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DLR, Institut fir Aeroelastik, Goéttingen

Systemidentifikation parametervarianter aeroelastischer Systeme mit echtzeitfahiger
Operationeller Modalanalyse

Southern Denmark University (Syddansk Universitet)

Fliegende Flugzeuge konnen als lineare parametervariante aeroelastische Systeme modelliert
werden. Die Wechselwirkung zwischen aerodynamischen, Tragheits- und elastischen Kréften
beeinflusst ihre modalen Parameter in Abhangigkeit von Flughéhe und -geschwindigkeit. Bei
kritischen Luftstrombedingungen kann Flattern auftreten, eine dynamische Instabilitat der
Struktur, die sich als selbstinduzierte Schwingungen manifestiert, wenn der Dampfungsgrad
eines Schwingungsform negativ wird. Die Entwicklung und Erprobung neuer oder modifizierter
Flugzeuge erfordert die Bewertung der Flatterstabilitét. Flugschwingungsversuche bleiben eine
gefahrliche Tatigkeit, da eine ausreichende aeroelastische Stabilitat innerhalb des gesamten
Flugbereichs bis zur maximalen H6he und Geschwindigkeit im Flug nachgewiesen werden muss.

Um die Sicherheit und die Effizienz von Flugschwingungsversuchen zu erhdhen, kann eine
permanente Online-Schwingungsuberwachung durchgefiihrt werden. Damit kann die
Entwicklung der Eigenfrequenz und des Dampfungsgrades im Laufe der Zeit oder als Funktion
von Flugvariablen verfolgt werden, um den Testingenieur Uber jede plétzliche Reduzierung der
Dampfung informieren zu kénnen.

Die Schwingungsiiberwachung erfolgt mittels operationeller Modalanalyse aus der durch
Turbulenz erregter Beschleunigungsantwort der Struktur. Weitere Erregungsarten durch
Mandver, Kontrollflachen und den Nachlauf anderer Flugzeuge werden auch bericksichtigt.

Die Theorie linear aeroelastischer parametervarianter Systeme und die Methoden zur
Spektraldichteschatzung, Systemidentifikation und Modenverfolgung, die zur Analyse solcher
Systeme erforderlich sind, werden in dieser Dissertation weiterentwickelt. Die theoretischen
Werkzeuge wurden in eine echtzeitfahige Software fir Schwingungsiiberwachung implementiert
und ihr Einsatz in Windkanal- und Flugschwingungsversuche demonstriert.

Zusammenfassend lasst sich sagen, dass modale Parameter von Flugzeugen, die schlie3lich
durch Luftturbulenzen angeregt werden, erfolgreich geschatzt und verfolgt werden kénnen. Die
Auswertung erfolgt mithilfe der Output-Only Systemidentifikation fir verschiedene Arten von
Erregungen und Flugbedingungen. Diese Echtzeit-Modalanalyse hat das Potenzial, die
Sicherheit der Experimente zu erhdhen, indem sie eine objektive Messung der Flatterstabilitat
liefert. Die permanente Schatzung der modalen Parameter ermdglicht eine effizientere Fiihrung
von Flugschwingungsversuche.
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System Identification of Parameter-Varying Aeroelastic Systems using Real-Time
Operational Modal Analysis

Southern Denmark University (Syddansk Universitet)

Aircraft in flight can be modeled as linear parameter-varying aeroelastic systems. The
interaction between aerodynamic, inertial and elastic forces influences their modal parameters
depending on flight altitude and speed. At critical airflow conditions, flutter can occur, a dynamic
instability of the airframe that manifests as self-induced oscillations when the damping ratio of
a mode of vibration becomes negative. The development and testing of new or modified aircraft
require the evaluation of the flutter margin. Flight vibration testing remains a hazardous activity
since adequate aeroelastic stability must be demonstrated in flight within the whole flight
envelope up to maximum altitude and speed.

In order to enhance the safety and efficiency of flight vibration testing, permanent in-flight
online vibration monitoring can be performed by tracking the evolution of the eigenfrequency
and damping ratio over time or flight variables such as speed and altitude in order to inform the
test engineer about any sudden damping reduction.

Vibration monitoring is performed by means of operational modal analysis from the
acceleration response due to air turbulence. Maneuvers, control surface deployment and
excitation by the wake of other aircraft are also considered.

The thesis developed further the theory of aeroelastic parameter-varying systems and the
spectral estimation, system identification and mode tracking techniques required to analyze
such systems. The theoretical tools have been implemented into a real-time vibration
monitoring application and demonstrated in wind tunnel tests and during flight vibration testing.

In conclusion, modal parameters of aircraft excited by air turbulence can be estimated and
tracked successfully by output-only system identification methods for different types of
excitation and flight conditions. Real-time modal analysis has the potential to enhance safety
by providing the test engineers with objective measures of the flutter margin. It can improve
efficiency by allowing continuous modal parameter estimation while experiments are ongoing.
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Preface

After I have worked for some time in the aeronautic industry, the opportunity to
conduct research on structural dynamics arose. This field of engineering attracted me
because of its beautiful applications of mathematics to real-world problems.

Carpe diem, I thought, and joined the Institute of Aeroelasticity at DLR.

The initiation into aeroelastic testing occurred a few months later with my first mea-
surement in the transonic wind tunnel in Gottingen: the prototype program I developed
for online vibration monitoring performed successfully its first operational modal analysis
in parallel with other concurrent experiments.

Over the years, this software expanded greatly in scope, complexity and capabilities.
Crucially, it was deployed during the flight vibration testing on the HALO research aircraft
to collect data under variable excitation and flight conditions. These measurements raised
the first questions about time-varying system dynamics. A year later, the permanent modal
parameter tracking of a wing with nacelle model was performed at the high-speed wind
tunnel in Amsterdam while approaching the stability boundary. The experiment required
accurate damping estimates of a parameter-varying system using output-only methods.

At this point an interesting research subject began to coalesce: the examination of
time-varying dynamics, the role of rate and amplitude of parameter variation and their
influence on operational modal analysis of aeroelastic systems. Some time thereafter this

topic was formalized and proposed to my academic supervisor.

The thesis attains from the experience acquired by performing modal analysis on several
wind tunnel models, rotor blades, ground and flight vibration tests of aircraft. Experimental
activities are complemented by equally extensive theoretical developments. The thesis is
enriched by exchanges and discussions with members of the modal analysis community
and beyond. The topic is vast, but presented with balance between depth and breadth in
order to make it both accessible and complete. It has been written during hard times and

a lot of heart has been put into each of its formulae, paragraphs and figures.

I hope that You, the reader, will find it informative and interesting.

Gottingen, December 2021

Goran Jelicié
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Abstract

Aircraft in flight can be modeled as linear parameter-varying aeroelastic systems.
The interaction between aerodynamic, inertial and elastic forces influences their modal
parameters depending on flight altitude and speed. Under critical airflow conditions, flutter
can occur, a dynamic instability of the airframe that manifests as self-induced oscillations
when the damping ratio of a mode of vibration becomes negative. The development and
testing of new or modified aircraft require the evaluation of the flutter margin. Flight
vibration testing remains a hazardous activity since adequate aeroelastic stability must be
demonstrated in flight within the whole flight envelope up to maximum altitude and speed.

In order to enhance the safety and efficiency of flight vibration testing, permanent
in-flight online vibration monitoring can be performed by tracking the evolution of the
eigenfrequency and damping ratio over time or flight variables such as speed and altitude
in order to inform the test engineer about any sudden damping reduction.

Vibration monitoring is performed by means of operational modal analysis from the
acceleration response due to air turbulence. Maneuvers, control surface deployment and
excitation by the wake of other aircraft are also considered.

The thesis developed further the theory of aeroelastic parameter-varying systems and
the spectral estimation, system identification and mode tracking techniques required to
analyze such systems. The theoretical tools have been implemented into a real-time
vibration monitoring application and demonstrated in wind tunnel tests and during flight
vibration testing.

In conclusion, modal parameters of aircraft excited by air turbulence can be estimated
and tracked successfully by output-only system identification methods for different types
of excitation and flight conditions. Real-time modal analysis has the potential to enhance
safety by providing the test engineers with objective measures of the flutter margin. It can
improve efficiency by allowing continuous modal parameter estimation while experiments

are ongoing.






Resumé

Fly under flyvning kan modelleres som linesere parametervarierende aeroelastiske
systemer. Samspillet mellem aerodynamiske, inerti og elastiske kreefter pavirker deres
modale parametre afhsengigt af flyvehgjde og hastighed. Ved kritiske luftstrgmsforhold
kan der forekomme flutter, som er en dynamisk ustabilitet af flystellet, der viser sig som
selv-inducerede svingninger, nar deempningsforholdet for en svingningsform bliver negativt.
Udvikling og afprgvning af nye eller modificerede fly kraever evaluering af flutter graensen.
Vibrationsforsgg af fly forbliver en farlig aktivitet, da tilstrackkelig aeroelastisk stabilitet
skal pavises under flyvningen inden for hele flight envelope op til maksimal hgjde og
hastighed.

For at gge sikkerheden og effektiviteten af flyvibrationstestning kan permanent on-
lineovervagning under flyvning udfgres ved at spore udviklingen af egenfrekvensen og
dempningsforholdet over tid eller flyvevariabler sasom hastighed og hgjde for at informere
testingenigren om enhver pludselig deempningsreduktion.

Vibrationsovervagning udferes ved hjeelp af operationel modal analyse fra accelerations-
responset forarsaget af luftens turbulens. Mangvrer, indseettelse af kontroloverflader og
excitation fra det turbulente flow forarsaget af andre fly tages ogsai betragtning.

Denne afhandling videreudvikler teorien om aeroelastiske parametervarierende systemer
og teknikker som spektralestimering, systemidentifikation og sporing af svingningsformer,
der er ngdvendige for at analysere dem. De teoretiske veerktgjer implementeres i en
vibrationsovervagningsapplikation i realtid og demonstreres i vindtunneltest og under
flyvevibrationstest.

Modale parametre for fly exciteret af luftens turbulens kan estimeres og spores med
succes ved hjeelp af output-only systemidentifikationsmetoder for forskellige typer excitation
og flyveforhold. Modal analyse i realtid har potentialet til at gge sikkerheden ved at give
testingenigrerne objektive mal for flutter graensen. Det kan forbedre effektiviteten ved at

tillade kontinuerlig modal parameterestimering imens eksperimenter er i gang.
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Nomenclature

Lowercase Latin letters

b

Cref

f

f/\(fna C)
fn

fs

i

j

k

n
o(*)
p

Semi-chord

Airfoil reference chord
Frequency

Eigenvalue funtion
Eigenfrequency

Sample rate

Index or imaginary unit
Index

Index or reduced frequency
Index

Little-o (asymptotic) notation
Index or system pole
Parameters vector
Generalized (modal) coordinates
Dynamic pressure
Laplace-domain variable
Time

System input

System state

System output

Aerodynamic lag states

Uppercase Latin letters

State matrix

Input matrix

Output matrix

Feed-through matrix or damping matrix
Descriptor matrix

Single-sided power spectral density

Frequency response function of time-invariant systems
Impulse response function of time-varying systems
Stiffness matrix

Mass matrix or generic matrix

Mach number

Number of degrees of freedom

Number of inputs

Number of states or number of CPSD columns
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Ny Number of outputs or number of CPSD rows
o() Big-O (asymptotic) notation

P(t) Floquet-Lyapunov transformation matrix
Q(k) Aerodynamic Influence Coefficients (AIC) matrix
R Residue matrix associated to k-th pole

S(w) Double-sided power spectral density

S Subset of indices

S Linear system

T Duration or period or absolute temperature
U Left-singular vectors

A% Right-singular vectors

% Air speed

X(t) Fundamental matrix of a time-varying system

Lowercase Greek letters

@ Angle of attack
Aerodynamic lag state
Dirac delta

Error or tolerance

S

Damping ratio

Eigenvalue

Mean value

Air density

Variance

Time-domain integration variable or time constant
Right eigenvector

Left eigenvector or mode shape

£ €9 3 9T T >~ 0

Circular frequency

Fundamental harmonic

&
S

Wn, Circular eigenfrequency

Uppercase Greek letters

A Diagonal eigenvalue matrix

b)) Singular values (diagonal matrix)
®(-,) State transition matrix

v Eigenvector matrix

O, Mode similarity metric
Abbreviations

APSD Autopower spectral density

CFD Computational fluid dynamics

CPSD Cross-power spectral density
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DAQ Data acquisition system

DFT Discrete Fourier transform

DLM Doublet lattice method

DLR Deutsches Zentrum fiir Luft- und Raumfahrt (German Aerospace Center)
DNW German-Dutch wind tunnels

DoF Degrees of freedom

EMA Experimental modal analysis

FEM Finite element method

FFT Fast Fourier transform

FRF Frequency response function

FVT Flight vibration test

AIC Aerodynamic influence coefficients matrix
GAF Generalized aerodynamic forces

GVT Ground vibration test

HALO High altitude and long range resarch aircraft
LPV Linear parameter-varying system

LSCF Least-squares complex frequency

LTI Linear time-invariant system

LTP Linear time-periodic system

LTV Linear time-varying system

MTM Multi-taper method

ODE Ordinary differential equation

OLM OnLine Monitoring software

OMA Operational modal analysis

PSD Power spectral density

SMT Segmented multi-taper method

SSI Stochastic subspace identification

STM State transition matrix

TWG Transonic wind tunnel Gottingen

WMP Welch’s modified periodogram

Other symbols

(t) Variable is explicitly time-varying
(t) Transformed variable due to coordinate change

Estimated variable

0

()

()

()(f) Transformed variable in frequency-domain

()

() Total quantity (in the context of thermodynamics)
()

o0 Free-stream quantity (in the context of aerodynamics)






Notation

The conventions adopted for the notation in this thesis are listed here. Consistency is
a virtue, but there are well-known equations that use symbols of such wide adoption that
the rules listed below will be broken. Nevertheless, the symbol in question will be clearly

defined in the text next to the equation.

Notation. Particular notation conventions are highlighted in a boz like this. Sometimes
an exception is required in order to be consistent with the established notation in literature

or for elegance. Notation changes are clearly stated every time.

