these parameters. We present a concept to generate synthetic scenarios consisting of
four steps: dataset preparation, determining the simulation parameters, simulation,
and OpenSCENARIO export. In Section 3.1.1 we introduce the concept to prepare
the synthetic and real datasets (Figure 3.1 Step 1). The result is syntactically and
semantically identical datasets that we use in the further steps. We show in Sec-
tion 3.1.2 different methods for parameter determination and use them to generate
sets of simulation parameters (Figure 3.1 Step 2). With the parameters found, we
generate synthetic datasets by simulation in Section 3.1.3 (Figure 3.1 Step 3). Fi-
nally, in Section 3.1.4 we introduce an export to a generic data format for further
use of the synthetic results (Figure 3.1 Step 4).
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Figure 3.1: Overview of the entire concept

3.1.1 Dataset Preparation
First, we prepare the datasets to determine simulation parameters and efficiently
compare synthetic and real data. To compare the datasets, both must be syntac-
tically and semantically identical. However, the synthetic and real datasets differ
in syntax and semantics. We present a procedure to harmonize these datasets and
prepare them to be compared. In the following paragraphs, we first briefly describe
the datasets.

We use ground truth data from the testbed Lower Saxony [KMKL18]. The testbed
Lower Saxony recognizes these objects live and inserts them into a database at each
detection step. The resulting database has a shape similar to the table shown in
Table 3.1. The Identifier and Time Step columns form a unique combination for a
specific vehicle at a specific time. A single trajectory is given by every row where
the Identifier matches the vehicles’ identification. The detection system is designed
to detect objects live. The inserted data corresponds to the best currently available
knowledge about the objects’ past. When a vehicle is being tracked on the highway,
the system collects further information every time step. After the vehicle has passed
through the testbed, the most reliable measurement of object information, such as
dimensions, is available. This leads to the fact that the initial inserted measurements
do not contain the best information.

The columns of the simulation dataset are similar to that of the real dataset (Ta-
ble 3.1). A difference is the representation of the data within the columns. For
example, the simulation environment locates objects in a local coordinate system,
and the real data is in the UTM coordinate system. Therefore, a coordinate trans-
formation must be performed to compare these datasets.

Figure 3.2 shows an example scene with a car following a truck. We use this example
to explain the preparation process. We calculate later in this thesis characteristics
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Identifier Time Step X Y Vel-X Vel-Y Class Width ...
0 0 200 400 10 30 Car 180 ...
1 0 300 100 12 35 Car 185 ...
0 1 205 405 -5 -20 Truck 240 ...
1 1 295 90 15 25 Van 215 ...
... ... ... ... ... ... ... ... ...

Table 3.1: Example representation of a trajectory dataset in tabular form.

X

Y

1

30m

30m

1
0

m
, Lan

e 1

1
0

m
, Lan

e 1

2 2

3 3

4

4

5 5

Leader: b Leader: -ID: a ID: b

Figure 3.2: Visualization of the necessary preparatory steps for processing the
datasets.
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that depend on positions and velocity within the lane coordinate system. There-
fore, we calculate these positions and velocities within this process. The process
consists of five steps: data transformation, data enhancement, lateral position as-
signment, longitudinal position assignment, and leader assignment. In the following
paragraphs, we describe these steps in detail.

First, we perform the data transformation (Figure 3.2 Step 1). After this step, we
use the same process for synthetic and real datasets. This step consists of multiple
sub-steps. First, we perform a coordinate transform of the simulation data to align
the coordinate systems. The real dataset contains the velocity and acceleration as
a vector in two directions within the global coordinate system (Table 3.1). In the
further steps, we need these attributes as measurements in the direction of travel.
We add the magnitude of the vector as an additional column. Finally, we inspect
all real trajectories, calculate the most reliable measurements of dimensions and
classification over the entire detection cycle, and apply those to the dataset. After
this step, we have two datasets with the same columns and data representations.
This process allows the use of the following process chain for both datasets.

For the following steps, we assume that we want to compute a TTC. The TTC
measures the time if a collision is predicted until the collision occurs. To calculate
the TTC, we need multiple input values that are not available. First, we need to
know that the car follows the truck to predict a collision. Then, we need the distance
and the velocity of both to calculate the TTC. We assume in Figure 3.2 that the
car drives faster than the truck because only then a TTC is defined. To calculate
the TTC, we need to extend the dataset with the required information. First, the
outer points of the vehicle must be determined to calculate the correct distance
between both (Figure 3.2 Step 2). The real dataset describes the vehicles with
a reference position and additional extents in each direction along the direction
of travel. The simulation data uses the center position of the front bumper as a
reference and the length and width to represent the object boundaries, where the
underlying lane implicitly gives the direction of travel. With this information, we
add the outer points to both datasets. To calculate a leading vehicle, the information
on which lane the vehicles are driving is needed. We calculate this information for
each time step and vehicle and add it to the database (Figure 3.2 Step 3). Finally,
we need the longitudinal position along the lane because we need to measure the
distance between both vehicles. We calculate this position and add it to the database
(Figure 3.2 Step 4). Based on the known longitudinal position within this lane, we
identify the leading vehicle (Figure 3.2 Step 5). We calculate the distance between
both vehicles using the previously calculated outer points of the vehicle and their
position within the lane. We identify the velocity of the leading vehicle using the
known leading vehicle and the distance. With these attributes (distance and velocity
of the following and leading vehicle), we calculate the TTC. Finally, we have two
datasets that differ only in the trajectories they contain, but the format is the same.

3.1.2 Determining Simulation Parameters
Input parameters determine the simulation behavior. These parameters must be
determined before simulation [ABB+14]. We distinguish these parameters be-
tween static and behavior parameters. Behavioral parameters determine how ve-
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hicles behave and interact with other road users, such as the desired speed. The
static parameters have no direct influence on the driver’s behavior, for exam-
ple, the road model. We keep the static parameters the same during these runs
to obtain comparable results between the simulation runs and the real dataset.
However, we need to determine the behavior parameters. These parameters
are the parameters of the CFM. In this section, we present methods for de-
termining the behavioral parameters. Therefore, methods for determining these
parameters are required. We conducted a literature review to examine exist-
ing methods for determining traffic simulation parameters. The most prominent
method in literature for determining the simulation parameters is optimization
[KT08a, LXABA15, PBF+17, CLOR03a, HAB+15]. This method aims to opti-
mize an objective using an algorithm. Similar use-cases use expert-based methods
to determine simulation parameters [CJSM21]. An expert provides the necessary
knowledge and experience and combines the literature results to determine the pa-
rameters. In the literature, there are several works with already determined param-
eters that the expert can use [LFAR19, LHP+21, KLY+21, SNB+20, SKvA12]. The
last method is a clustering-based approach [MA07, HA14]. It aims to find different
driving styles in real data and model them in simulation. Therefore, we use the
following three methods to compare which method is best at generating realistic
trajectories:

• Expert-based

• Optimization-based

• Clustering-based

Each method takes the dataset as input and outputs the simulation parameters. As
an exception, in the expert-based method, an expert also takes literature and his
knowledge as input. We use the three different methods: expert-, optimization-, and
clustering-based, to generate three different sets of parameters for vehicle behavior.
In the following paragraphs, we explain the parameterization methods in detail.

Expert-based parameterization

The expert-based method is a manual process in which an expert determines the
parameters of the simulation environment. This method does not require any refer-
ence data. However, an expert is required who provides the required expertise. The
expert must know how the simulation behavior is determined and what realistic
parameterizations are. It is a process of direct inference rather than an iterative
process. The expert uses his experience, knowledge, and literature to determine the
parameters. These factors are decisive for the result of this method. In addition, the
expert analyzes real data using statistical methods. For example, one parameter of
all CFMs in SUMO is τ , the time headway. The expert examines the minimum or
mean time headway for different vehicle types in the real dataset and sets observed
values directly in the configuration of SUMO.

Other parameters such as minGap cannot be directly observed (in a highway setting)
and easily determined. The minGap describes the desired minimal gap between two
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vehicles at a standstill. It is easy to determine this parameter in urban traffic, while
it cannot be observed on the highway when all vehicles are in free flow and no traffic
jam occurs. Since the desired gap gapdes in SUMO is modeled as the sum of the
minimal gap minGap and a function f that depends on the actual vehicles’ velocity
v, it is essential also to specify this parameter. In SUMO the desired gap increases
with an increase of the vehicles’ velocity. This behavior is formally defined as in
Equation 3.1.

gapdes = minGap + f(v) (3.1)
Since this parameter cannot be observed in the real dataset, the expert uses his
knowledge about this behavior or the literature. For example, SUMO provides a
list of default parameters for each vehicle type1. This list summarizes literature or
publicly available information and sets these as default values.

Furthermore, the expert uses his knowledge and experience to evaluate the resulting
parameters. He uses his knowledge about realistic bounds to judge if the results are
realistic. If these are unrealistic, he chose them explicitly differently.

The strengths of this method lie in the direct derivation of parameters from the
ground truth dataset and the human ability to judge plausibility. All publicly avail-
able (and privately accessible by him) information and literature are at the disposal
of the expert. This information provides a massive basis for the determination of the
parameters. This method is also applicable when little or no real data is available.
It is possible to determine the parameters based on the literature, knowledge, and
experience. In contrast, this method requires manual effort, and different experts
have different opinions, leading to different results and plausibility assessments. It
is unclear which opinions and literature are correct or ideal for this setting with
all available information. The expert also needs experience and knowledge in this
particular setting to achieve realistic results.

Optimization-based parameterization

We use optimization as the second method for parameterization. It is an iterative
approach to determine an optimum given an objective. An objective function ex-
presses the objective. In the context of this application, we specify an objective
function that describes realism. Therefore, we minimize the discrepancy between
simulation and reality.

In Figure 3.3, we present the abstract optimization approach. First, we chose a set
of initial parameters. The parameters are based on previous work or are arbitrarily
chosen. Within step 1 of Figure 3.3, we select a subset of these initial parameters.
Miller [Mil09] shows that many input parameters from another simulation environ-
ment are eliminated with this step since they have little or no effect on the objective
function. We assume that there are also parameters in this setting that can be elim-
inated. Ros-Roca et al. [RRMB17] find that increasing system complexity (many
input and output parameters) also leads to an increase in optimization complexity.
Therefore, we argue to limit the number of input parameters to reduce the system’s
complexity. In the second step of Figure 3.3, we simulate using the selected param-
eters. After the simulation is complete, we evaluate the run against the objective

1https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html

https://sumo.dlr.de/docs/Vehicle_Type_Parameter_Defaults.html
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Figure 3.3: Parameter optimization for determining simulation parameters.

function in the third step of Figure 3.3. Based on this evaluation result, we perform
an optimization of the input parameters in step 4. A specific optimization strat-
egy determines how the optimization is performed. For example, a gradient of the
objective function is calculated based on small variations of the input parameters.
The gradient is then used to determine new parameters that are likely to be better
evaluated based on the gradient. By the optimization, we generate a new set of
parameters to repeat the whole process. In the fifth step of Figure 3.3, we repeat
the process until one of two conditions is met: the maximum number of iterations or
the change in evaluation is less than a threshold. Finally, we receive a parameter set
that leads to a minimum or maximum of the objective function. Since the objective
function can be arbitrarily shaped, there is no guarantee that the minimum or max-
imum is found in the global minimum or maximum. Therefore, the optimization
method must deal with the problem of ending in local minima.

In the following paragraphs, we explain the details of the steps. First, we define
our objective within optimization. Our goal is to generate realistic trajectories.
Therefore, we must define the realism of the trajectories as our objective. Our
objective function thus describes the discrepancy between simulation and reality.
We compare the synthetic trajectories with the real trajectories to measure the
discrepancy. However, a challenge is the different viewpoints. A trajectory is an
individual path taken by an object. To compare two individual trajectories, they
need the same environmental factors. For example, the same starting point and the
same road users are necessary to compare trajectories directly. Small changes within
these factors, such as a slightly faster crossing vehicle, could prevent an accident and
lead to a different scenario. Therefore, the same environmental conditions within
the simulation are necessary. However, our goal is not that the same trajectories
occur but that these trajectories behave like real ones. We propose a method using
characteristics of these trajectories to compare them. For example, a characteristic
is the average velocity of the trajectories, and we compare whether this matches
real data. We define multiple characteristics and compare them with reality. This
comparison leads to an error between simulation and reality, which we express as
an error function. This error function is the objective function that we want to
minimize. Thus, the goal is to minimize the error and find a global minimum of
an objective function f given a set of continuous β and discrete parameters γ. The
objective function measures the result of a simulation run MMM sim. Using MMM obs as
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the measurement within the observed data, Ciuffo and Punzo [CP14] formulate the
minimization problem as follows:

min
β,γ

f(MMM obs,MMM sim) (3.2)

For the purposes of this thesis, it is not the value of the minimum that is of interest,
but the set of parameters β, γ that gives the minimum of f in the set of all possible
parameters B, Γ. Therefore, we formulate the problem as follows:

arg min
β∈B,γ∈Γ

f(MMM obs,MMM sim) (3.3)

Moreover, Ciuffo and Punzo [CP14] extend the problem by introducing constraints.
Let m be the number of classes within the simulation, lllβ,iii, lllγ,iii define the lower bound
and uuuβ,iii,uuuγ,iii the upper bound for a given continuous or discrete parameter. Ciuffo
and Punzo [CP14] formally describe these constraints as:

lllβ,iii ≤ βββiii ≤ uuuβ,iii, i = 1, ..., m (3.4)
lllγ,iii ≤ γγγiii ≤ uuuγ,iii, i = 1, ..., m (3.5)

In order to find the minimal parameters βmin, γmin it is necessary to define the
objective function f . To achieve the best results in the final evaluation, f should be
chosen to be the evaluation function. Therefore, this method aims to directly find
the best possible parameter set for the aspects under study.
We design the objective function to minimize the discrepancy between simulation
and reality. A critical part of this method is the runtime (since thousands of it-
erations are performed). Therefore, we choose the objective function so that it is
computed within seconds. We use the discrepancy between simulation and reality
in TTC, DRAC, and TH as the optimization objective. This choice introduces the
challenge of multi-objective optimization. Different strategies have evolved to deal
with this challenge. In this thesis, we use goal programming [Diw20] to address this
problem because it is an easy-to-implement approach. In goal programming, a com-
bined objective function f(C1, ..., Cn) is constructed from many objective functions
for individual characteristics fC1 . This choice introduces another challenge: the
combined objective function must be defined. Therefore, we have to define weights
for the three individual objectives (TTC, DRAC, TH). Since we currently have no
insight into which objective influences realism the most, we weigh them all equally.
Since the error between those characteristics differs in magnitude, we normalize each
characteristic towards the error computed with the default parameters. Thus, at a
value of one, the objective expresses equally realistic results as the default config-
uration below one, better than the default, and higher than one, worse than the
default. With E as the error pi the current optimization parameters and pd the
default parameters, we define the objective as follows:

Objective = E(pi, TTC)
E(pd, TTC) + E(pi, DRAC)

E(pd, DRAC) + E(pi, TH)
E(pd, TH) (3.6)

To reduce optimization effort, we reduce the complexity of the individual optimiza-
tion steps. Therefore, we limit the number of parameters that are optimized. In-
spired by Henclewood et al. [HSR+17], we identify uninfluential parameters. These
parameters are excluded from the optimization process.
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When performing optimization, boundaries are used, on the one hand, to limit
the exploration space (and reduce the effort) and, on the other hand, to eliminate
implausible states [Adb13]. For example, the optimization will choose a very low
desired time headway if this is a minimum of the objective. This value is the
optimal result concerning the objective function, but it is not realistic that every
vehicle will drive with a very low time headway. Therefore, we define boundaries
for each optimizable parameter.

Theoretically, this method will always be the best available method to find the
optimal parameters given the evaluation objectives. Some challenges make it difficult
to achieve the best possible result in practice. First, the global optimum is not easy
to find. Some methods employ a greedy strategy (for example, gradient descent),
so they are likely to end up in local minima within spaces with many local minima.
Each minimum has to be examined or analytically proven to tell if a minimum is
the global minimum [Adb13]. In an infinite parameter space, this is often impossible
in practice. Therefore, if the optimization ends with reaching a minimum, it is not
easy to tell if this is the best solution. The optimization strategy must consider this
and use methods to bypass local minima.

Without the final evaluation of this method in mind, this method benefits from an
automated process and less manual interaction. In addition, it is possible to use
any objective function. This method will produce an optimal solution concerning
the objective function within practical limits. In contrast, practical problems must
be addressed: for example, local minima or the constraints on the optimization
parameters. Furthermore, the objective function must express the final evaluation
target to achieve good results. This relationship leads to practical issues when the
final evaluation is time expensive. Since this method uses an iterative approach and
requires multiple executions, each iteration must be time-efficient. This consider-
ation also applies to all steps in any optimization iteration, especially simulation.
Therefore, additional effort must be spent to reduce this calculation time.

Clustering-based parameterization

In contrast to the methods shown so far, we distinguish driving style by this method
(passive, aggressive) for a vehicle class (for example, car, van, truck). We identify
different driving styles in reality and introduce them into the simulation. Therefore,
we need to identify the driving styles. We use a clustering-based approach to de-
termine driving styles within a vehicle class. As with any other method, we use the
reference dataset as the basis. For example, to determine the desired time headway,
we analyze the dataset from this aspect. Then, we cluster the results to find dense
regions within the dataset with all desired time headway observations. We assume
that different classes of drivers behave, for example, with a different desired time
headway. We map these driver classes in the simulation with different behavioral
parameters. This will lead to multiple SUMO-<vType> attributes (Section 2.3) for
a single generic vehicle class. The general procedure is shown in Figure 3.4. First,
we characterize the trajectories and represent them in a feature space. Then, we
cluster the attributes and determine the simulation parameters from these clusters.
The following paragraphs will explain the procedure in detail.
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Figure 3.4: Clustering-based approach to determine driver behavior within the real
dataset.

