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Fliegende Flugzeuge können als lineare parametervariante aeroelastische Systeme modelliert 

werden. Die Wechselwirkung zwischen aerodynamischen, Trägheits- und elastischen Kräften 

beeinflusst ihre modalen Parameter in Abhängigkeit von Flughöhe und -geschwindigkeit. Bei 

kritischen Luftstrombedingungen kann Flattern auftreten, eine dynamische Instabilität der 

Struktur, die sich als selbstinduzierte Schwingungen manifestiert, wenn der Dämpfungsgrad 

eines Schwingungsform negativ wird. Die Entwicklung und Erprobung neuer oder modifizierter 

Flugzeuge erfordert die Bewertung der Flatterstabilität. Flugschwingungsversuche bleiben eine 

gefährliche Tätigkeit, da eine ausreichende aeroelastische Stabilität innerhalb des gesamten 

Flugbereichs bis zur maximalen Höhe und Geschwindigkeit im Flug nachgewiesen werden muss. 

Um die Sicherheit und die Effizienz von Flugschwingungsversuchen zu erhöhen, kann eine 

permanente Online-Schwingungsüberwachung durchgeführt werden. Damit kann die 

Entwicklung der Eigenfrequenz und des Dämpfungsgrades im Laufe der Zeit oder als Funktion 

von Flugvariablen verfolgt werden, um den Testingenieur über jede plötzliche Reduzierung der 

Dämpfung informieren zu können. 

Die Schwingungsüberwachung erfolgt mittels operationeller Modalanalyse aus der durch 

Turbulenz erregter Beschleunigungsantwort der Struktur. Weitere Erregungsarten durch 

Manöver, Kontrollflächen und den Nachlauf anderer Flugzeuge werden auch berücksichtigt. 

Die Theorie linear aeroelastischer parametervarianter Systeme und die Methoden zur 

Spektraldichteschätzung, Systemidentifikation und Modenverfolgung, die zur Analyse solcher 

Systeme erforderlich sind, werden in dieser Dissertation weiterentwickelt. Die theoretischen 

Werkzeuge wurden in eine echtzeitfähige Software für Schwingungsüberwachung implementiert 

und ihr Einsatz in Windkanal- und Flugschwingungsversuche demonstriert. 

Zusammenfassend lässt sich sagen, dass modale Parameter von Flugzeugen, die schließlich 

durch Luftturbulenzen angeregt werden, erfolgreich geschätzt und verfolgt werden können. Die 

Auswertung erfolgt mithilfe der Output-Only Systemidentifikation für verschiedene Arten von 

Erregungen und Flugbedingungen. Diese Echtzeit-Modalanalyse hat das Potenzial, die 

Sicherheit der Experimente zu erhöhen, indem sie eine objektive Messung der Flatterstabilität 

liefert. Die permanente Schätzung der modalen Parameter ermöglicht eine effizientere Führung 

von Flugschwingungsversuche. 
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Aircraft in flight can be modeled as linear parameter-varying aeroelastic systems. The 

interaction between aerodynamic, inertial and elastic forces influences their modal parameters 

depending on flight altitude and speed. At critical airflow conditions, flutter can occur, a dynamic 

instability of the airframe that manifests as self-induced oscillations when the damping ratio of 

a mode of vibration becomes negative. The development and testing of new or modified aircraft 

require the evaluation of the flutter margin. Flight vibration testing remains a hazardous activity 

since adequate aeroelastic stability must be demonstrated in flight within the whole flight 

envelope up to maximum altitude and speed. 

In order to enhance the safety and efficiency of flight vibration testing, permanent in-flight 

online vibration monitoring can be performed by tracking the evolution of the eigenfrequency 

and damping ratio over time or flight variables such as speed and altitude in order to inform the 

test engineer about any sudden damping reduction.  

Vibration monitoring is performed by means of operational modal analysis from the 

acceleration response due to air turbulence. Maneuvers, control surface deployment and 

excitation by the wake of other aircraft are also considered. 

The thesis developed further the theory of aeroelastic parameter-varying systems and the 

spectral estimation, system identification and mode tracking techniques required to analyze 

such systems. The theoretical tools have been implemented into a real-time vibration 

monitoring application and demonstrated in wind tunnel tests and during flight vibration testing. 

In conclusion, modal parameters of aircraft excited by air turbulence can be estimated and 

tracked successfully by output-only system identification methods for different types of 

excitation and flight conditions. Real-time modal analysis has the potential to enhance safety 

by providing the test engineers with objective measures of the flutter margin. It can improve 

efficiency by allowing continuous modal parameter estimation while experiments are ongoing. 
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Preface

After I have worked for some time in the aeronautic industry, the opportunity to

conduct research on structural dynamics arose. This field of engineering attracted me

because of its beautiful applications of mathematics to real-world problems.

Carpe diem, I thought, and joined the Institute of Aeroelasticity at DLR.

The initiation into aeroelastic testing occurred a few months later with my first mea-

surement in the transonic wind tunnel in Göttingen: the prototype program I developed

for online vibration monitoring performed successfully its first operational modal analysis

in parallel with other concurrent experiments.

Over the years, this software expanded greatly in scope, complexity and capabilities.

Crucially, it was deployed during the flight vibration testing on the HALO research aircraft

to collect data under variable excitation and flight conditions. These measurements raised

the first questions about time-varying system dynamics. A year later, the permanent modal

parameter tracking of a wing with nacelle model was performed at the high-speed wind

tunnel in Amsterdam while approaching the stability boundary. The experiment required

accurate damping estimates of a parameter-varying system using output-only methods.

At this point an interesting research subject began to coalesce: the examination of

time-varying dynamics, the role of rate and amplitude of parameter variation and their

influence on operational modal analysis of aeroelastic systems. Some time thereafter this

topic was formalized and proposed to my academic supervisor.

The thesis attains from the experience acquired by performing modal analysis on several

wind tunnel models, rotor blades, ground and flight vibration tests of aircraft. Experimental

activities are complemented by equally extensive theoretical developments. The thesis is

enriched by exchanges and discussions with members of the modal analysis community

and beyond. The topic is vast, but presented with balance between depth and breadth in

order to make it both accessible and complete. It has been written during hard times and

a lot of heart has been put into each of its formulae, paragraphs and figures.

I hope that You, the reader, will find it informative and interesting.

Göttingen, December 2021

Goran Jeličić
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Abstract

Aircraft in flight can be modeled as linear parameter-varying aeroelastic systems.

The interaction between aerodynamic, inertial and elastic forces influences their modal

parameters depending on flight altitude and speed. Under critical airflow conditions, flutter

can occur, a dynamic instability of the airframe that manifests as self-induced oscillations

when the damping ratio of a mode of vibration becomes negative. The development and

testing of new or modified aircraft require the evaluation of the flutter margin. Flight

vibration testing remains a hazardous activity since adequate aeroelastic stability must be

demonstrated in flight within the whole flight envelope up to maximum altitude and speed.

In order to enhance the safety and efficiency of flight vibration testing, permanent

in-flight online vibration monitoring can be performed by tracking the evolution of the

eigenfrequency and damping ratio over time or flight variables such as speed and altitude

in order to inform the test engineer about any sudden damping reduction.

Vibration monitoring is performed by means of operational modal analysis from the

acceleration response due to air turbulence. Maneuvers, control surface deployment and

excitation by the wake of other aircraft are also considered.

The thesis developed further the theory of aeroelastic parameter-varying systems and

the spectral estimation, system identification and mode tracking techniques required to

analyze such systems. The theoretical tools have been implemented into a real-time

vibration monitoring application and demonstrated in wind tunnel tests and during flight

vibration testing.

In conclusion, modal parameters of aircraft excited by air turbulence can be estimated

and tracked successfully by output-only system identification methods for different types

of excitation and flight conditions. Real-time modal analysis has the potential to enhance

safety by providing the test engineers with objective measures of the flutter margin. It can

improve efficiency by allowing continuous modal parameter estimation while experiments

are ongoing.





Resumé

Fly under flyvning kan modelleres som lineære parametervarierende aeroelastiske

systemer. Samspillet mellem aerodynamiske, inerti og elastiske kræfter p̊avirker deres

modale parametre afhængigt af flyvehøjde og hastighed. Ved kritiske luftstrømsforhold

kan der forekomme flutter, som er en dynamisk ustabilitet af flystellet, der viser sig som

selv-inducerede svingninger, n̊ar dæmpningsforholdet for en svingningsform bliver negativt.

Udvikling og afprøvning af nye eller modificerede fly kræver evaluering af flutter grænsen.

Vibrationsforsøg af fly forbliver en farlig aktivitet, da tilstrækkelig aeroelastisk stabilitet

skal p̊avises under flyvningen inden for hele flight envelope op til maksimal højde og

hastighed.

For at øge sikkerheden og effektiviteten af flyvibrationstestning kan permanent on-

lineoverv̊agning under flyvning udføres ved at spore udviklingen af egenfrekvensen og

dæmpningsforholdet over tid eller flyvevariabler s̊asom hastighed og højde for at informere

testingeniøren om enhver pludselig dæmpningsreduktion.

Vibrationsoverv̊agning udføres ved hjælp af operationel modal analyse fra accelerations-

responset for̊arsaget af luftens turbulens. Manøvrer, indsættelse af kontroloverflader og

excitation fra det turbulente flow for̊arsaget af andre fly tages ogs̊ai betragtning.