Linear algebra

e Scalars are typeset with normal font weight, e.g. «, P.
Column vectors are denoted by lowercase bold letters, e.g. x, v.
Row vectors are denoted as transposed column vectors, e.g. 97, b

Matrices are denoted by uppercase bold letters, e.g. A, H.

e Square brackets denote matrices and the concatenation of scalars, vectors or matrices,
for example M £ [v1,Va,...,vy]. A matrix that is assembled from other matrices

can be denoted explicitly by [M], for example [M] = [0 I].

e Curly brackets denote column vectors, e.g. a = {ag, a1 -, an}.
Vectorization is denoted by {M} = vec(M).

e Diagonalization of a vector v is denoted by diag(v).
The diagonal of matrix M is denoted by diag(M).
A block diagonal matrix is constructed by diag(Mj, Ms, ..., Ms).

e The zero matrix is 0, the identity matrix is I. They have implicitly the correct size.

e The Moore-Penrose pseudoinverse is denoted by a superscripted plus-sign.
Let be CV, A e CV*M and x € CM, then b= Ax = x = Atb.

Indexing

e The subscripts of scalars designate:

— an element of a set a € S.

— an entry of a vector or matrix ay = alk].
e The subscripts of vectors designate:

— a particular quantity where the subscript distinguishes it from another related

symbol, e.g. x5, / x;: homogeneous vs inhomogeneous solutions.
— the k-th element vy, of a set of vectors V.= {vy---vp, }.

— a particular entry of a vector, e.g. vo is v = Vo = Vo[k]
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e The subscripts of matrices designate:

the scalar entry (4, j) of a matrix M: e.g. M;; = M[i, j| = M;;.
— the diagonal element of a diagonal matrix. For example, if D = diag(v), then

the k-th diagonal element is Dy = Dy = v[k] = vy (a scalar).

a submatrix of an assembled matrix. For example, the submatrix (2,1) of
M] =[A, B; C, D] is [M][2,1] = [M]2; = C.

— the k-th element of a set of matrices K= {M; --- My, } is M.

— the columns of a matrix when said matrix does not belong to a set: M; = M|, i]

— the rows and columns of a matrix: Ma.31.3 = M[2:3,1: 3]

e Let M € CN*M he a matrix and define the selector vectors for the rows and columns
e;={1,---,0} NV e ={0,1,---, 0} € NV and so forth. The i-th row of M is
el M. The j-th column M is Me;. Entry (i,5) of M is M;; = el Me;.

Sets

e Blackboard bold capital letters denote sets. The symbols N, Z, R and C denote
respectively natural numbers, integers, real and complex numbers. The symbols I, J

and S are sets of indices (integers).

Summations

e The symbol S denotes the indices of sums. For example, let a = {2,3,5,7,11}, and
define a subset S = {1,3,5}, then ), qar = a1 +a3 +a5 =245+ 11.

e Summations over all elements of a set are denoted as ZnGZ ap = :iofoo a,

e Implicit summations are over all elements. For example, let ay, € a; be the n-th
term of vector a; € C¢ (where the subscript k distinguishes it from a similar

quantity, say a;), then >  a; = ago+ap1 + -+ apn, = anio agn

Matrix decompositions

e The eigendecomposition of a matrix is denoted with M % AW where A is the
diagonal matrix of eigenvalues and W are the eigenvectors. If clear from context, the
operator %€ is omitted. The subscript k£ denotes the k-th eigenvalue Ay and the k-th
column of the eigenvector matrix Wy. Sometimes the k-th eigenpair is denoted by
Y, and Ag.

e The singular value decomposition of a matrix M € C"™*™ is denoted by M = UXV7’
where U € C™*™ is a complex unitary matrix of left singular vectors, 3 € RI™™™ is
the diagonal matrix of non-negative singular values and V € C™*™ is the unitary
matrix of right singular vectors. If clear from context, the operator 2 is omitted. The
subscript k denotes the k-th singular value 3, the k-th column of the left singular
vectors Uy and the k-th row of the right singular vectors Vf .
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Transforms

e The imaginary unit is denoted by ¢. The letter j does not denote the imaginary unit.

When they are typeset as subscripts, they are integer indices ¢, ) € Z.
e The Fourier transform is non-unitary for convenience of notation:
+00

F)} = flw) = f(t)e ™ dt

+o00 .
FUi@ =102 o [ et

The transformation is unitary when the factor of F and F ' is 1/+/2m.

e The Laplace variable is s = 0 + iw where o,w € R. The symbol s; denotes a complex

frequency from a set k € S.

e The Laplace transform:

LU 2 )= [ e e
is denoted by:

f(s) = L{f(®)} (s) — [
FO=L7{f(s)} 1) = [f(s)

Other

e The colon : is used for creating vectors with consecutive elements, for example

3:6=1{3,4,5,6}or6:—1:3=1{6,5,4,3}.

e The matrix exponential is: expM = eM = > o LM”. Tt is stated clearly when

exp(M) denotes the scalar exponential of the matrix entries exp(M;;).

e The eigenvector function fy maps the eigenfrequency f, [Hz] and damping ratio ¢

[adim] onto the complex plane A [rad/s]:

H(fn, ) — X A=2xnf, (—C +iy/1 — {2) [rad/s]






1 Introduction

The influence of aerodynamics on aircraft in flight can be observed in the variation
of stability and modal parameters depending on airflow variables such as flight altitude
and wind speed. The structure’s modal parameters — eigenfrequencies, damping ratios and
normal modes — describe how it vibrates and responds to external forces. Aeroelasticity
researches the interaction between inertial, elastic and aerodynamic forces in structures
immersed in a fluid flow. It encompasses the study of phenomena such as divergence,
control reversal, flutter, gust response and maneuver loads. While the first two are static,
the others are dynamic in nature. The multidisciplinary character of aeroelasticity is

illustrated well by Collar’s triangle in figure 1.1.

Inertial forces stability and control Aerodynamic forces
dynamics fluid dynamics

AEROELASTICITY
forced response
flutter

Elastic forces
structural mechanics

FI1GURE 1.1: Collar’s aeroelastic triangle showing the major disciplines in aeroelasticity.

Vibrating structures exchange permanently potential and kinetic energy due to the
work performed by elastic and inertial forces. Part of the total energy is dissipated as heat
by the internal or external influence of damping. In the absence of any outside excitation,
the system is eventually brought to rest. Even with ideal non-dissipative materials, the
interaction with the airflow modifies this energy exchange mechanism and introduces
additional damping. However, aeroelastic systems at critical airflow conditions may instead
absorb energy from the stream and become unstable, leading to catastrophic structural
failure — the flutter phenomenon. Flutter is a dynamic aeroelastic instability that results in
a self-excited oscillation; it is not to be confused with resonance, where the system response
amplitude increases when the excitation has a frequency component in the vicinity of an
eigenfrequency. Aeroelastic stability is an essential design concern in the development of
new aircraft or modification of existing ones and must be demonstrated in flight. The
analytical and numerical aeroelastic models for the determination of the flutter boundary
are complemented by flight vibration tests. In this regard the state-of-the-art consists
of estimating the damping ratio of critical modes by control surface excitation during
stabilized level flight using system identification techniques. The procedure is repeated for
all points of interest within the flight envelope by holding the altitude constant and by

carefully increasing the speed in small steps and observing the damping trend.
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System identification is the study of statistical methods that analyze the response of an
unknown physical process induced by some excitation in order to construct a parametric
representation of its behavior. The resulting mathematical models provide a simplified
description of complex dynamic systems in the time or frequency domains. System
identification is employed in control applications, to predict the response to arbitrary input
signals, to validate numerical models, to quantify structural nonlinearities and to gain
further physical insight into a dynamic system. It is performed in the input-output or
output-only frameworks, depending on whether the excitation signals are available or not.
The experimenter selects a mathematical model to represent the physical process, after
which the identification method fits the model structure to acquired data by tuning its
parameters so that the difference between physical system and mathematical representation

is low; the concept is illustrated in figure 1.2.

Operational modal analysis (OMA) is a branch of system identification that focuses
on modeling an unknown dynamic process from the examination of its measured response
during operation or in the presence of unknown or unmeasurable excitation. Conversely,
when the input is known, identification is performed within the experimental modal analysis
(EMA) framework. OMA has many applications in engineering, such as permanent non-
invasive structural health monitoring and damage detection of bridges, wind turbines and
historical buildings, or vibration monitoring of machinery and vehicles during operation,
for instance engines and aircraft. The OMA methods estimate the normal modes and
the associated eigenfrequency and damping ratio with a confidence that depends on the
signal-to-noise ratio, the presence of errors, extraneous signals, deviations from assumptions
and so forth. An example of operational modal analysis performed on a wing model is

illustrated in figures 1.3 and 1.4.

The continuous estimation of modal parameters from the acceleration response to
atmospheric turbulence while the flight vibration test is ongoing can save time and increase
safety by providing permanently an objective measure of aeroelastic stability to the flight
test engineer or pilot; a similar function is performed during aeroelastic testing in wind
tunnels. Real-time system identification applied to parameter-varying aeroelastic systems

is therefore a research topic attracting great interest and clear demand from the industry.

input noise output noise
measured or Physical system measured
unknown input dynamic process output
| Mathematical model estimated modeling
" system identification output error

FIGURE 1.2: System identification concept: an unknown dynamic process responds to some
excitation signals in the presence of noise. The model’s structure is selected based on first
principles. The chosen identification technique estimates the values of the model’s parameters
in the input-output or output-only frameworks. The model is validated by assessing how it
describes the physical system in the time or frequency domains.
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F1cURE 1.3: Operational modal analysis procedure: example with a swept wing modeled by
shell elements. Left plot: geometry (wire-frame) and accelerometers (arrows). Middle plot:
random response due to unknown turbulent excitation. Right plot: power spectral density of
measured responses and six identified eigenfrequencies (denoted by numbers).

»

Mode 1: 1.06 Hz 10.2% Mode 2: 4.82 Hz 4.2% Mode 3: 8.19 Hz 8.3%

First bending Second bending First torsion

«Q
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-

Mode 4: 12.5 Hz 2.3% Mode 5: 18.8 Hz 1.6% Mode 6: 24.5 Hz 2.1%

Third bending Second torsion Combined bending and torsion

FIGURE 1.4: Operational modal analysis results: the first six eigenmodes (also known as modes
of vibration or normal modes) and the associated eigenfrequency (in Hertz) and damping
ratio (in percent) as reconstructed only from the measured response. The structural model is
undamped, but aeroelastic effects contribute significantly to the system’s damping, in particular
in the lowest modes. The eigenmodes are labeled according to the predominant vibration type
and number of nodes.

The topic of this thesis is the application of operational modal analysis to parameter-
varying aeroelastic systems in order to determine their modal parameters as they vary due
to the influence of external airflow variables. Physical dynamic processes are in general
nonlinear and time-varying, nevertheless important real-world applications and engineering
problems can still be described adequately and efficiently by linear time-invariant models.
However, a rapid change of flow variables introduces dynamic effects that invalidate some
of the hypotheses of spectral estimation and system identification, leading to results that
may not seem reasonable. In order to address this issue, a theoretical foundation of
time-varying dynamics, followed by spectral estimation, system identification and mode
tracking methods, is researched to produce a parametric representation of parameter-
varying aeroelastic systems. This knowledge is then applied to modal analysis to determine
the evolution of the system’s parameters as function of airflow variables. Lastly, the
procedure is deployed in aeroelastic experiments to monitor a vibration test in real-time

using output-only methods.
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1.1 Context of the present study

Operational modal analysis has seen important developments and engineering applications
over the last two decades.

The methods of subspace identification and least-squares polynomial fraction models
[GUILLAUME ET AL., 1999; VAN OVERSCHEE AND DE MOOR, 1996; VERHAEGEN AND
DEWILDE, 1992] have evolved and found widespread use in the modal analysis of structures.
Modal parameter estimation for online monitoring has been addressed by [VERBOVEN
ET AL., 2004] using an input-output iterative frequency-domain rational function estimator
that models transient phenomena in the data. The research in [PEETERS ET AL., 2006]
and [MEVEL ET AL., 2006] compared the modal results obtained from different estimators
using turbulence and artificial sweep excitation; the authors note that in this type of
measurements short records and the variance of the estimated damping are challenging,
but output-only system identification is still viable and useful. [BASSEVILLE ET AL., 2007]
discuss the in-flight vibration monitoring from the point of view of identification versus
detection algorithms; the latter have a shorter reaction time compared to the former, but
deliver less accurate estimates. [BRENNER ET AL., 1997] review the system identification,
excitation devices and flutter prediction techniques applied to flight vibration testing at
NASA Dryden. The authors discuss how time-varying and transient dynamics impact
negatively the spectral and damping estimates and describe the adopted identification
procedure to counter those effects. The paper from [MORELLI AND KLEIN, 2005] presents
a historical overview of the research conducted at NASA Langley on system identification
applied to aircraft. Information about ground vibration testing of large airplanes conducted
at DLR and ONERA in Europe is found respectively in [BOSWALD ET AL., 2006; GOVERS
ET AL., 2014] and in [GICLAIS ET AL., 2016; STEPHAN ET AL., 2015]; several aspects of the
experimental modal analysis procedures described in the aforementioned references can be
adapted to flight vibration testing. In [VAN WINGERDEN ET AL., 2010] the parameters of a
flutter model are estimated in closed-loop in an input-output framework. [LATAIRE, 2011]
developed the identification of slowly-varying systems by means of multi-sine excitation
in conjunction with an estimator that models the parameter variation using polynomials.
[ERTVELDT ET AL., 2014] applied the time-varying nonlinear least-squares estimator
from [LATAIRE AND PINTELON, 2010] to a slowly-varying wind tunnel model with known
artificial excitation in order to determine the system’s transfer function and predict the
onset of flutter. [HOUTZAGER ET AL., 2012] apply a recursive predictor-based subspace
identification method on a wind tunnel model to estimate uncertain closed-loop parameters;
the technique is applicable to slowly-varying systems for modal parameter tracking and
suitable for online flutter detection. Subspace identification is popular in operational
modal analysis with applications in flight testing [DE COCK ET AL., 2006; SCHWOCHOW
AND ZOGER, 2013]. Recently, [TANG ET AL., 2017] developed a two-step technique for
identifying reduced-order aeroelastic models from test data by combining frequency-domain
and subspace identification. Flutter predictions methods are assessed in [ITOVNOVICH ET AL.,
2018] from the point of view of system identification; the authors conclude that OMA
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applied to aircraft excited by atmospheric turbulence is accurate and cost-effective for this
purpose. Since continuous monitoring produces large amounts of data, system identification
methods are frequently paired with increasingly sophisticated mode tracking algorithms,
particularly in structural health and vibration monitoring applications [BEAVERSTOCK
ET AL., 2015; LUSPAY ET AL., 2018; MARRONGELLI AND GENTILE, 2019; NEU ET AL.,
2017; YAGHOUBI ET AL., 2018].