We assume that there are different driving styles in reality and that they are dis-
tinguishable from each other. In order to distinguish driving styles from each other,
we need to identify the characteristics of these driving styles. Therefore, we define a
set of characteristics, such as minimal time headway, minimal TTC or the number
of lane changes. We calculate these characteristics for each trajectory observed in
the real data. This calculation will result in a dataset containing a list of every
trajectory’s characteristics. This dataset is high-dimensional with important and
unimportant characteristics. Since the unimportant characteristics do not provide
additional information, we eliminate them. Therefore, we transform the dataset into
a latent space using a dimension reduction strategy. This latent space is still high-
dimensional but with fewer dimensions than the original dataset and less redundant
information. We use a clustering strategy to find clusters of similar data points and
assign each data point to a cluster. A cluster semantically represents a group of
people who behave similarly in the observed traffic and, therefore, a driving style.
The cluster describes the driving style within a latent space. This latent space has
no direct connection to the parameters of the simulation environment. Therefore,
we need to derive these parameters from the clusters we found. We link a cluster
to the original characteristics by the original dataset. With these links, we describe
the found clusters. We use the subsets of the characterized trajectory dataset asso-
ciated with the same cluster to derive the parameters using statistical methods, for
example, the mean time headway within a cluster. Each cluster found leads to its
own set of parameters. We use these parameter sets to parameterize the simulation
and have thus mapped the real driving styles in the simulation, assuming that the
selected characteristics are representative of the driving style.

In comparison to the expert-based method, the clustering method is fully auto-
mated. The number of clusters found is a customizable parameter depending on
the concrete cluster method. Thus, the granularity of the different driving styles is
configurable. One option is to add or remove characteristics to improve the results.
This extensibility makes this method flexible. In contrast, there are some challenges.
For example, the minimal time headway as input characteristic has to be selected
manually. It is not clear whether these characteristics reflect a driving style. Also,
it is not known how the latent space is structured, and it is unclear which clustering
strategy works best in this space. Since the clusters found have internal variance,
the derivation of the simulation parameters (for example, mean) may not adequately
map the driving style into the simulation. There is no guarantee that a dense cluster
within the latent space with low variance will have low variance within the mapped
parameter space of the simulation. Therefore, parameter determination from clus-
ters is a critical point. Furthermore, the best choice for cluster granularity is not
apparent, and it is not clear how to decide which number of clusters will produce
the most realistic results.
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3.1.3 Simulation

In this section, we present the concept to simulate traffic. We use the generated
parameter sets by an expert, optimization, and clustering-based approach for the
vehicle behavior. We specify the parameters that we need, besides behavioral pa-
rameters, to simulate traffic with SUMO. These parameters are step length, road
model including signage, traffic flow, and simulation duration. The step length
determines the simulated duration in each iteration by the simulation. The road
model describes the street network and includes the signage, for example, speed
limits. Traffic flow specifies how many vehicles drive on the routes between points
within the road network. The simulation duration determines the time simulated by
the simulation environment. We keep these parameters the same for all simulation
runs to obtain comparable results.

The first parameter is the step length. It determines the simulated duration in each
simulation step. This parameter influences the frequency of the output, position
updates of the vehicles, and vehicles’ behavior. For example, with a step length of
1 s, the vehicle’s velocity change and position are updated each second according to
the CFM. Compared to a shorter step length, the decision to accelerate or decelerate
is delayed. Thus, the vehicle behaves differently. To compare the synthetic and real
datasets, we chose the step length to match the sampling frequency of the real
dataset. In order to model the delayed driver’s behavior, we use the "action-step-
length" parameter2 within the parameterization process. This parameter decouples
the CFM update from the simulation frequency.

In order to simulate traffic, we need to specify the road model. We use an exist-
ing high-resolution map of the testbed Lower Saxony as input. This map ensures
comparability between the trajectories generated by the simulation and the real tra-
jectories. We keep the road model constant during all simulation runs. The road
model also contains the traffic signs. The speed is not restricted on the testbed
Lower Saxony (except for a small part that is ignored because it restricts the speed
on 1 km from 7.45 km on one lane and only at specific hours). Therefore, the
simulation should not include speed limits. In SUMO, vehicles will always travel at
the highest possible speed3, which is limited by the maximum speed allowed on the
road and the maximum speed of the vehicle class. When interactions with other
road users occur, the speed is adjusted according to the CFM. It is not realistic that
vehicles will always drive at the maximal possible speed. Therefore, this behavior
needs to be adjusted. Instead, it is a common assumption that drivers have the
desired speed [BJEZB13]. We introduce a speed limit of 100 kph within the road
model to control this behavior. By setting this speed limit, vehicles will drive at a
maximum of 100 kph but always try to reach this speed. Therefore, we introduced
the desired speed of 100 kph. However, this desired speed is static for each vehicle.
SUMO allows setting a speed factor of vehicles depending on the speed limit. For
example, setting a speed factor of 1.2 with the given speed limit of 100 kph achieves
the desired speed of 120 kph.

2https://sumo.dlr.de/docs/Simulation/Basic_Definition.html#defining_the_action_step_
length

3https://www.eclipse.org/sumo/

https://sumo.dlr.de/docs/Simulation/Basic_Definition.html#defining_the_action_step_length
https://sumo.dlr.de/docs/Simulation/Basic_Definition.html#defining_the_action_step_length
https://www.eclipse.org/sumo/
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The parameter traffic flow describes the number of vehicles traveling on a route
between two points within the road network. With an increasing traffic flow, the
number of interactions between road users also increases. The higher traffic flow
results in different trajectories since vehicles have to change lanes or decelerate when
vehicles are ahead. Nevertheless, this parameter does not describe the behavior of
the driver itself. Therefore, we set the traffic flow to a constant value for each
method.

We define a fixed simulation duration to achieve optimal comparability between sim-
ulation runs. We select this duration according to the duration of the real dataset.
We parameterize the simulation environment with these environment settings and
generate a synthetic trajectory dataset. Like the real dataset, we process the result-
ing dataset and add more information, such as leader assignment. The necessary
steps are already shown in Section 3.1.1. With these static parameters and the
behavioral parameter sets from the previous step (Section 3.1.2), we generate three
synthetic trajectory datasets for each parameterization method using SUMO.

3.1.4 OpenSCENARIO Export
We export the trajectories into a standard format, which can be used for further
research in scenario-based testing. SUMO provides its simulation output in a custom
format that cannot be used directly in other simulators to apply scenario-based
testing. In this section, we convert this output into a standard format.

In the context of scenario-based testing and simulation, "OpenX" standards4 have
evolved that describe the input required for scenario-based testing. The advan-
tage of these standards is that they are publicly available and are understood by
various simulators, for example, CARLA5, CarMaker6 or VTD7. They describe dif-
ferent parts (road network, road surface, and driving maneuvers) of scenarios in
XML. The OpenX standards are developed by the Association for Standardization
of Automation and Measuring Systems (ASAM). In order to model the dynamic
objects and the environment, the OpenSCENARIO standard was established. This
standard resembles the L4 and L5 within the 5-level model of scenarios by Bagschik
[BMKM18]. It is primarily designed to describe driving maneuvers with multiple
road users and includes, for example, weather or environmental models.

Since the OpenSCENARIO standard is well established within scenario-based test-
ing, we use the standard to store the scenarios generated by the simulation environ-
ment to use the scenarios in further research. Even though the standard has many
features, for example, dynamic vehicle interaction and triggers, we use static trajec-
tories for each participant. Thus, we ensure that the scenarios that are considered
realistic are also realistically represented in other simulators. We export the dataset
into multiple OpenSCENARIO files. Therefore, we split the dataset into multiple
subsets of the same period. For each subset, we create a single OpenSCENARIO file

4https://www.asam.net/, 16.03.2022
5https://carla-scenariorunner.readthedocs.io/en/latest/openscenario_support/
6https://ipg-automotive.com/en/products-solutions/software/carmaker/, https://www.asam.

net/members/product-directory/detail/carmaker/
7https://www.mscsoftware.com/product/virtual-test-drive, https://www.asam.net/members/

product-directory/detail/virtual-test-drive-vtd/

https://www.asam.net/
https://carla-scenariorunner.readthedocs.io/en/latest/openscenario_support/
https://ipg-automotive.com/en/products-solutions/software/carmaker/
https://www.asam.net/members/product-directory/detail/carmaker/
https://www.asam.net/members/product-directory/detail/carmaker/
https://www.mscsoftware.com/product/virtual-test-drive
https://www.asam.net/members/product-directory/detail/virtual-test-drive-vtd/
https://www.asam.net/members/product-directory/detail/virtual-test-drive-vtd/
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containing all trajectories over the entire spatial domain of the simulation. Within
the scenario files, we create entities for each participant. We assign the traveled tra-
jectory observed within the simulation to this entity. Finally, we assign the starting
times of the participants within the scenarios. The start point is necessary since
not all participants start at the beginning of the scenario. We use relative time
within these scenarios to compare them against each other. This export allows the
usage within different simulators, for example, to apply scenario-based testing or to
evaluate the simulation behavior of other simulation environments.

3.2 Dataset Comparison
In this section, we compare the realism of synthetic scenarios. Our goal is to eval-
uate whether a synthetic set of scenarios is similar to a real set. The challenge
is to evaluate this similarity and, therefore, the realism. Our research focuses on
evaluating the realism of the dynamic object, thus the trajectories within the sce-
narios. In Section 3.2.1 we define characteristics determined within both datasets.
We use the characteristics as representatives for the trajectories and evaluate the
similarity within these characteristics. Section 3.2.2 describes the comparison of
these characteristics, which eventually leads to a measure of realism.

3.2.1 Dataset Characteristics

To evaluate the realism of trajectories, we define characteristics that represent indi-
vidual aspects. We divide the notion of realism into different parts represented by
these characteristics. For example, we evaluate the resulting trajectories to deter-
mine whether their behavior of following another vehicle is realistic. In this section,
we introduce ten characteristics. We divide the characteristics into three subcate-
gories within the highway setting: longitudinal, lateral, and mixed. Longitudinal
characteristics examine behavior within a single lane, for example, interaction with
a vehicle ahead. Lateral characteristics inspect the interaction between multiple
lanes. The mixed characteristics examine interactions between longitudinal and
lateral behavior.

Longitudinal

In the context of scenario-based testing, the testing of critical scenarios is of par-
ticular interest [JSW17]. Since critical scenarios occur less frequently, part of the
research focuses on the targeted generation of critical scenarios [NKM19, XFX20].
This selective generation introduces a bias within the collected scenarios. Our goal
is to generate realistic scenarios. Therefore, we match the criticality between simula-
tion and reality. Junietz et al. [JSW17] present different characteristics to measure
criticality. We use the (1) Time To Collision (TTC) and (2) Deceleration Rate to
Avoid a Crash (DRAC) as criticality characteristics since they are often used to
measure criticality [JSW17]. Furthermore, we add the (3) Time Headway (TH) as
a longitudinal characteristic. We use the TH since it is often used for parameter-
ization [AB14], and it is independent of the TTC [Vog03]. Since the TH is often
used for parameterization, we assume that it is important to reflect it correctly. In
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Figure 3.5: Example of a scene where two vehicles follow each other. The car is
assumed as the ego vehicle and travels at speed vfollower. The leading truck drives
at the velocity of vleader. The distance between the two vehicles (the front bumper
of the car and the rear bumper of the truck) is defined as d.

Figure 3.5, we show a sample situation in order to explain the longitudinal char-
acteristics. Within this figure, we present a scene with a car driving at a speed of
vfollower following a truck driving at a speed of vleader. The distance between both
vehicles is given by d.

The TTC measures the time to collision when a collision is predicted to occur at a
given velocity difference. A collision is predicted if the vehicles will collide in the
future. Therefore, the future trajectories must be predicted. We assume that the
vehicles will stay in their lane on a highway. Thus, we predict a collision if there is
a vehicle in front of the ego vehicle in the same lane traveling slower than the ego
vehicle. If no collision is predicted, the TTC is not defined. Balas and Balas [BB06]
define the TTC according to the attributes of Figure 3.5 formally as:

TTC = d

vfollower − vleader

(3.7)

The TTC examines the longitudinal behavior on a highway, and we use this as
characteristic ĈT T C to evaluate longitudinal realism.

We use the DRAC as second longitudinal characteristic ĈDRAC . This characteristic
calculates the necessary deceleration to avoid a collision assuming that a collision is
predicted and the vehicle ahead does not change its speed. Similar to the TTC, the
value is defined when a collision is predicted, and the leading vehicle drives slower
than the ego vehicle. We use the same collision prediction mechanism as for the
TTC. Fazekas et al. [FHKO17] define the DRAC formally as:

DRAC = 0.5 · (vfollower − vleader)2

d
(3.8)

The TH is also a longitudinal characteristic since it defines in a follow-lead situation
the time until the following vehicle is at the position of the leader. A smaller TH
leads to less time for the driver to react or brake in an emergency situation. The
TH is only defined in a follow-lead situation. Yan and Dianhai [YD12] define the
time headway as:

TH = d

vfollower

(3.9)
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The characteristics ĈT T C , ĈT H , ĈDRAC can be determined in each time step for each
vehicle if they are defined. Thus, a comparison of all values is required to compare
these characteristics within two data sets. There are possibilities to compare these
characteristics by a combination of all measures for a vehicle (for example, minimum
or mean) [OCI15, LBSB13]. However, two trajectories can have the same mean but
a different deviation, so the two trajectories are different but would be evaluated the
same if we examine only the mean. Since we want to investigate the realism of the
entire trajectory, we examine every single measurement. To compare each measure-
ment, we propose a comparison based on the distribution of these characteristics.
Therefore, we introduce the characteristics CT T C , CT H , CDRAC by calculating the
distribution function DF of each characteristic within the dataset. Finally, this
yields the following longitudinal characteristics:

CT T C = DF (ĈT T C) (3.10)
CT H = DF (ĈT H) (3.11)

CDRAC = DF (ĈDRAC) (3.12)

Lateral

In the previous characteristics, we studied mainly longitudinal behavior in highway
settings. Since there are also lateral movements, we add characteristics that examine
them. First, we add a characteristic of the lane distribution: CLD because it is easy
to calculate. This characteristic indicates how many vehicles drive in the main
and passing lanes. The results are given in percentages. For example, 30 % of
vehicles travel in the passing lane, while 70 % travel in the main lane. A difference
within these percentages can have various causes but indicates a difference in the
vehicle’s behavior. For example, in an overtaking maneuver, a narrower cut-out
and cut-in (before and after the overtaken car) will result in less use of the passing
lane. Therefore, a systematic shift within the overtaking behavior would result in
a different lane distribution. Another cause is the lack of a specific driving style,
such as a driver in the passing lane who has no following vehicle and does not turn
into the main lane even though he could. This characteristic is directly computable
based on the dataset preparation (lane assignment).

In the context of scenario-based testing, maneuvers are of particular interest
[ZHP+17, HPS+19, EUA+19]. Therefore, we add characteristic that specifically
targets maneuvers. As an example maneuver, we examine lane changing since it is
less complex than an overtaking. We assigned a lane to each vehicle at each times-
tamp in the preparation phase. Thus, we recognize a lane change as a change in
lane assignment. In order to allow for the observation of realism concerning further
maneuvers, we want to introduce an extensible approach to maneuver detection.
Therefore, we propose a method that uses cross-correlation to recognize maneuvers.
A reference signal represents the maneuver. We use cross-correlation to recognize
this signal within other trajectories with this reference signal. Currently, the tra-
jectories are located within a global coordinate system. Cross-correlation within
a global coordinate system detects only patterns at the same global coordinates.
However, the detection should be location-independent. Thus, we introduce a lo-
cation and street independent representation by locating the vehicle within a road
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Figure 3.6: Trajectory representation within the local street and time coordinate
system. There are two left lane changes (at ~10:57:05 and ~10:57:55) and one right
lane change (~10:57:15) performed.

coordinate system. Trajectories are represented by lateral position within a road
as a function of time. We assume that the lane changes occur at different speeds
in the same amount of time. By using time as a dependency, the representation
becomes independent of velocity. A slow-moving vehicle travels much less within
the same time as a fast-moving vehicle, and therefore the signal would be com-
pressed. Since the cross-correlation is not independent for compressions within the
value range [CNvMH99], we use the time-domain representation. In Figure 3.6, we
present a trajectory in the time-street coordinate system. We consider a maneuver
as detected if the cross-correlation between the input and reference signals is greater
than a certain threshold ϵ. An advantage of this method is that a signal inverse to
the reference signal is found. A left lane change leads to an anti-correlation with
a right lane change and is also detected with the same reference signal. Therefore,
the cross-correlation indicator finds variations of symmetrical maneuvers within the
lateral positioning with a single reference signal.

Our final goal is to evaluate realism. Therefore, we need to define a characteristic
that evaluates realism based on the detected lane-change maneuvers. Thus, we first
propose the occurrence of lane changes as a characteristic. We use the CCLCI to
recognize lane changes within the datasets. We calculate the lane changes concerning
the total track length within a given period to compare the occurrences. With a
given total observation time T , a time unit ∆t (for example, 1 hour), an indicator
threshold ϵ, a set of trajectories S, and the length of road l the characteristic C|LC|
is defined as follows:

C|LC| =
∑

traj∈S CCLCI(traj, ϵ)

l · T

∆t

(3.13)

The indicator CCLCI returns the number of detected lane changes for a trajectory
and a threshold. This characteristic indicates a difference in driving behavior and
heterogeneity in vehicle speeds for the same traffic flow. A higher variance in the dis-
tribution of vehicle speeds decreases the likelihood for vehicles to travel at the same
speed. Thus, lane changes increase because more vehicles overtake. Furthermore,
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if there is a difference in the decision process for a lane change, this characteristic
responds if, for example, vehicles tend to make fewer lane changes.