Denne afhandling videreudvikler teorien om aeroelastiske parametervarierende systemer

og teknikker som spektralestimering, systemidentifikation og sporing af svingningsformer,

der er nødvendige for at analysere dem. De teoretiske værktøjer implementeres i en

vibrationsoverv̊agningsapplikation i realtid og demonstreres i vindtunneltest og under

flyvevibrationstest.

Modale parametre for fly exciteret af luftens turbulens kan estimeres og spores med

succes ved hjælp af output-only systemidentifikationsmetoder for forskellige typer excitation

og flyveforhold. Modal analyse i realtid har potentialet til at øge sikkerheden ved at give

testingeniørerne objektive mål for flutter grænsen. Det kan forbedre effektiviteten ved at

tillade kontinuerlig modal parameterestimering imens eksperimenter er i gang.
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Notation

The conventions adopted for the notation in this thesis are listed here. Consistency is

a virtue, but there are well-known equations that use symbols of such wide adoption that

the rules listed below will be broken. Nevertheless, the symbol in question will be clearly

defined in the text next to the equation.

Notation. Particular notation conventions are highlighted in a box like this. Sometimes

an exception is required in order to be consistent with the established notation in literature

or for elegance. Notation changes are clearly stated every time.

Linear algebra

• Scalars are typeset with normal font weight, e.g. α, P .

Column vectors are denoted by lowercase bold letters, e.g. x, v.

Row vectors are denoted as transposed column vectors, e.g. ψT , bT .

Matrices are denoted by uppercase bold letters, e.g. Λ, H.

• Square brackets denote matrices and the concatenation of scalars, vectors or matrices,

for example M ≜ [v1,v2, . . . ,vn]. A matrix that is assembled from other matrices

can be denoted explicitly by [M], for example [M] = [0 I].

• Curly brackets denote column vectors, e.g. a = {a0, a1 · · · , an}.
Vectorization is denoted by {M} ≜ vec(M).

• Diagonalization of a vector v is denoted by diag(v).

The diagonal of matrix M is denoted by diag(M).

A block diagonal matrix is constructed by diag(M1,M2, . . . ,M3).

• The zero matrix is 0, the identity matrix is I. They have implicitly the correct size.

• The Moore-Penrose pseudoinverse is denoted by a superscripted plus-sign.

Let b ∈ CN , A ∈ CN×M and x ∈ CM , then b = Ax =⇒ x = A+b.

Indexing

• The subscripts of scalars designate:

– an element of a set ak ∈ S.

– an entry of a vector or matrix ak ≡ a[k].

• The subscripts of vectors designate:

– a particular quantity where the subscript distinguishes it from another related

symbol, e.g. xh / xi: homogeneous vs inhomogeneous solutions.

– the k-th element vk of a set of vectors V = {v1 · · ·vNk
}.

– a particular entry of a vector, e.g. v0 is v0,k ≡ v0,k ≡ v0[k]
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• The subscripts of matrices designate:

– the scalar entry (i, j) of a matrix M: e.g. Mij ≡M[i, j] ≡Mij .

– the diagonal element of a diagonal matrix. For example, if D = diag(v), then

the k-th diagonal element is Dk ≡ Dkk ≡ v[k] ≡ vk (a scalar).

– a submatrix of an assembled matrix. For example, the submatrix (2, 1) of

[M] = [A, B ; C, D] is [M][2, 1] ≡ [M]21 ≡ C.

– the k-th element of a set of matrices K = {M1 · · ·MNk
} is Mk.

– the columns of a matrix when said matrix does not belong to a set: Mi ≡M[:, i]

– the rows and columns of a matrix: M2:3,1:3 ≡M[2 : 3, 1 : 3]

• Let M ∈ CN×M be a matrix and define the selector vectors for the rows and columns

e1 = {1, · · · , 0} ∈ NN , e2 = {0, 1, · · · , 0} ∈ NN and so forth. The i-th row of M is

eTi M. The j-th column M is Mej . Entry (i, j) of M is Mij ≡ eTi Mej .

Sets

• Blackboard bold capital letters denote sets. The symbols N, Z, R and C denote

respectively natural numbers, integers, real and complex numbers. The symbols I, J
and S are sets of indices (integers).

Summations

• The symbol S denotes the indices of sums. For example, let a = {2, 3, 5, 7, 11}, and
define a subset S = {1, 3, 5}, then

∑
k∈S ak ≡ a1 + a3 + a5 ≡ 2 + 5 + 11.

• Summations over all elements of a set are denoted as
∑

n∈Z an ≡
∑+∞

n=−∞ an

• Implicit summations are over all elements. For example, let ak,n ∈ ak be the n-th

term of vector ak ∈ CNk (where the subscript k distinguishes it from a similar

quantity, say al), then
∑

ak ≜ ak,0 + ak,1 + · · ·+ ak,Nk
≡
∑Nk

n=0 ak,n

Matrix decompositions

• The eigendecomposition of a matrix is denoted with M
eig
= ΨΛΨ−1 where Λ is the

diagonal matrix of eigenvalues and Ψ are the eigenvectors. If clear from context, the

operator
eig
= is omitted. The subscript k denotes the k-th eigenvalue Λk and the k-th

column of the eigenvector matrix Ψk. Sometimes the k-th eigenpair is denoted by

ψk and λk.

• The singular value decomposition of a matrix M ∈ Cm×n is denoted by M
svd
= UΣVT

where U ∈ Cm×m is a complex unitary matrix of left singular vectors, Σ ∈ Rm×n
+ is

the diagonal matrix of non-negative singular values and V ∈ Cn×n is the unitary

matrix of right singular vectors. If clear from context, the operator
svd
= is omitted. The

subscript k denotes the k-th singular value Σk, the k-th column of the left singular

vectors Uk and the k-th row of the right singular vectors VH
k .
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Transforms

• The imaginary unit is denoted by i. The letter j does not denote the imaginary unit.

When they are typeset as subscripts, they are integer indices i, j ∈ Z.

• The Fourier transform is non-unitary for convenience of notation:

F {f(t)} = f(ω) ≜
∫ +∞

−∞
f(t)e−iωtdt

F−1 {f(ω)} = f(t) ≜
1

2π

∫ +∞

−∞
f(ω)eiωtdω

The transformation is unitary when the factor of F and F−1 is 1/
√
2π.

• The Laplace variable is s = σ+ iω where σ, ω ∈ R. The symbol sk denotes a complex

frequency from a set k ∈ S.

• The Laplace transform:

L{f(t)}(s) ≜ f(s) ≡
∫ ∞

0
f(t)e−st dt

is denoted by:

f(s) = L{f(t)} (s) ⇐⇒ f(t) c sf(s)
f(t) = L−1 {f(s)} (t) ⇐⇒ f(s) s cf(t)

Other

• The colon : is used for creating vectors with consecutive elements, for example

3 : 6 = {3, 4, 5, 6} or 6 :−1 : 3 = {6, 5, 4, 3}.

• The matrix exponential is: expM ≡ eM =
∑∞

n=0
1
n!M

n. It is stated clearly when

exp(M) denotes the scalar exponential of the matrix entries exp(Mij).

• The eigenvector function fλ maps the eigenfrequency fn [Hz] and damping ratio ζ

[adim] onto the complex plane λ [rad/s]:

fλ(fn, ζ) −→ λ : λ = 2πfn

(
−ζ + i

√
1− ζ2

)
[rad/s]





1 Introduction

The influence of aerodynamics on aircraft in flight can be observed in the variation

of stability and modal parameters depending on airflow variables such as flight altitude

and wind speed. The structure’s modal parameters – eigenfrequencies, damping ratios and

normal modes – describe how it vibrates and responds to external forces. Aeroelasticity

researches the interaction between inertial, elastic and aerodynamic forces in structures

immersed in a fluid flow. It encompasses the study of phenomena such as divergence,

control reversal, flutter, gust response and maneuver loads. While the first two are static,

the others are dynamic in nature. The multidisciplinary character of aeroelasticity is

illustrated well by Collar’s triangle in figure 1.1.

Figure 1.1: Collar’s aeroelastic triangle showing the major disciplines in aeroelasticity.

Vibrating structures exchange permanently potential and kinetic energy due to the

work performed by elastic and inertial forces. Part of the total energy is dissipated as heat

by the internal or external influence of damping. In the absence of any outside excitation,

the system is eventually brought to rest. Even with ideal non-dissipative materials, the

interaction with the airflow modifies this energy exchange mechanism and introduces

additional damping. However, aeroelastic systems at critical airflow conditions may instead

absorb energy from the stream and become unstable, leading to catastrophic structural

failure – the flutter phenomenon. Flutter is a dynamic aeroelastic instability that results in

a self-excited oscillation; it is not to be confused with resonance, where the system response

amplitude increases when the excitation has a frequency component in the vicinity of an

eigenfrequency. Aeroelastic stability is an essential design concern in the development of

new aircraft or modification of existing ones and must be demonstrated in flight. The

analytical and numerical aeroelastic models for the determination of the flutter boundary

are complemented by flight vibration tests. In this regard the state-of-the-art consists

of estimating the damping ratio of critical modes by control surface excitation during

stabilized level flight using system identification techniques. The procedure is repeated for

all points of interest within the flight envelope by holding the altitude constant and by

carefully increasing the speed in small steps and observing the damping trend.
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System identification is the study of statistical methods that analyze the response of an

unknown physical process induced by some excitation in order to construct a parametric

representation of its behavior. The resulting mathematical models provide a simplified

description of complex dynamic systems in the time or frequency domains. System

identification is employed in control applications, to predict the response to arbitrary input

signals, to validate numerical models, to quantify structural nonlinearities and to gain

further physical insight into a dynamic system. It is performed in the input-output or

output-only frameworks, depending on whether the excitation signals are available or not.