For time-varying systems, strictly speaking there is no “transfer function” describing
a bijective correspondence between inputs and outputs like for time-invariant systems,
but there are still attempts to transpose LTI concepts onto the LTV case [WERELEY
AND HALL, 1990; ZADEH, 1950]. Likewise, the notion of “eigenvalues” is generally not
helpful or not well-defined [RucH, 1996] and there exist different formulations, for instance
in [KAMEN, 1988; Liu, 1999; Wu, 1980]. Modal analysis is thus often performed with
the assumption of a slowly-varying system, i.e. the parameter variation is such that it
does not modify stability or introduce additional dynamic effects. This is a necessary
assumption when ensemble identification (repeated system realizations with the same
variation) cannot be performed. However, to the best of the author’s knowledge, a measure
of “slow variation” is absent. In [GAO ET AL., 2018] and the references therein the authors
provide theorems for verifying stability directly from the system’s state matrix and its
derivative and authors summarize that time-varying systems may temporarily enter an
unstable state, but maintain global stability. An output-only time-domain extension of
the maximume-likelihood frequency-domain rational function estimator that fits a bilinear
time-frequency distribution is developed in [ZHOU ET AL., 2014]. [EUGENI ET AL., 2018]
presented the operational modal analysis of a launch vehicle, where large mass variations
over a short time occur and proposed a criterion for the applicability of output-only methods
for time-varying systems. Simulations support the concept of performing modal analysis
while the aircraft is slowly accelerating [JACQUIER AND AYME, 2018]. Gaussian process
models (from the family of auto-regressive methods) have found successful applications
in the operational modal analysis and structural health monitoring of time-varying wind
turbines [AVENDANO-VALENCIA ET AL., 2020]. Other methods that have recently entered
system identification are based on the dynamic mode decomposition. [ZHANG ET AL., 2017]
discuss its application to online identification of time-varying systems. In [BAI ET AL.,
2020] dynamic mode decomposition is coupled with compressed sensing to reconstruct a
larger system from limited input-output data. Several powerful time-varying identification
techniques for controller design are limited to low-order models, which is inadequate for
the intended use on aeroelastic systems. From the point of view of aeroelastic modeling,
[HuANG AND QIu, 2013] performed the flutter analysis of a variable-span wing. The
extension rate is modeled as a constant parameter and has a considerable effect on the
flutter speed, but the analysis is within the time-invariant framework. The aeroelastic
modeling in [KiM, 2019] is coupled with the dynamic eigenvalue decomposition to produce
reduced-order models. The method produces small parameter-varying aeroelastic models

and is applied in the time-invariant framework.
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1.1.1 Summary of state-of-the-art

Some of the key points from the literature research are summarized below:

e There exists clear demand in the industry for modal analysis for the assessment of the
vibration environment, validation and updating of numerical methods, monitoring of
operating conditions. In-flight analysis of aeroelastic stability is desirable for reducing

testing time and increasing safety.

e Artificial excitation has limited bandwidth and requires fly-by-wire control systems,
which are available on military and large civil aircraft, but absent in many light and
freight vehicles. Ambient excitation increases the number of application cases and

reduces costs because no additional equipment and devices are necessary.

e Since the atmospheric turbulence and acoustic excitation is unknown, the modal
parameters must be estimated in the output-only framework. Subspace identification
methods in time-domain are robust with respect to non-stationary excitation and are
common in flight testing. Frequency-domain rational function estimators perform
strongly in the input-output framework, but find applications in operational modal

analysis as well.

e The system’s modes of vibration must be tracked automatically over time or as
function of external variables in the presence of high variance of estimated parameters,

noise, errors or quickly-varying conditions.

e Ensemble identification must be employed for general time-varying systems by ac-
quiring several realizations with the same parameter variation, which is not feasible
for aircraft in flight. Time-varying systems whose parameters vary slowly can be

analyzed using time-invariant techniques.

e In the time-varying case, the definition of modal parameters is more complex than
for time-invariant systems. Furthermore, the influence of rate and amplitude of

parameter variation on system dynamics should be assessed.

e According to the bibliographic research, the theoretical modeling of the influence
of the variation rate and amplitude is lacking, therefore the assumption of “slowly-
varying system”, despite being necessary and adequate, remains quite vague. The
dynamic effects due to fast parameter variation and the limits of the slow variation

assumption necessitate more in-depth research.
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1.2 Objectives

Within the current research context, the thesis objective is formulated in a nutshell as:

The permanent, real-time modal parameter estimation of aircraft subject to varying flight

conditions from the acceleration response due to atmospheric turbulent excitation.

The thesis shall contribute to increased experimental data exploitation by continuous
system identification, to reduced testing time by performing in-flight vibration monitoring
and to higher levels of safety by providing permanently modal parameter estimates. This
proposition is supported by the research of time-varying system dynamics, the implemen-

tation of a modal analysis procedure and the application to aeroelastic experiments.

The thesis’ global goal is thus subdivided into three tasks:

1. Theoretical development: the linear time-varying systems theory and application to
parameter-varying aeroelastic systems are introduced in the first part. This task’s
objective is to develop a parametric frequency-domain representation of time-varying
systems. This will enable us to understand the effects of rate and amplitude of
parameter variation, to perform signal processing correctly and to interpret system

identification results.

2. Modal analysis procedure: development of the spectral estimation, system identifi-
cation and mode tracking methods for operational modal analysis of time-varying
systems for the application on wind tunnel models and aircraft. Spectral estimation
and system identification must be performed efficiently in the presence of noise,
nonstationary excitation and system parameter variation. A mode tracking algorithm
is to be developed for organizing modal data estimated from heterogeneous sources
and to determine the evolution of eigenfrequency and damping as functions of airflow

variables.

3. Application to aeroelastic experiments: real-time online operational modal analysis
during measurements. The vibration monitoring application is to be first tested in
a controlled simulated environment and then validated on experimental data from
wind tunnel models in open-loop conditions. The final objective is the deployment
during flight vibration testing to perform system identification of aircraft subject to

turbulent excitation.
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1.3 Main contributions

Several methodologies have been developed, refined or expanded in order to achieve the
global objective of the thesis. They will be described in detail in the corresponding chapters.
With regard to the three tasks in which this work is subdivided, the following contributions

are briefly presented:

1. The thesis develops the analytical frequency-domain representation of linear time-
varying systems to provide a quantitative interpretation of their dynamics. Exact
solutions are derived for linear and complex exponential parameter variations. The
influence of amplitude and rate of parameter variation is investigated providing new
insight into their role in the system response. Aeroelastic modeling is extended by
including time-dependency to study the influence of flight variables on its entries and
eigenvalues. Two criteria for quantifying the importance of parameter variation are
proposed to define when the system varies sufficiently slowly to allow a frozen-time
formulation. This research furthers the understanding of time-varying aeroelastic

Systems.

2. The thesis implements an efficient modal analysis procedure performing signal pro-
cessing, system identification and mode tracking into a software for the monitoring of
parameter-varying systems. The new segmented multi-taper method is proposed for
estimating the power spectral densities and spectrogram, showing better performance
for short records. The thesis contributes to multi-band processing for the stochastic
subspace identification (SSI) method and to clearer stabilization diagrams in the
least-squares complex frequency (LSCF) algorithm. An automated mode tracking
algorithm, capable of organizing heterogeneous modal data to determine the eigen-
frequency and damping evolution of tracked modes, is developed and tested. These

developments contribute to other modal analysis applications within the research

group.

3. The thesis validates the modal analysis procedure using a newly-developed simulation
method for time-varying systems based on state-space series expansions. Real-time
output-only modal analysis is demonstrated during flight vibration and wind tunnel
testing by the fully-featured vibration monitoring application coded within the scope
of this thesis. It attains from the experience collected by performing vibration testing
at DLR, DNW, ONERA and Airbus facilities. Tracking of aircraft eigenmodes
under varying flight and excitation conditions is demonstrated in-flight. Several
insights into nonstationary data, response spectra, identified modal parameters and
time-varying effects are provided. This experimental infrastructure supports other

research activities at the Institute of Aeroelasticity at DLR.
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1.4 Outline

The main content of the thesis is organized in chapters as follows:

Ch. 2 Linear time-varying systems theory: the chapter lays down the theoretical groundwork

Ch.

Ch.

Ch.

Ch.

Ch.

Ch.

by illustrating the time-varying, parameter-varying, periodic and time-invariant linear
systems. An important research item here is the frequency-domain representation
of the system response in order to characterize how parameter variation affects the
system’s dynamics. Various numerical methods are researched and compared. A

simplified analytical formulation is derived for extreme cases.

Aeroelastic systems modeling: the chapter describes the linearized theory used to
model the interaction between airflow and structure and the occurrence of flutter.
The system matrices are augmented to include the influence of aerodynamics. The

theoretical development is applied to characterize a time-varying aeroelastic system.

Spectral estimation: real signals are sampled, of limited duration and noisy. Since the
amount of data is finite, the experimenter must compromise between the achievable
frequency resolution and spectral variance reduction. The chapter describes estimation

techniques for random signals and time-varying systems responses.

System identification: the measured responses are analyzed to construct a parametric
description of the system. Established time-domain and frequency-domain methods
are detailed and implemented. The objective is the monitoring of the eigenfrequency,

damping ratio and mode shape of several modes of vibration.

Mode tracking: online monitoring of modal parameters requires automation to
organize results. To this end, the identified modes must be tracked over time or as
function of external parameters such as flight altitude and Mach speed. The chapter

describes the mode tracking strategy applied to continuous system identification.

Aeroelastic system simulation: simulated data of a parameter-varying aeroelastic
system is produced to assess the modal analysis procedure and investigate the effect

of speed of parameter variation on spectral estimation and system identification.

Ezxperimental results: the analytical and numerical developments presented in the
previous chapters are applied to flight vibration testing of a research aircraft. Several
excitation types and flight conditions are analyzed. The effectiveness of real-time

output-only system identification of aircraft excited by air turbulence is proved.

Each chapter begins with an abstract and ends with a short summary. Chapters 2 and 3

research task 1, chapters 4, 5 and 6 support task 2 and chapters 7 and 8 implement task 3.

Finally, the conclusions and future research are presented in the final chapter.






2 Linear time-varying systems

Abstract

The chapter introduces the mathematical tools required in the analysis of linear time-varying

(LTV) systems. A subset of this category are linear parameter-varying (LPV) systems, whose
characteristics are explicitly dependent on a set of external parameters and model aeroelastic
systems such as aircraft. The chapter begins with general concepts of linear systems theory and
refines its scope towards two important special cases: linear time-invariant (LTI) and linear periodic
(LTP) systems. The former provide the theoretical basis of many signal processing and system
identification methods. The latter have interesting properties that can be used to simplify the
treatment of general time-varying processes. In the final part numerical methods and simplified

general analytical solutions are presented.

Physical processes that are governed by differential equations can be described by
functions that map input signals onto output signals. This mapping may be expressed by

systems of coupled first-order ordinary differential equations f(-) in the form

x(t) = f(t,;x(t),u(t)) (2.1)

where t is the time variable, x(¢) the states and u(t) the system inputs. Depending on the
particular process, this input-output relationship may be linear or nonlinear. In this thesis
we focus exclusively on linear systems, i.e. the dynamic process modeled by equation (2.1)

has only a linear dependence on the state and input variables:

k k
Z],::O ak(t)%w(t) = ZkNiO bk(t)%u(t) (2.2)

where N, > N, so that the system is physically realizable. Under this assumption the
superposition principle simplifies considerably the solution of the resulting equations. The
most general case, where the coefficients ax(t) and bg(t) are functions of time, is used to
describe linear time-varying (LTV) systems. The particular case of constant coefficients a
and by models linear time-invariant (LTI) systems.

Linear systems have widespread use in the modeling of important engineering and
physical processes. Their popularity lies in the extremely broad range of applications
where they provide accurate predictions, for instance in structural dynamics, electronics,
biological processes, optics and acoustics. The detailed theoretical foundation of linear
systems can be found in works such as [OPPENHEIM ET AL., 1996] and [RuGH, 1996].
When the simplifying assumptions in the linear modeling of a physical process are not
adequate anymore, more complex models are employed. In this regard, nonlinear systems
for engineering applications are treated in [KHALIL, 1996] and [JORDAN AND SMITH, 2007].
Every so often we will be confronted with the limits of linear descriptions and mention

more accurate models.
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The main objective of this chapter is to introduce the analytical tools for the study
of time-varying systems, in particular for the application on modal analysis of aeroelastic
systems that are the topic of later parts of the thesis. The linear theory delineated here,
while having such generality that it is employed in different engineering fields, will be
applied solely to mechanical systems such as aircraft, wind turbines, rotor blades et cetera.
Aeroelastic modeling, in particular, will be described in detail in the next chapter.

Most readers with an engineering background know linear time-invariant systems well.
This chapter will familiarize them with the more complex time-varying case where many
of the usual LTI concepts such as transfer functions and eigenvalues may not be defined.
This is necessary in order to interpret correctly signal processing and system identification
results in later chapters. For instance, it will become apparent very early that the spectra
of the LTV system response present many features that may not be immediately associated
to a mode of vibration. A central assumption of many LTV models is that the system be
slowly-varying, i.e. that the additional dynamics induced by the variation of the system’s
characteristics can be neglected. This is often a necessity for signal processing and system
identification algorithms. In this regard it will be beneficial to characterize the regimes of
a time-varying systems in order to define what “slow” or “fast” really mean. One sub-goal
is therefore to explain the effects that parameter variation rate and amplitude have on the
system response. To this end, a quantitative description of time-varying effects and to
describe the response parametrically in frequency-domain will be provided.

Apart from the aforementioned sources, the linear systems theory is described with
contributions from various other reference, such as [DECARLO, 1989], [CHEN, 1999],
[ANTSAKLIS AND MICHEL, 2006] and [SHMALIY, 2007]. We shall proceed by expressing the
linear system (2.2) in the matrix state-space form because it is a convenient and compact
mathematical formulation for treating multi-input-multi-output (MIMO) systems. The

state-space form is widely adopted in control theory and system identification [LJUNG, 1999].