We further investigate how a lane change is performed to examine the maneuver
in detail. Therefore, we investigate the specific lane change behavior. We extract
the lane changes with a specific time interval before and after the lane change from
the dataset with the CCLCI. We use the dataset to calculate a mean shape for a
lane change. The mean shape itself is a characteristic of the dataset CmeanLC . We
investigate if the mean lane change is modeled correctly with this characteristic.
Furthermore, we use the dataset to cluster the lane changes. The clusters represent
different variations of the lane change maneuver. Thus, we introduce a new charac-
teristic: the number of lane change variations C|LCvariations|. We inspect if there is
enough variability within this maneuver with this characteristic. Finally, we inspect
the shape of all clusters as a characteristic CLCclustershape. Therefore, we compare
the typical manifestations of the lane change maneuver. With these characteristics,
we study lateral movements in highway scenarios.

Mixed

In the previous sections, we have collected characteristics that primarily examine
only one aspect: longitudinal or lateral. We examine characteristics that reflect both
aspects to inspect interactions between both. First, we propose a characteristic that
describes the contained scenes within a dataset Cscenes. Our goal is to inspect which
constellations of traffic participants occur. Therefore, we analyze the dataset in
terms of the scenes it contains. Since we want to compare the scenes later, we need
a generic representation of the scenes that allows minor variations. For example,
it is sufficient to know that a scene occurs with two vehicles following each other
at a variable distance within meters. In order to define the scenes independent of
the road, we use a local street coordinate system. We define a scene as the vehicles
within a particular area at a specific time. We round the positions and speeds of the
vehicles to specific intervals to allow minor variations. We determine the complete
set of occurring scenes for a dataset by cutting out a local environment around each
vehicle and time step and grouping the vehicles in it as a scene. We use the collection
of all scenes as the characteristic Cscenes.

Finally, we introduce a characteristic of the parameterization method rather than
the dataset itself. By this characteristic, we investigate the ability of the simulation
to simulate individual trajectories correctly. Therefore, we use a random scene Sreal

of the real dataset. We select all vehicles on the whole road at a random time.
We initialize the simulation with the real scene Sreal and with the configuration
parameters with the results from the parameterization method. In this step, we
adjust the position, heading, speed, and acceleration of the vehicles according to
Sreal. We assign the vehicles in the simulation to a vehicle type in the configuration
according to their vehicle class in Sreal. By this initialization, we run the simulation
step after step. In each step, we record the position of the initialized vehicles. For
example, we simulate 30 s. thus, we collected a new set of trajectories. We do not
change the initial state of the simulation. Thus, vehicles that drive into the testbed
are not introduced in the simulation. We limit the simulation duration to reduce
the possible effects of these vehicles on introduced vehicles. In order to reduce the
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Figure 3.7: Sample real TTC probability distribution shown as histogram with 200
bins. On the abscissa, the TTC value is shown in seconds. The ordinate represents
the probability of the occurring TTC value in percent. For example, the bin at 10
s represents that the TTC value of 10 s occurs at about 0.8 % within the dataset.

effect of random events, we repeat this process several times with different starting
scenes. This repetition results in a set of trajectory datasets which we use as a
characteristic Cpred for the configuration.

We collected and developed numerous characteristics that describe the underlying
dataset. These characteristics describe different aspects of the trajectories.

3.2.2 Comparison - Realism Metric
Finally, we evaluate the realism of the resulting trajectories by comparing the pre-
viously introduced characteristics. The characteristics alone do not reflect reality.
For example, we measure a certain TTC value in a dataset, but we are not able
to determine realism based only on this characteristic because we currently do not
know what a realistic value is. We introduce a comparison step of these character-
istics that leads to measures of realism within these aspects. The following sections
describe the comparison of the previously presented characteristics.

Longitudinal

We introduced three different longitudinal characteristics: CT T C , CDRAC , CT H , now
we compare them within different datasets. These characteristics are defined as the
distribution of the occurring values of, for example, the TTC. Figure 3.7 shows a
sample TTC distribution determined for a real dataset. The probability of TTC
values is shown in a histogram as percentages. Statistical tests are available to
compare distributions [Kan06]. These tests are based on a hypothesis that is tested
using a test metric. With the test metric applied to the data, the hypothesis can be
confirmed or refuted. Our goal is to compare different sets of, for example, TTC dis-
tributions and determine which dataset is closest to another. The tests only lead to
a binary decision. Therefore, these tests cannot be used directly for our goal. How-
ever, the underlying test metric indicates whether the two distributions are similar.
The Kolmogorov–Smirnov test [MJ51] is used to test if arbitrary samples follow a
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given distribution. It is independent of the distribution, for example, a normal or
gamma distribution, because it uses the cumulative distribution function as the test
metric. Massey [MJ51] defines the test metric d of the Kolmogorov–Smirnov test
with a given cumulative distribution F0(x) and an observed cumulative step-function
SN(x) (since this distribution is observed, the function is discrete and therefore a
step-function) as follows:

d = maximum|F0(x)− SN(x)| (3.14)

The maximum distance between the two cumulative distribution functions is used
to determine whether the observed sample follows a particular distribution. We
want the same generalizability to test if two distributions are similar and know if
one distribution is more similar to a reference than others. Thus, we use the cumu-
lative distribution function to compare two samples. In our case, both underlying
distributions are observations, and therefore the cumulative distribution function is
discrete. With FR(x) as reference and FO(x) as observed cumulative distribution
step-function, a discrepancy between these two at a certain point x0, we calculate
an error as follows:

|FR(x0)− SO(x0)| (3.15)
To compare the full distribution, we sum the discrepancy to an error E between
these two distributions for a given set of discrete observations X of:

E =
∑
x∈X

|FR(x)− SO(x)| (3.16)

We compare two arbitrary distributions without knowing internals like a mean or
the variation. However, there is a semantic problem with the definition of Equa-
tion 3.16. To explain this problem, we assume three distributions. The first one is
the reference distribution. The second is similar but differs by small changes in each
observed value. All values occur with the same frequency in the third distribution,
except for two values. For example, the value 1 occurs very often, while the value
2 is very unlikely. By the definition of Equation 3.16, the error is equal if the error
within these two observations is precisely equal to the sum of the many but minor
errors of distribution two. For a random variable, it is more likely that the second
distribution is more similar to the third distribution. The third distribution ap-
pears to have a huge bias within these two observations, while the variations in the
second distribution can be explained by random sampling. Therefore, when com-
paring a random distribution, a large difference within a few observations should
have a greater impact than many small variations. Thus, we introduce a quadratic
error term that penalizes these exceptions and finally define the comparison of two
distributions as follows:

E =
√ ∑

x∈X

(FR(x)− SO(x))2 (3.17)

Under an infinite development of the continuous distribution function, Equation 3.17
converges to Equation 3.14 (limx→∞(∑

x∈X(FR(x)−SO(x)))1/2 = maximum|FR(x)−
SO(x)|). This supports our choice of the comparison function, due to the mathe-
matical similarity. We use this error function as a comparison for the characteristics
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CT T C , CDRAC , CT H . Now we determine how realistic the simulation results are in
terms of the distribution of TTC, DRAC, and TH. Thus, we compare longitudinal
the behavior.

Lateral

Now we compare the introduced lateral characteristics (Section 3.2.1). These char-
acteristics must be compared separately since not all of them are distributions.
Therefore, we introduce methods for comparison for each of these characteristics.
The first characteristic is CLD, which describes the distribution of lane usage. Since
it is a distribution, we use Equation 3.17 for comparison.

The characteristic C|LC| describes the total number of lane changes. Similarly,
C|LCvariations| determines the number of manifestations of the lane change maneu-
ver. Both characteristics are a single number. Therefore, we compare an observation
CO to a reference CR of a characteristic by calculating the difference between both
E = |CO − CR|.

CmeanLC and CLCclustershape describe a trajectory. These trajectories are represented
by lateral position on the road at discrete time intervals. Both characteristics are
defined within a certain time interval before and after an event. Therefore, we com-
pare the trajectory by the lateral position within the relative time before and after
the event. Similar to the reasoning of the outlier punishment of distributions, we
penalize one large discrepancy more than many small ones. Thus, we use a quadratic
error term to determine the discrepancy between an observation and the reference.
With n as the number of discrete time steps, CR as the reference characteristic (tra-
jectory), and CO as the observed characteristic, we formally define the discrepancy
as follows:

Etraj =
√√√√ n∑

i=0
(CR(ti)− CO(ti))2 (3.18)

We directly compare the characteristic CmeanLC of two observations since this char-
acteristic describes a single trajectory. In contrast, CLCclustershape describes a set
of trajectories for a single observation. Therefore, we need to compare two sets
of trajectories against each other for two observations. One challenge is that the
number of trajectories in one set may be different from the second. Furthermore,
if we match each trajectory from one set directly with a trajectory from the other
set by selecting the closest match, it is not guaranteed to evaluate all trajectories.
For example, if a set contains a trajectory close to all within the second set, and
all other trajectories within the first set are far from it, the matching error can still
be small because all calculations are mapped to one trajectory. However, the error
should be higher because the first set contains far-off trajectories. Additionally, the
error should be independent of the number of contained samples within the set.
Comparing two large sets should not automatically result in a higher error than
comparing two small sets. We use different steps to solve these challenges. First,
we perform a selective matching with the ground truth set. An element of both
sets is only selected once. We perform the selection that the summed error of each
trajectory match Etraj is minimized by testing every combination. After this step,
either an empty set (both sets are the same size), a set with remaining trajectories
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from the ground truth set, or the observation set is left. We use the remaining set
to match the closest element in the opposite set. We ensured that every element
from both sets was used and matched with the other set. However, the size of the
sets still influences the overall error. Therefore, we divide the error by the maximum
cardinality of both sets: max(|S0|, |S1|), equivalent to the number of matched lane-
change maneuvers. Using this method, we compare the cluster shapes characteristic
CLCclustershape.

Mixed

We compare the introduced mixed characteristics (Section 3.2.1). We need new
methods for comparison since they do not fall into any of the comparison methods
presented so far (for example, distributions or trajectories). The Cscenes charac-
teristic describes the local scenes around the vehicles contained within a dataset.
Therefore, the characteristic describes a set of scenes. We use the Jaccard-Index to
compare the Cscenes characteristic. Rahman et al. [RHB10] define the Jaccard-Index
of two sets A, B as:

Jaccard(A, B) = A
⋂

B

A
⋃

B
(3.19)

It calculates the ratio between elements contained in both sets and at least one set.
This comparison also considers the number of unrealistic scenes compared to an
intersection. For example, the intersection is huge, but the second set introduces
many unrealistic scenes. We assume this as beneficial since the unrealistic scenes
are taken into account. Since the other characteristics express error, a low value
indicates good results. Nevertheless, a low Jaccard-Index indicates poor results.
Therefore, we use the reciprocal of the Jaccard-Index.

As the last characteristic, we introduced the Cpred. This characteristic describes
the position of vehicles over a specific time interval for a given initial scene s0. We
compare this characteristic with the real position over the same time interval for
these vehicles. We extract these positions from the reference dataset and define
the ground truth characteristic as Cpred, s0, gt. Let Cpred, s0, sim be an observation of
this characteristic within the simulation for a sample simulation run, we compare a
vehicle vj at time ti as follows:

Epred, s0(ti, vj) = ||Cpred, s0, gt(ti, vj)− Cpred, s0, sim(ti, vj)|| (3.20)

Here Cpred, s0, gt(ti, vj) provides the position of the vehicle vj at time ti as does
Cpred, s0, sim(ti, vj) for the simulation run. We use the euclidean norm as distance
measure. Finally, we use the mean position error at the last time step of the ob-
servation tn to compare the two characteristics. Given the set of all vehicles V , we
define the error for a given initial scene s0 as follows:

Epred(s0) =
∑

vi∈V Epred, s0(tn, vi)
|V |

(3.21)

Therefore, we evaluate the mean error after the simulation interval. As described in
Section 3.2.2, the process of simulation is repeated for a set of initial scenes: S. To
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compare the final characteristic (position accuracy after simulating different initial
scenes), we define the final error as follows:

Epred =
∑

s∈S Epred(s)
|S|

(3.22)

With this error function, we compare a simulation run with reality and determine
the degree of realism. We call this error the predictive error or the prediction ability.



4. Tool Support

In this chapter, we implement a prototype of the concept presented in Chapter 3.
We describe the tool support and the implementation of the process chain. Similar
to Chapter 3, this chapter is structured according to the process shown in Figure 3.1.
In Section 4.1, we present the prototypically implemented process chain for gener-
ating synthetic trajectories. We describe the implementation for parameterizing the
simulation environment and use the parameterization to generate trajectories. In
Section 4.2, we present the implementation of the chosen realism characteristics,
presented in Section 3.2, and the implementation for evaluating the realism of the
generated trajectories by comparing the characteristics.

Running Example Within this chapter, we use a running example dataset to im-
plement the process chain and argue our design decisions. We captured the dataset
on 10/18/2021. The dataset covers a time of 02:42 hours and about 23.75 million
rows with 4178 trajectories.

4.1 Trajectory Generation
Figure 4.1 shows an overview of the sub-process chain to generate synthetic trajecto-
ries. In the first step of Figure 4.1, we prepare the raw dataset. We use the real data
as input, and a prepared dataset is output. We describe the process in Section 4.1.1.
As the second step in Figure 4.1, we use the prepared dataset as input to generate
parameters for the simulation as output. We use three parameterization methods to
generate three sets of simulation parameters. We describe the implementation of the
parameterization methods in Section 4.1.2. In step three of Figure 4.1, we use the
three sets of simulation parameters as input to generate three synthetic trajectories
datasets by simulation as output. We describe the implementation of this step in
Section 4.1.3. Finally, in step four of Figure 4.1, we use the three trajectory datasets
as input to generate scenarios in the OpenSCENARIO representation. We present
the implementation in Section 4.1.4.
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Figure 4.1: Abstract synthetic trajectory generation process.

4.1.1 Dataset Preparation

In this section, we present the implementation for the dataset preparation. First,
we present the general tool support for our process chain (basis to all steps in Fig-
ure 4.1). Therefore, we select a programming language and the general tool support
for the data processing. Afterward, we describe the implementation of the prepara-
tion steps using the general tool support.
For the prototypical implementation, we need a programming language that is easy
to use, fast to program, provides a variety of libraries within the field of data sci-
ence, is extensible, and is flexible. Especially scripting languages provide flexibility
and fast implementation. Therefore, we focus the selection of the programming lan-
guage on scripting languages. Many scripting languages are available that match the
previously mentioned requirements. For example, Python1, ECMAScript2, Kotlin3,
or R4. Since Python provides various libraries and tool support, we implement our
process chain in Python (version 3.8).
First, we set up the general tool support for our process chain. We import the
existing dataset into a Python-efficient dataset format. The input to the process
chain is a trajectory dataset that is spatial data. Pandas [pdt20] is a data analysis
and modification library for Python. The library allows fast calculations on large
datasets (millions of rows) through its native interface and also has extensions that
allow spatial processing data through the extension GeoPandas [JdBF+20]. There-
fore, we use it as the basis for our process chain. The input dataset is presented in
an SQLite5 database. In order to use Pandas, we convert the SQLite database into a
Pandas dataframe. A dataframe resembles a temporary two-dimensional data table
with columns and rows, like a table within a database, within the main memory.
It is necessary to save the object to persist the results. Pandas provides different
ways for serialization6. Python provides its own serialization library7 called pickle,
which pandas also support. Every Python environment understands this serializa-
tion. However, the size of the resulting export for the specific design of the dataframe

1https://www.python.org/
2https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
3https://kotlinlang.org/
4https://www.r-project.org/
5SQLite is a file-based database format. https://www.sqlite.org/
6https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
7https://docs.python.org/3/library/pickle.html

https://www.python.org/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://kotlinlang.org/
https://www.r-project.org/
https://www.sqlite.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://docs.python.org/3/library/pickle.html
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is huge. Using Apache Parquet [Voh16] reduces the exported size of the example
dataset to 17% (5.1 GB compared to 905 MB). This export also reduces the time
required for loading the dataset by half (with the same dataset the parquet export
requires 11.9s and pickle: 22.3s). Therefore, we use the Apache Parquet export of
Pandas dataframes for persistence with the help of the Python library fastparquet8,
which provides the implementation for the Apache Parquet export within Pandas.
The setup of Python, Pandas, GeoPandas, and Apache Parquet builds the basis for
our process chain.

We now perform the preparation step presented in Section 3.1.1. These are, per-
forming coordinate transform, adding the outer positions of the bounding box, and
performing a map matching. The map matching process assigns lateral and lon-
gitudinal positions within the road, lanes to vehicles, and a leading vehicle. The
following sections briefly describe the implementation and the tool support of these
steps.

Coordinate Transform The simulation data is described within a local coordi-
nate system, while the reference data is located within the UTM coordinate system.
In order to compare and prepare the data from both datasets with the same pro-
cess chain, we transform the simulation data into the global coordinate system. We
use the global coordinate system because we later perform map matching with data
provided in the global coordinate system. We apply the coordinate transform by the
UTM projection to the SUMO coordinate system with the GeoPandas extension.