The experimenter selects a mathematical model to represent the physical process, after

which the identification method fits the model structure to acquired data by tuning its

parameters so that the difference between physical system and mathematical representation

is low; the concept is illustrated in figure 1.2.

Operational modal analysis (OMA) is a branch of system identification that focuses

on modeling an unknown dynamic process from the examination of its measured response

during operation or in the presence of unknown or unmeasurable excitation. Conversely,

when the input is known, identification is performed within the experimental modal analysis

(EMA) framework. OMA has many applications in engineering, such as permanent non-

invasive structural health monitoring and damage detection of bridges, wind turbines and

historical buildings, or vibration monitoring of machinery and vehicles during operation,

for instance engines and aircraft. The OMA methods estimate the normal modes and

the associated eigenfrequency and damping ratio with a confidence that depends on the

signal-to-noise ratio, the presence of errors, extraneous signals, deviations from assumptions

and so forth. An example of operational modal analysis performed on a wing model is

illustrated in figures 1.3 and 1.4.

The continuous estimation of modal parameters from the acceleration response to

atmospheric turbulence while the flight vibration test is ongoing can save time and increase

safety by providing permanently an objective measure of aeroelastic stability to the flight

test engineer or pilot; a similar function is performed during aeroelastic testing in wind

tunnels. Real-time system identification applied to parameter-varying aeroelastic systems

is therefore a research topic attracting great interest and clear demand from the industry.

Figure 1.2: System identification concept: an unknown dynamic process responds to some
excitation signals in the presence of noise. The model’s structure is selected based on first
principles. The chosen identification technique estimates the values of the model’s parameters
in the input-output or output-only frameworks. The model is validated by assessing how it
describes the physical system in the time or frequency domains.
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Figure 1.3: Operational modal analysis procedure: example with a swept wing modeled by
shell elements. Left plot: geometry (wire-frame) and accelerometers (arrows). Middle plot:
random response due to unknown turbulent excitation. Right plot: power spectral density of
measured responses and six identified eigenfrequencies (denoted by numbers).

Figure 1.4: Operational modal analysis results: the first six eigenmodes (also known as modes
of vibration or normal modes) and the associated eigenfrequency (in Hertz) and damping
ratio (in percent) as reconstructed only from the measured response. The structural model is
undamped, but aeroelastic effects contribute significantly to the system’s damping, in particular
in the lowest modes. The eigenmodes are labeled according to the predominant vibration type
and number of nodes.

The topic of this thesis is the application of operational modal analysis to parameter-

varying aeroelastic systems in order to determine their modal parameters as they vary due

to the influence of external airflow variables. Physical dynamic processes are in general

nonlinear and time-varying, nevertheless important real-world applications and engineering

problems can still be described adequately and efficiently by linear time-invariant models.

However, a rapid change of flow variables introduces dynamic effects that invalidate some

of the hypotheses of spectral estimation and system identification, leading to results that

may not seem reasonable. In order to address this issue, a theoretical foundation of

time-varying dynamics, followed by spectral estimation, system identification and mode

tracking methods, is researched to produce a parametric representation of parameter-

varying aeroelastic systems. This knowledge is then applied to modal analysis to determine

the evolution of the system’s parameters as function of airflow variables. Lastly, the

procedure is deployed in aeroelastic experiments to monitor a vibration test in real-time

using output-only methods.



4 1. Introduction

1.1 Context of the present study

Operational modal analysis has seen important developments and engineering applications

over the last two decades.

The methods of subspace identification and least-squares polynomial fraction models

[Guillaume et al., 1999; Van Overschee and De Moor, 1996; Verhaegen and

Dewilde, 1992] have evolved and found widespread use in the modal analysis of structures.

Modal parameter estimation for online monitoring has been addressed by [Verboven

et al., 2004] using an input-output iterative frequency-domain rational function estimator

that models transient phenomena in the data. The research in [Peeters et al., 2006]

and [Mevel et al., 2006] compared the modal results obtained from different estimators

using turbulence and artificial sweep excitation; the authors note that in this type of

measurements short records and the variance of the estimated damping are challenging,

but output-only system identification is still viable and useful. [Basseville et al., 2007]

discuss the in-flight vibration monitoring from the point of view of identification versus

detection algorithms; the latter have a shorter reaction time compared to the former, but

deliver less accurate estimates. [Brenner et al., 1997] review the system identification,

excitation devices and flutter prediction techniques applied to flight vibration testing at

NASA Dryden. The authors discuss how time-varying and transient dynamics impact

negatively the spectral and damping estimates and describe the adopted identification

procedure to counter those effects. The paper from [Morelli and Klein, 2005] presents

a historical overview of the research conducted at NASA Langley on system identification

applied to aircraft. Information about ground vibration testing of large airplanes conducted

at DLR and ONERA in Europe is found respectively in [Böswald et al., 2006; Govers

et al., 2014] and in [Giclais et al., 2016; Stéphan et al., 2015]; several aspects of the

experimental modal analysis procedures described in the aforementioned references can be

adapted to flight vibration testing. In [van Wingerden et al., 2010] the parameters of a

flutter model are estimated in closed-loop in an input-output framework. [Lataire, 2011]

developed the identification of slowly-varying systems by means of multi-sine excitation

in conjunction with an estimator that models the parameter variation using polynomials.

[Ertveldt et al., 2014] applied the time-varying nonlinear least-squares estimator

from [Lataire and Pintelon, 2010] to a slowly-varying wind tunnel model with known

artificial excitation in order to determine the system’s transfer function and predict the

onset of flutter. [Houtzager et al., 2012] apply a recursive predictor-based subspace

identification method on a wind tunnel model to estimate uncertain closed-loop parameters;

the technique is applicable to slowly-varying systems for modal parameter tracking and

suitable for online flutter detection. Subspace identification is popular in operational

modal analysis with applications in flight testing [De Cock et al., 2006; Schwochow

and Zöger, 2013]. Recently, [Tang et al., 2017] developed a two-step technique for

identifying reduced-order aeroelastic models from test data by combining frequency-domain

and subspace identification. Flutter predictions methods are assessed in [Iovnovich et al.,

2018] from the point of view of system identification; the authors conclude that OMA



1.1. Context of the present study 5

applied to aircraft excited by atmospheric turbulence is accurate and cost-effective for this

purpose. Since continuous monitoring produces large amounts of data, system identification

methods are frequently paired with increasingly sophisticated mode tracking algorithms,

particularly in structural health and vibration monitoring applications [Beaverstock

et al., 2015; Luspay et al., 2018; Marrongelli and Gentile, 2019; Neu et al.,

2017; Yaghoubi et al., 2018].

For time-varying systems, strictly speaking there is no “transfer function” describing

a bijective correspondence between inputs and outputs like for time-invariant systems,

but there are still attempts to transpose LTI concepts onto the LTV case [Wereley

and Hall, 1990; Zadeh, 1950]. Likewise, the notion of “eigenvalues” is generally not

helpful or not well-defined [Rugh, 1996] and there exist different formulations, for instance

in [Kamen, 1988; Liu, 1999; Wu, 1980]. Modal analysis is thus often performed with

the assumption of a slowly-varying system, i.e. the parameter variation is such that it

does not modify stability or introduce additional dynamic effects. This is a necessary

assumption when ensemble identification (repeated system realizations with the same

variation) cannot be performed. However, to the best of the author’s knowledge, a measure

of “slow variation” is absent. In [Gao et al., 2018] and the references therein the authors

provide theorems for verifying stability directly from the system’s state matrix and its

derivative and authors summarize that time-varying systems may temporarily enter an

unstable state, but maintain global stability. An output-only time-domain extension of

the maximum-likelihood frequency-domain rational function estimator that fits a bilinear

time-frequency distribution is developed in [Zhou et al., 2014]. [Eugeni et al., 2018]

presented the operational modal analysis of a launch vehicle, where large mass variations

over a short time occur and proposed a criterion for the applicability of output-only methods

for time-varying systems. Simulations support the concept of performing modal analysis

while the aircraft is slowly accelerating [Jacquier and Ayme, 2018]. Gaussian process

models (from the family of auto-regressive methods) have found successful applications

in the operational modal analysis and structural health monitoring of time-varying wind

turbines [Avendaño-Valencia et al., 2020]. Other methods that have recently entered

system identification are based on the dynamic mode decomposition. [Zhang et al., 2017]

discuss its application to online identification of time-varying systems. In [Bai et al.,

2020] dynamic mode decomposition is coupled with compressed sensing to reconstruct a

larger system from limited input-output data. Several powerful time-varying identification

techniques for controller design are limited to low-order models, which is inadequate for

the intended use on aeroelastic systems. From the point of view of aeroelastic modeling,

[Huang and Qiu, 2013] performed the flutter analysis of a variable-span wing. The

extension rate is modeled as a constant parameter and has a considerable effect on the

flutter speed, but the analysis is within the time-invariant framework. The aeroelastic

modeling in [Kim, 2019] is coupled with the dynamic eigenvalue decomposition to produce

reduced-order models. The method produces small parameter-varying aeroelastic models

and is applied in the time-invariant framework.
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1.1.1 Summary of state-of-the-art

Some of the key points from the literature research are summarized below:

• There exists clear demand in the industry for modal analysis for the assessment of the

vibration environment, validation and updating of numerical methods, monitoring of

operating conditions. In-flight analysis of aeroelastic stability is desirable for reducing

testing time and increasing safety.