The chapter’s roadmap is as follows:
1. Linear time-varying theory, general characteristics and properties, mathematical
tools, transformations
2. Linear time-invariant systems: main properties and formulations

3. Linear periodic systems: decomposition, frequency-domain representation, influence

of rate of variation
4. Numerical methods for the solution and decomposition of LTV systems

5. Analytical solutions for the linear and complex exponential parameter variation
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2.1 Linear time-varying systems

The explicit state-space representation of continuous linear time-varying systems (LTV) in
time-domain (2.2) is given by the differential algebraic equations [SHMALIY, 2007]:

(2.3)
y(t) = C(t)x(t) + D(t)u(t)
where the symbols denote:
x(t) € CN= state vector A(t) € CNa*Ne  gtate matrix
u(t) € CN input vector B(t) € CNaxNu input matrix
y(t) € CNv output vector C(t) € CNv*Ne  output matrix
D(t) € CNo*Nu  feedthrough matrix
A linear system S can be conveniently written in a compact form as:
A(t) | B(t)
S: = [A(1),B(t),C(t),D(1)] (2.4)
C(t) | D(?)

This notation will be useful when applying transformations of the system matrices. Al-
ternatively, equation (2.3) can be rendered with the block diagram in figure 2.1. The
state-space model describes a linear dynamic system (2.2) with first-order ordinary differ-
ential equations relating the input, output and state variables. Examples include a rocket
expending its fuel as it ascends, a bridge with moving traffic, electrical circuits subject to
temperature change. The first equation in (2.3) is called state equation and constitutes the
feedback loop of the dynamic model; it is an inhomogeneous system of first-order ordinary
differential equations. The second equation in (2.3) is the output or measurement equation.
The input is also called excitation or driving force, while the output is also called response.
The states are the minimal set of variables that is able to express all process dynamics
at any given time; they are not necessarily physical quantities. The system matrices are
assumed to be continuous C! functions of time and therefore bounded. The input vector

can be simply a piece-wise continuous C° function.

SYSTEM FEESTHROUGH MATRIX
—

INPUT > e > —>y(e) quTeuT
(VAN N SIGNAL
INPUT OvTPUT
MATRIX MATRIX
STATE NATRIX

Fi1GURE 2.1: Block diagram of the state-space representation of a linear time-varying system.
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2.1.1 Linear parameter-varying systems

In the linear parameter-varying framework, the system matrices (and the coefficient of
the corresponding differential equation form (2.2)) are explicitly functions of a parameter
vector p € CMr:

x(t) = A(p)x(t) + B(p)u(t)

y(t) = C(p)x(t) + D(p)u(t)

The system’s characteristics depend thus solely on the values assumed by p, which may

(2.5)

be a scheduling parameter that varies arbitrarily or some function of time. Examples: a
pendulum with a variable rod length, the tuning of a radio or variable-gain amplifiers, a
structure that can change shape such as a robot arm. Relevant to this work are aeroelastic
systems, whose dynamic characteristics vary primarily with air speed and air density; they
will be introduced fully in the next chapter.
From now on, it is assumed that the parameters are continuous vector functions of time

p = f(t), therefore we can consider such a parameter-varying system (2.5) as a particular
kind of the LTV case:

x(t) = A(p(t))x(t) + B(p(t))u(t)

¥(t) = C(p(t)x(t) + D(p(H)u(t)

In order to fall purely within the LPV framework, the system matrices must depend solely

(2.6)

on the parameter path & = f(p) and be the same irrespective of a time scaling constant ¢
in p(ct)! (however, the response y(t) may still depend on p(t)). For instance, a variable
pendulum’s amplitude increases if its length is shortened quickly, whereas it changes little
if the length varies slowly.

In computations, the system is either constructed from a continuous function of the
parameters S = [A(p), B(p), C(p), D(p)] or is known on a discrete grid p[n], therefore
S = [A[n], B[n|,C[n], D[n]] (e.g. large linearized aeroelastic models). In the latter case,
the system matrices between known grid points are constructed by interpolation. This
aspect is important in the simulation of LTV systems and we shall come back to it in

chapter 7.

! For example, let us consider the simple harmonic oscillator with variable resonant frequency wy, (t):

Al = Lw%(t) é] {1: wn(t) = wn cos(wot)

2:  wp(t) = wo cos(wot)
In case 1 the system is LPV because the values assumed by wy (t) are always the same. In case 2 the system
is LTV because the magnitude of w, (t) depends on the period 27 /wo.

t € [0, 27 /wo] (2.7)
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2.1.2 Second-order systems

An important class of linear ordinary differential equations (2.2) are second-order models
that describe, for example, oscillating electrical or mechanical systems. A broad reference
for this topic, albeit limited to the time-invariant case, is [CHOPRA, 2019].

We shall focus on the mass-damping-stiffness models used commonly in mechanics, for
instance a mass connected to a spring and damper. The dynamic behavior of a structure

is described by Newton’s equation of motion:
M(t)q(t) + D(t)a(t) + K(t)a(t) = u(t) (2.8)

where the symbols denote

q(t) € RN¢ displacement M(t) € RNa*Ne  mass matrix
u(t) € RV excitation D(
(

t) € RNaxNa  damping matrix
K(1)

t) € RNaxNa  gtiffness matrix

and where Ny is the number of degrees of freedom. The corresponding state-space
representation is derived by defining the new state variable x(¢) = {q(¢), q(¢)} to be able

to reduce the equation order to one:

0 I 0
S=| -M'OK({) -M()D(t) | M~'(¢) x(t):{ggg} (2.9)

The vector q(t) represents physically the translational and torsional degrees of freedom,
while u(t) are external forces and moments exciting the system. The entries of M(t) are
physically masses and moments of inertia, D(¢) is assumed to model viscous damping
acting on the system (proportional to velocity), while the stiffness matrix K(¢) describes
the system’s translational and rotational elastic properties. The system matrices are
real, square and, for a system at equilibrium, symmetric. Dynamic terms are added to
the system matrices depending on the model, for instance gyroscopic or aerodynamics
terms?. There exist other damping models depending on the type of analyzed dissipative
phenomena (viscous, proportional, hysteresis...) [ADHIKARI, 2000]. Structural damping is
often conservatively ignored because of the uncertain applicability of numerical models to
complex real structures, therefore it is rather determined experimentally and then used to
update the numerical models [GOVERS, 2012]. Furthermore, dynamic effects on damping
are more important in aeroelastic and rotating systems because they can increase the
energy dissipation rate — or even reverse it. One of the goals of later chapters will be the

experimental identification of the damping as function of external parameters.

2 For example, consider a variable point mass connected to a spring. The equation of motion includes a
damping term due to the mass variation: % (mi) = —kz = m(t)&(t) + m(t)z(t) + kz(t) =0
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2.1.3 State transition matrix

The linear system state equation (2.3) can be separated into a homogeneous and inhomo-

geneous part in order to solve it. The homogeneous term
x(t) = A(t)x(t) (2.10)
implies that for every initial state x(tg) there exists a unique x(¢) solution.

Definition (State Transition Matrix). The unique function of time ®(t,ty) that maps the

state at one time instant x(tg) onto the state at another time instant x(t)
X(t) = q’(t,to)X(to) t >t (2.11)
is called the state transition matriz (STM) of the system.

The state transition matrix is the continuously-differentiable solution of the linear state
equation (2.10) [RucH, 1996, Th. 3.3]. The study of time-varying linear systems begins
with the examination of its properties because it provides a general and convenient means
for describing the system response. The mapping it performs between two system states is

illustrated schematically in figure 2.2.

Definition (Fundamental matrix). Let X(t) = [x1(t)...xn, (t)] € CN=*Ne be the matriz
of any k = 1:N, linearly independent solutions xi(t) of the homogeneous matriz state

equation
X(t) = A(t)X(t) (2.12)

The matriz X(t) is called the fundamental matriz.

If X(tp) is nonsingular, then X(¢) is also invertible for all ¢. The fundamental matrix is
determined by solving equation (2.12) with any linearly independent set of initial conditions

(for example X(typ) = I) and is therefore not unique.
XE)=P [t t,)%(ts)
i)
A\ ¢u:2't4)

()
¢lt, k) T
I | | > t

E, t by

FIGURE 2.2: The state transition matrix ®(¢,ty) maps the state of a linear system at one time
instant x(tg) onto the state at another x(¢) with the linear relation x(t) = ®(¢,to)x(to).
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The direct relationship between any fundamental matrix and the unique state transition

matrix arises from its definition [CHEN, 1999, Def. 4.2]:
B (t,to) = X() X (to) (2.13)

Equations (2.10) to (2.13) can now be used to derive several properties of the state transition

matrix of continuous linear systems:
Property (State transition matrix properties).

o differentiation: 2®(t,to) = A(t)®(t, )
o duality: Z®7(to,t) = —AT(t)® (to,1)

o inversion: ® ' (t, tg) = P(tg,1t)

e composition: ®(t,tg) = ®(t,t1)P(t1,10)
o identity: ®(t,t) =1

o determinant: det ®(t,tg) = exp fti) trA(r)dr

The STM’s properties are given here to be applied in the coming pages. Detailed proofs
can be found in the references cited at the beginning of the chapter, for example in [RUGH,
1996], [ANTSAKLIS AND MICHEL, 2006] and [SHMALIY, 2007].

A general method used to determine the state transition matrix is the Peano-Baker

series:

t t T
(I'(t,to) =1+ A(Tl)dTl—i-/ A(Tl) A(Tz) drodr+
to to to
. - . (2.14)
+/ A(m) A(7o) A(73)drsdredr + . ..
to to to

which converges absolutely and uniformly for any ¢ and ¢y [BAAKE AND SCHLAEGEL, 2012].
Another way of determining the state transition matrix that has found many applications
in physics is the Magnus expansion [BLANES ET AL., 2009]. There exist a matrix ()

such that the STM is ®(t,0) = ?®) where

t t T0
Q) = /0 A(To)dfwé /0 /0 [A(ro), A ()] drydrot

t pro pT
+ é/o /0 i /0 " ([A (o), [A (), A(m)]] + [A(r0), A(m)], A(r2)] ) dradridro + ..
(2.15)
and where [A, B] 2 AB — BA is the matrix commutator. The expansion’s pattern is not
as obvious as it might look like from the first few terms [BUTCHER ET AL., 2009].
The effort of finding the STM is the first step in the analysis of time-varying systems,
but meeting the necessary conditions for determining its analytical form is difficult. The

Peano-Baker series (2.14) and the Magnus expansion (2.15), while useful theoretically, can
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be calculated analytically but in the simplest of cases [RUcH, 1996]. Computer-aided
symbolic solutions are theoretically possible but still unfeasible for large systems. In
general the STM’s structure is too intricate to be expressed in a simple way, but there
are important particular cases where it assumes a favorable and elegant form, such as for
linear time-invariant and periodic systems. Fortunately, there are also convenient ways of

determining ®(t,ty) according to the following theorem:

Theorem (Exponential form of the state transition matrix). /[RucH, 1996, Th. 4.2] If the

state matrix commutes with its antiderivative

t

A(t)< A(T)d7->:< tA(T)dT> A(t) Vit (2.16)

to to

then the state transition matrixz has the form:
[e¢) 1 t k t
®(t,tg) = Z — A(r)dr ) =exp [ A(r)dr (2.17)
=M Ve to

where exp(+) is the matrix exponential (see appendiz A.1). This condition is satisfied if
and only if A(t)A(tg) = A(to)A(t) for all t,tg.

The hypothesis of the theorem is always satisfied when the state matrix is:

e constant A(t) = A: the STM is the well-known result of time-invariant systems
theory ®(t,t9) = exp (A(t —to))

e scalar A(t) = a(t): the state transition matrix can be calculated by the variation of

constants method for ordinary differential equations: ®(t,ty) = exp ft'; a(t)dr

o diagonal A;j(t) = 0V i # j: this is a system of uncoupled ordinary differential
equations, therefore: ®;;(t,t9) = exp ftto Ai(r)dr

o triangular A;;(t) =0 Vi > j: ®(t,tg) is constructed by successive integration of

each state.

Additionally, theorem (2.17) holds when the state matrix is a series of scalar functions fj

with constant coefficients Ay

N Ng t
At) =D Apfr(t) = ®(t,t0) = [ exp t A fr(r)dr (2.18)
k=1 k=1 0

providing that the series’ terms A;A; = A;A; Vi, j € 1:Nj, commute. This simple form of
the STM it elegant, but the strict commutativity requirement of theorem (2.17) for each

term Ay is difficult to satisfy for dimensions higher than one.



2.1. Linear time-varying systems 19

When all analytical options are exhausted, the state transition matrix can be determined

using direct numerical integration [CHEN, 1999] by solving the homogeneous system

solve for X(t)

®(t, 1) = X)X (¢ 2.19
R (1) = XX r) (2.19)

where X is any set of linearly independent initial conditions (usually for convenience
X(tg) = I). This is a system of N? first-order ordinary differential equations in the form
x(t) = f(t,z(t)) that can be integrated with classical ODE-solvers. Numerical methods for

the determination of the STM will be expanded in more detail in section 2.4.

2.1.4 Impulse response of time-varying systems

The general solution of the time-varying system can be written by making use of the state

transition matrix’s properties [ANTSAKLIS AND MICHEL, 2006, Eq. 6.2]:

t

y(t) = C()x(t) + D(t)u(t)

This equation is the complete solution of the first-order linear differential state equation
(2.3) with initial conditions x(#p) and input u(¢). It is the sum of the homogeneous
(general) and inhomogeneous (particular) solutions, which in linear system theory are called

respectively zero-input and zero-state responses.

yzi(t) £ C(t)®(t, to)x(to)
N t (2.21)
Vas(t) = C(t)/ ®(t,7)B(T)u(r)dr + D(t)u(t)
to
The former is the transient response due to an initial state of the system. The latter
describes the transient and steady-state responses of the system due to an input. Assuming
that the system is initially at rest, the input C(¢) and feedthrough D(¢) matrices can be
brought into the integral and the input u(t) collected:
t t
y(t) = [ D(1)é(t — 1)+ C(t)®(t,7)B(r)u(t)dr £ [ H(t,7)u(r)dr (2.22)
to to
where the H(t,7) € CVv*Nu denotes the system’s impulse response® (the integral’s kernel).
Since in reality a system cannot respond to future inputs, the constraint of causality must

be inserted by imposing H(¢t,7) = 0 for t < 7.

H(t,7) = OD(t)cS(t —7)+ C(t)®(t, 7)B(7) i i : (2.23)

3 In structure dynamics the impulse response is conventionally denoted with a lowercase h, whereas the
uppercase H is used for the frequency response function. In control theory the symbols g and G are used
instead. In this text the symbol H(-) states the function’s domain explicitly.
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The impulse response is the unique characteristic of the linear system that determines the
response as the kernel of the integral in equation (2.22).