Bounding Box The representation of vehicles within the simulation and reference
dataset differs. Within the simulation, the vehicle is described by the center of the
front bumper, constant width, length, height, and orientation. The real data uses a
similar description but the center position as a reference. This center position is due
to the detection system variable, and variable extents describe each direction’s front
and rear position. The heading in the real dataset is given in degrees, with 0° point-
ing east and moving counterclockwise. In the simulation, 0° points north and moves
clockwise. We match the heading description in the simulation dataset to the real
dataset by applying mathematical operations of Pandas. With these adjustments,
we calculate the outer positions of the vehicles in simulation and reality by applying
translation and rotations (according to the heading) using Pandas, and the NumPy
[HMvdW+20] scientific computing library. We use NumPy [HMvdW+20] to speed
up the calculations of mathematical operations by vectorized operations.

Map Matching We have two use-cases for the map matching procedure. The
first is the precise alignment with a lane with high accuracy and low runtime re-
quirements. The second use case has low accuracy requirements and high runtime
requirements. Therefore, we implement two versions for calculating the lateral and
longitudinal positions. The first is required for evaluation and calculating the cor-
rect characteristics from Section 3.2.1. For the analysis of a lane change maneuver,

8https://fastparquet.readthedocs.io/

https://fastparquet.readthedocs.io/
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for example, the lateral position must be calculated accurately. In the evaluation, it
is acceptable if this procedure requires more computing time. The second use-case
is required, for example, within optimization. We perform thousands of iterations
during this procedure, and the runtime has to be reduced. For time efficiency, less
accuracy in lateral mapping is acceptable.

We call the first version ref-lane-method. This version is based on two reference lane
markers from a high-resolution map. We use the left lane markings of the passing
lane in both directions on the highway to calculate the distance of the vehicle to these
lines. Based on the minimum distance, we determine the vehicle’s direction of travel
by argmin(distance(veh,lane_marking_1), distance(veh,lane_marking_2)).
Thus, we implicitly calculate the lateral position since we calculate the vehicle’s
distance from the reference lane. Finally, to calculate the longitudinal position, we
project the point of the vehicle along the reference line to determine the longitudinal
position. As an initial implementation, we use GeoPandas in combination with
Shapely[G+ ] and PyGEOS, a Python wrapper to the GEOS [GEO21] library, in
order to calculate the distances and projections (from a point to a line). With
the usage of PyGEOS, we accelerate the calculations. For the example dataset of
three hours, the conversion of pure numerical information into spatial information
(coordinate columns into GeoPandas objects) is accelerated from 86.2s to 2.7s using
PyGEOS. The calculation of distances and projections is accelerated from 85.5s to
49.1s with this dataset by PyGEOS. As the final implementation, we remove the
intermediate step of Pandas and Shapely and only use PyGEOS in combination with
NumPy [HMvdW+20]. This implementation improves the calculation time for the
entire process (calculation of the transverse and longitudinal position, including the
construction of spatial objects) to 22.2 seconds (51.8 with GeoPandas). Without
GeoPandas as an intermediate library, we reduce the memory requirement from 8
GB to only about 100 KB. By these calculations, we determine the longitudinal and
lateral position within the lane coordinate system.
We assign the lane by dividing the lateral position into three areas: (1) passing
lane, (2) main lane, and (3) side lane. The Pandas library provides the method
DataFrame.cut to divide values into discrete bins. However, we use the NumPy
function digitize because it is faster than the Pandas method DataFrame.cut (by
a factor of 2 for the example dataset). We represent the lane as a discrete numerical
value. To assign the leader we use the Pandas DataFrame.group_by operator. We
group the dataset by the time step and the assigned lane, then sort the vehicles
in descending order of their longitudinal position and assign a leader by using the
previous vehicle. We accelerate the calculations by vectorized NumPy functions.
The execution time for the example data set is 21.8 s for the assignment. Since the
DataFrame.group_by operator is time-consuming, we accelerate the process using
only on NumPy [HMvdW+20] operations. First, we sort the full dataset based on
time step, lane, and longitudinal position. We then shift the columns Longitudinal
Position, ID, and Speed one row up. Thus, we have the leader’s position within
the same row of the dataset and efficiently compute the distance to the leader. We
introduced errors within the assignment due to a mismatch of time steps or lanes
within the dataset by shifting. For example, one row contains a vehicle within the
passing lane and the next row within the passing lane. We assigned the vehicle
within the passing as the leader for the one in the main lane by shifting. This
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Ground Res. Error Mean Min Max False Leader

25 cm
Leader Gap 0.12 m 0.00 m 0.65 m

0.000%Lat. Position 0.08 m 0.00 m 0.42 m
Long. Position 0.09 m 0.00 m 0.43 m

100 cm
Leader Gap 0.73 m 0.00 m 2452.75 m

0.098%Lat. Position 0.08 m 0.00 m 1.53 m
Long. Position 0.09 m 0.00 m 1.69 m

Table 4.1: Error between ref-lane-method and map-based-method. The column
False Leader describes the number of false leader assignments caused by wrong
lateral or longitudinal position or lane assignment in comparison to the ref-lane-
method. The error rate is based on a simulation dataset with 1319026 rows. The
ground resolution of 25 cm produced no false assignment.

assignment is incorrect due to the different lanes. Therefore, we assign no leader if
the time step or lane has changed. We calculate the difference between each row in
the time step and the lane column and reset the leader assignment if the difference
is not zero. We reduce the assignment duration from 21.8 s to 2.4 s for the example
dataset with this improvement. This method is accurate but time-consuming (about
25 s for complete preparation).

We call the second version map-based-method. This method is based on two-
dimensional maps with pre-computed information about the lateral and longitudinal
position and lane. We use the previous method based on PyGEOS to calculate the
positions and lanes for each element in the two-dimensional maps. We use a three-
dimensional NumPy [HMvdW+20] array in order to represent these maps. The first
two dimensions are the spatial coordinates, and the third dimension represents the
map (lateral, longitudinal, and lane). A parameter of this method is the ground
resolution. This parameter determines the size of each grid cell. A lower ground
resolution produces more accurate results but requires more space to be stored in
the main memory. Table 4.1 shows an error between the ref-lane-method and map-
based-method. Each 25 cm ground resolution map requires 2.2 Gb, and the 100
cm maps require 0.14 Gb. As shown in Table 4.1, a ground resolution of 100 cm
causes a higher error and leads to a few cases of incorrect leader assignments. We
choose a ground resolution of 25 cm because it produces no false assignments and
the memory footprint is not important. With the map-based-method a lookup of
the full example dataset of three hours trajectory data takes 1.5 s in comparison to
21.8s. The total duration including leader assignment with this method takes 3.9 s.
Compared to the ref-lane-method, the map-based-method takes only 15.6% of the
time required. Figure 4.2 visualizes the three assignment maps. In 4.2(a) the longi-
tudinal position is shown. The color within the highway indicates the longitudinal
position (white 0 m and orange 9.2 km). Since the highway runs in two directions,
the colors start with white at one end, and the opposite lane is red. 4.2(b) shows the
lateral position with the same color mapping but a smaller value range. In 4.2(c)
the lane assignment is shown.
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(a) Visualization of the longitu-
dinal position on the road.

(b) Visualization of the lateral
position on the road.

(c) Visualization of the lane as-
signment map.

Figure 4.2: Visualization of the assignment maps. The visualization shows a color-
coded assignment of longitudinal and lateral position as well as the lane. For exam-
ple, the map shown in 4.2(a) shows a discrete position for each 1 x 1 m square. A
ground resolution of 1 m was chosen to display the discrete squares and reduce the
image size.

We use the ref-lane-method to prepare the real dataset. This resembles the first
step within Figure 4.1. We perform the preparation of the real dataset only once.
Therefore, a one-time higher processing time is acceptable. The following sections
explicitly mention which method is used for the preparation.

4.1.2 Determining simulation parameters
In this section, we describe the implementation of the expert, optimization, and
clustering-based parameterization. We provide the prepared real dataset (prepared
by the high accuracy ref-lane-method) as input to these methods. The methods will
output a SUMO configuration containing the simulation parameters.

Expert-based parameterization

We realize the expert-based method by manually setting the simulation parameters.
To do this, we fill in a SUMO route configuration file using a text editor. Unlike
the other methods, we use the GUI of SUMO to view the simulation and check our
settings. We use this to detect anomalies and change our configuration accordingly.

Optimization-based parameterization

To implement the optimization-based method, we need to define (1) the objective
function and (2) the optimization strategy. First, we implement the objective func-
tion. We implement Equation 3.6 with the error of Equation 3.17 using NumPy
[HMvdW+20]. To obtain the characteristics of Equation 3.6, we prepare the results
of the simulation. We use the performance-optimized map-based-method to reduce
the time for each iteration within the optimization. We limit the optimized pa-
rameters to the following SUMO-CFM parameters since, they are available for each
CFM: "maxSpeed", "speedFactor" (mean, deviation, min and max), "sigma", "tau"
and "minGap".
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Second, we implement the optimization strategy by first setting realistic bounds
for each parameter shown in the appendix in Table A.1. We implemented five
optimization strategies. First, we use SciPy [VGO+20] in order to optimize us-
ing the L-BFGS-B [ZBLN97] algorithm. This method performs a single-threaded
optimization, which leads to an optimization time of weeks. We implemented a
parallelized version using the Python optimparallel [Ger20] package. This pack-
age provides a parallelized version of L-BFGS-B using Python’s multiprocessing
API. Since Python’s multiprocessing does not work well with shared memory and
all variables are cloned between processes, the memory requirement is increased
with multiple threads and limits the number of parallel optimization processes. To
bypass this problem, we implement a custom optimization method that uses the
Ray [MNW+18] framework for parallelization and is based on the gradient descent
method. Pseudocode of this method is attached in Algorithm A.1. However, the
gradient descent often ends up in local minima. Optimization methods used in lit-
erature [RRMB17] for optimizing parameters of simulations environments are, for
example, SPSA [Spa92] or GA [CLHG10]. We implement both methods. The SPSA
method requires only two calculations to determine the optimization step and ac-
counts for noisy measurements. This behavior is beneficial for optimization because
it reduces the number of simulations required, and the simulation is driven by ran-
dom events (for example, inserted vehicles or desired speeds). We implement a
SPSA-based optimization using the library Qiskit9. We implement the GA method
based on the U-NSGA-III [SD15] algorithm using the pymoo [BD20] library. To
accelerate this process, we parallelize this implementation by using Ray [MNW+18].

Clustering-based parameterization

Various libraries for clustering are available in Python, for example, sklearn
[PVG+11], python-cluster10, or pyclustering11. We implement the clustering-based
method using the sklearn framework [PVG+11] since it provides various interchange-
able cluster strategies, dimension reduction strategies, and maintained documenta-
tion with examples. First, we describe all trajectories contained within a dataset by
the characteristics shown in Table A.6. We implement the characterization using
statistical methods provided by Pandas [pdt20]. We normalize each characteristic
using a min-max scaling also by using Pandas operations. Different methods to per-
form the dimension reduction are available, for example, the Principal Component
Analysis (PCA) or the truncated Singular Value Decomposition (SVD). The sklearn
framework [PVG+11] provides an implementation for both methods. We use the
PCA [F.R01] since this algorithm works well on the given data. We employ the
implementation of the sklearn framework [PVG+11] to transform the normalized
characteristics into a latent space and reduce the number of dimensions. For clus-
tering, again, a variety of methods are available. We use KMeans [M+67] clustering
since the number of clusters is a configurable parameter. Within transformed space
by the PCA, we cluster the data using the implementation of the sklearn framework
[PVG+11] for KMeans. To determine the optimal number of clusters, we use the
elbow method [Tho53]. This method uses the vertex of a performance measure to

9https://qiskit.org/
10https://github.com/exhuma/python-cluster
11https://pyclustering.github.io/

https://qiskit.org/
https://github.com/exhuma/python-cluster
https://pyclustering.github.io/
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Figure 4.3: Virtual measure point used to determine traffic flow on the highway.

determine the optimal number of clusters. We use the intra-cluster similarity as the
performance measure.

4.1.3 Simulation
In this section, we describe the implementation of our simulation process chain. A
variety of microscopic traffic simulators is available, for example, SUMO [LWB+18],
MITSIM [YK96], or AIMSUN12. We use SUMO since it is free, open-source, provides
a comprehensive documentation13, and Python libraries for interaction. We perform
the simulations with version 1.11.0 of SUMO. First, we define the road model. The
available high-resolution road model from the testbed Lower Saxony is described in
OpenDRIVE. SUMO uses an own XML-based road model. We use the netconvert
tool provided by SUMO to convert the OpenDRIVE file to the SUMO specific road
model. To speed up simulation runs, we reduce the number of nodes and edges
within this network by limiting the full map (approx. 120 km) to the 7.45 km of
the detection system. As described in Section 3.1.3, we need to set a speed limit
within the simulation. We create a script that changes the maximum speed allowed
on each road to 100 kph to set the speed limit in this road model.

To set up the traffic flow as explained in Section 3.1.3, we determine the traffic
flow within the real dataset using GeoPandas. Since traffic flow requires a static
location, we introduce a location where the traffic is measured. Figure 4.3 shows the
used virtual measurement point in the center of the testbed’s detection system. We
use GeoPandas in combination with PyGEOS to compute intersections between the
trajectories and the virtual measurement point. Based on these results, we initialize
the traffic flow within SUMO.

To analyze the simulation data, we access the results from SUMO using a file-based
output. In Figure 4.4, we present the process of the collection of the simulation

12https://www.aimsun.com/
13https://sumo.dlr.de/docs/

https://www.aimsun.com/
https://sumo.dlr.de/docs/
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Figure 4.4: File-based import for SUMO simulations.

data. We implement a connection to SUMO file-based output called FCDOutput.
This implementation reads an FCDOutput-XML file and converts it to a Pandas
dataframe, and stores it in the Apache Parquet format. We implement the converter
as a Python script. However, this method incurs an overhead due to the self-
describing properties of XML. This overhead leads to long loading times until the
simulation results are available. Therefore, we implemented connectors to SUMO
using the Python libraries TraCI and LibSUMO. LibSUMO performs overall the
best regarding the time required to have the data available as Pandas dataframe
(1000 s simulation, file-based: 47 s, TraCI: 184 s, LibSUMO: 19 s). Therefore, we
use the implementation based on the LibSUMO to retrieve the simulation results.
For simulation, SUMO provides two methods for calculating simulation updates.
The first version is called Euler and considers the speed of the vehicles to be con-
stant during the update. This method is preset as default. The second method is
called ballistic and considers the acceleration constant during the update. Treibar
and Kanagaraj [TK15] show that the ballistic integration method better represents
synthetic trajectories from simulation compared to real trajectories than the stan-
dard Euler version of SUMO. Therefore, we use the ballistic method as an update
method.

4.1.4 OpenSCENARIO Export
Inspired by Asbach [Asb22], we first generate a Python interface for the Open-
SCENARIO description with the generateDS14 library. We write an interface that
translates a Pandas dataframe into an OpenSCENARIO file to translate the sim-
ulation data. First, we create an OpenScenario entity with the general setup, for
example, the road model, the vehicle catalog, or the storyboard. We extract a full
trajectory from the dataset and initialize a ScenarioObject with matching dimen-
sions. We set appropriate initial states (position, heading, and trigger action to
start the trajectory at the given time it appears) for these vehicles and model their
trajectory by the Polyline entity. Finally, we divide the entire dataset into subsets
of equal length to generate scenarios. The length is parametrizable. We use the
pandas.Grouper object to group the dataset into these intervals and export each
subset as its own OpenSCENARIO file.

4.2 Dataset Comparison
Within this section, we describe the implementations for the dataset comparison
as shown in Section 3.2. First, we describe the implementation and tool support
for the dataset characteristics in Section 4.2.1. Within Section 4.2.2 we present the
implemented comparison methods for the individual characteristics.

14http://www.davekuhlman.org/generateDS.html

http://www.davekuhlman.org/generateDS.html
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4.2.1 Dataset Characteristics
In Section 3.2.1, we differentiate the characteristics into longitudinal, lateral, and
mixed. The following paragraphs describe the implementation of these characteris-
tics.

Longitudinal

The longitudinal characteristics reflect the driving behavior in the direction of travel.
These are: CT T C , CDRAC and CT H . A leading vehicle must be determined to cal-
culate these characteristics. By the preparation step introduced in Section 4.1.1,
we assigned a leader in the dataset. However, a leading vehicle is assigned, even
if it is many kilometers ahead. When a TTC is calculated with vehicles far apart,
the TTC value is technically correct. Nevertheless, it is unlikely that a collision
will occur because there is enough time for the drivers to react. Therefore, we re-
strict the calculation of longitudinal characteristics to situations where the vehicle in
front is below a certain threshold. According to Higgs and Abbas [HA14], we use a
threshold of 120 m to study the following behavior. We implement the metrics using
Pandas dataframe operations. Listing 4.1 shows the exemplary implementation for
the TTC. This function assumes that the provided dataframe contains only vehicles
with a leading vehicle below the 120 m threshold. The column leader_gap denotes
the gap to the leading vehicle. The column ego_speed refers to the speed of the
ego vehicle and leader_speed refers to the speed of the leading vehicle. Listing 4.1
line 4 sets the TTC to undefined if the leading vehicle drives faster than the ego
vehicle. To compute the characteristics described in Section 3.2.1 (CT T C , CDRAC ,

Listing 4.1: Function that calculates the TTC based on a Pandas dataframe
1 def calc_ttc(df: pandas.DataFrame) −> pandas.DataFrame:
2 df[’TTC’] = df[’leader_gap’] / \
3 (df[’ego_speed’] − df[’leader_speed’])
4 df.loc[df[’TTC’] < 0, ’TTC’] = numpy.NaN
5 return df

and CT H), we determine the distribution. We use NumPy [HMvdW+20] in order to
calculate the distributions.