• Artificial excitation has limited bandwidth and requires fly-by-wire control systems,

which are available on military and large civil aircraft, but absent in many light and

freight vehicles. Ambient excitation increases the number of application cases and

reduces costs because no additional equipment and devices are necessary.

• Since the atmospheric turbulence and acoustic excitation is unknown, the modal

parameters must be estimated in the output-only framework. Subspace identification

methods in time-domain are robust with respect to non-stationary excitation and are

common in flight testing. Frequency-domain rational function estimators perform

strongly in the input-output framework, but find applications in operational modal

analysis as well.

• The system’s modes of vibration must be tracked automatically over time or as

function of external variables in the presence of high variance of estimated parameters,

noise, errors or quickly-varying conditions.

• Ensemble identification must be employed for general time-varying systems by ac-

quiring several realizations with the same parameter variation, which is not feasible

for aircraft in flight. Time-varying systems whose parameters vary slowly can be

analyzed using time-invariant techniques.

• In the time-varying case, the definition of modal parameters is more complex than

for time-invariant systems. Furthermore, the influence of rate and amplitude of

parameter variation on system dynamics should be assessed.

• According to the bibliographic research, the theoretical modeling of the influence

of the variation rate and amplitude is lacking, therefore the assumption of “slowly-

varying system”, despite being necessary and adequate, remains quite vague. The

dynamic effects due to fast parameter variation and the limits of the slow variation

assumption necessitate more in-depth research.
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1.2 Objectives

Within the current research context, the thesis objective is formulated in a nutshell as:

The permanent, real-time modal parameter estimation of aircraft subject to varying flight

conditions from the acceleration response due to atmospheric turbulent excitation.

The thesis shall contribute to increased experimental data exploitation by continuous

system identification, to reduced testing time by performing in-flight vibration monitoring

and to higher levels of safety by providing permanently modal parameter estimates. This

proposition is supported by the research of time-varying system dynamics, the implemen-

tation of a modal analysis procedure and the application to aeroelastic experiments.

The thesis’ global goal is thus subdivided into three tasks:

1. Theoretical development : the linear time-varying systems theory and application to

parameter-varying aeroelastic systems are introduced in the first part. This task’s

objective is to develop a parametric frequency-domain representation of time-varying

systems. This will enable us to understand the effects of rate and amplitude of

parameter variation, to perform signal processing correctly and to interpret system

identification results.

2. Modal analysis procedure: development of the spectral estimation, system identifi-

cation and mode tracking methods for operational modal analysis of time-varying

systems for the application on wind tunnel models and aircraft. Spectral estimation

and system identification must be performed efficiently in the presence of noise,

nonstationary excitation and system parameter variation. A mode tracking algorithm

is to be developed for organizing modal data estimated from heterogeneous sources

and to determine the evolution of eigenfrequency and damping as functions of airflow

variables.

3. Application to aeroelastic experiments: real-time online operational modal analysis

during measurements. The vibration monitoring application is to be first tested in

a controlled simulated environment and then validated on experimental data from

wind tunnel models in open-loop conditions. The final objective is the deployment

during flight vibration testing to perform system identification of aircraft subject to

turbulent excitation.
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1.3 Main contributions

Several methodologies have been developed, refined or expanded in order to achieve the

global objective of the thesis. They will be described in detail in the corresponding chapters.

With regard to the three tasks in which this work is subdivided, the following contributions

are briefly presented:

1. The thesis develops the analytical frequency-domain representation of linear time-

varying systems to provide a quantitative interpretation of their dynamics. Exact

solutions are derived for linear and complex exponential parameter variations. The

influence of amplitude and rate of parameter variation is investigated providing new

insight into their role in the system response. Aeroelastic modeling is extended by

including time-dependency to study the influence of flight variables on its entries and

eigenvalues. Two criteria for quantifying the importance of parameter variation are

proposed to define when the system varies sufficiently slowly to allow a frozen-time

formulation. This research furthers the understanding of time-varying aeroelastic

systems.

2. The thesis implements an efficient modal analysis procedure performing signal pro-

cessing, system identification and mode tracking into a software for the monitoring of

parameter-varying systems. The new segmented multi-taper method is proposed for

estimating the power spectral densities and spectrogram, showing better performance

for short records. The thesis contributes to multi-band processing for the stochastic

subspace identification (SSI) method and to clearer stabilization diagrams in the

least-squares complex frequency (LSCF) algorithm. An automated mode tracking

algorithm, capable of organizing heterogeneous modal data to determine the eigen-

frequency and damping evolution of tracked modes, is developed and tested. These

developments contribute to other modal analysis applications within the research

group.

3. The thesis validates the modal analysis procedure using a newly-developed simulation

method for time-varying systems based on state-space series expansions. Real-time

output-only modal analysis is demonstrated during flight vibration and wind tunnel

testing by the fully-featured vibration monitoring application coded within the scope

of this thesis. It attains from the experience collected by performing vibration testing

at DLR, DNW, ONERA and Airbus facilities. Tracking of aircraft eigenmodes

under varying flight and excitation conditions is demonstrated in-flight. Several

insights into nonstationary data, response spectra, identified modal parameters and

time-varying effects are provided. This experimental infrastructure supports other

research activities at the Institute of Aeroelasticity at DLR.
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1.4 Outline

The main content of the thesis is organized in chapters as follows:

Ch. 2 Linear time-varying systems theory : the chapter lays down the theoretical groundwork

by illustrating the time-varying, parameter-varying, periodic and time-invariant linear

systems. An important research item here is the frequency-domain representation

of the system response in order to characterize how parameter variation affects the

system’s dynamics. Various numerical methods are researched and compared. A

simplified analytical formulation is derived for extreme cases.

Ch. 3 Aeroelastic systems modeling : the chapter describes the linearized theory used to

model the interaction between airflow and structure and the occurrence of flutter.

The system matrices are augmented to include the influence of aerodynamics. The

theoretical development is applied to characterize a time-varying aeroelastic system.

Ch. 4 Spectral estimation: real signals are sampled, of limited duration and noisy. Since the

amount of data is finite, the experimenter must compromise between the achievable

frequency resolution and spectral variance reduction. The chapter describes estimation

techniques for random signals and time-varying systems responses.

Ch. 5 System identification: the measured responses are analyzed to construct a parametric

description of the system. Established time-domain and frequency-domain methods

are detailed and implemented. The objective is the monitoring of the eigenfrequency,

damping ratio and mode shape of several modes of vibration.

Ch. 6 Mode tracking : online monitoring of modal parameters requires automation to

organize results. To this end, the identified modes must be tracked over time or as

function of external parameters such as flight altitude and Mach speed. The chapter

describes the mode tracking strategy applied to continuous system identification.

Ch. 7 Aeroelastic system simulation: simulated data of a parameter-varying aeroelastic

system is produced to assess the modal analysis procedure and investigate the effect

of speed of parameter variation on spectral estimation and system identification.

Ch. 8 Experimental results: the analytical and numerical developments presented in the

previous chapters are applied to flight vibration testing of a research aircraft. Several

excitation types and flight conditions are analyzed. The effectiveness of real-time

output-only system identification of aircraft excited by air turbulence is proved.

Each chapter begins with an abstract and ends with a short summary. Chapters 2 and 3

research task 1, chapters 4, 5 and 6 support task 2 and chapters 7 and 8 implement task 3.

Finally, the conclusions and future research are presented in the final chapter.





2 Linear time-varying systems

Abstract

The chapter introduces the mathematical tools required in the analysis of linear time-varying

(LTV) systems. A subset of this category are linear parameter-varying (LPV) systems, whose

characteristics are explicitly dependent on a set of external parameters and model aeroelastic

systems such as aircraft. The chapter begins with general concepts of linear systems theory and

refines its scope towards two important special cases: linear time-invariant (LTI) and linear periodic

(LTP) systems. The former provide the theoretical basis of many signal processing and system

identification methods. The latter have interesting properties that can be used to simplify the

treatment of general time-varying processes. In the final part numerical methods and simplified

general analytical solutions are presented.