Before proceeding further, an example of the state transition matrix and impulse
response is given in figure 2.3 for a simple damped harmonic oscillator with variable
stiffness. It is immediately apparent that the impulse response depends on the instant at
which the impulse occurs. In the limit of the stiffness variation amplitude or variation
rate going towards zero, the LTV solution approaches the response of the corresponding

time-invariant system.

1

o
N

LTI
LTV

H(t,0)
(t1)

s

0 1 2 3 4 5 2 3 4 5
Time t [s] Time t[s]

05f

IS4
4

-0.5¢

.<'>
2

State transition matrix ®(t,0)
o
Impulse response H(t to)
O

4
.

o

o

o
—_

FIGURE 2.3: State transition matrix and impulse response of a damped harmonic oscillator
with variable stiffness. The system equation is i(¢) + 2(wnd(t) + wiz(t) + ptw2x(t) = 0 where
¢ =0.07, w, = 27 rad/s. The entry (1,1) of ®(¢,0) is shown with p=0.2 s> and p =0 s~}
(LTV vs LTI cases). The impulse response H(¢,7) depends on the time instant 7 at which the
impulse occurs (displayed here for 7 = [0, 1, 2] s). In this particular example, H(¢,0) is equal
to the LTT system’s impulse response.

2.1.5 Impulse response in frequency-domain

In time-invariant systems the impulse response (2.23) is independent from the time 7 at
which the impulse occurs, therefore the integral’s kernel in equation (2.22) is H(¢,7) =

H(t — 7). The system response can be then written as:

t t
y(t)= | H(t,7)u(r)dr = | H(t —7)u(r)dr = H(t) x u(t) (2.24)

to to
The convolution between the input signal and the system’s impulse response has an

immediate Laplace transform:

t
y(t)= | H(t—7)u(r)dr o—e y(s) = H(s)u(s) (2.25)

to
Definition. The matriz H(s) is the transfer function of the time-invariant system with
impulse response H(t), i.e. it describes the relationship (2.25) between the input u(s) and
output y(s) in Laplace-domain. When its argument is a purely imaginary frequency, H(iw)

1s called the frequency response function.
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The zero-state response to an impulse characterizes the zero-state response to all
input signals through the convolution integral in time-domain or equivalently through
multiplication in frequency-domain. Knowledge of the transfer function is thus sufficient
for determining the system response to any input. One important consequence of equation
(2.25) is that a time-invariant system modifies the amplitude A and the phase ¢ of a
complex exponential input Ae™*T¢ but not its fundamental frequency w [PROAKIS AND
MANOLAKIS, 2013]. We shall come back to the LTI system’s transfer function in the next
section.

In the more general time-varying case, the impulse response H(t, 7) is a function of the
time 7 at which the impulse happens. As a consequence, the steady-state response contains
not only the frequency components of the input signal but also additional frequencies
due to the coefficient variation. An example is illustrated in figure 2.4. The reader may
recognize this as a fundamental difference between time-invariant and time-varying linear
systems, since the response to a sinusoidal signal in the latter case is generally neither
sinusoidal nor periodic. Based on this observation, the frequency-domain representation
of a time-varying system’s impulse response L{H(¢,7)}(s) is not functionally analogous
to the transfer function of a time-invariant system C{H(¢)}(s) = H(s), i.e. it does not
form a bijective correspondence between the frequency content of input and output [RUGH,
1996; SHMALIY, 2007]: in the context of LTV systems, we shall thus say “impulse response
in frequency-domain” instead of “transfer function”. Furthermore, equation (2.23) in the
time-varying case does not generally lead towards a rational function representation of the
impulse response in frequency-domain (2.55). For example, in section (2.5) we will consider
a system with a linear variation and show that the response in frequency-domain assumes
complicated expressions involving error functions; the impulse response in frequency-domain
of such a system undergoing linear variation is displayed in figure 2.5. On the other hand,
we shall see in section 2.3 that, at least for periodic systems, a formulation similar to that
of the LTT case still holds.

0.04
0.02}
= € = =
5 o 5 3 E
5 g 35 g2
o £ 6 =
0.02}
-0.04

20 22 24 26 28 30 20 22 24 26 28 30
Time t Time t

FIGURE 2.4: Steady-state response of a forced damped harmonic oscillator. The system
equation is Z(t) + 2Cwnd(t) + wi (1 + r}sin(nt))z(t) = sin(0.47t) where ¢ = 0.07, w, = 2
rad/s. Left plot: r; = 0, time-invariant system. When the system matrices are constant, the
steady-state response contains the scaled and phase-shifted input with the same frequency of
the input. Right plot: ry = 0.4, as soon as the system is time-varying, the response’s frequency
content is different from the excitation’s. As the time variation transitions from slow to fast,
from weak to strong, the periodic response becomes pseudo-periodic and then finally aperiodic.
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FI1GURE 2.5: Impulse response and its frequency-domain representation of a damped harmonic

oscillator with variable stiffness. The system is &(t) + 2¢wnd(t) + w2(1 + pt/T)x(t) = 0

where ¢ = 0.07, w, = 27 rad/s, T =1 s. The plot displays various values of the parameter

p =0:0.02:0.2 (blue: low, red: high). The dashed line represents the system with p = 0,

which has a single resonance peak. Due to time-varying dynamics, the impulse response in

frequency-domain exhibits a more complicated form: the main resonance peak shifts and
additional peaks appear. We shall derive an analytical solution in section 2.5.

The concept of transfer function is extremely helpful in the mathematical treatment of
LTT systems, consequently there have been efforts in defining a relation between inputs
and outputs for LTV systems as well, but this generalization is not straightforward. In
the widely-cited paper by [ZADEH, 1950] the frequency response to a complex exponential
is defined as H {e™'} = ¢! [ H(t,t — 7)e ™7 dr in which the time-dependence of the
result is clearly expressed. The output is not necessarily periodic because the kernel H(¢, to)
is time-varying. [WERELEY AND HALL, 1990] define the transfer function for periodic
systems as a linear operator that maps inputs and outputs one-to-one and characterizes
its gain and phase. A more general formulation is introduced in [BALL ET AL., 1995] via
an integral operator to map an input complex exponential to a time-dependent frequency
response function. LTV models described by ordinary differential equations (2.2) where the
coefficients ay(t) and b (t) are polynomials are studied in frequency-domain in [LATAIRE,
2011] with the purpose of identification and applied in [ERTVELDT ET AL., 2014] on an
aeroelastic system.

Often the notion of “frozen-time” system is considered, namely an LTV system is
described at each time instant by the LTI system corresponding to (constant) parameters
at that time instant. This modeling is a valid approach as long as the system variation
is slow, i.e. there are no significant dynamics introduced by time variation or changes in
stability. Fortunately for many real time-varying mechanical and aeroelastic systems this
assumption is satisfied. The coming sections will cover this case in more detail. There
are also cases where a time-varying system behaves almost like a time-invariant one, for
example rotating machinery such as wind turbines, helicopter blades, compressors. We

will give more substance to these statements in the coming pages.
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2.1.6 Stability of time-varying systems

An intuitive explanation of stability is that any small perturbation of a system does not
result in a large response. In most real systems, free oscillations decay with time because
the energy loss is larger than its gain. Stability is an important topic in linear systems:
elastic structures in a fluid flow such as a bridge can reach a state in which they absorb
energy from the wind and undergo self-oscillations resulting in excessive displacements.
Rotating machinery like wind turbines have critical rotation speeds at which the system’s
vibration will increase without bound. In particular, for aeroelastic systems, the interaction
with aerodynamic forces can reduce the energy dissipation to zero and further to a negative
value, where free oscillations increase without bound. This topic will be elaborated further
in chapter 3 where the border of the stable region can be determined for a combination
of air density and wind speed. We are thus interested in stability in order to prevent
catastrophic structural failure.

The stability of linear systems is treated in more detail in [RucH, 1996, Ch. 6] and
[SHMALLY, 2007, Ch. 2]. More particular results for slowly-varying systems are found in
[AMATO ET AL., 1993; ILCHMANN ET AL., 1987; SOLO, 1994]. In [GAO ET AL., 2018] a
detailed bibliographic research on this topic is found. The stability analysis aims to provide
formal criteria for which the so-called BIBO stability holds:

Definition (BIBO stability). The system is bounded-input-bounded-output stable if for
any bounded input ||u(t)|| < M < oo there is a bounded output ||y(t)|| < M < oo, where M

18 a positive constant.

Definition (Stability). The LTV system described by y(t) = ftz H(t,7)u(r)dr (2.22) is

stable if and only if there exist a positive constant M for which:

t |[H(t, 7)|| dr < M < oo (2.26)
to
Let us assume that the system matrices are bounded. The output equation does not
contribute to stability, so we may ignore C(t) and D(t). According to the definition of
stability, the output may not diverge as long as the input is bounded, therefore we may as
well assume u(t) = 0 and ignore B(t). We are left with the homogeneous state equation
x(t) = A(t)x(t), whose solution is x(t) = ®(¢,to)x(to):

Theorem (Uniform exponential stability). [Th. 6.8/[RuGH, 1996] If there is a positive
constant such that ||A(t)|| < a < oo for all t, then the linear state equation %X(t) = A(t)x(t)

is exponentially stable if and only if
to
/ |®(t,7)||dr < B < 0 Vi, to 1t <t (2.27)
t

This theorem assumes a simpler form in the case of time-invariant and periodic systems
(sections 2.2 and 2.3).
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Definition (Exponential stability). The homogeneous time-varying system x(t) = A(t)x(t)

1s exponentially stable with rate of convergence o > 0 if there exists co > 0 such that
()] = coe ) |x(to)| Vit € [to, o0 (2.28)

The rate of convergence is useful in quantifying the stability (or instability) of different
systems as it provides an upper bound of the system’s response. An example is shown in
figure 2.22 for a family of time-varying aeroelastic systems. BIBO stability however, does
not guarantee that a stable time-varying system’s response will not exceed a dangerous

level. An example is provided in figure 2.6.
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FIGURE 2.6: Response of a time-varying aeroelastic system excited by a random stationary
signal. The stability analysis reveals that the system is stable despite the instantaneous
eigenvalues crossing the stability boundary (red dots delimited by vertical lines). However,
during this time the response amplitude grows significantly because the system temporarily
absorbs energy instead of dissipating it.

2.1.7 On eigenvalues and eigenvectors

The linearity property of the state-space representation implies that there exists a coordinate
change that transforms a linear system into another equivalent linear system. Two systems

are equivalent when their input-output behavior is the same.

Theorem (Linear system transformation). Consider a linear time-varying system and let
the transformation matriz P(t) € CNo*Ne ¢ O be nonsingular. Define the state variable

change (or coordinate transformation):
x(t) = P()x(t) = x(t) = P(t)x(t) + P()x(¢) (2.29)
The original system is thus transformed into an equivalent one [RUGH, 1996, Th. 4.15]:

P (H)AP(t) — P ()P(1) \ P '(t)B(t)
C()P(t) | D)

x(t)=P(t)X(t)

(2.30)

transform

where P(t)P7'(t) is the dynamic coupling term. The transformed homogeneous state
equation is thus:
x(t) = A(t)x(t) x(to) = P~ (to)x(to) (2.31)
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The state transition matrix of the transformed system is given by
(L, tg) = P ()®(t, t0)P(to) (2.32)
The coordinate change preserves the system’s stability.

Definition (Lyapunov transformation). If there exists a constant cy such that the coordinate
transformation matriz |P(t)|| < co and its inverse |P~'(t)|| < co are bounded for all t > to,

then P(t) is a Lyapunov transformation.

This theorem is used in various ways to simplify the handling of a system, for example
in balanced realizations and model reduction schemes [LANG ET AL., 2016; LUSPAY ET AL.,
2018; SHOKOOHI ET AL., 1983] or to satisfy the commutativity condition of theorem (2.16)
with a coordinate change [ZHU AND JOHNSON, 1989)].

Let us consider a time invariant system for a moment. The eigenvalues and eigenvectors

of the state matrix satisfy:

AT = DA (2.33)

Assuming that ¥ is non-singular, the coordinate change x(t) = ¥x(¢) transforms the

system in its modal form:

A|B
Cc|D

A |0 B
cr| D

x(t)=Wx(t)

(2.34)

transform

where the state matrix is diagonal and the states are uncoupled from each other. This is
an important result. The reader is certainly aware that an LTT system is stable if and only
if the state matrix eigenvalues have all negative real part. However, we shall see that the
concept of eigenvalue is not generally meaningful in the time-varying case.

Given the time-varying state matrix A(t), the instantaneous (or frozen-time) eigenvalues

A(t) and eigenvectors ¥(t) of the system are functions that, at any instant, satisfy
A(t)®(t) =T(t)A(t) Vi (2.35)

We recall from theorem (2.1.3) that the state transition matrix has an exponential form
when the state matrix is diagonal. We are thus tempted to apply the eigendecomposition

to diagonalize the LTV system. The coordinate transformation x(t) = W(¢)X(¢) returns:

x(t)=F ()X (t)

(2.36)

transform

where the state matrix of the transformed system A(t) = A(t) — &~ (¢)¥(t) is the sum
of the instantaneous eigenvalues and the mode coupling term. The eigendecomposition
of a time-varying state matrix does not generally uncouple the system states and the
location of the instantaneous eigenvalues is neither necessary nor sufficient for stability.

Early in the development of linear systems theory it was attempted to transpose the LTI
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concept of stability onto LTV systems [ZADEH, 1951]. References [RuGH, 1996] and [CHEN,
1999] provide examples of instability with bounded matrices or stability with unstable
eigenvalues. Nevertheless, the location of instantaneous eigenvalues can still be meaningful
for slowly-varying systems [SOLO, 1994]. In this regard, a sufficient condition for the
asymptotic stability is established in [ILCHMANN ET AL., 1987] based on an upper bound
of the parameter variation with some a priori knowledge of the state matrix. A similar
result is found in [AMATO ET AL., 1993] for the time derivative of the frozen-time system
characteristics. Since the frozen-time formulation is essentially a local approximation of the
system’s behavior, the instantaneous eigenvalues lose their significance in the determination
of the stability. Despite this, they often represent closely the locations of the resonance
peaks and are thus still useful. Frozen-time eigenvalues can characterize LPV systems
under the assumption that the state corresponding to each scheduling parameter S(p) is
reached so slowly, that any contributions from the dynamic coupling can be neglected.
This is a common hypothesis in many signal processing and system identification methods,
for it allows a definition of a transfer function for each parameter and consequently the
applicability of LTI methods, for instance, in the description of aeroelastic structures (as
function of speed and altitude), of robotic arms (as function of joint angles), of bridges
(as function of the load position) [ERTVELDT ET AL., 2014; HOUTZAGER ET AL., 2012;
MERCERE ET AL., 2011; SPIRIDONAKOS AND FAsso1s, 2009]. We shall come back to the

topic in section 3.4.2.