Lateral

The lateral characteristics denote the interaction between lanes orthogonal to the
direction of travel. We defined the following lateral characteristics: CLD, C|LC|,
CmeanLC , C|LCvariations| and C|LCclustershape| in Section 3.2.1. We implement the lane
distribution characteristic (CLD) by counting the occurrences of each lane within the
dataset divided by the dataset size by Pandas operations. The other characteristics
require the CCLCI. We use SciPy’s signal package15 in order to implement the
cross-correlation for the CCLCI. To detect lane changes by cross-correlation, we
first establish a ground truth for lane changes by computing the difference between

15https://docs.scipy.org/doc/scipy/reference/signal.html

https://docs.scipy.org/doc/scipy/reference/signal.html
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lane assignments for each given trajectory. We define a reference trajectory used for
cross-correlation by randomly selecting one lane change. We use only one sample to
determine if this detector has good generalization ability and works with a minimum
number of observations. We apply the scipy.signal.correlate function to a
given trajectory and the reference trajectory. In order to detect the peaks within
the correlated signals we use the function scipy.signal.find_peaks. We use two
parameters of this method: the threshold, which indicates the minimum height of
a peak to be classified as a peak, and the prominence, which indicates how much
a peak stands out from the surrounding signal. We found experimentally that a
threshold of 0.5 and prominence of 0.5 work the best with our data with the scipy.
signal.find_peaks method. The experimental results are shown in the appendix

in Table A.7.

To compute characteristics based on lane changes, we first apply the CCLCI to
the entire dataset and store the locations where it was triggered. We calculate
the characteristic C|LC| by the frequency of the trigger from the CCLCI using a
Pandas operation. To calculate CmeanLC , we choose a window (experimentally, 5
s has been shown to work best) around the lane change event and calculate the
mean trajectory using Pandas. For determining C|LCvariations| and C|LCclusterhape|, we
cluster the lane changes. Similar to Section 4.1.2, we first transform the trajectory
(as a vector of lateral position in relation to time) using a PCA into the latent
space and reduce the number of dimensions. Within this space, we cluster the
trajectories by KMeans using the sklearn framework [PVG+11]. We calculate the
characteristic C|LCvariations| using the elbow method [Tho53]. Finally, to determine
the characteristic C|LCclusterhape|, we select all trajectories associated with the same
cluster and compute a mean shape using Pandas.

Mixed

In this paragraph, we present the implementation for the characteristics Cscenes and
Cpred. First, we implement the Cscenes characteristic. To extract all the scenes in a
dataset, we group the data by the time step and the direction in which the vehicles
are traveling. This operation results in one scene per time step and direction for the
entire spatial observation area. As described in Section 3.2.1 we inspect the local
area around each vehicle. Therefore, we divide the scene containing all vehicles into
many small scenes containing only a subset of these vehicles. We choose a range of
120 m as the local environment around the vehicles, with the same considerations
as for the TTC characteristic. In order to improve performance we implement a
parallelization of this process using Ray [MNW+18]. A final scene is described as
a list of tuples containing the vehicles. Listing 4.2 shows a sample scene. A tuple

Listing 4.2: Scene description in Python.
1 >>> example_scene = [(30, 1, 5, 25), (120, 2, 4, 30)]

is formed from four values. The first value of the tuple describes the longitudinal
position within the local environment (from 0 m to 240 m, with the local environment
set to 120 m). The second value of the tuple indicates the lane, the third the class,
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and the last the speed (given in m/s). We round the position and speed to allow
for minor variations described in Section 3.2.1. We choose the longitudinal position
rounded to 5 m and a velocity rounded to 1 m/s. A problem with this representation
is the slow comparison ability. To determine if a given scene is in the real dataset,
we need to compare each scene and iterate over each tuple within that scene. This
leads to long calculation times and is not efficient. Therefore, each individual tuple
is hashed using Python’s built-in hash method, shown in Listing 4.3. To detect if

Listing 4.3: Hashed scene participants in Python.
1 >>> hashed_example_scene = [hash(vehicle) for vehicle in

example_scene]
2 >>> hashed_example_scene
3 [6785173475036912956, 5185509306378155339]

a scene is contained in another dataset, we still need to iterate over all contained
scenes and vehicle representations inside the scenes. We compute a total scene hash
as the sum of all individual hashes, shown in Listing 4.4. We use the sum of the

Listing 4.4: Combined hased scene description in Python.
1 >>> scene_hash = sum(hashed_example_scene)
2 >>> scene_hash
3 11970682781415068295

hashes because a different order within the vehicles would still result in the same
final hash value for the scene. This consideration is necessary as the vehicles are
unsorted within the time steps and direction group. We store this hash in a Python
set data structure and efficiently search for hashes in a vast dataset.

As the last characteristic, we implement the prediction ability Cpred. First, we
choose 1000 random timestamps evenly from the set of unique timestamps. We
collect the scenes from the set of timestamps by extracting all vehicles from the
dataset that match the timestamp. With these scenes, we initialize SUMO with
the initial settings of vehicles by LibSUMO. We choose the vehicle’s parameters (for
example, velocity or acceleration) as in the initial scene. In order to simulate, we
assign the inserted vehicle to one of the vehicle types (SUMO-<vType/>) defined by
the configuration. The expert- and optimization-based methods generate one vehicle
type for each real vehicle class (for example, passenger car or truck). However, the
cluster-based method generates many vehicle types for one real class. We chose the
vehicle type by a weighted sampling from the available vehicle types for a single class.
We derive the weights from the probability of occurrence of the respective vehicle
type, normalized to the overall probability of the vehicle class. Using LibSUMO, we
simulate and save the results as a Pandas dataframe. We parallelize the process of
running the 1000 simulations with Ray [MNW+18].
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4.2.2 Comparison - Realism Metric
The longitudinal characteristics CT T C , CDRAC , CT H and the lateral characteristic
CLD are distributions. We implement the comparison according to Equation 3.17
using NumPy [HMvdW+20]. Since C|LC| and C|LCvariations| are single numbers, the
implementation is just a subtraction. To implement the comparison of CmeanLC and
CLCclusterhape according to Equation 3.18, we use NumPy [HMvdW+20].

In Section 4.2.1 we store the scenes contained in a dataset inside a Python set. This
representation makes it easy to calculate the Jaccard-Index using Python operators,
shown in Listing 4.5. The operator & forms the intersection and the operator | forms

Listing 4.5: Implementation of the Jaccard-Index using Python-set’s.
1 def jaccard(set1: set, set2: set) −> float:
2 return len(set1 & set2) / len(set1 | set2)

the union of two set objects. Given a set of real scenes set1 and a set of simulation
scenes set2 (hashes of these scenes), we efficiently compare millions of scenes.

To compare the prediction ability Cpred we introduced Equation 3.20. We implement
this equation using NumPy [HMvdW+20]. To finally compute the overall error
simulation runs according to Equation 3.22 we use Pandas.
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5. Evaluation

Our goal is to investigate which methods are well suited for parameterizing a simu-
lation environment to generate realistic scenarios for testing ADAS/AD. Hence, we
implement a process chain to generate synthetic datasets based on real data and
subsequently assess them. We use a real trajectory data set from the Lower Saxony
testbed to determine simulation parameters. We use an expert-based, optimization-
based, and clustering-based method to determine different parameter sets as param-
eterization methods. With these parameter sets, we generate synthetic trajectories
using the simulation environment SUMO and export these as OpenSCENARIO files.
Finally, to compare these methods, we introduced several characteristics that ex-
amine different aspects of the trajectories and introduced comparison methods for
these characteristics. We present in this chapter the experiments, the system under
study, and the experimental results. Furthermore, we discuss our results and their
validity.

5.1 Research Questions
In this study, we focus our research on the realism of the dynamic objects within the
generated scenarios (L4 according to Bagschik et al. [BMKM18]). We defined a con-
cept in Chapter 3 to generate synthetic trajectories with a simulation environment
and evaluate these in terms of realism. This concept is based on a parameteriza-
tion method for the simulation environment. We identify the chosen method and
the input parameters of the simulation environment as a possible influence on the
realism of the trajectories. To evaluate realism, we divide the notion of realism into
several aspects. These aspects are represented by characteristics measured within
the synthetic trajectories. We want to understand how these characteristics relate
in the simulation compared to reality. We identified three different methods for pa-
rameterization (expert, optimization, and clustering-based). As a result, we assume
that the choice of the parameterization method influences realism. Furthermore, we
expect the selection of realism characteristics will influence the evaluation of overall
realism. We define the following research questions to guide our research:
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RQ 1: What influence does parameterization have on the realism of
synthetically generated trajectories?

RQ 2: How realistic are the synthetically generated trajectories by
the simulation?

RQ 3: How can a simulation environment be parameterized to create
realistic scenarios?

RQ 4: What influence do the evaluation characteristics have on the
assessment of the realism of the trajectories?

The objective of RQ 1 is to determine whether parameterization is necessary to
create realistic scenarios in terms of dynamic objects. We investigate whether the
parameterization has an influence, how strong the influence is, and which param-
eters influence the realism of the resulting trajectories. With RQ 2, we examine
the realism of the resulting trajectories in the different aspects introduced by the
characteristics. We identify in which aspects the synthetic trajectories are similar to
reality and how they differ. Our goal is to gain insights into the situations in which
simulation environments are useful for creating realistic scenarios. RQ 3 aims to
answer which method generates the most realistic trajectories. Our goal is to de-
termine whether a single method generates overall or whether individual methods
generate realistic results in specific aspects. With RQ 4 we examine if all charac-
teristics are suitable to evaluate the realism of the synthetic trajectories. We also
want to investigate whether a single characteristic is suitable for evaluating realism
as a whole.

5.2 Experiment Design
To answer the research questions, we conduct two experiments. One experiment is
designed to answer RQ 1. The other one shall answer RQ 2, RQ 3, and RQ 4.

5.2.1 Experiment 1
Inspired by Henclewood et al. [HSR+17] we set up an experiment to determine the
influence. The abstract experiment design is shown in Figure 5.1. In the first step
of Figure 5.1 we generate a set of parameters. Within each parameter generation,
we change only one parameter within selected boundaries. As the second step in
Figure 5.1, we use the previously generated parameter set to generate a synthetic
trajectory dataset. After simulation, in the third step of Figure 5.1, we determine
the error within the characteristics under study. We use the error to evaluate the
effect on the realism of the input parameters. In the fourth step of Figure 5.1, we
store the error. We repeat this process with all selected parameters until a maximum
number of iterations is reached. After all simulations are complete, we determine
the influence for a parameter p, a characteristic c, the according error function E,
and the simulation results R as follows:

Ip,c = max(Ep,c(R))−min(Ep,c(R)) (5.1)
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Figure 5.1: Experimental design for the first experiment in order to determine the
influence of the parameterization and individual parameters.
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Figure 5.2: Experimental design for the second experiment to determine the realism
of the synthetically generated trajectories.

Using this equation, we calculate an influence for each parameter and characteristic
for the simulations performed where this parameter changed in the fifth step of
Figure 5.1. We use only the results where the parameter is changed to study the
isolated influence of this parameter.

5.2.2 Experiment 2
As second experiment we set up the process shown in Figure 5.2. In contrast to the
process chain from Figure 3.1 we use different datasets for parameterization (train-
ing) and evaluation. In this way, we ensure an independent evaluation and assess
the performance of the methods. We split the full dataset into a training dataset
and an evaluation dataset. We use the first 70% of the whole dataset for train-
ing and the remaining 30% for evaluation. One possibility for dividing the dataset
into two parts is using many small samples, for example, dividing each hour into
ten-minute datasets. This distribution is beneficial since environmental factors, for
example, changed weather or temperature, are contained in training and evaluation.
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However, trajectories that are supposed to be connected will split among several
datasets. Therefore, a trajectory is cut into multiple parts. With more truncated
trajectories, the reliability of the statements about a driver decreases because less
information is available. Based on the training dataset, we determine five SUMO
configurations with different parameterization methods. With these SUMO config-
urations, we generate five sets of synthetic trajectory data with the same length as
the evaluation dataset. We chose this length to achieve optimal comparability with
the evaluation dataset. Within the synthetic dataset, we calculate characteristics.
We calculate the same characteristics for the real dataset. Using the calculated
values of both datasets, we compute an error: E. For example, we compare the
TTC characteristic CT T C for a measurement within the real dataset CT T C,Real and
a simulation measurement CT T C,Sim according to Equation 3.17. To answer RQ 2,
we examine each characteristic and evaluate the realism of the resulting trajectories
within this aspect. We examine all longitudinal, lateral, and mixed characteristics
regarding their properties and error. For example, we inspect the error and anoma-
lies within the TTC distribution in order to determine in which aspects the TTC
distribution is realistic. With RQ 3, we want to compare these methods against
each other. Therefore, we introduce an overall characteristic summarizing each
aspect and compare this characteristic between the methods. For RQ 4, we exam-
ine the detailed results of the individual characteristics. We inspect, for example,
whether one method generates the most realistic results in all characteristics. Thus,
we inspect whether realism is dependent on individual characteristics or whether
the characteristics agree with their assessment of realism.

Experiment 2.1 As part of the second experiment, we set up an additional exper-
iment to investigate the characteristic of scene consistency in more detail. Therefore,
we reuse the previously determined simulation parameters by each parameterization
method. With these parameters, we generate an extended synthetic dataset. We use
this synthetic and the evaluation dataset to inspect the scene consistency character-
istic over a more extended period. We investigate how many scenes the simulation
environment can replicate if the simulation time is extended.

5.3 Subject System
In this section, we describe the system under test. We structure this section accord-
ing to the two experimental setups.

5.3.1 Experiment 1
Within the first experiment, we identified the following influences: input param-
eters, simulation setup, number of iterations, and evaluation characteristics. We
select the parameters and their according boundaries shown in Table 5.1. We use
this selection because these parameters are available for all CFMs in SUMO. The
bounds are selected based on literature values and expert opinion. As a base simu-
lation setup, we use the default configuration from SUMO. We simulate 15 min with
each configuration. We choose this length as a compromise between the reliability of
the measurements and computation time. If the simulation time is chosen too short,
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Parameter Name Minimum Maximum
tau 0.1 5

minGap 0.1 10
accel 0.1 10

length 1 15
maxSpeed 15 125

sigma 0 1
height 1 4.5
width 0.7 2.8

speedFactorMue 0.5 4.5
speedFactorSigma 0.0 2.0

vehsPerHour 100 5000
actionStepLength 0.05 1

Table 5.1: Used parameters and their boundaries for the first experiment in order
to determine their influence.

random events influence the measured characteristics. In contrast, the computation
time increases. We set the step length to 0.05 s (20 Hz) to match the frequency of
the real dataset to ensure comparability. We measure the influence of the charac-
teristics CT T C , CDRAC , CT H , CLD, and C|LC|. To reduce calculation effort, we focus
on the five selected characteristics. In comparison to the remaining characteristics,
these can be computed within seconds. We generate 100 configurations for each
input parameter. We select randomly by a uniform distribution within the bounds.
Additionally, we chose one configuration on each side of the boundary. Thus, with
12 parameters and 100+2 configurations per parameter, we perform 1224 iterations.

5.3.2 Experiment 2
According to Figure 5.2, we identify the real dataset (training and evaluation),
the simulation environment, the parameterization methods, and the evaluation
characteristics as influences of the second experiment.

Real Dataset As a real dataset, we use a trajectory dataset from the testbed
Lower Saxony. We collected the data on Monday, February 21, 2022 with a time
span from 07 am to 12 pm on the testbed Lower Saxony. The full dataset con-
sists of approx. 32.7 million rows. A total of 7335 vehicles (3584 southbound and
3751 northbound) traveled on the testbed during the observation period. Thus, the
average traffic flow is approx. 716 veh/h southbound and approx. 750 veh/h north-
bound. We split the five-hour data set into a training dataset of 3:30 hours and an
evaluation dataset of 1:30 hours.
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Figure 5.3: Screenshot of simulated track within SUMO.

Simulation Environment We use SUMO as the simulation environment to gen-
erate the synthetic trajectories. As described in Section 4.1.3, we use a high-
resolution OpenDRIVE map for the simulation. The map originates from the project
testbed Lower Saxony1. Figure 5.3 shows a snapshot of the converted OpenDRIVE
map within the netedit tool from SUMO. We use the speed restriction of 100 kph
as described in Section 3.1.3 on the highway. As for traffic flow, we set up the real
measured values within the training dataset for training and the evaluation of traffic
flow within the evaluation. Within the second experiment, we simulate 01:30 hours
as it matches the length of the evaluation dataset. For experiment 2.1, we use a
length of 10:00 hours since this is the technical limit for the prototypical process
chain.

Parameterization Methods In Section 3.1.2 we presented three different meth-
ods for parameterization, namely: expert, optimization, and clustering-based. As
part of our implementation in Section 4.1.2, we have found two methods of opti-
mization commonly used in the literature, where it is not clear which works better.
These methods are: using a Genetic Algorithm (GA) and using the SPSA algo-
rithm. Since both seem appropriate for this approach, we use both. We also add a
method that uses only the default parameters of SUMO. This eventually leads to the
following methods: SUMO default parameters, expert-based, optimization-based by
SPSA, which we call SPSA from now on, optimization-based by GA, which we call
GA from now on, and clustering-based.
Since the expert-based method does not have an implementation, we briefly de-
scribe our derivation for the expert-based method. First, we determine the CFM
since the other parameters depend on this choice. We conduct a literature search
to determine the best fitted CFM. Salles et al. [SKR20] compare the Intelligent
Driver Model (IDM), Krauss, and the Extended Intelligent Driver Model (EIDM)
with each other, their results show that the EIDM best represents the real data.