Physical processes that are governed by differential equations can be described by

functions that map input signals onto output signals. This mapping may be expressed by

systems of coupled first-order ordinary differential equations f(·) in the form

ẋ(t) = f(t,x(t),u(t)) (2.1)

where t is the time variable, x(t) the states and u(t) the system inputs. Depending on the

particular process, this input-output relationship may be linear or nonlinear. In this thesis

we focus exclusively on linear systems, i.e. the dynamic process modeled by equation (2.1)

has only a linear dependence on the state and input variables:

∑Na

k=0
ak(t)

dk

dtk
x(t) =

∑Nb

k=0
bk(t)

dk

dtk
u(t) (2.2)

where Na ≥ Nb so that the system is physically realizable. Under this assumption the

superposition principle simplifies considerably the solution of the resulting equations. The

most general case, where the coefficients ak(t) and bk(t) are functions of time, is used to

describe linear time-varying (LTV) systems. The particular case of constant coefficients ak

and bk models linear time-invariant (LTI) systems.

Linear systems have widespread use in the modeling of important engineering and

physical processes. Their popularity lies in the extremely broad range of applications

where they provide accurate predictions, for instance in structural dynamics, electronics,

biological processes, optics and acoustics. The detailed theoretical foundation of linear

systems can be found in works such as [Oppenheim et al., 1996] and [Rugh, 1996].

When the simplifying assumptions in the linear modeling of a physical process are not

adequate anymore, more complex models are employed. In this regard, nonlinear systems

for engineering applications are treated in [Khalil, 1996] and [Jordan and Smith, 2007].

Every so often we will be confronted with the limits of linear descriptions and mention

more accurate models.
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The main objective of this chapter is to introduce the analytical tools for the study

of time-varying systems, in particular for the application on modal analysis of aeroelastic

systems that are the topic of later parts of the thesis. The linear theory delineated here,

while having such generality that it is employed in different engineering fields, will be

applied solely to mechanical systems such as aircraft, wind turbines, rotor blades et cetera.

Aeroelastic modeling, in particular, will be described in detail in the next chapter.

Most readers with an engineering background know linear time-invariant systems well.

This chapter will familiarize them with the more complex time-varying case where many

of the usual LTI concepts such as transfer functions and eigenvalues may not be defined.

This is necessary in order to interpret correctly signal processing and system identification

results in later chapters. For instance, it will become apparent very early that the spectra

of the LTV system response present many features that may not be immediately associated

to a mode of vibration. A central assumption of many LTV models is that the system be

slowly-varying, i.e. that the additional dynamics induced by the variation of the system’s

characteristics can be neglected. This is often a necessity for signal processing and system

identification algorithms. In this regard it will be beneficial to characterize the regimes of

a time-varying systems in order to define what “slow” or “fast” really mean. One sub-goal

is therefore to explain the effects that parameter variation rate and amplitude have on the

system response. To this end, a quantitative description of time-varying effects and to

describe the response parametrically in frequency-domain will be provided.

Apart from the aforementioned sources, the linear systems theory is described with

contributions from various other reference, such as [DeCarlo, 1989], [Chen, 1999],

[Antsaklis and Michel, 2006] and [Shmaliy, 2007]. We shall proceed by expressing the

linear system (2.2) in the matrix state-space form because it is a convenient and compact

mathematical formulation for treating multi-input-multi-output (MIMO) systems. The

state-space form is widely adopted in control theory and system identification [Ljung, 1999].

The chapter’s roadmap is as follows:

1. Linear time-varying theory, general characteristics and properties, mathematical

tools, transformations

2. Linear time-invariant systems: main properties and formulations

3. Linear periodic systems: decomposition, frequency-domain representation, influence

of rate of variation

4. Numerical methods for the solution and decomposition of LTV systems

5. Analytical solutions for the linear and complex exponential parameter variation
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2.1 Linear time-varying systems

The explicit state-space representation of continuous linear time-varying systems (LTV) in

time-domain (2.2) is given by the differential algebraic equations [Shmaliy, 2007]:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(2.3)

where the symbols denote:

x(t) ∈ CNx state vector A(t) ∈ CNx×Nx state matrix

u(t) ∈ CNu input vector B(t) ∈ CNx×Nu input matrix

y(t) ∈ CNy output vector C(t) ∈ CNy×Nx output matrix

D(t) ∈ CNy×Nu feedthrough matrix

A linear system S can be conveniently written in a compact form as:

S :

[
A(t) B(t)

C(t) D(t)

]
= [A(t),B(t),C(t),D(t)] (2.4)

This notation will be useful when applying transformations of the system matrices. Al-

ternatively, equation (2.3) can be rendered with the block diagram in figure 2.1. The

state-space model describes a linear dynamic system (2.2) with first-order ordinary differ-

ential equations relating the input, output and state variables. Examples include a rocket

expending its fuel as it ascends, a bridge with moving traffic, electrical circuits subject to

temperature change. The first equation in (2.3) is called state equation and constitutes the

feedback loop of the dynamic model; it is an inhomogeneous system of first-order ordinary

differential equations. The second equation in (2.3) is the output or measurement equation.

The input is also called excitation or driving force, while the output is also called response.

The states are the minimal set of variables that is able to express all process dynamics

at any given time; they are not necessarily physical quantities. The system matrices are

assumed to be continuous C1 functions of time and therefore bounded. The input vector

can be simply a piece-wise continuous C0 function.

Figure 2.1: Block diagram of the state-space representation of a linear time-varying system.
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2.1.1 Linear parameter-varying systems

In the linear parameter-varying framework, the system matrices (and the coefficient of

the corresponding differential equation form (2.2)) are explicitly functions of a parameter

vector p ∈ CNp :

ẋ(t) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t) +D(p)u(t)
(2.5)

The system’s characteristics depend thus solely on the values assumed by p, which may

be a scheduling parameter that varies arbitrarily or some function of time. Examples: a

pendulum with a variable rod length, the tuning of a radio or variable-gain amplifiers, a

structure that can change shape such as a robot arm. Relevant to this work are aeroelastic

systems, whose dynamic characteristics vary primarily with air speed and air density; they

will be introduced fully in the next chapter.

From now on, it is assumed that the parameters are continuous vector functions of time

p = f(t), therefore we can consider such a parameter-varying system (2.5) as a particular

kind of the LTV case:
ẋ(t) = A(p(t))x(t) +B(p(t))u(t)

y(t) = C(p(t))x(t) +D(p(t))u(t)
(2.6)

In order to fall purely within the LPV framework, the system matrices must depend solely

on the parameter path S = f(p) and be the same irrespective of a time scaling constant c

in p(ct)1 (however, the response y(t) may still depend on ṗ(t)). For instance, a variable

pendulum’s amplitude increases if its length is shortened quickly, whereas it changes little

if the length varies slowly.

In computations, the system is either constructed from a continuous function of the

parameters S = [A(p),B(p),C(p),D(p)] or is known on a discrete grid p[n], therefore

S = [A[n],B[n],C[n],D[n]] (e.g. large linearized aeroelastic models). In the latter case,

the system matrices between known grid points are constructed by interpolation. This

aspect is important in the simulation of LTV systems and we shall come back to it in

chapter 7.

1 For example, let us consider the simple harmonic oscillator with variable resonant frequency ωn(t):

A(t) =

[
0 1

−ω2
n(t) 0

] {
1 : ωn(t) = ωn cos(ω0t)

2 : ωn(t) = ω0 cos(ω0t)
t ∈ [0, 2π/ω0] (2.7)

In case 1 the system is LPV because the values assumed by ωn(t) are always the same. In case 2 the system
is LTV because the magnitude of ωn(t) depends on the period 2π/ω0.
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2.1.2 Second-order systems

An important class of linear ordinary differential equations (2.2) are second-order models

that describe, for example, oscillating electrical or mechanical systems. A broad reference

for this topic, albeit limited to the time-invariant case, is [Chopra, 2019].

We shall focus on the mass-damping-stiffness models used commonly in mechanics, for

instance a mass connected to a spring and damper. The dynamic behavior of a structure

is described by Newton’s equation of motion:

M(t)q̈(t) +D(t)q̇(t) +K(t)q(t) = u(t) (2.8)

where the symbols denote

q(t) ∈ RNd displacement M(t) ∈ RNd×Nd mass matrix

u(t) ∈ RNd excitation D(t) ∈ RNd×Nd damping matrix

K(t) ∈ RNd×Nd stiffness matrix

and where Nd is the number of degrees of freedom. The corresponding state-space

representation is derived by defining the new state variable x(t) = {q(t), q̇(t)} to be able

to reduce the equation order to one:

S =

 0 I 0

−M−1(t)K(t) −M−1(t)D(t) M−1(t)

I 0 0

 x(t) =

{
q(t)

q̇(t)

}
(2.9)

The vector q(t) represents physically the translational and torsional degrees of freedom,

while u(t) are external forces and moments exciting the system. The entries of M(t) are

physically masses and moments of inertia, D(t) is assumed to model viscous damping

acting on the system (proportional to velocity), while the stiffness matrix K(t) describes

the system’s translational and rotational elastic properties. The system matrices are

real, square and, for a system at equilibrium, symmetric. Dynamic terms are added to

the system matrices depending on the model, for instance gyroscopic or aerodynamics

terms2. There exist other damping models depending on the type of analyzed dissipative

phenomena (viscous, proportional, hysteresis...) [Adhikari, 2000]. Structural damping is

often conservatively ignored because of the uncertain applicability of numerical models to

complex real structures, therefore it is rather determined experimentally and then used to

update the numerical models [Govers, 2012]. Furthermore, dynamic effects on damping

are more important in aeroelastic and rotating systems because they can increase the

energy dissipation rate – or even reverse it. One of the goals of later chapters will be the

experimental identification of the damping as function of external parameters.