In the LTV framework a different concept of “eigenvalues” is introduced [Wu, 1980]:
the continuous functions Ay(t) and W4(t) (subscript d) satisfying the condition

AP 4(t) = Ba(t)Ag(t) + Ty(t) Vit (2.37)

are called respectively dynamic eigenvalues and dynamic eigenvectors. These are not unique
and do not possess the same physical meaning as their time-invariant counterpart. In the
case of slowly-varying systems, equation (2.37) reduces to the definition of time-invariant
eigenvalues because W4(t) < Ag(t)Ty(t).

In the time-varying case, if the state matrix is diagonal, the state transition matrix has
conveniently an exponential form (2.17). We are looking for a particular transformation
matrix P(t) that transforms the system’s state matrix A(t) into a diagonal one A(t) = A(¢).

The (Lyapunov) transformation matrix is thus:

- - N to _ to _
A(t) = A(t) = ®(t,t0) =exp A(T)dr = P(t) = ®(t,t0) exp A(T)dr
t t
(2.38)
The system is therefore transformed into:
At) | B(Y) | xt=pwx) [ AG) | P(5)B() (2,39
C(t) | D(t) | transform " | C()P(t)| D(t) ‘

By comparing equations (2.37) and (2.39) we see that A(t) and P(t) are indeed the
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dynamic eigenvalues and eigenvectors of the system and they are not unique because A(t)
is arbitrary (even constant or zero!). The appropriate choice of dynamic eigenpairs can
simplify considerably the system, however it is not always clear which to pick [Wu, 1980].
This kind of transformation can be performed after the state transition matrix has been
determined (by whatever means). Alternatively, algorithm (5) proposed in [Wu, 1984] and
refined in [VAN DER KLOET AND NEERHOFF, 2000] can be employed when the state matrix
has only distinct instantaneous eigenvalues. When the system transformation does not
uncouple completely the states, in [LUSPAY ET AL., 2018] it is shown that it is possible to
set to zero the entries of the dynamic coupling term P~ (¢)P(t) there where P~ (t)A(t)P(t)
is zero and to accept a modeling error in the input-output behavior of the system (that
depends on the importance of the neglected entries). An example of the difference between
dynamic and instantaneous eigenvalues is shown in figure 2.8.

In [L1u, 1999] the pseudo modal parameters (subscript p) corresponding to the interval

[t, to] are defined by the eigendecomposition of the state transition matrix:
B(t,t0) = ¥y(to)etr)=t0) g 1 (1) (2.40)

This equation essentially states that the system is considered invariant in the interval [t, ¢(]
(compare this expression to the exponential form of the state transition matrix (2.17)). As
t —to — 0, A,(t) tends to the instantaneous eigenvalues A(t).

The concept of time-varying modes is introduced in [KAMEN, 1988] and expanded in
[O’BRIEN AND IGLESIAS, 1997] and [MA ET AL., 2017]. Let us impose that the transformed

state matrix A(t) be upper triangular:

Al(t) * *
A(t) = 0 A2:<t) S (2.41)
0 0 - A

and that its associated state transition matrix is i’(t, to). We are looking for a Lyapunov

transformation matrix P(t) which satisfies P(t) = A(t)P(t) — P(t)A(t):
P(t) = ®(t,t9)P(to)®(t, to) (2.42)

Let us now consider the QR-decomposition of the state transition matrix of the original
system. We can write

B(t,10) £ Q(HR(t) (2.43)

where Q(t) is orthogonal and R(t) is an upper triangular matrix*. Unlike the eigendecom-
position (2.35) (instantaneous eigenvalues), the QR matrices are real because the STM

of a physical system is real. Q(t) = P(¢) is a Lyapunov transformation since ||Q(¢)|| = 1.

4 The QR-decomposition is unique up to a factor of a diagonal matrix with entries =1. Uniqueness is
enforced by imposing that the diagonal of R(t) be positive. Let Dy;(t) £ sgn {R.;(t)} be a diagonal matrix.
Then the QR-decomposition R(t) « D(t)R(t), Q(t) + Q(¢)DT(¢) is unique.
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Furthermore, Q(ty) = I because ®(to,t) = I, therefore ®(t,ty) = R(t). The solution of
the homogeneous state equation x(t) = ®(t, t9)x(t9) can be written as a linear combination

of time-varying vectors:

x(t) = Z civi(t) (2.44)

where ¢; 2 el P~ (to)x(to) = el x(to) and v;(t) 2 P(t)e;®;i(t,to) = Q(t)e;Ri;i(t). The i-th

time-varying modes are then given by the diagonal elements of 'i>(t, to):
Vi(t, to) = Rii(t) eR (2.45)

The time-varying poles A;(t) in the upper triangular transformed state matrix (2.41) are

derived by the differentiation property of the state transition matrix (2.1.3):

gt‘l’(tato) =AQ)R(t,to) = Ai(t) = gt?ﬁi(t,to)%l(tvto) eR (2.46)

The time-varying modes contain information about the stability of the system [O’BRIEN
AND IGLESIAS, 2001]. An example is provided in figure 2.7.
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FIGURE 2.7: State transition matrix, time-varying modes and poles of a helicopter model
from [JHINAOUI ET AL., 2014] (2 landing gear degrees of freedom + 4 blades, one revolution
with period T' = 3 s). The time-varying modes and poles can be grouped by component (blue:
landing gear, red: rotor blades) and by state (solid line: displacement, dashed line: velocity).
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FIGURE 2.8: Instantaneous and actual poles of the STM of % () = ag (1 + 0.2e51") x(t), where
ag = fx(1,0.02) and s; = f,(0.25,0.1). The instantaneous poles vary as a complex exponential.
The STM in frequency domain can be computed analytically (see section 2.5.2) and it turns
out that it has constant poles.
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2.2 Linear time-invariant systems

The most important special case of linear systems is when the system matrices are constant:
(2.47)

The theory of linear time-invariant systems (LTT) is widely used in all sorts of fields because
of its elegance, relative simplicity and broad applicability. Two typical examples would be
an ideal mass-damper-spring system or an electrical circuit with inductors, capacitors and
resistors. LTI systems have an extremely large number of applications in various fields of
physics and engineering: simulation of mechanical systems, description of electrical circuits,
control theory, signal processing, acoustics, optics; the body of literature on LTT systems is
accordingly immense [SHMALIY, 2007]. Under certain conditions or with some acceptable
approximations, LTI system theory can provide adequate descriptions of discontinuous
or nonlinear systems [KHALIL, 1996]. A comprehensive and detailed reference for an
introduction on the subject, is the book [OPPENHEIM ET AL., 1996]. The results in this
section are either derived as particular cases from the equations of time-varying systems or

are taken from the references.

The focus in this thesis lies generally in linear time-varying systems, but there are
many limiting cases in which system parameters vary so slowly that they can be considered
constant within a certain time interval or with an acceptable degree of accuracy. In such
cases the equations introduced in the previous section undergo considerable simplifications
and assume more familiar forms. For example, aircraft in stationary level flight can be
considered as time-invariant even though their dynamic properties depend on speed and
altitude.

The linearity and invariance of LTI systems lead to a theoretically sound and practically
efficient framework. Some of the results in this section have already been anticipated
or can be deduced from the previous pages, nevertheless we shall establish here some
important equations and concepts that will be necessary further on for system identification
in chapter 5. Causality and stability are much simpler to check compared to the LTV case.
The fundamental property is that LTI systems can be completely characterized by their
impulse response or equivalently by their transfer function. Importantly, input-output
relationships are conveniently described by the convolution of the impulse response with
the input signal in time-domain or by the multiplication of the transfer function with the

input in frequency-domain.

The state transition matrix of a time-invariant system® is given by theorem (2.1.3):

®(t,ty) = eAltt0) (2.48)

5 In many texts, the state transition matrix from x(to) to x(to + At) is denoted by Ay 2 ®(tg + At to) =

e®2t in the context of discretized or sampled time-invariant systems.
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The complete solution is then a special case of equation (2.20) with constant matrices:

t
x(t) = A% (40) + / Al Bu(r) dr
to (249)

y(t) = Cx(t) + Du(t)

Equation (2.49) can be solved exactly for inputs that are combinations of polynomial and
exponential functions, therefore, in this thesis the methods developed in [JELICIC ET AL.,
2021] are the preferred tools for the simulations of LTI systems, rather than direct ordinary
differential equations solvers. LTI system benchmarks can be found in [CHAHLAOUI AND
VAN DOOREN, 2005].

The general impulse response expression 2.23 for constant state matrices is

Dé(t — 7) + CeAl-TB t>7
H(t,7) = (2.50)
0 t<T

where it is clear that H(t,7) = H(¢t — 7) does not depend on the instant at which the
impulse happens. This means that a time shift of the input signal will produce the same
shift in the output. For time-invariant systems, the impulse response and the transfer

function are thus coupled by the Laplace transform:
H(t) = Di(t) + CeB  o—e  H(s)=D+C(sI - A)"'Be CVM  (251)

Alternatively, it is possible to write the steady-state solution (2.49) in Laplace-domain to

obtain the well-known expression relating input and output:
y(s) = H(s)u(s) (2.52)

which was already introduced in equation (2.52). In contrast to LTV systems, time-
invariance defines clearly the relationship between input signals and output responses
through the transfer function. We have already mentioned before that LTI systems, upon
reaching a steady state, respond to a sinusoid with another sinusoid of the same frequency,
but modified amplitude and phase; they cannot produce other frequency components. Said

formally, the complex exponential is the eigenfunction of a time-invariant linear system.

We can take the ordinary differential equation form of a linear system (2.2) and set its
coefficients constant ay(t) = a, bi(t) = by. The relationship between the j-th input u;(t)

and the i-th output 7;(t) in Laplace-domain is®:

Na Bl Ny dF Ng Ny
— ) k, . _ k, .
gakdtkyi(t) = kzobkdtkuj (t) o—e kzoaks yi(s) = kzobks uj(s) (2.53)

6 The coefficients correspond only to entry (4, 7); a more precise notation for the multi-input-multi-output
case would be a;j,r and b;;,x, but we drop the subscript 45 in favor of legibility.
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We can write y;(s)/u;(s) to obtain the entry (i, j) of H(s):

N, S
i) = 2 i (2.54)

u;(s) Z:{jo axs”

The roots of the numerator and denominator polynomials are called respectively zeroes zi

and poles py, of H;;(s). The factoring of the two polynomials, followed by a partial fraction

decomposition delivers two other forms of the transfer function:

N, . N,
bis (s — zx) Na
H;j(s) = 2 = ng:l = k(s)+Y
’ Noo o gh N S = Pk
Zk:o ags szl(s — D) n=1

where g is the scalar gain and k(s) a polynomial in s of order Ny — N +1 (if N < N, then
k(s) = 0). The transfer function H;;(s) between the j-th input and the i-th output can be

thus expressed, from left to right in equation (2.55), in the rational, in the zero-pole-gain

(2.55)

and in the pole-residue forms. In particular the latter tells us that in the LTI case the
transfer function is the weighted sum of simple poles (plus the direct term k(s) if the
system is not proper). The poles assume significance in determining the system’s stability
and the amplification of the input at resonance. The zeros on the other hand determine
the location of the antiresonances where the oscillation amplitude is significantly reduced.

The same results are obtained by transforming the system into modal space (2.34):

N,
. = ¢pb?
H(s) =D+ C¥(sI-A) ¥ 'B=D+Y 2k (2.56)
1 S — Ak

where ¢;, & CW¥ey, is the k-th column of the transformed input matrix and bz £ e;;F\II_lB
the k-th row of the transformed input matrix. The residual matrices Ry = ckbfkr € CNyxNu
have rank one. In this equation we see that the eigenvalues of the state matrix are the
system’s poles and that c; are the normal modes. The pole-residue form can be factored
to write the rational and zero-pole-gain representation of the transfer function (2.55) in
full matrix form. Let us denote the k-th eigenvalue with A = R\ + i\, and write the

impulse response function:

Nz
H(t) =D + Z cibf eTAutiSAnt (2.57)
k=1

We see immediately that the circular terms ¢St € [—1, 1] are bounded, while ™+t is
finite as long as RA; < 0. The imaginary part of A, defines the period of one oscillation.
The real part of Ay quantifies the decay rate of free vibration due to the energy loss. The

stability of an LTT system can be thus easily checked from its eigenvalues:

Theorem (Stability of time-invariant systems). A linear time-invariant system is stable if

and only if the real part of all eigenvalues A\ of the state matriz A is non-negative R\ < 0.
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2.2.1 Second-order time-invariant systems

Since the state matrix is real, all eigenvalues with imaginary part different than zero
must come in complex-conjugated pairs. As a consequence, mechanical systems can be

decomposed into second-order models plus possibly some purely real poles.