1www.testfeld-niedersachsen.de

www.testfeld-niedersachsen.de
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Therefore, we use the EIDM as CFM.
Literature provides different natural driving studies and research about human
behavior [EW83, WBM03, PD05]. Within these analyses, the human behavior
regarding time headway (CFM parameter tau) is researched. Parameters from
humans differ from those determined to be optimal for CFM within simulation
[PBF+17, KBG+16, VHSK+15]. Therefore, we use parameters determined for sim-
ulation environments. Salles et al. [SKR20] provide a parameter set for the EIDM.
We use these parameters by reference because they explicitly provide parameters
for the EIDM within SUMO.

Evaluation Characteristics To compare the synthetic and real datasets, we
examine all ten introduced characteristics in Section 3.2.1. These are, CT T C , CDRAC ,
CT GAP , CLD, C|LC|, CmeanLC , C|LCvariations|, CLCclustershape, CScenes, and CP red. To
compare the methods against each other, we introduce a characteristic that combines
all ten characteristics. We have no insight into which characteristics are well suited
to determine realistic results. Therefore, we weigh them all equally. We introduce
a total error based on the set of all characteristics C and the trajectories generated
by a method trajm as follows:

Etrajm =
∑
c∈C

Ec(trajm) (5.2)

One challenge with this representation is that the range of values of some errors
is larger or smaller than others. This would lead to undesirable weighting. There-
fore, we have to normalize each error. One way is that we normalize the errors
within their mathematical bounds. However, this would also introduce undesirable
weighting since, for example, it is unlikely that the maximum error will be reached
by Equation 3.17, but it is more likely that the limits of Equation 3.19 will be
reached. Thus, we introduce normalization based on the default parameters. We
finally evaluate the methods using the following equation:

Etrajm =

∑
c∈C

Ec(trajm)
Ec(trajdefault)
|C|

(5.3)

We divide the error by the cardinality because the range of values of the error
becomes independent of the number of characteristics.
Within experiment 2.1, we examine the scene consistency characteristic Cscene in
more detail. Due to hardware limitations, we only simulate 10:00 hours. However,
we want to know how this characteristic evolves over longer periods. Therefore, we
fit the results to a function f . Motivated by the known absolute limit of max(f) = 1
(the simualtion reproduces all real scenes) and an assumed converging behavior, we
use the following function with the constants a and b to approximate the data.

f(t) =
√

t · a · (1− e−t·b) (5.4)

We determine the constants a and b for each method by regression.
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Figure 5.4: Overall parameter influence analysis.

5.4 Experiment Results
In this section, we present our experimental results. First, we present the results
of experiment 1, in which we examine the effects of individual parameters on the
realism of the chosen characteristics. In the second part, we present the results
of the second experiment, in which we investigate the realism of the trajectories.
Within this section, the observed real data is called ground truth.

5.4.1 Experiment 1
We set up the experiment according to Section 5.2.1. We use Equation 5.1 to de-
termine the influence of each input parameterization on each characteristic. We use
a Sankey diagram to illustrate the influence. The influence of each input parameter
on the output characteristics is illustrated by the size of the links between them.
The results are shown in Figure 5.4. The left side displays each input parameter
of Table 5.1. On the right side, the normalized error (according to the error func-
tions shown in Section 3.2.2) on the output characteristics is displayed. We sort the
parameters on the left according to their combined influence on all characteristics.
We compute an aggregated influence of a parameter on all characteristics, expressed
as a percentage on the left-hand side. Considering these results, we identify the
speedFactorMue parameter as the most influential among the selected parameters
with 26.5 % and the height parameter as the least influential with approx. 0.0
%. We observe a significant gap in the range of influence between the parameters
vehsPerHour and sigma. The six parameters below vehsPerHour have in sum (6.5
%) less influence than vehsPerHour with 9.1 %. We conclude that the influence on
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Method Execution Duration
Default 00:00 h
Expert 03:00 h

Optimization (SPSA) 13:39 h
Optimization (GA) 14:02 h

Clustering 00:12 h

Table 5.2: Execution duration for each individual method.

the output characteristics of individual parameters varies. For example, the speed-
FactorMue is most influential for the DRAC distribution. Within the distribution
of the TH the parameter tau is most influential. Individual visualizations for the
TTC distribution are provided in the appendix in Figure A.1, for the DRAC in
Figure A.2, for the TH in Figure A.3, for the lane distribution in Figure A.4, and
for the number of lane changes in Figure A.5.

5.4.2 Experiment 2

In this section, we first describe the execution times and findings within the ex-
periment execution. Then the results for each characteristic, Finally, the combined
results that summarize all characteristics.

Experiment Execution

We execute the experiment shown in Section 5.2.2. We use the five parameteriza-
tion methods (default, expert, SPSA, GA, and clustering-based) to generate five
different configurations for SUMO. The final parameterization determined by the
SPSA method (optimization) are shown in the appendix in Table A.2. For the
method using a GA (optimization), the parameters are presented in the appendix
in Table A.3. The cluster-based parameterization is also given in the appendix in
Table A.4. The full set of parameters for the expert-based method is shown in the
appendix in Table A.5. In Table 5.2 the execution times for each individual method
are shown. We use a machine with 72 logical cores, 196 Gb RAM, and the oper-
ating system Ubuntu 20.04 to determine the results. During the execution of the
clustering-based method, we find that the traffic density is about twice as high. The
higher traffic density is due to congested traffic. We discover that the congestion
depends on the simulation parameter sigma. Sigma indicates the driver’s imper-
fection in terms of how strict he acts according to the CFM2 (value between 0 and
1). Since sigma cannot be observed directly in real traffic, we do not implement this
parameter within the clustering-based method. We discovered that values below
about 0.6 (more accurate driving) lead to congestion. Therefore, we set the sigma
value to 0.75 to generate trajectories using the clustering-based method.

2https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.
html#car-following_model_parameters

https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_model_parameters
https://sumo.dlr.de/docs/Definition_of_Vehicles%2C_Vehicle_Types%2C_and_Routes.html#car-following_model_parameters
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Figure 5.5: Results of the longitudinal characteristics. Lower values are more real-
istic.

Experiment Results

We divide this paragraph into the subcategories of our notion of realism. These are
longitudinal, lateral, and mixed characteristics. Finally, we summarize all charac-
teristics to a combined result for each method.

Longitudinal Characteristics We inspect results of the longitudinal character-
istics: TTC distribution (CT T C), DRAC distribution (CDRAC), and TH distribu-
tion (CT H). We use Equation 3.17 to calculate the error for each parameterization
method. The results are shown in Figure 5.5. The abscissa shows the different
longitudinal characteristics, while the ordinate shows the error according to Equa-
tion 3.17. The lower the values on the ordinate, the more realistic the method
is concerning this characteristic compared to the ground truth evaluation dataset.
Figure A.6 in the appendix presents the underlying data as histograms for each
longitudinal characteristic and the result produced by the method. We observe
within the TTC distribution that the expert-based method yields the lowest error
of 0.53, while the default configuration results in the highest error of 3.2 when using
Equation 3.17. For the DRAC distribution, we find similar rankings, but the GA
method generates slightly more realistic trajectories than the expert-based method.
In comparison to the TTC distribution, we observe a lower discrepancy between
default parameters and the other methods. The results of the TH distribution differ
from those of the prior distributions, as the GA method results in the lowest error of
0.42, and the default parameters result in the second-lowest error of 1.06. The SPSA
method leads to the highest error of 1.36. We conclude that all methods except the
GA method (which results in significantly lower error) lead to comparable results
within the TH distribution. We observe within all longitudinal characteristics the
most variation in error between the highest and lowest in the TTC distribution.
The expert and the GA method both yield the lowest error in two of the three
characteristics, with a small lead of the GA method within the DRAC distribution.
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Figure 5.6: Distribution of lanes on the main and passing lanes in both directions
of the road. The error is shown on the right side (lower values are more realistic).

Lateral Characteristics The lateral characteristics are: lane distribution (CLD),
number of lane changes (C|LC|), mean lane change maneuver (CmeanLC), number of
variations for the lane change maneuver (C|LCvariations|), and the variation of the lane
change maneuver itself (CLCclusterhape). We investigate the characteristics separately.
In Figure 5.6 the distribution of lanes CLD for each parameterization method is
shown. The abscissa shows the parameterization method, the passing lane on the
left and the main lane in the middle, and the error compared to reality on the right.
The ordinate represents the distribution of the lane (main or passing lane) and the
total error in percent. We divide the usage and the error by each parameterization
method. We detect the lowest error for the default parameters, closely followed by
the SPSA method. The clustering-based method results in the highest error. We
observe a comparable error within the expert, SPSA, and clustering-based method.

As second lateral characteristic, we examine the results of the C|LC| characteristic.
In Figure 5.7 the lane changes per minute and track kilometer are shown. The
abscissa shows the parameterization method, the passing lane on the left, the main
lane in the middle, and the error to the right. The ordinate displays the number
of lane changes performed per minute and track kilometer. We observe the lowest
error using the SPSA method. Using the default parameters of SUMO we obtain the
highest error, closely followed by the expert-based method. We discover an equal
number of lane changes to the left (C|LC|,gt,left = 4.58) and right (C|LC|,gt,right = 4.59)
within the ground truth data. We perceive that a left lane change is performed more
frequently than a right lane change within all simulation runs. For example, with
the SPSA method, the left lane is changed 3.36 times, while the right lane is changed
2.15 times per minute and track kilometer.

Within this paragraph, we present the results concerning the CmeanLC characteristic.
With this characteristic, we inspect the mean lane change. Figure 5.8 shows the
results of the mean lane change. The abscissa displays the time in seconds before
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Figure 5.7: Lane changes per minute and track kilometer in reality and simulation.
The error is shown on the right side (lower values are more realistic).
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Figure 5.8: Mean lane change behavior. Note: All lane changes within the simulation
are on the same line.
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Dataset / Method Number of clusters
Ground truth 5

Default parameters 1
Expert-based 1

Optimization-based SPSA 1
Optimization-based GA 1

Clustering-based 1

Table 5.3: Number of variations of the lane change maneuver detected in reality and
by the parameterization method.

and after the lane change event. On the ordinate, the lateral position in the road
coordinate system is shown. The left figure shows the left lane change, and the
right figure the right lane change. The black bars at the top and bottom indicate
the side lane markings. The middle road marking is shown as a dashed line. The
upper part of this figure shows the passing lane, and the lower part shows the main
lane. The time window ranges from -5 to 5 s before and after the lane change.
We chose this interval because the lateral position at -5 and 5 s are the extreme
values. The mean lane change of the ground truth dataset is shown in dark blue.
We observe a non-linear progression of this lane change. While in the simulation,
we detect the same progression for each parameterization which is linear. Therefore,
only one lane change for the clustering-based method is visible since the stack over
each other. Thus, we calculate the same error: E ≈ 4.1 for each parameterization
method according to Equation 3.18.

As final lateral characteristics, we analyze C|LCvariations| and CLCclusterhape. First, we
analyze the number of detected clusters by the parameterization method using the
elbow method as described in Section 4.2.1. The results are shown in Table 5.3.
The simulation performs only one variant of the lane change maneuver. In reality,
there are five different variants. Thus, we calculate the same error: E = 4.0 for all
parameterization methods. Since the simulation always performs the same variant
of the lane change maneuver, this leads to the same cluster shape. This behavior
results in the fact that the error within all cluster shapes CLCclusterhape is also the
same for each method. Therefore, in Figure 5.9 we only show the variants of the
lane change maneuver for the ground truth data, since all parameterization methods
would only show a linear maneuver. The abscissa and ordinate show the same values
as in Figure 5.8. We observe that four of the five identified clusters follow logistic
growth. We identify a different start and return position after the lane change. For
example, the left lane change shown in purple in Figure 5.9 starts in the middle
of the main lane (−2.0 m) and also ends in the middle of the passing lane (+2.0
m). The orange left lane change starts near the middle lane marking (approx. −1.3
m) and ends near the middle lane marking (approx. +1.2 m). We discover that
the red left and green right lane change deviates from the classical logistic growth
due to its curvature and amplitude. The lane change takes place near the middle
lane marking. Compared to the other variants, we perceive the red variant in the
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Figure 5.9: Cluster variants for the observed lane changes within the real data.
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Figure 5.10: Prediction ability shown by parameterization method. The left diagram
shows the positional error in meter evolving over time. The right diagram displays
the last position error after 30 s. Lower values are more realistic.

context of the left lane change returning to the middle lane marking after about
t = 3 s. The other varieties are monotonically increasing within the left lane change
and do not return to the middle lane marking. The green variant in the right lane
change also reflects this phenomenon, but this variant starts with this phenomenon
of antagonistic progression compared to the left lane change.

Mixed Characteristics Within this paragraph, we present the results of the
mixed characteristics: prediction ability (Cpred) and scene consistency (Cscenes). In
Figure 5.10 we present the results of the prediction ability Cpred. The left plot
indicates the time in seconds after the first scene on the abscissa. The ordinate
shows the position error in meters compared to the ground truth data. The right
diagram shows the final position error after 30 s, differentiated according to the
parameterization method. We observe the lowest position error (77.8 m) after 30
seconds using the SPSA method, while the GA method has the highest error (102.4
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Figure 5.11: Jaccard-Index of scenes occurring in reality and simulation. The time
is specified in hours. The left figure shows the Jaccard-Index over the simulation
time, and the right figure shows the Jaccard-Index after 01:30:00h. Higher values
are more realistic.

m). We calculate an error margin of 24.6 m between the lowest and the highest
error. Within the time evolution, the SPSA method always results in the smallest
error. While the GA method initially yields a lower error than the clustering-based
method, this changes after about 18 s. At the last observation point of 30 s, we note
a lower slope of the clustering-based method compared to the expert-based method.

In Figure 5.11, we present the results of the Cscenes characteristic. The left side
presents the Jaccard-Index over the simulation time in hours. The right side of the
figure shows the final Jaccard-Index after 01:30 hours of simulation time. We observe
that the expert-based method achieves the highest final Jaccard-Index with 0.033,
and the SPSA method the lowest with 0.006. Compared to these two methods,
we note that the default, clustering, and GA methods achieve similar values (0.007
difference) but still have a clear ranking with the clustering-based method as the
leader within this group. The expert-based method has a 550% higher Jaccard-
Index compared to the lowest Jaccard-Index. The SPSA method results in a 65%
lower Jaccard-Index compared to the second-lowest Jaccard-Index (compared to the
highest Jaccard-Index 82%). As the Jaccard-Index evolves over time, the ranking
is the same at any time except for the starting point, where the clustering-based
method leads to a slightly higher Jaccard-Index. Within the Jaccard-Index, we
perceive a convergence towards a maximum for all methods. We note that the SPSA
method reaches this maximum after about 25 minutes. In contrast, we remark that
all other methods reach this maximum value after about 50 minutes. In addition to
the Jaccard-Index, we show the proportion of found scenes in Figure 5.12. This graph
shows the percentage of found scenes from the ground truth dataset as a function
of time. We observe the same ranking between the parameterization methods as for
the Jaccard-Index. Compared to the Jaccard-Index, the given percentages do not
converge within the given time interval.

In Figure 5.13, we show the proportion within the experiment 2.1. This exper-
iment uses a simulation time of 10:00 hours. We discover the same ranking as



62 5. Evaluation

00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 01:00:00 01:10:00 01:20:00 01:30:00

0

2

4

6

8

Default parameters
Expert-based
Optimization-based (SPSA)
Optimization-based (GA)
Clustering-based

Time

Pe
rc

en
ta

ge
 o

f F
ou

nd
 S

ce
ne

s

Figure 5.12: Proportion of found scenes from the ground truth dataset after 01:30
hours of simulation. Higher values are more realistic.
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Figure 5.13: Proportion of found scenes from the ground truth dataset after 10:00
hours of simulation. Higher values are more realistic.
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Figure 5.14: Percentage of found scenes from Figure 5.13 with Equation 5.4 fitted
to the data. Higher values are more realistic.

Method a b Days until threshold reached
Default 0.00048 0.00161 39.2
Expert 0.00122 0.00094 6.3

Optimization (SPSA) 0.00021 0.00135 217.8
Optimization (GA) 0.00089 0.00047 11.8

Clustering 0.00090 0.00134 11.5

Table 5.4: The days of simulation necessary to reproduce 90 % of the scenes con-
tained in the real evaluation dataset (01:30 hours) according to approximation using
Equation 5.4. Parameter a and b according to Equation 5.4.

within the simulation of 01:30 hours. In contrast to the 01:30 hours dataset, the
clustering-based method has a lower slope in the long term than the GA method.
The clustering-based and GA method intersect at about 07:30 hours, and the GA
method has a higher percentage.
We use Equation 5.4 to model the time progression of the scene consistency charac-
teristic. In Figure 5.14 we present the result of Figure 5.13 with the fitted constants
of Equation 5.4. We use this fit to predict future values for the percentage of found
scenes. We define threshold of 90 % of scenes found by the simulation. Based on the
fitted functions we predict when this threshold is reached. The results are shown
in Table 5.4 distinguished by the parameterization method. The table shows the
parameters a and b according to Equation 5.4 and the days needed to generate 90
% scenes of the ground truth dataset by simulation with the given parameterization
method. The days are given in simulation time. For example, it is necessary to
simulate 6.3 days within the simulation using the expert-based method to generate
90 % of the scenes of the ground truth dataset according to the fit. We consider the
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Figure 5.15: Combined results of all characteristics according to Equation 5.3. Lower
values are more realistic.

SPSA method as an outlier because it requires ~34 times the simulation time com-
pared to the expert-based method. Except for the GA and cluster-based methods,
the results differ significantly from each other.
As an additional visualization, we show the total number of found scenes (compared
to the percentages) in the appendix in Figure A.7. We present the total number
of unique scenes generated by the simulation in the appendix in Figure A.8. We
observe that the number of unique scenes within the simulation depends on param-
eterization. The results of the Jaccard-Index with the 10:00 hours dataset (with
the same visualization as the 01:30 hours dataset in Figure 5.9) are shown in the
appendix in Figure A.9. Compared to the 01:30h data set, we perceive that the
Jaccard-Index does not converge to a maximum but slowly decreases after reaching
the maximum.