2 For example, consider a variable point mass connected to a spring. The equation of motion includes a
damping term due to the mass variation: d

dt
(mẋ) = −kx =⇒ m(t)ẍ(t) + ṁ(t)ẋ(t) + kx(t) = 0
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2.1.3 State transition matrix

The linear system state equation (2.3) can be separated into a homogeneous and inhomo-

geneous part in order to solve it. The homogeneous term

ẋ(t) = A(t)x(t) (2.10)

implies that for every initial state x(t0) there exists a unique x(t) solution.

Definition (State Transition Matrix). The unique function of time Φ(t, t0) that maps the

state at one time instant x(t0) onto the state at another time instant x(t)

x(t) = Φ(t, t0)x(t0) t ≥ t0 (2.11)

is called the state transition matrix (STM) of the system.

The state transition matrix is the continuously-differentiable solution of the linear state

equation (2.10) [Rugh, 1996, Th. 3.3]. The study of time-varying linear systems begins

with the examination of its properties because it provides a general and convenient means

for describing the system response. The mapping it performs between two system states is

illustrated schematically in figure 2.2.

Definition (Fundamental matrix). Let X(t) = [x1(t) . . .xNx(t)] ∈ CNx×Nx be the matrix

of any k = 1:Nx linearly independent solutions xk(t) of the homogeneous matrix state

equation

Ẋ(t) = A(t)X(t) (2.12)

The matrix X(t) is called the fundamental matrix.

If X(t0) is nonsingular, then X(t) is also invertible for all t. The fundamental matrix is

determined by solving equation (2.12) with any linearly independent set of initial conditions

(for example X(t0) = I) and is therefore not unique.

Figure 2.2: The state transition matrix Φ(t, t0) maps the state of a linear system at one time
instant x(t0) onto the state at another x(t) with the linear relation x(t) = Φ(t, t0)x(t0).
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The direct relationship between any fundamental matrix and the unique state transition

matrix arises from its definition [Chen, 1999, Def. 4.2]:

Φ(t, t0) = X(t)X−1(t0) (2.13)

Equations (2.10) to (2.13) can now be used to derive several properties of the state transition

matrix of continuous linear systems:

Property (State transition matrix properties).

• differentiation: ∂
∂tΦ(t, t0) = A(t)Φ(t, t0)

• duality: ∂
∂tΦ

T (t0, t) = −AT (t)ΦT (t0, t)

• inversion: Φ−1(t, t0) = Φ(t0, t)

• composition: Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

• identity: Φ(t, t) = I

• determinant: detΦ(t, t0) = exp
∫ t
t0
trA(τ) dτ

The STM’s properties are given here to be applied in the coming pages. Detailed proofs

can be found in the references cited at the beginning of the chapter, for example in [Rugh,

1996], [Antsaklis and Michel, 2006] and [Shmaliy, 2007].

A general method used to determine the state transition matrix is the Peano-Baker

series:

Φ(t, t0) = I+

∫ t

t0

A(τ1) dτ1 +

∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2) dτ2dτ1+

+

∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)

∫ τ2

t0

A(τ3) dτ3dτ2dτ1 + . . .

(2.14)

which converges absolutely and uniformly for any t and t0 [Baake and Schlaegel, 2012].

Another way of determining the state transition matrix that has found many applications

in physics is the Magnus expansion [Blanes et al., 2009]. There exist a matrix Ω(t)

such that the STM is Φ(t, 0) = eΩ(t) where

Ω(t) =

∫ t

0
A(τ0) dτ0 +

1

2

∫ t

0

∫ τ0

0
[A(τ0),A(τ1)] dτ1dτ0+

+
1

6

∫ t

0

∫ τ0

0

∫ τ1

0

(
[A(τ0), [A(τ1),A(τ2)]] + [[A(τ0),A(τ1)] ,A(τ2)]

)
dτ2dτ1dτ0 + ...

(2.15)

and where [A,B] ≜ AB−BA is the matrix commutator. The expansion’s pattern is not

as obvious as it might look like from the first few terms [Butcher et al., 2009].

The effort of finding the STM is the first step in the analysis of time-varying systems,

but meeting the necessary conditions for determining its analytical form is difficult. The

Peano-Baker series (2.14) and the Magnus expansion (2.15), while useful theoretically, can
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be calculated analytically but in the simplest of cases [Rugh, 1996]. Computer-aided

symbolic solutions are theoretically possible but still unfeasible for large systems. In

general the STM’s structure is too intricate to be expressed in a simple way, but there

are important particular cases where it assumes a favorable and elegant form, such as for

linear time-invariant and periodic systems. Fortunately, there are also convenient ways of

determining Φ(t, t0) according to the following theorem:

Theorem (Exponential form of the state transition matrix). [Rugh, 1996, Th. 4.2] If the

state matrix commutes with its antiderivative

A(t)

(∫ t

t0

A(τ) dτ

)
=

(∫ t

t0

A(τ) dτ

)
A(t) ∀ t, t0 (2.16)

then the state transition matrix has the form:

Φ(t, t0) =
∞∑
k=0

1

k!

(∫ t

t0

A(τ) dτ

)k

= exp

∫ t

t0

A(τ) dτ (2.17)

where exp(·) is the matrix exponential (see appendix A.1). This condition is satisfied if

and only if A(t)A(t0) = A(t0)A(t) for all t, t0.

The hypothesis of the theorem is always satisfied when the state matrix is:

• constant A(t) = A: the STM is the well-known result of time-invariant systems

theory Φ(t, t0) = exp
(
A(t− t0)

)
• scalar A(t) = a(t): the state transition matrix can be calculated by the variation of

constants method for ordinary differential equations: Φ(t, t0) = exp
∫ t
t0
a(τ) dτ

• diagonal Aij(t) = 0 ∀ i ̸= j: this is a system of uncoupled ordinary differential

equations, therefore: Φii(t, t0) = exp
∫ t
t0
Aii(τ) dτ

• triangular Aij(t) = 0 ∀ i > j: Φ(t, t0) is constructed by successive integration of

each state.

Additionally, theorem (2.17) holds when the state matrix is a series of scalar functions fk

with constant coefficients Ak

A(t) =

Nk∑
k=1

Akfk(t) =⇒ Φ(t, t0) =

Nk∏
k=1

exp

∫ t

t0

Akfk(τ) dτ (2.18)

providing that the series’ terms AiAj = AjAi ∀i, j ∈ 1:Nk commute. This simple form of

the STM it elegant, but the strict commutativity requirement of theorem (2.17) for each

term Ak is difficult to satisfy for dimensions higher than one.
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When all analytical options are exhausted, the state transition matrix can be determined

using direct numerical integration [Chen, 1999] by solving the homogeneous system

Ẋ(t) = A(t)X(t)
solve for X(t)−−−−−−−−−→
with X(t0)=X0

Φ(t, t0) = X(t)X−1(t0) (2.19)

where X0 is any set of linearly independent initial conditions (usually for convenience

X(t0) = I). This is a system of N2
x first-order ordinary differential equations in the form

ẋ(t) = f(t, x(t)) that can be integrated with classical ODE-solvers. Numerical methods for

the determination of the STM will be expanded in more detail in section 2.4.

2.1.4 Impulse response of time-varying systems

The general solution of the time-varying system can be written by making use of the state

transition matrix’s properties [Antsaklis and Michel, 2006, Eq. 6.2]:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ

y(t) = C(t)x(t) +D(t)u(t)

(2.20)

This equation is the complete solution of the first-order linear differential state equation

(2.3) with initial conditions x(t0) and input u(t). It is the sum of the homogeneous

(general) and inhomogeneous (particular) solutions, which in linear system theory are called

respectively zero-input and zero-state responses.

yzi(t) ≜ C(t)Φ(t, t0)x(t0)

yzs(t) ≜ C(t)

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ +D(t)u(t)
(2.21)

The former is the transient response due to an initial state of the system. The latter

describes the transient and steady-state responses of the system due to an input. Assuming

that the system is initially at rest, the input C(t) and feedthrough D(t) matrices can be

brought into the integral and the input u(t) collected:

y(t) =

∫ t

t0

D(τ)δ(t− τ) +C(t)Φ(t, τ)B(τ)u(t) dτ ≜
∫ t

t0

H(t, τ)u(τ) dτ (2.22)

where the H(t, τ) ∈ CNy×Nu denotes the system’s impulse response3 (the integral’s kernel).

Since in reality a system cannot respond to future inputs, the constraint of causality must

be inserted by imposing H(t, τ) = 0 for t < τ .

H(t, τ) =

D(t)δ(t− τ) +C(t)Φ(t, τ)B(τ)

0

t ≥ τ

t < τ
(2.23)

3 In structure dynamics the impulse response is conventionally denoted with a lowercase h, whereas the
uppercase H is used for the frequency response function. In control theory the symbols g and G are used
instead. In this text the symbol H(·) states the function’s domain explicitly.
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The impulse response is the unique characteristic of the linear system that determines the

response as the kernel of the integral in equation (2.22).