Second-order models represent physically systems with one oscillating element (for
example a mass attached to a spring), therefore they are also called single degree-of-
freedom systems (1-DoF'). The study of their dynamic behavior serves as the prototype
for understanding more complex cases. A detailed treatment of single degree-of-freedom
systems in structural dynamics, with derivations, formulae and plots, is found in [BRANDT,
2011; DEN HARTOG, 1985; OPPENHEIM ET AL., 1996; RA0O, 2017]. The notions that will be
necessary later are taken from these references. The homogeneous equation of the simple
harmonic oscillator is:

i(t) + 2Cwnd(t) + w2 =0 (2.58)

where w, [rad/s| is the circular eigenfrequency and ¢ [adim] the damping ratio. The

frequency response function is found by transforming into frequency-domain:

H(w) = 1 _ 1 _ 1 < 11 >(2.59)

—w? +i2Cwpw + w2 (lw—A)(iw—A*) A=A liw— A dw— A

where the roots A and \* of the denominator are:

wp, = ||

A = —wp( Fiwpy/1 — 2 (2.60)
¢=—RA[A|
The impulse response of the system (2.59) is thus:
1 * 1
H(t) = My ett) = — ——e “rsin (waty/1 — 2 2.61
(1) )\7)\*<e +e ) s sm(w g) (2.61)

The dimensionless impulse and frequency response functions w, H(t) and w2H (w) are
plotted in figure 2.9 with the damping ratio as parameter. We see that the amplification
factor is 1/(2¢) at resonance and that the output of a stable system lags behind the input.
In the presence of low damping the system amplifies the input signals whose frequencies
w lie in the vicinity of the eigenfrequency w,. For free oscillations, the decay rate is
Cwn, its reciprocal is the time constant of the system 7 = (Cw,)~!, while the period is
T =2 /(wn m)

Depending on the damping ratio, each eigenvalue can be classified as: unstable when
¢ < 0 (the system absorbs energy and vibration amplitudes grow exponentially with time),
undamped when ¢ = 0 (oscillations persist indefinitely), underdamped when 0 < { < 1
(oscillations decrease in amplitude with time), critically damped when ( = 1 (there are
no more oscillations and the system reaches the rest position in the minimal time) and
overdamped when ¢ > 1 (the energy dissipation is so high that it takes even longer to

reach the rest position). When |¢| > 1, the eigenvalue is purely real. The damping ratio of



33

2.2. Linear time-invariant systems

a real structure is positive because its mechanical energy is being continually converted
into heat and dissipated. For aircraft, structural modes have typically ¢ < 3%. Modes
of components that are designed to dissipate energy such as the landing gear or shock
absorbers have much higher damping. More about damping and its modeling in structural
dynamics can found in [CHOPRA, 2019]. A particularity of aeroelastic phenomena is that
the interaction between fluid flow and structure can increase the damping ratio of some
modes above 20%. In such cases there is a small structural component and a much larger
aerodynamic contribution. This topic will be discussed at length in the next chapter.
When ¢ = v/2/2, the frequency response is monotonically decreasing, therefore, for the

usage in this thesis, we shall introduce two additional types:

Definition. Poles with 0 < ¢ < v/2/2 are called “lightly-damped”; conversely, the poles
with ¢ > /2/2 are “highly-damped”.

This definition will be useful in the next chapter when the state matrix of aeroelastic
systems will be constructed because structural modes gather in the proximity of the

imaginary axis, while aerodynamic modes wander next to the real axis.
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pole classification and the dimensionless impulse response w,, H(t) corresponding to the poles
displayed on the left ¢ = [-0.05, 0, 0.05, \/5/2, 1]. The color-coded poles will be appear
in the frozen-time eigenvalue diagrams in the next chapters. Lower row: magnitude and
phase of the dimensionless frequency response function w2 H(w). For negative damping the
magnitude is the same but the phase changes sign. The maximum 1/(2¢+/1 — ¢?) is attained
at w/w, = /1 — (2, while at resonance w2 H(w,) = (2¢)~*. If ¢ > v/2/2, then H(w) is

monotonically decreasing, otherwise the input is always attenuated when w/w, > /2 — 4¢2.
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2.3 Periodic systems

Linear systems whose coefficients vary periodically are called linear time-varying periodic
systems (LTP) and appear in many fields of science and engineering. Rotating machinery
such as wind turbines and helicopter rotors belong to this important special case [ALLEN
ET AL., 2011; JHINAOUI ET AL., 2014; MAURICE ET AL., 2009; SKJOLDAN AND HANSEN,
2009]. Satellite orbital mechanics and control of elliptic orbits can be treated as linear
periodic systems with periodic solutions [SHERRILL ET AL., 2015]. Nonlinear systems that
exhibit periodic behavior such as oscillating circuits can be linearized and treated as LTP
systems in order to characterize noise or stability [KHALIL, 1996; TRAVERSA AND BONANI,
2011]. The dispersion properties of structures that are periodic in space is computed by the
same mathematical framework that is used for LTP systems [COLLET ET AL., 2011]. Other
applications are mass spectrometry, dynamic buckling of structures, elliptical waveguides,
solid-state physics. A detailed review of linear periodic systems and their applications is
found in [RICHARDS, 1983].

The mathematical foundation for the study of LTP systems is Floquet’s theory. It provides
a convenient decomposition of the state transition matrix from which stability can be
inferred. The relevant corollaries and consequences of the theorem will be explored in this
section.

Before diving deep into the details of Floquet theory, the relevance of periodic systems
to the study of time-varying aeroelastic systems should be motivated. The particular
interest of this work is the effect of parameter rate or amplitude of change on system
response, therefore an analytical description of the response’s spectral content may provide
a convenient investigation tool. The flexibility of Floquet theory is clearly illustrated in
literature, therefore a general method for analyzing time-varying systems is proposed in
this chapter. The previous sections have mentioned how the frequency-domain description
of LTI systems that is so important for modal analysis is generally not such a clear matter
in the time-varying case. One complicating factor is the form of the state transition matrix;
section 2.1.3 has given a very general account of its determination. On the other hand,
Floquet theory is more particular in its assumptions but offers an attractive analytical tool
to determine and decompose the STM of periodic systems. This is the crucial aspect of the
theory: if a time-varying system’s response is restricted to a finite time interval and the
state matrix is continuous, then it has an absolutely convergent Fourier series within said
interval. This periodic representation of the system can be used to decompose its STM,
respectively to find its system response analytically. It is then possible to determine the
spectrum of the response. This approach is similar to the solution of the heat equation,
which is described by a parabolic partial differential equation: the solution is represented
in terms of trigonometric functions in order simplify the mathematical treatment and the
resulting temperature distribution within the domain is described by Fourier series even
though domain, boundary and initial conditions are not periodic. The same principle is

used here to render general time-varying systems tractable.
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2.3.1 Floquet’s theorem

Consider the homogeneous linear periodic system
x(t) = A(t)x(t) (2.62)

where A(t) = A(t +T) is a T-periodic piece-wise continuous state matrix. The state tran-
sition matrix evaluated over one period ®(tg + T, to) (a constant) is called the monodromy

matriz. The STM of LTP systems is generally not periodic.

Theorem (Floquet’s theorem). If the linear time periodic system (2.62) has a non-defective
monodromy matriz ®(T,0), then its state transition matriz over any t,ty can be factored

| (L, 1) = P(t)eQE0IP (1) (2.63)

where P(-) € CN+*Na s the invertible, continuous and bounded Lyapunov-Floquet trans-
formation matriz of period T and Q € CN+*Ne js q constant matriz [ANTSAKLIS AND
MICHEL, 2006, Th. 5.2].

Knowledge of the state transition matrix in the interval ¢t € [0,7] is sufficient to

characterize the system’s behavior in any other interval because of the recurrence relation:
®(t+ nT,tg) = P(t,t0)P(T,t0)" (2.64)

Under Floquet’s theorem’s assumptions, the monodromy matrix does have a matrix

logarithm from which Q can be calculated:
1
®(T,0)=e¥ — Q= 7 m&(T,0) (2.65)

Definition. The unique eigenvalues p of the monodromy matriz ®(T,0) are called the

“Floquet multipliers” of the system. The “Floquet exponents” X are the eigenvalues of

Q. They are complex numbers such that p = e

A2k — AT therefore they are defined modulo i27k.

and they are not unique because

The matrices ®(7',0) and Q share the same eigenvectors:
®(T,0) = QT = VAT T _ AT g (2.66)

The transformation matrix P(¢) is then obtained by inverting equation (2.63) and setting
tg = 0:
P(t) = ®(t,0)e ¥ (2.67)

from which it can be seen that P(0) = P(T) = 1.
The computation of the inverse of the transformation matrix P~'(¢) through matrix
inversion should be avoided because the calculated transformation matrix P(¢) may itself

be inaccurate. Instead, the duality property of the state transition matrix should be used
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(2.1.3). Consider the dual (or adjoint) system of the homogeneous state equation (2.62):
2(t) = —AT(t)z(t) = z(t) = Ra(t, t0)z(to) (2.68)

where ®,(t,ty) designates the state transition matrix corresponding to the state matrix
—AT(t) of the dual system. It is related to ®(t,tg) by:

B (1) = 7' (t,tg) = P(tg)e? =P (1) (2.69)

from which:
P'(t) = QDT (t,0) (2.70)

This property is particularly helpful when determining the Floquet quantities numerically.
Figure 2.10 displays, as an example, the influence of period on the state transition
matrix of a wind turbine model. The practical calculation of the Floquet quantities is

discussed section 2.4; for now it is important to focus on their properties.
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F1GURE 2.10: State transition matrix and transformation matrix for various values of the
system’s period (blue: low, yellow: high). Generally the STM is not periodic and the
transformation matrix is not symmetric. The figure displays entry (1,1) of the 5-DoF system
from [SKJOLDAN AND HANSEN, 2009] for T' = 0.05:5 s.

2.3.2 Lyapunov-Floquet transformation

An important consequence of Floquet’s theorem is that a periodic time-varying system can
be transformed into an equivalent time-invariant system by a coordinate change (Lyapunov-
Floquet transformation). For LTP systems, the derivation property of the state transition
matrix implies [CHEN, 1999, Th. 4.3]:

;émm:A@ymn3@%¥§3P@+P@Q:A@mw (2.71)

which, together with theorem (2.30), leads to the state variable change

x(t)=P(t)X(t)

(2.72)

transform
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where the matrix Q reveals its meaning as the constant state matriz of the transformed

system. The system states can then be uncoupled (2.34) to obtain:

Q |P'(1HB(®)

A | EP(H)B()
CHP(t)| D)

C(HP(t)¥ | D(t)

x(t)="¥q(t)

transform

(2.73)

where A are the eigenvalues of Q (Floquet exponents) and ¥ the associated eigenvectors.
The columns of P(¢)¥ can be interpreted as periodic mode shapes of the system and
are therefore often called Floquet eigenvectors. Since the state matrix of the transformed
systems (2.72) and (2.73) is constant, the stability criterion for LTP and LTI systems is
the same:

Theorem (Stability of periodic systems). A linear periodic system is stable if and only if
the real part of all eigenvalues A of the transformed state matriz Q (Floquet exponents) is
non-negative RA < 0. Equivalently: if and only if the all eigenvalues p of the monodromy
matriz ®(T,0) (Floquet multipliers) lie within the unit circle |p| < 1.

The (instantaneous) eigenvalues of the state matrix do not determine system stability
(as a matter of fact it is possible for periodic systems to be globally stable while crossing
local instability regions and vice versa (see figure 2.11 for such an example). A significant
difference from the time-invariant case is the existence of bifurcation points where the
system’s dynamic behavior varies abruptly as a function of period. These can be observed as
sudden changes in the Floquet exponents’ path (see for example figure 2.12). The stability
analysis of rotating systems is conducted by varying rotation speeds and identifying the
regions where the Floquet exponents have positive real parts [ALLEN ET AL., 2011]. More
about stability criteria can be found in [RICHARDS, 1983].
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FIGURE 2.11: Floquet exponents of a periodic aeroelastic system (parameters: air density and
air speed). The red dots indicate where the minimal damping of the instantaneous eigenvalues
becomes negative. Floquet analysis reveals that the system is globally stable because it
dissipates more energy that it acquires in one cycle. However, the vibration amplitude in the
red region can quickly exceed unacceptable levels.
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FIGURE 2.12: Floquet exponents of a time-varying harmonic oscillator #(t) 4+ 0.02&(¢t) +
x(t) 4+ 0.4 cos(wot)z(t) = 0 as a function of wy. The instantaneous eigenvalues A(t) = —0.01 +
i1/0.012 4+ 1 + 0.4 cos wgt have always negative real parts irrespective of wy. However, Floquet
analysis reveals that the system has unstable exponents (red dots) for some intervals of wq
and that there are several bifurcations. The gray dots around wg = 1 rad/s denote purely real
eigenvalues. The blue lines in the right plot are A = twy/2.

Figure 2.13 shows the state transition matrix and its FFT for various periods T
arranged in three regimes. The qualitative influence of “short” and “long” periods can be
observed in both time and frequency domains. What is denoted as “intermediate” period
is characterized by abrupt dynamic behavior changes. As is clear from the plot, the STM
in time-domain reveals little and the interpretation of the underlying dynamics would
benefit from an analytical frequency-domain representation of the state transition matrix.

Fortunately, this is possible for periodic systems, as we shall see in the coming sections.
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FIGURE 2.13: The system’s period T' = 27 /wg has a marked influence on the state transition
matrix (in each subplot: red - high, blue - low). The same system as in figure 2.12 is displayed.
The frequency-domain representation of the STM can provide some key insight.
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2.3.3 Impulse response of periodic systems

The solution of periodic systems is obtained easily by applying Floquet’s theorem (2.63) to

obtain the transformed system with constant state matrix (2.72):

x(t) = A x(to) + /t QDR (r)B(r)u(r) dr .

y(t) = C(OP()x(t) + D(t)u(t)

The impulse response is given by equation (2.23):

H(t, ) = OD(t)a(t —7) 4+ C(t)P(t)eRU="P ! (1)B(7) z Z : (2.75)

The state equation integral above has a form similar to the general solution of LTI systems
(2.49). The main difference is that the input is modulated by the transformed input matrix
P~'(t)B(t), where at least P~'(¢) is periodic (the output equation adds modulation through
C(t)P(t)). It is clear that this modulation adds additional frequency components apart
from those present in the input signal” (see figure 2.4).

Let f(t) 2 P~'(t)B(t)u(t) be the forcing function of the system and assume that it can

be expressed by a Fourier series with fundamental harmonic wy = 27 /7"

f(t) 2P ()B(Hu(t) = Y o'ty (2.76)
kEZ

so that the convolution integral in the state equation (2.74) can be written as:

t t ) . T=t
/ QU (r)dr =) / eQlelhnl=Qrgy g7 = % [(ikwo - Q)_lthe(ZkWOI‘Q)Tfk]
0 kez 0 kez (TO)
2.77
The exact solution in the time-domain is then:
x(t) = eUx(0) = > eUx; + ) " ehevix, (2.78)

kEZ kEZ

where xj, 2 (ikwol — Q)™ 'fi. The first addend is the homogeneous solution, the second
is the transient response due to the excitation and the third is the forced response. The

system response y(t) is thus the sum of a transient and a steady-state response:
y(t) = Ct)P(t)e? <x(0) = xk> +D(t)u(t) + CHP(t) Y e™ix; (2.79)
keZ keZ

The series expansion (2.76) has in general an infinite number of terms, but a subset of just

N harmonics and coefficients {wg, fr} can be taken into account. The state equation can

" For example, if P~*(¢)B(t) = sin(t) and u(t) = 2sin 2, then P~ (t)B(t)u(t) = cost — cos 3t
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be then vectorized® as [JELICIC ET AL., 2021]:
x(t) = eQx) + Felwol (2.81)

where x; 2 (iw,I — Q) 'fy as before, x) = x(0) — Y_x;, are the augmented initial
conditions, F £ [x1 X --- xx] and wg = {w1, ws, --- wy} are auxiliary variables. The
eigendecomposition of the constant state matrix Q = WAWP ' leads to a computationally

efficient formulation of equation (2.81)
x(t) = eMlx)) + Feiwo! (2.82)

where x; = (iwpI — A)' W 'f;, and xj; £ ¥ 'x(0) — >_x;. This formulation has the
advantage of performing scalar divisions and exponentiation of the state matrix instead of
the corresponding matrix operations. This is the preferred method for the simulation of

LTP systems instead of direct numerical integration.