Combined Results Finally, we combine the prior results of each characteristic.
We use Equation 5.3 in order to calculate an overall error for the parameterization
methods. The results are shown in Figure 5.15. The expert-based and GA method
results in the lowest error overall: Eoverall = 0.96. The default parameters provided
by SUMO result in a slightly higher error of Eoverall = 1.00. The cluster-based
approach results in a slightly higher error of 1.06, closely followed by the SPSA
method with 1.08. Compared to the results of the previous characteristics, the
total error varies only slightly between the methods. In Figure 5.16 the error of all
previous characteristics is summarized in one diagram.

5.5 Discussion
In this section, we discuss the experiment results concerning our research questions.
We divide this section into four parts according to the research questions. In Sec-
tion 5.5.1, we discuss the influence of parameterization and individual parameters
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Figure 5.16: Final error within all characteristics, normalized to the error with
default parameters.

thus RQ 1. We discuss the realism of synthetic trajectories in Section 5.5.2 thus
RQ 2. In Section 5.5.3, we discuss which parameterization method generates the
most realistic synthetic trajectories thus RQ 3. Finally, we discuss the impact of
the evaluation characteristics in Section 5.5.4 thus RQ 4.

5.5.1 RQ 1: Influence of Parameterization
We expect that different parameterizations and methods will lead to a difference in
the realism of the trajectories. Furthermore, we expect that individual parameters
are more influential than others.
We have shown that the parameters speedFactorMue, tau, speedFactorSigma,
maxSpeed, accel, and vehsPerHour are more influential than sigma, length, action-
StepLength, minGap, width, and height. By the results of Figure 5.5, we conclude
that if we set the speedFactorMue parameter correctly, the trajectories are closer to
reality than if we adjust the eight least influential parameters correct. This state-
ment applies only to realism concerning the five characteristics under study. We
conclude that we can reduce the parameterization effort by omitting unimportant
parameters. In Figure 5.4, we identify a logical connection between the parameter
tau and the time headway within SUMO, as it is the most influential parameter
on the time headway. This relationship is an intuitive result. In comparison, the
speedFactorMue parameter is most influential on the lane distribution, which is not
directly intuitive. We explain this relationship due faster vehicles do not use small
gaps to change lanes but stay in the passing lane, and therefore a higher usage of the
passing lane occurs. We detect direct relationships between parameters and realism
aspects in the first experiment. Looking at the results of the second experiment,
we observe a significant difference in the realism of the resulting parameterizations.
The results of Table 5.4 show that 97 % of the required simulation time to repro-
duce 90 % of the scenes is reduced by choosing a different parameterization. The
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dependence on parameterization does not apply to all characteristics. For example,
the characteristic for analyzing the lane change maneuver does not change using
different parameterizations. We explain this finding by the fact that SUMO only
implement one variant of the lane change maneuver. With default settings, SUMO
performs a lane change immediately. In our baseline configuration, we used linear
interpolation for this lane change maneuver, which results in the same maneuver
and linear progression of the lane change for all parameterizations. The implemen-
tation within SUMO explains the same results for all parameterizations. Except for
the lane-change characteristics, we observe that each characteristic has a distinct
method with the lowest and highest error. Interestingly, the results of all the char-
acteristics together (Figure 5.15) suggest that there is no difference in the realism of
the resulting trajectories in a broader context. We have two interpretations of this
finding. First, evaluating realism in a broader context is not dependent on parame-
terization. Second, the choice of characteristics and the weighting cause this finding.
We assume that the second interpretation is more likely because we observed that
realism is heavily dependent on parameterization. Since we only inspect a small set
of characteristics, we expect this finding will dissolve by other or more characteris-
tics.
We observed during the execution of the experiments in Section 5.4.2 a dependence
between the parameter sigma and traffic density. We perceive an influence of only
1.9 % of the parameter sigma on all measured characteristics within the first exper-
iment. The low value does not resemble the strong influence and threshold of sigma
to generate traffic jams. We assume that more hidden dependencies and influences
exist. This finding supports that parameterization has a strong influence on realism.

RQ 1: Conclusion

Summarizing the findings discussed before, it is clear that specific input parameters
are more influential than others on the realism of the resulting trajectories. By
parameterization, the resulting trajectories get more realistic in specific character-
istics. However, when all characteristics are combined and weighted equally, there
is no significant difference between the different parameterizations.

5.5.2 RQ 2: Realism of Synthetic Trajectories
With this research question, we investigate how realistic the resulting trajectories
are. We expect the simulation environment to represent specific characteristics well.
Using the longitudinal characteristics shown in Figure 5.5 and the corresponding
histograms shown in Figure A.6, we conclude that the simulation is able to produce
realistic trajectories within these characteristics. For example, looking at the TTC
distribution of the SPSA method, the distribution is subjectively very similar to
the ground truth. However, the mode is at a higher TTC value compared to the
ground truth, and the ground truth has a higher skewness. In addition, very low
TTC values (below 2 s) rarely occur, but in reality, these values are more common.
Other parameterizations reproduce the low TTC values, for example, the SPSA
method. However, the course of these parameterizations is different, and they cannot
realistically reproduce other TTC values. Considering the time headway, we observe
that the GA method produces the most realistic results. In detail, however, we also
perceive deviations from reality, for example, a lower variance.
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Considering the lateral characteristics, we conclude that the simulation fails to pro-
duce realistic results. In terms of the real lane distribution, the ratio between the
main and passing lanes is 75:25. The closest simulation run achieves 35:65. This
discrepancy is a significant difference even with the most realistic simulation. Three
of the five simulations have a ratio of about 50:50. We assume this behavior is a
finding since we use the same environment model and traffic flow. We anticipate
that the simulation model causes the discrepancy. Considering all simulation runs,
we conclude that the simulation does not accurately represent the lane distribution.
We discover that the simulation reflects the number of lane changes well using the
GA method. However, we found that the number of left and right changes is dif-
ferent. In reality, they are about the same. We explain this finding as vehicles are
placed preferentially in the main lane. We set the departure lane as "first". Thus,
vehicles are placed in the right-most lane if it is free. This behavior increases the
likelihood that vehicles will change onto the passing lane since they start on the
main lane. Thus, a bias within the ratio of left and right lane changes is introduced.
Therefore, we conclude that the lane distribution is adequately represented by the
GA method as we can explain the minor deviations.
In the previous sections, we discussed that the simulation environment does not rep-
resent the lane change maneuver well. However, in reality, we observed two findings
in Figure 5.9. First, we observed different reversal points within the lane (ampli-
tude). Second, we note close lane changes to the middle lane marking in one cluster.
We explain the first result with the different driving behavior of the drivers. Some
drivers drive closer to the center lane, others further out. To explain the second
finding, we analyze the samples associated with this cluster by hand. We discover
two cases that apply to this cluster. First, we discovered slow lane changes in that
cluster. We still interpret this behavior as lane changes. Second, we found trajec-
tories that travel directly on the middle lane with minor deviations to both lanes.
Both findings are recognized and mapped to this cluster.
We suggest implementing a more sophisticated lane change maneuver to evaluate
the realism of the parameterization. Instead of a simple linear lane change, a logistic
maneuver with the amplitude and the stretch over time as parameters represents
our findings. This model represents the observed shape of the lane change and the
variation within this maneuver.

Within the scene consistency, we observe that the simulation generates realistic
scenes. However, we note that the percentage of scenes found is low (maximum
9 %) after 01:30 hours of simulation time. We identified different causes for this.
First, the occurring road users and their behavior are random. The sheer number
of possibilities for scenes on a highway makes it unlikely that the same scenes will
occur. Second, the reference dataset is only 01:30 hours long. Therefore, we assume
that many scenes generated by the simulation could be real but are not considered
because they do not occur in the section of reality. We find within the scene charac-
teristics that the maximum of the Jaccard-Index is around the time of the reference
dataset. We explain this in terms of the simulation dataset being disproportionately
large after 01:30 compared to the real dataset, resulting in a high denominator in the
Jaccard-Index calculation. Further research is needed to determine if the maximum
Jaccard-Index found is based on the reference dataset or is a constant for the realism
of the simulation. Based on the results of Table 5.4, we assume simulation environ-
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ments are suited to create realistic scenes. We estimated that for a simulation of
about 6.3 days, 90% of the scenes from the ground truth dataset occur at least once
within the simulation. In scenario-based testing, we can test the ADAS/AD within
the simulation over a long period and therefore ensure that real scenes occur. We
observed how many unique scenes are generated by different parameterizations. We
find that the default parameters’ total number of unique scenes differs significantly
from the other methods. Unlike the other methods, this parameterization uses the
Krauss CFM. Although fewer unique scenes are generated, we observe a higher per-
centage of real scenes found than for the GA method (Figure 5.12). We conclude
that the default parameters have a higher proportion of realistic scenes.
Using the prediction characteristic, we observed that the trajectories in the simula-
tion deviate by a positional error of more than 77 m after 30 s. We assume many
influences for this result. For example, we initialize the vehicles with the parameters
that are most likely at the initialization. Over time, however, the real driver may
change his desired speed or be distracted, creating a discrepancy between simulation
and reality. This behavior is not adequately represented in the simulation and can
cause a positional error. We suggest using a test setup that controls all but one
vehicle to reduce this effect.

RQ 2: Conclusion

As a conclusion of the differentiated discussion of the individual characteristics men-
tioned above, we note that the simulation environment is capable of generating real-
istic trajectories in certain aspects. It is challenging to define what precisely realistic
is. We cannot identify thresholds to judge whether the results are realistic. However,
we find that specific methods’ results are more realistic than other methods. For lon-
gitudinal characteristics, realism depends on parameterization. In terms of lateral
characteristics, the simulation environment has deficits but also manages to realis-
tically represent, for example, the number of lane changes. Based on the developed
characteristics of scene consistency, we assume that the simulation environment is
suitable for generating realistic scenes for scenario-based testing.

5.5.3 RQ 3: Comparison of Parameterization Methods
We expect that the results of the parameterization methods differ in realism. Fur-
thermore, we expect one method to generate the most realistic results.
Against our expectations, we conclude that there is not a single method that gener-
ates the most realistic trajectories by Figure 5.15. We identify that many settings
within the parameterization methods are a challenge in comparing these methods.
An example of this is the optimization-based method. This method has many op-
timization strategies available (we tested two), whose hyperparameters must be
adjusted, the objective function, and the input parameters must be chosen. These
settings make it difficult to determine whether a single method produces the most
realistic results because the methods resemble an abstract concept with many im-
plementations.
By Figure 5.16, we observe that specific methods perform the most realistic results
in certain aspects. For example, the expert-based method generates the most real-
istic scenes. For each parameterization method, we find one characteristic with the
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most realistic and one characteristic with the least realistic results, except for the
cluster-based method. The cluster-based method does not provide the most realistic
results in any characteristic. However, we remark that this method does not generate
the least realistic results within the combined results. We note that the results for
some characteristics are consistently less realistic with parameterization than with
the default parameters. This finding applies, for example, to the lane distribution.
We identify two reasons for this behavior. First, the default parameters are already
realistic. Second, parameterization cannot handle these aspects well. We assume
that a combination of both applies. First, because SUMO uses parameters from
literature and own research as default parameters. Second, because, for example,
the optimization-based methods do not optimize against all characteristics due to
technical limitations. This limitation will lead to the fact that the optimization will
not consider the aspects represented by these characteristics. This reasoning also
explains why the optimization-based methods do not provide the optimal solution.

RQ 3: Conclusion

We note that the optimization-based methods have the highest execution times (Ta-
ble 5.2). Comparing the execution time with the results of Figure 5.15, we observe
that an expert-based configuration is overall the most efficient and the most effec-
tive. However, the expert-based method does not generate the most realistic results
in all aspects. We still expect a high potential in the systematic methods. For
example, the GA-based method achieves the same low overall error. We conclude
that the optimization-based methods are particularly applicable for generating re-
alistic trajectories in well-describable characteristics. In summary, we did not find
any single method that generates the most realistic results overall. We have found
that specific methods are well suited to generate realistic trajectories under certain
aspects. The chosen characteristics strongly influence which method is the most
appropriate.

5.5.4 RQ 4: Influence of Evaluation Characteristics
With this research question, we want to investigate whether the results of all charac-
teristics are consistent with each other and whether these characteristics are suitable
to evaluate realism. We expect some characteristics to reflect several others, mean-
ing that they are interdependent. Moreover, we assume that some characteristics
are not well suited to evaluate the realism of trajectories.
Considering the differentiated results of Figure 5.16, we argue that the selected
evaluation characteristics have a significant impact on the final assessment of which
method generates the most realistic results. We base this statement on the fact that
the ranking within the characteristics differs. We conclude that the lane change
characteristics are unsuitable for comparing realism in the given setting. Since
SUMO implements only one lane change variant, all parameterizations perform this
variant. This behavior results in the same error for all parameterizations and does
not differentiate the parameterizations. We assume that this characteristic is still
suited to evaluate realism between parameterizations within this setting. Against
our expectations, we did not find a single characteristic that reflected several other
characteristics. Each characteristic has an individual ranking and scales of error.
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We observe that single characteristics are highly influential within Figure 5.16. Due
to the differences within the scene consistency, the error for the SPSA method is
high. If we evaluate only the longitudinal and lateral characteristics, the combined
error of the SPSA method with 0.79 is significantly lower than the second-lowest
method (GA) with an overall error of 0.96. This consideration would lead to a dis-
tinct method with the most realistic results. However, by doing so, we exclude the
scene consistency characteristic. This characteristic is the only characteristic that
allows a direct statement about realism. Testing an ADAS/AD within the simu-
lation, a higher rate of realistic scenes ensures that the ADAS/AD will be tested
in more realistic situations. Therefore, we conclude that the characteristic of scene
consistency is an essential characteristic.

RQ 4: Conclusion

We conclude that the chosen characteristics are crucial for the assessment of realism.
We observe a strong dependence on the evaluation result by the chosen characteris-
tics and their weighting. To define abstract realism, we assume that many individual
characteristics need to be examined.

5.6 Threats to Validity
In this section, we examine the validity of our study and its results. We discuss
possible threats and our approaches to mitigate them. First, we examine which
factors influence our results and thus internal validity. Second, we consider external
validity, in which we discuss the generalizability of our results. Finally, we investigate
the construct validity by examining our within-concept biases.

5.6.1 Internal Validity

Evaluation Bias Influencing the results by an invalid evaluation is possible, for
example, by an error in the evaluation scripts. We use reliable and well-tested
software frameworks to calculate the results. Thus, we prevent implementation
errors. Furthermore, we use different visualizations and data representations for
the results to identify possible errors. We formulate our expectations before the
experiments, discuss them and compare them with our results. In this way, we
prevent a biased evaluation.

Experimenter Bias The implemented process chain automates the experiments
and the result calculation to minimize the possible influence of the experimenter.
However, the selection and configuration of the parameterization methods is a man-
ual process. We select the methods according to frequently used methods found in
the literature. We also use configurations from the literature and use them as prede-
fined configurations to limit the influence of the experimenters. To reduce the impact
of manual implementations, configurations, and errors, we use existing frameworks
and have implemented different versions of the parameterization methods and tested
various settings. In this way, we control the experimenter’s bias.
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Bias of the Reference Data We use trajectory data provided by testbed Lower
Saxony as a reference. The accuracy and validity of the trajectories provided are
necessary to produce reliable results. Regular measurements on various reference
vehicles with high-precision positioning systems validate the accuracy of the trajec-
tories. Thus, we ensure reliable and accurate reference data. The used reference
data represent only five hours of the real world. We explicitly chose a data set on
a weekday and in the morning to examine rush hour traffic as an example. Due
to time constraints, we do not examine the results over more extended periods and
other conditions. Within the limits of our technical capabilities, we have opted for
the largest amount of reference data to achieve the largest possible representation
of reality. Thus, we control the independent variables.

Bias of the Simulation Environment We use a simulation environment to
generate synthetic trajectories. A simulation environment has several parameters
that influence the trajectories. Some, like the CFM parameters, directly influence
the trajectories since they describe the drivers’ behavior. There are also indirect
influences due to, for example, the road model or the simulation step-length. These
parameters influence the dependent variables (realism aspects). We address this
problem by setting these parameters according to the reference data. For example,
we use the sampling rate of the real data as the step length and a high-resolution
road model based on reality. Furthermore, we use the same settings for these non-
driving parameters across all simulation runs. Thus, we ensure that we measure the
influence of the independent variables (drivers’ behavior) on the dependent variables
(realism aspects).

5.6.2 External Validity

Generalizability to other Traffic Settings The developed concept applies to
different traffic settings. We paid explicit attention to the modularity and inter-
changeability of individual components during the concept development, such as
the input data or parameterization methods. We used the maximum technically
possible size for the reference dataset to maximize the generalizability. Therefore,
we expect good generalizability across similar highway settings regarding the results
of our experiments. We expect the results to differ from those presented in this
thesis on urban traffic. Furthermore, we expect the results to be different under
other environmental conditions. Especially with different days of the week, times,
or weather conditions. Further research is necessary to investigate the behavior
under different environmental conditions. However, the developed concept is also
applicable to urban areas and other environmental conditions.

Generalizability to other Simulation Environments We implemented our
concept using SUMO as a simulation environment. We build the process chain with
a generic interface to accept trajectory data from different sources. After loading
the data into the process chain format, the source of the trajectory data becomes
insignificant, as all further steps use this same format. Other Microscopic Traffic
Simulations (MTSs) work similarly to SUMO, for example, they use the same CFMs
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or road models. Therefore, we expect good generalizability across other simulation
environments.