Before proceeding further, an example of the state transition matrix and impulse

response is given in figure 2.3 for a simple damped harmonic oscillator with variable

stiffness. It is immediately apparent that the impulse response depends on the instant at

which the impulse occurs. In the limit of the stiffness variation amplitude or variation

rate going towards zero, the LTV solution approaches the response of the corresponding

time-invariant system.

0 1 2 3 4 5

Time t [s]

-1

-0.5

0

0.5

1

S
ta

te
 t
ra

n
s
it
io

n
 m

a
tr

ix
 

(t
,0

)

LTI

LTV

0 1 2 3 4 5

Time t [s]

-0.2

-0.1

0

0.1

0.2

Im
p
u
ls

e
 r

e
s
p
o
n
s
e
 H

(t
,t

0
)

H(t,0)

H(t,1)

H(t,2)

Figure 2.3: State transition matrix and impulse response of a damped harmonic oscillator
with variable stiffness. The system equation is ẍ(t) + 2ζωnẋ(t) + ω2

0x(t) + ptω2
nx(t) = 0 where

ζ = 0.07, ωn = 2π rad/s. The entry (1,1) of Φ(t, 0) is shown with p = 0.2 s−1 and p = 0 s−1

(LTV vs LTI cases). The impulse response H(t, τ) depends on the time instant τ at which the
impulse occurs (displayed here for τ = [0, 1, 2] s). In this particular example, H(t, 0) is equal
to the LTI system’s impulse response.

2.1.5 Impulse response in frequency-domain

In time-invariant systems the impulse response (2.23) is independent from the time τ at

which the impulse occurs, therefore the integral’s kernel in equation (2.22) is H(t, τ) =

H(t− τ). The system response can be then written as:

y(t) =

∫ t

t0

H(t, τ)u(τ) dτ =

∫ t

t0

H(t− τ)u(τ) dτ ≡ H(t) ∗ u(t) (2.24)

The convolution between the input signal and the system’s impulse response has an

immediate Laplace transform:

y(t) =

∫ t

t0

H(t− τ)u(τ) dτ c s y(s) = H(s)u(s) (2.25)

Definition. The matrix H(s) is the transfer function of the time-invariant system with

impulse response H(t), i.e. it describes the relationship (2.25) between the input u(s) and

output y(s) in Laplace-domain. When its argument is a purely imaginary frequency, H(iω)

is called the frequency response function.
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The zero-state response to an impulse characterizes the zero-state response to all

input signals through the convolution integral in time-domain or equivalently through

multiplication in frequency-domain. Knowledge of the transfer function is thus sufficient

for determining the system response to any input. One important consequence of equation

(2.25) is that a time-invariant system modifies the amplitude A and the phase ϕ of a

complex exponential input Aeiωt+ϕ, but not its fundamental frequency ω [Proakis and

Manolakis, 2013]. We shall come back to the LTI system’s transfer function in the next

section.

In the more general time-varying case, the impulse response H(t, τ) is a function of the

time τ at which the impulse happens. As a consequence, the steady-state response contains

not only the frequency components of the input signal but also additional frequencies

due to the coefficient variation. An example is illustrated in figure 2.4. The reader may

recognize this as a fundamental difference between time-invariant and time-varying linear

systems, since the response to a sinusoidal signal in the latter case is generally neither

sinusoidal nor periodic. Based on this observation, the frequency-domain representation

of a time-varying system’s impulse response L{H(t, τ)}(s) is not functionally analogous

to the transfer function of a time-invariant system L{H(t)}(s) = H(s), i.e. it does not

form a bijective correspondence between the frequency content of input and output [Rugh,

1996; Shmaliy, 2007]: in the context of LTV systems, we shall thus say “impulse response

in frequency-domain” instead of “transfer function”. Furthermore, equation (2.23) in the

time-varying case does not generally lead towards a rational function representation of the

impulse response in frequency-domain (2.55). For example, in section (2.5) we will consider

a system with a linear variation and show that the response in frequency-domain assumes

complicated expressions involving error functions; the impulse response in frequency-domain

of such a system undergoing linear variation is displayed in figure 2.5. On the other hand,

we shall see in section 2.3 that, at least for periodic systems, a formulation similar to that

of the LTI case still holds.
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Figure 2.4: Steady-state response of a forced damped harmonic oscillator. The system
equation is ẍ(t) + 2ζωnẋ(t) + ω2

n(1 + r2f sin(πt))x(t) = sin(0.4πt) where ζ = 0.07, ωn = 2π
rad/s. Left plot: rf = 0, time-invariant system. When the system matrices are constant, the
steady-state response contains the scaled and phase-shifted input with the same frequency of
the input. Right plot: rf = 0.4, as soon as the system is time-varying, the response’s frequency
content is different from the excitation’s. As the time variation transitions from slow to fast,
from weak to strong, the periodic response becomes pseudo-periodic and then finally aperiodic.
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Figure 2.5: Impulse response and its frequency-domain representation of a damped harmonic
oscillator with variable stiffness. The system is ẍ(t) + 2ζωnẋ(t) + ω2

n(1 + pt/T )x(t) = 0
where ζ = 0.07, ωn = 2π rad/s, T = 1 s. The plot displays various values of the parameter
p =0:0.02:0.2 (blue: low, red: high). The dashed line represents the system with p = 0,
which has a single resonance peak. Due to time-varying dynamics, the impulse response in
frequency-domain exhibits a more complicated form: the main resonance peak shifts and
additional peaks appear. We shall derive an analytical solution in section 2.5.

The concept of transfer function is extremely helpful in the mathematical treatment of

LTI systems, consequently there have been efforts in defining a relation between inputs

and outputs for LTV systems as well, but this generalization is not straightforward. In

the widely-cited paper by [Zadeh, 1950] the frequency response to a complex exponential

is defined as H
{
eiωt
}
= eiωt

∫∞
0 H(t, t− τ)e−iωτ dτ in which the time-dependence of the

result is clearly expressed. The output is not necessarily periodic because the kernel H(t, t0)

is time-varying. [Wereley and Hall, 1990] define the transfer function for periodic

systems as a linear operator that maps inputs and outputs one-to-one and characterizes

its gain and phase. A more general formulation is introduced in [Ball et al., 1995] via

an integral operator to map an input complex exponential to a time-dependent frequency

response function. LTV models described by ordinary differential equations (2.2) where the

coefficients ak(t) and bk(t) are polynomials are studied in frequency-domain in [Lataire,

2011] with the purpose of identification and applied in [Ertveldt et al., 2014] on an

aeroelastic system.

Often the notion of “frozen-time” system is considered, namely an LTV system is

described at each time instant by the LTI system corresponding to (constant) parameters

at that time instant. This modeling is a valid approach as long as the system variation

is slow, i.e. there are no significant dynamics introduced by time variation or changes in

stability. Fortunately for many real time-varying mechanical and aeroelastic systems this

assumption is satisfied. The coming sections will cover this case in more detail. There

are also cases where a time-varying system behaves almost like a time-invariant one, for

example rotating machinery such as wind turbines, helicopter blades, compressors. We

will give more substance to these statements in the coming pages.
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2.1.6 Stability of time-varying systems

An intuitive explanation of stability is that any small perturbation of a system does not

result in a large response. In most real systems, free oscillations decay with time because

the energy loss is larger than its gain. Stability is an important topic in linear systems:

elastic structures in a fluid flow such as a bridge can reach a state in which they absorb

energy from the wind and undergo self-oscillations resulting in excessive displacements.

Rotating machinery like wind turbines have critical rotation speeds at which the system’s

vibration will increase without bound. In particular, for aeroelastic systems, the interaction

with aerodynamic forces can reduce the energy dissipation to zero and further to a negative

value, where free oscillations increase without bound. This topic will be elaborated further

in chapter 3 where the border of the stable region can be determined for a combination

of air density and wind speed. We are thus interested in stability in order to prevent

catastrophic structural failure.

The stability of linear systems is treated in more detail in [Rugh, 1996, Ch. 6] and

[Shmaliy, 2007, Ch. 2]. More particular results for slowly-varying systems are found in

[Amato et al., 1993; Ilchmann et al., 1987; Solo, 1994]. In [Gao et al., 2018] a

detailed bibliographic research on this topic is found. The stability analysis aims to provide

formal criteria for which the so-called BIBO stability holds:

Definition (BIBO stability). The system is bounded-input-bounded-output stable if for

any bounded input ∥u(t)∥ ≤M <∞ there is a bounded output ∥y(t)∥ ≤M <∞, where M

is a positive constant.

Definition (Stability). The LTV system described by y(t) =
∫ t
t0
H(t, τ)u(τ) dτ (2.22) is

stable if and only if there exist a positive constant M for which:∫ t

t0

∥H(t, τ)∥ dτ ≤M <∞ (2.26)

Let us assume that the system matrices are bounded. The output equation does not

contribute to stability, so we may ignore C(t) and D(t). According to the definition of

stability, the output may not diverge as long as the input is bounded, therefore we may as

well assume u(t) = 0 and ignore B(t). We are left with the homogeneous state equation

ẋ(t) = A(t)x(t), whose solution is x(t) = Φ(t, t0)x(t0):

Theorem (Uniform exponential stability). [Th. 6.8][Rugh, 1996] If there is a positive

constant such that ∥A(t)∥ ≤ α <∞ for all t, then the linear state equation ẋ(t) = A(t)x(t)

is exponentially stable if and only if∫ t0

t
∥Φ(t, τ)∥ dτ ≤ β <∞ ∀t, t0 : t ≤ t0 (2.27)

This theorem assumes a simpler form in the case of time-invariant and periodic systems

(sections 2.2 and 2.3).
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Definition (Exponential stability). The homogeneous time-varying system ẋ(t) = A(t)x(t)

is exponentially stable with rate of convergence α > 0 if there exists c0 > 0 such that

∥x(t)∥ = c0e
−α(t−t0)∥x(t0)∥ ∀ t ∈ [t0,∞[ (2.28)

The rate of convergence is useful in quantifying the stability (or instability) of different

systems as it provides an upper bound of the system’s response. An example is shown in

figure 2.22 for a family of time-varying aeroelastic systems. BIBO stability however, does

not guarantee that a stable time-varying system’s response will not exceed a dangerous

level. An example is provided in figure 2.6.