2.3.4 Frequency-domain description of periodic systems

The frequency-domain representation of the impulse response of periodic systems cannot
be interpreted as a “transfer function” as it has been defined in the time-invariant case
because it does not describe a one-to-one correspondence between the input’s and output’s
frequency content. However, the so-called harmonic transfer function (HTF) can be defined
as the analogous to the transfer function of time-invariant systems using the harmonic

balance method. We follow [WERELEY AND HALL, 1990] in the subsequent derivations.

Let us consider the Floquet-Lyapunov coordinated change (2.73) (repeated here)
§=1Q. P (t)B(t), C(t)P(t), D(t)] (2.83)

and assume that the system’s time-dependent state, input and output vectors and system

matrices can be expressed as complex Fourier series:

v(t) =) vpelheo! M(t) = Myekeo! (2.84)
keZ k€EZ

where v(t) and M(t) are a placeholder vector and matrix respectively.

The infinite harmonics vector is defined as

[V] £ { ©t V-2, V_1, Vg, V1, V2 - } (285)

8 The approach employed to find the solution to the state equation can be given even more generality by
considering a forcing function that is a combination of polynomial and exponential terms (i.e. poles with
multiplicity):

f(t) X P_l(t)B(t)u(t) — thkesktfk o—e f(S) = Z %fk (280)
kes kes k

where py are polynomial orders and sx complex frequencies.
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The series terms My, are likewise arranged into a doubly-infinite block-Toeplitz matrix

where n € Z and m € Z are respectively the indices of the rows and columns:

My M_; M_,
M, My M_; --- (2.86)
M, M; My

[1>

[M]nm =Mp-m = [M]

The state, input and output vectors of system (2.83) are arranged according to equation
(2.85). The same is performed with the series terms of the state, input, output and
feedthrough matrices as shown in equation (2.86). Furthermore, the diagonal entries of the
block-Toeplitz state matrix are defined as [A]xr = Q — ikwol (Hill matrix). The algebra
and properties of infinite Toeplitz matrices are explained in [WERELEY, 1991]. In practice,
the block-Toeplitz matrices are limited in size by the number of terms of the Fourier series;
the truncation can be performed based on the desired fidelity. This leads to a state-space
representation of the LTP system [WERELEY AND HALL, 1990]

s(x] = [Allx] + [B][u -
[y] = [C][x] + [D][u]
The input-output relationship is thus
[y] = [H(s)][u] [H(s)] £ [D] + [C] (s[1] — [A])" [B] (2.88)

where [H(s)] is the harmonic transfer function in analogy to the transfer function of time-
invariant systems (2.51). Among its applications are system identification and controller

design [TCHERNIAK AND ALLEN, 2015; UYANIK ET AL., 2015].

It is possible to use another approach to derive the system’s response in frequency-

domain. From Floquet’s theorem:
(1, 1) = P(1)eQUTOIP (1) = P(t) WAt P (4) (2.89)

the STM can be reformulated as a sum:

Ny
B(t,tg) = »_ R;(t,t)eM ) R;(t, to) 2 (P(t)%e;) (el TP '(t)))  (2.90)
j=1

where the residue R;(¢,t9) € CN=xN associated to the j-th Floquet exponent Aj is equal
to the outer product of the j-th column of P(¢)¥ and the j-th row of ¥ 'P~'(¢y) (rank-1
matrices). This step is the same as has been done in equation (2.56) to transform the
transfer function of an LTI system. The residues Rj(t,tg) are continuous and periodic

because the transformation matrix P(t) is continuous and periodic, therefore they have an
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absolutely convergent Fourier series with terms R 5, and fundamental harmonic wy = 27 /7"

j(ttg) =Y Rypefol=o) v ji=1:N, (2.91)
keZ

We can put this expression into the STM series, set tg = 0 and transform immediately into

Laplace-domain:

Nz
=SS Ryt oo @(s,0) ZZ — A - kao (2.92)

j=1keZ j=1keZ

Let pjx = Aj + tkwo be the pole associated to the j-th Floquet exponent and the k-
th harmonic. For each index j, the corresponding poles all lie along a vertical line in
the complex plane (respectively, on the hyperbolae ( = —Rp; ;/wy, in an eigenfrequency-
damping plot), which implies that their real part does not change R{p; 1} = R{\;j+ikwo} =
R{\;} (respectively, the product (w, = —Rp;} is constant). The eigendecomposition of Q
places the imaginary part of the Floquet exponents within the strip S\; € [—wo/2, wo/2] in
the complex plane. Some combinations of j and k result in pole-residue pairs {p; i, Rjx}
that have more physical significance than other (for example correspond to a prominent
resonance peak). Indeed only a subset of all eigenpairs S C {p;r, R;x} has a noteworthy
contribution in the series expansion of the state transition matrix. Since the STM is real,
we may consider only one pole from each complex-conjugated pair. With this in mind we

can write the STM elegantly as:

R
B(t,0) = Y Rpe' o—e B(s,0)~ ) - — (2.93)
nes nes Pn

where the index n now enumerates the elements of S = {p,,, R,;}. Assuming that the input
B(t) and output matrices C(t) are periodic, the same reasoning can be applied to the

impulse response function to obtain:

H(s,t9) = D(to) +ZZ cjkb ~ D(to) +ZS . (2.94)
-~ FPn

j=1keZ 5~ Pjk nes

where n € S is again the index of most significant terms of the Fourier series of ¢; £
C(t)P(t)®e; and b; = e] ¥~'P~'(9)B(to). A subset of ikwg harmonics of a Fourier series

can be selected according to some criterion, for example:
e frequency: keep a certain number of negative and positive frequency bins around the
greatest harmonic plus the DC bin (e.g. the first 10% of harmonics).

o amplitude: excluding DC, ignore harmonics whose amplitude is below a certain

threshold (e.g. below 1% compared to the largest amplitude).

e cnergy: keep the desired fraction of the system’s total energy plus the DC bin (e.g.
keep 99% of the energy).
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The harmonics selection can be performed independently for each matrix entry. The
selection of the most significant terms of the series expansions of the state transition matrix
or of the impulse response function amounts to model order reduction. Given the similarity
between the pole-residue structures of equation (2.94) for LTP systems and equation (2.56)
for LTI systems, some established model order reduction techniques can be adapted, e.g.
modal truncation; reference [BENNER ET AL., 2015] provides a survey of this topic. It is
normally possible to obtain an accurate approximation of the system by considering just a
few harmonics [ALLEN ET AL., 2011; WERELEY, 1991].

Figure 2.14 illustrates the reduced modal decomposition of the state transition according
to (2.93) and compares it with the exact solution. Figure 2.15 shows the chosen poles
among the possible combinations of Floquet exponents \; and harmonics ikwo and the

magnitude of the associated residuals.
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FI1GURE 2.14: Exact and approximate frequency-domain representation of the state transition
matrix. Only the poles that represent 90% of the energy of each entry ®;;(¢,0) are used in the
modal decomposition. The arrows denote some of the ignored poles. This approximation is
sufficient to characterize most features of the spectrum. The figure displays entry (1,1) of the
5-DoF wind turbine model from [SKJOLDAN AND HANSEN, 2009] with wy = 1 rad/s.
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FIGURE 2.15: Same data as in figure 2.14. The grid on left displays the selected poles A; +ikwq
and the marker color the magnitude of the associated residue. Ten Floquet exponents (five
complex-conjugated pairs) are displayed, each with 2 harmonics. One additional harmonic
component per Floquet exponent is sufficient for an accurate representation of the system. The
bar plot on the right shows the absolute value of the residues corresponding to the displayed
poles (vertical lines).
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2.3.5 On the influence of period

We have noted in section 2.1.7 that one major theoretical difficulty for time-varying systems
is the lack of a clearly-defined concept of eigenvalues as for time-invariant and periodic
systems. In many applications a time-varying system is assumed to be “slowly-varying”,
i.e. the dynamics arising because of parameter variation can be neglected and therefore a
frozen-time formulation can be applied to model the system and to understand its behavior.
This is often a necessary but completely acceptable simplification in order to render the
problem tractable. Many published works in the field utilize this assumption, for example
[ERTVELDT ET AL., 2014; HOUTZAGER ET AL., 2012; LATAIRE AND PINTELON, 2010;
SPIRIDONAKOS AND FAssors, 2009; ZHOU ET AL., 2014]. Period has a marked influence
on periodic systems, firstly on their stability, which can be determined by computing
Floquet’s exponents. Depending on how fast does the system vary, the state transition
matrix assumes different forms (see figures 2.12 and 2.13). As another example, the state
transition matrix of a periodic system is illustrated in figure 2.16 for different periods. As
T grows, the spacing iwy between the dynamic poles diminishes and they cluster beside
the location of the LTI poles. Given a Floquet exponent \;, the corresponding poles
Aj + ikwq of the STM are each iwy apart in the complex plane. Depending on the system,
the resonance peaks may be heavily deformed by the presence of many close poles with

significant residues.
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FI1GURE 2.16: The state transition matrix in frequency-domain as a function of period compared
to the underlying time-invariant system. Each vertical line denotes a pole and its hue the
magnitude of the corresponding residue. The figure displays a detail of STM entry (1,1) of a
5-DoF wind turbine model from [SKJOLDAN AND HANSEN, 2009] for T' = [8, 32, 128, 512] s
(wo = [0.785, 0.196, 0.0491, 0.0123] rad/s). In this frequency range, the system has three very
lightly-damped LTT poles with (w,, = [0.0109, 0.0106, 0.0125] rad/s. The third pole is quite
insensitive to time variation.
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Let us consider the damped harmonic oscillator undergoing a periodic variation:
P(t) + 2Cwnd(t) + w2 (14 r2sin(rpw,t)) z(t) = 0 (2.95)

where ¢ and w, are respectively the damping ratio” and eigenfrequency of the underlying
LTI system and the dimensionless quantities r, and ry are respectively the amplitude and
frequency ratios of the parameter variation (wp = rywy,). When r, = 0 or ry = 0 the system
is time-invariant and has eigenfrequency w,. We can use the system’s eigenfrequencies to

define a scale for what is “slow” or “fast”. Essentially three regimes appear:

o slowly-varying system wo < (wy: a frozen-time representation is an accurate de-
scription of the system’s dynamics. This may be valid even for large variations of a

parameter, depending on the system’s sensitivity.

e intermediate variation rate wy ~ Cwy,: dynamic poles slowly emerge in close proximity

to the “main” resonance peak and deform severely its shape.

e fast system wvariation wg > wy,: dynamic poles move away from the main peak and

become clearly separated.

As wy increases further, the system varies so quickly that it appears to be insensitive to
parameter variation and the main peak is approximately at the location of the corresponding
time-invariant case. The system’s impulse response is displayed in a time-frequency plot
for different r; frequency ratios in figure 2.17. Each subplot is built by calculating H(iw, t)
at multiple instants within one period ¢ € [0,T]. The frequency axis is normalized by the
eigenfrequency w/wy,; likewise the time axis is normalized by the period ¢/T. When the
system is slowly-varying, the location of the main resonance peak is described well by the
instantaneous value of the eigenfrequency. When the rate of variation is intermediate, side
lobes appear and and grow in magnitude until they become overwhelming. Their prominence

increases if the damping ratio ¢ decreases. Eventually the system varies so quickly, that

® Equation (2.95) is similar to the Mathieu equation &(t) 4 (a — 2q cos(2t)) z(t) = 0 [RICHARDS, 1983].
This expression is widely studied in literature, particularly with regard to the stability region as a function
of the parameters a and gq.
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FIGURE 2.17: Magnitude of the time-varying impulse response of system (2.95), where w,, =1
rad/s, ¢ = 0.04, ry = [0.002, 0.02, 0.05, 0.2, 0.5] and 7, = 1/4/2. The system varies slowly on
the left and varies quickly on the right. See text for discussion.
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the main resonance peak appears fixed at its time-invariant location, accompanied by
dynamic poles at approximately w/wy, =1 £ r;. Different regimes can be observed for the
combinations of low, middle and high variation amplitudes r, and for slow, intermediate
and fast variation rates ry. Figure 2.19 displays again the time-varying impulse response of
system (2.95) in a grid of three different variation amplitude and frequency ratios r, and

rr. When the system is slowly-varying, the frozen-time description is accurate even with

large 74, whereby the frozen-time eigenfrequency is wy (t) = wy /1 + r2sin(rjwy,t). In this
case the instantaneous eigenvalues still have significance. When the system varies quickly,

the main resonance peak is at the mean location of the instantaneous eigenfrequency

+ fOT wny/1 + r2sin(rpw,t)dt (even for high r,). The most dynamically complex case
arises when the side lobes become significant, typically with moderate variation rates,
even for low amplitude ratios r,. In this regime it is not possible to predict the system’s
dynamics in a simple way.

The information contained in the last two figures can be condensed by evaluating the
amplitude of the impulse response in frequency-domain H(iwy,,0) at the time-invariant
eigenfrequency w, in order to compare it with the corresponding time-invariant values
H(iw,). The result is pictured in figure 2.18. We can see that there is a large region
where the system is insensitive to parameter variation H(iw,,0)/H(iw,) > 0.9 (the LTV
spectrum at w,, and the LTI resonance peak have the same height). Time-varying effects
due to large amplitude ratios r, can be mitigated by increasing the frequency ratio ry.
The same happens when r¢ is very low (less noticeable in the plot because the resonance

peak shifts while maintaining essentially the same magnitude).
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FIGURE 2.18: Amplitude ratio between the LTV and LTT impulse responses H(iw,,0)/H(iw,)
of a time-varying damped harmonic oscillator (2.95) evaluated at the location of the frozen-time
eigenfrequency wy,.
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