Generalizability to other Evaluation Measures In our concept, we intro-
duced ten different characteristics to measure realism. In the context of our experi-
ments in Section 5.4, we have shown that it is possible to extend our concept with
additional evaluation characteristics. Therefore, we expect good generalizability of
our approach when using different characteristics for evaluation. Considering the
results, we expect that the evaluation of the parameterization methods will lead to
different results when other characteristics are chosen, and the generalizability will
suffer. In our discussion in Section 5.5 we have shown that the selected charac-
teristics are mainly responsible for the outcome of the realism evaluation. We use
a variety of characteristics in order to cover a broad spectrum to evaluate realism
and increase generalizability. However, future work is necessary for urban roads and
cities since many new situations like traffic lights or roundabouts are introduced.

5.6.3 Construct Validity
Bias in Experimental Design We evaluate the results of the different parame-
terization methods with multiple characteristics. Thus, we reduce the probability of
making false statements that could result from limiting the observation. To measure
realism, we calculate a reference using the real data and evaluate the deviation from
it. In this way, we ensure that we measure realism. We always followed existing
and well-established methods to calculate and assess the deviation. If no method
is available, we justify mathematically and logically why the evaluation with our
chosen method is appropriate. Thus, we establish construct validity.



6. Related Work

In this chapter, we present related work. We introduce related works and show in
which aspects ours differs from them. We distinguish between scenario-based testing,
simulation-based scenario generation, and calibration of simulation environments
within these works.

Scenario-based Testing

Scenario-based testing is a suitable approach to address the issues associated with
verification and validation of ADAS/AD. Several research papers in this field can
be found in the literature. Tatar [Tat15] distinguishes the process of scenario gener-
ation into data-based and knowledge-based approaches. Bagschik et al. [BMKM18]
proposes a knowledge-based approach using an ontology for generating scenarios.
They use the model of scenario layers introduced by Schuldt [SSL+13] and knowl-
edge about each layer to vary the parameters of these layers and generate scenarios
from them. In order to generate each layer (L1-L5) they use guidelines and cat-
alogs to implement the ontology. From an initial scene, they derive possible end
scenes and appropriate transitions. Bagschik et al. [BMKM18] export the resulting
scenarios as a scenario graph and a custom visualization. Similar to our approach,
they focus on generating particularly typical scenarios for German highways. In
comparison, they use a knowledge-based approach and do not evaluate their results
on real data, only regarding the correctness of the ontology.
Zhou and Re [ZdR17] propose a data-driven approach to collect scenarios from real
data. They define a metric used to identify critical scenarios. With this indicator,
they collect a scenario catalog. They evaluate their method using a performance
measure that aims to find a safety boundary. In comparison to Bagschik et al.
[BMKM18] and our method, they explicitly focus on critical scenarios.

Simulation-based Scenario Generation

Sippl et al. [SBW+16] present a general concept to collect situations from a sim-
ulation environment in order to derive test cases for scenario based-testing. They
use maneuver spaces (logically separated regions) around a subject vehicle to derive
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the test cases. To describe the test cases, they use a domain-specific language. We
differentiate by extracting complete scenarios and not generating test cases from
these.
Yue et al. [YSWL20] present an approach using SUMO to extract scenarios. They
model the urban environment of Shenzhen. Yue et al. [YSWL20] calibrate SUMO
on a complete road network and focus the calibration process on the traffic density.
They use a Scenario Risk Index based on the TTC and a loss to extract scenarios
from the simulated traffic. As a result, they collect different scenario types and
analyze them. In comparison, we focus on calibrating the realism of trajectories and
evaluating them against reality. Additionally, we explicitly extract all scenarios, not
just the critical ones, and we set up SUMO on a highway area with a limited road
network.

Calibration of Simulation Environments

In traffic simulation calibration, there are several studies on the process and
additional guidance. A part of the research focuses on traffic flow calibration
[BABA+07, FKBN18, TKD+03]. This research aims to find the correct traffic flow
on road networks and optimize the results using real traffic flow data. Vehicle de-
tector loops often provide the source for the real data. In comparison, we focus on
calibrating the realism of the trajectories rather than the overall traffic flow. There-
fore, we use real trajectory data instead of traffic flow data for calibration.
Another part focuses on calibrating the CFM within the simulation environment
[KT08b, CLHG10, VNS+14]. Kesting and Treiber [KT08b] calibrate the IDM using
a GA for optimization. They use the error within the gap behavior between simu-
lation and reality as objective. As a reference, they use three empirical trajectories.
We also use a GA for optimization but formulate our objective from a variety of
characteristics and use a dataset containing thousands of trajectories. Chen et al.
[CLHG10] also calibrate the IDM-CFM using a GA. As reference dataset they use
the NGSIM [FHW07] dataset. They also use the measured gap between simulation
and reality as the objective function. In comparison, we use a different objective
function and focus our research on the interaction with scenario-based testing. We
aim to determine which calibration method generates the most realistic scenarios.
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In scenario-based testing, generating and acquiring the scenarios needed for testing
is a challenge. Simulation environments are used to generate scenarios reproducible
and test the ADAS/AD. However, it is not clear whether simulation environments
sufficiently resemble reality to use the generated scenarios for verification and vali-
dation of ADAS/AD. To investigate whether simulation environments are suitable
to generate realistic scenarios, we use real trajectory data from the testbed Lower
Saxony. We focus our research on the dynamic objects within the generated scenar-
ios.

We contribute a concept to generate realistic scenarios within the simulation and
evaluate the realism within the dynamic objects of scenarios. The concept consists
of two components: (1) the generation of realistic dynamic objects and (2) their
realism evaluation. We developed a generic process chain that generates synthetic
trajectories and compares them through characteristics observed in real and syn-
thetic traffic.

We implement this process chain prototypically with the simulation environment
SUMO and real trajectory data from the testbed Lower Saxony. We consider three
methods for parameterization: (1) expert, (2) optimization, and (3) clustering-based
method. With the three different methods, we parameterize SUMO. Based on the
simulated trajectories by SUMO, we compare them with reality and the default
configuration of SUMO. We use ten different characteristics to compare the dynamic
objects, for example, the distribution of the TTC, the number of lane changes, or the
scenes occurring in simulation and reality. Finally, we assess realism by comparing
the characteristics measured within synthetic and real trajectory data.

We conduct two experiments: the first one investigates the influence of parame-
terization, and the second one the realism of the trajectories. Based on the first
experiment, we conclude that parameterization significantly impacts the realism of
the trajectories. For example, we find that the expert-based parameterization gen-
erates about 150 % more realistic scenes than no parameterization. Furthermore, we
discovered that individual simulation parameters are highly influential for certain
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aspects of realism. For example, the velocity deviation of the vehicles in the simula-
tion influences the realism of the TTC distribution about five times more than the
acceleration ability. In order to generate realistic scenarios, we suggest first exam-
ining which parameters influence the measures of realism. Based on these results,
we suggest fine-tuning these parameters to generate realistic scenarios efficiently.

Based on the second experiment, we find that SUMO generates trajectories that are
realistic, for example, within the TTC distribution. In contrast, we discover that the
generated trajectories by the simulation are not realistic in all aspects. For exam-
ple, SUMO does not represent the variation of the lane change maneuver observed
within reality. Within this experiment, we identify that the evaluation of realism
is heavily dependent on the evaluation measures. For example, the expert-based
method generates an unrealistic time headway distribution but the most realistic
scenes. We suggest using multiple aspects to measure the realism within scenario-
based testing. Depending on the domain, we suggest using a weighting of these
aspects, for example, a higher weighting of TTC distribution to generate a realistic
level of criticality.

Within this thesis, we successfully build a process chain that generates realistic
trajectories within the simulation. We evaluate the realism based on real trajectory
data from the testbed Lower Saxony. We successfully demonstrated experimentally
that the resulting trajectories are realistic, for example, in terms of their TTC
distribution.



8. Future Work

In this chapter, we present future work and possible future research based on the
results of this thesis. In our experiments, we used a dataset of 05:00 hours in
length to evaluate and study the driving behavior. With the possibility of 24/7
detection and traffic analysis by the testbed Lower Saxony, we propose a detailed
investigation of a broader database. We expect environmental factors to impact the
driver’s behavior, such as weather conditions or time dependencies. In particular,
the fifth layer of the scenario model from Bagschik et al. [BMM18] can be studied.
With an enlarged database, our findings can also be substantiated and confirmed.

Considering the approach of the cluster-based method, we propose to study the
drivers’ behavior using different representations. We used a representation based
on manually created properties of the trajectories transformed by a dimensionality
reduction strategy. We suggest a representation of the driver’s behavior using other
methods, for example, artificial intelligence methods such as the autoencoder shown
by Rakos et al. [RABS20]. In contrast to the manually selected characteristics,
we expect the high-dimensional representations generated by artificial intelligence
algorithms to perform better since they can uncover hidden dependencies.

We suggest further research for the scene consistency characteristic since we expect
a high relevance of this characteristic within scenario-based testing. We propose
to study this characteristic based on a broader data basis. In particular, how the
thresholds for the Jaccard-Index and the percentage of scenes found evolve when
there are more scenes to match. Furthermore, we suggest investigating the scenes
which do not occur in reality since they can challenge an ADAS/AD.
Finally, we propose to extend scene consistency in the direction of examining the
degree of realistic scenarios. Therefore, we suggest adding a temporal component
to the current representation. With such a characteristic, the statements about the
realism of scenarios become more reliable since it directly resembles if a scenario
occurs in reality.
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Parameter Minimum Maximum
maxSpeed 20 100

speedFactor mean 0.5 3
speedFactor deviation 0.01 2.5

sigma 0 1
minGap 0.2 100

tau 0.05 5
actionStepLength 0.05 1

Table A.1: Parameter bounds for optimization-based parameterization method.

Parameter Value
carFollowModel EIDM

maxSpeed 23.07
speedFactor mean 0.90

speedFactor deviation 0.1
sigma 0.77

minGap 0.23
tau 1.12

Table A.2: Final simulation parameters determined by the optimization-based
(SPSA) method.
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Parameter Value
carFollowModel EIDM

maxSpeed 95.98
speedFactor mean 1.27

speedFactor deviation 0.14
sigma 0.44

minGap 2.38
tau 0.60

Table A.3: Final simulation parameters determined by the optimization-based (GA)
method.

Parameter CFM speedFactor tau Probability
Passenger Car 0 EIDM normc(1.17, 0.08, 0.79, 1.60) 1.80 0.32
Passenger Car 1 EIDM normc(1.33, 0.06, 0.88, 1.85) 1.99 0.24
Passenger Car 2 EIDM normc(0.68, 0.06, 0.45, 0.91) 4.05 0.05
Passenger Car 3 EIDM normc(1.02, 0.03, 0.75, 1.35) 3.56 0.12

Truck 0 EIDM normc(0.85, 0.02, 0.74, 0.95) 3.17 0.10
Truck 1 EIDM normc(1.07, 0.05, 0.79, 1.40) 1.72 0.02
Truck 2 EIDM normc(1.02, 0.02, 0.76, 1.52) 2.32 0.01
Truck 3 EIDM normc(0.87, 0.03, 0.73, 1.09) 3.56 0.02
Truck 4 EIDM normc(0.72, 0.05, 0.38, 0.92) 5.57 0.01
Truck 5 EIDM normc(0.87, 0.03, 0.74, 1.06) 2.09 0.03
Van 0 EIDM normc(1.14, 0.07, 0.79, 1.48) 1.73 0.04
Van 1 EIDM normc(0.64, 0.07, 0.42, 0.87) 4.70 0.01
Van 2 EIDM normc(1.25, 0.05, 0.85, 1.69) 2.14 0.02
Van 3 EIDM normc(1.00, 0.03, 0.73, 1.27) 3.05 0.02

Motorcycle 0 EIDM normc(0.85, 0.02, 0.62, 1.56) 1.32 0.01

Table A.4: Final simulation parameters determined by the clustering-based method.
The representation of speedFactor refers to the representation of the SUMO normal
distribution: normc(mean, deviation, min, max).
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Parameter Value
carFollowModel EIDM

speedFactor mean 1.14
speedFactor deviation 0.16

speedFactor min 0.92
speedFactor min 1.51

sigma 0.75
minGap 2.0

tau 1.1
delta 2.0

stepping 0.25
tpreview 4.0

tPersDrive 3.0
tPersEstimate 10

treaction 0.5
ccoolness 0.99

sigmaleader 0.02
sigmagap 0.1
sigmaerror 0.1
jerkmax 3.0

epsilonacc 1.0
taccmax 1.2
Mflatness 2.0
Mbegin 0.7

maxvehpreview 0.0
vehdynamics 0.0

Table A.5: Final simulation parameters determined by the expert-based method.
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Algorithm 1 Parallel Optimization
Algorithm A.1

1: N ← Number of minimas to inspect
2: θ ← Threshold of minima distance
3: γ ← Step width
4: results← Current results
5: lp← Queue of last N parameter sets
6: p← Propability of randomly mutating optimal parameters
7: Sort results in ascending order of their function value
8: psopt ← None
9: for psn = ps1, ps2, . . . in results do

10: if psn is not within range of θ regarding lp then:
11: psopt ← psn

12: break
13: end if
14: end for
15: if psopt is None then:
16: psopt ← current global optimum (first element in results)
17: end if
18: choice← random choice with probalility p
19: if choice is 1 then:
20: for pn = p1, p2, . . . in list of optimzable parameters do
21: if enough information is available to determine a gradient then:
22: popt ← popt with pn changed γ in gradient direction
23: else:
24: psopt ← random mutation of psopt

25: end if
26: end for
27: else:
28: psopt ← random mutation of psopt

29: end if
30: psopt ← Check bound of psopt

31: Append psopt to list of next executed simulation
32: Repeat until convergence
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Characteristic Description
Tau Time headway between

two following vehicles
Length Length of the vehicle
Width Width of the vehicle
Height Height of the vehicle

Minimal Gap Minimal gap to a leading
vehicle as 5 % percentile

Mean Gap Mean gap to a leading vehicle
Deviation Gap Standard deviation of

the gap for a trajectory
Minimal TTC Minimal TTC as 5 % percentile

Mean TTC Mean TTC for a trajectory
Minimal velocity Minimal velocity as 5 % percentile
Maximal velocity Maximal velocity as 95 % percentile

Mean velocity Mean velocity for a trajectory
Deviation velocity Standard deviation of the

velocity for a trajectory
Maximal acceleration Maximum accelera-

tion as 95 % percentile
Desried speed Desired velocity (only ob-

servabel if no vehicle ahead)
Minimal desried speed Minimum desired

speed as 5 % percentile
Maximal desried speed Maximum desired speed

as 95 % percentile
Count lane changes Number of lane changes

for this trajectory
Maximal DRAC Maximum DRAC as 95 % percentile

Comfort Standard deviation of acceleration
vs. mean velocity σa

v
[KGH06]

Lane percentages the used lane percent-
ages (main or passing lane)

Table A.6: Characteristics used for trajectory clustering.
A leading vehicle is assumend when the gap is less than
120 m [HA14].
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Threshold Prominence Precision Recall
0.25 0.25 32.14% 93.95%
0.5 0.25 75.32% 89.19%
0.75 0.25 96.78% 66.32%
0.25 0.5 49.28% 92.47%
0.5 0.5 93.81% 88.84%
0.75 0.5 97.11% 63.67%
0.25 0.75 51.86% 70.59%
0.5 0.75 94.53% 68.17%
0.75 0.75 97.16% 61.43%

Table A.7: Experimental results for the CCLCI with the given thresholds.

3.1% - vehsPerHour

21.0% - speedFactorMue

4.3% - accel

22.0% - maxSpeed
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0.2% - width

26.3% - speedFactorSigma

2.2% - sigma

0.5% - actionStepLength

16.6% - tau

1.5% - minGap

2.4% - length

TTC Distribution

Figure A.1: Parameter impact on the TTC distribution CT T C .
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2.5% - vehsPerHour

49.8% - speedFactorMue

13.4% - accel

12.9% - maxSpeed

0.0% - height

0.3% - width

9.5% - speedFactorSigma

1.8% - sigma

0.5% - actionStepLength

6.5% - tau

1.2% - minGap

1.7% - length

DRAC Distribution

Figure A.2: Parameter impact on the DRAC distribution CDRAC .
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17.9% - speedFactorMue

10.8% - accel

1.6% - maxSpeed

0.0% - height
0.5% - width

9.6% - speedFactorSigma

2.5% - sigma

1.9% - actionStepLength
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1.5% - length

Time Headway Distribution

Figure A.3: Parameter impact on the TH distribution CT H .
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5.5% - vehsPerHour

26.7% - speedFactorMue

6.2% - accel

24.5% - maxSpeed

0.0% - height
0.7% - width

15.8% - speedFactorSigma

2.1% - sigma

2.2% - actionStepLength

13.0% - tau

1.3% - minGap

1.9% - length

Lane Distribution

Figure A.4: Parameter impact on the lane distribution CLD.
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27.1% - vehsPerHour

17.4% - speedFactorMue

12.4% - accel

11.0% - maxSpeed

0.0% - height
0.5% - width

15.7% - speedFactorSigma

0.9% - sigma
1.0% - actionStepLength

11.8% - tau

0.8% - minGap

1.3% - length

Count Lane Changes

Figure A.5: Parameter impact on the number of lane changes C|LC|.
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Figure A.6: Visualization of each characteristic (TTC, DRAC, and TH) as a his-
togram from each parameterization method.
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Figure A.7: The total number of found scenes from the simulation.
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Figure A.8: The total number of generated scenes from the simulation.
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Figure A.9: Jaccard-Index of scenes occurring in reality and simulation. The time
is specified in hours. The left plot shows the Jaccard-Index over the simulation time
and the right plot shows the Jaccard-Index after 10:00:00 hours.
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