Figure 2.6: Response of a time-varying aeroelastic system excited by a random stationary
signal. The stability analysis reveals that the system is stable despite the instantaneous
eigenvalues crossing the stability boundary (red dots delimited by vertical lines). However,
during this time the response amplitude grows significantly because the system temporarily
absorbs energy instead of dissipating it.

2.1.7 On eigenvalues and eigenvectors

The linearity property of the state-space representation implies that there exists a coordinate

change that transforms a linear system into another equivalent linear system. Two systems

are equivalent when their input-output behavior is the same.

Theorem (Linear system transformation). Consider a linear time-varying system and let

the transformation matrix P(t) ∈ CNx×Nx ∈ C1 be nonsingular. Define the state variable

change (or coordinate transformation):

x(t) = P(t)x̃(t) =⇒ ẋ(t) = Ṗ(t)x̃(t) +P(t) ˙̃x(t) (2.29)

The original system is thus transformed into an equivalent one [Rugh, 1996, Th. 4.13]:[
A(t) B(t)

C(t) D(t)

]
x(t)=P(t)x̃(t)−−−−−−−−→
transform

[
P−1(t)A(t)P(t)−P−1(t)Ṗ(t) P−1(t)B(t)

C(t)P(t) D(t)

]
(2.30)

where Ṗ(t)P−1(t) is the dynamic coupling term. The transformed homogeneous state

equation is thus:

˙̃x(t) = Ã(t)x̃(t) x̃(t0) = P−1(t0)x(t0) (2.31)
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The state transition matrix of the transformed system is given by

Φ̃(t, t0) = P−1(t)Φ(t, t0)P(t0) (2.32)

The coordinate change preserves the system’s stability.

Definition (Lyapunov transformation). If there exists a constant c0 such that the coordinate

transformation matrix ∥P(t)∥ ≤ c0 and its inverse ∥P−1(t)∥ ≤ c0 are bounded for all t ≥ t0,
then P(t) is a Lyapunov transformation.

This theorem is used in various ways to simplify the handling of a system, for example

in balanced realizations and model reduction schemes [Lang et al., 2016; Luspay et al.,

2018; Shokoohi et al., 1983] or to satisfy the commutativity condition of theorem (2.16)

with a coordinate change [Zhu and Johnson, 1989].

Let us consider a time invariant system for a moment. The eigenvalues and eigenvectors

of the state matrix satisfy:

AΨ = ΨΛ (2.33)

Assuming that Ψ is non-singular, the coordinate change x(t) = Ψx̃(t) transforms the

system in its modal form:[
A B

C D

]
x(t)=Ψx̃(t)−−−−−−−→
transform

[
Λ Ψ−1B

CΨ D

]
(2.34)

where the state matrix is diagonal and the states are uncoupled from each other. This is

an important result. The reader is certainly aware that an LTI system is stable if and only

if the state matrix eigenvalues have all negative real part. However, we shall see that the

concept of eigenvalue is not generally meaningful in the time-varying case.

Given the time-varying state matrixA(t), the instantaneous (or frozen-time) eigenvalues

Λ(t) and eigenvectors Ψ(t) of the system are functions that, at any instant, satisfy

A(t)Ψ(t) = Ψ(t)Λ(t) ∀ t (2.35)

We recall from theorem (2.1.3) that the state transition matrix has an exponential form

when the state matrix is diagonal. We are thus tempted to apply the eigendecomposition

to diagonalize the LTV system. The coordinate transformation x(t) = Ψ(t)x̃(t) returns:[
A(t) B(t)

C(t) D(t)

]
x(t)=Ψ(t)x̃(t)−−−−−−−−−→
transform

[
Λ(t)−Ψ−1(t)Ψ̇(t) Ψ−1(t)B(t)

C(t)Ψ(t) D(t)

]
(2.36)

where the state matrix of the transformed system Ã(t) = Λ(t)−Ψ−1(t)Ψ̇(t) is the sum

of the instantaneous eigenvalues and the mode coupling term. The eigendecomposition

of a time-varying state matrix does not generally uncouple the system states and the

location of the instantaneous eigenvalues is neither necessary nor sufficient for stability.

Early in the development of linear systems theory it was attempted to transpose the LTI
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concept of stability onto LTV systems [Zadeh, 1951]. References [Rugh, 1996] and [Chen,

1999] provide examples of instability with bounded matrices or stability with unstable

eigenvalues. Nevertheless, the location of instantaneous eigenvalues can still be meaningful

for slowly-varying systems [Solo, 1994]. In this regard, a sufficient condition for the

asymptotic stability is established in [Ilchmann et al., 1987] based on an upper bound

of the parameter variation with some a priori knowledge of the state matrix. A similar

result is found in [Amato et al., 1993] for the time derivative of the frozen-time system

characteristics. Since the frozen-time formulation is essentially a local approximation of the

system’s behavior, the instantaneous eigenvalues lose their significance in the determination

of the stability. Despite this, they often represent closely the locations of the resonance

peaks and are thus still useful. Frozen-time eigenvalues can characterize LPV systems

under the assumption that the state corresponding to each scheduling parameter S(p) is
reached so slowly, that any contributions from the dynamic coupling can be neglected.

This is a common hypothesis in many signal processing and system identification methods,

for it allows a definition of a transfer function for each parameter and consequently the

applicability of LTI methods, for instance, in the description of aeroelastic structures (as

function of speed and altitude), of robotic arms (as function of joint angles), of bridges

(as function of the load position) [Ertveldt et al., 2014; Houtzager et al., 2012;

Mercere et al., 2011; Spiridonakos and Fassois, 2009]. We shall come back to the

topic in section 3.4.2.

In the LTV framework a different concept of “eigenvalues” is introduced [Wu, 1980]:

the continuous functions Λd(t) and Ψd(t) (subscript d) satisfying the condition

A(t)Ψd(t) = Ψd(t)Λd(t) + Ψ̇d(t) ∀ t (2.37)

are called respectively dynamic eigenvalues and dynamic eigenvectors. These are not unique

and do not possess the same physical meaning as their time-invariant counterpart. In the

case of slowly-varying systems, equation (2.37) reduces to the definition of time-invariant

eigenvalues because Ψ̇d(t)≪ Λd(t)Ψd(t).

In the time-varying case, if the state matrix is diagonal, the state transition matrix has

conveniently an exponential form (2.17). We are looking for a particular transformation

matrix P(t) that transforms the system’s state matrix A(t) into a diagonal one Ã(t) ≡ Λ̃(t).

The (Lyapunov) transformation matrix is thus:

Ã(t) ≡ Λ̃(t) =⇒ Φ̃(t, t0) = exp

∫ t0

t
Λ̃(τ) dτ =⇒ P(t) = Φ(t, t0) exp

∫ t0

t
Λ̃(τ) dτ

(2.38)

The system is therefore transformed into:[
A(t) B(t)

C(t) D(t)

]
x(t)=P(t)x̃(t)−−−−−−−−→
transform

[
Λ̃(t) P−1(t)B(t)

C(t)P(t) D(t)

]
(2.39)

By comparing equations (2.37) and (2.39) we see that Λ̃(t) and P(t) are indeed the
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dynamic eigenvalues and eigenvectors of the system and they are not unique because Λ̃(t)

is arbitrary (even constant or zero!). The appropriate choice of dynamic eigenpairs can

simplify considerably the system, however it is not always clear which to pick [Wu, 1980].

This kind of transformation can be performed after the state transition matrix has been

determined (by whatever means). Alternatively, algorithm (5) proposed in [Wu, 1984] and

refined in [Van der Kloet and Neerhoff, 2000] can be employed when the state matrix

has only distinct instantaneous eigenvalues. When the system transformation does not

uncouple completely the states, in [Luspay et al., 2018] it is shown that it is possible to

set to zero the entries of the dynamic coupling term P−1(t)Ṗ(t) there where P−1(t)A(t)P(t)

is zero and to accept a modeling error in the input-output behavior of the system (that

depends on the importance of the neglected entries). An example of the difference between

dynamic and instantaneous eigenvalues is shown in figure 2.8.

In [Liu, 1999] the pseudo modal parameters (subscript p) corresponding to the interval

[t, t0] are defined by the eigendecomposition of the state transition matrix:

Φ(t, t0) = Ψp(t0)e
Λp(t0)(t−t0)Ψ−1

p (t0) (2.40)

This equation essentially states that the system is considered invariant in the interval [t, t0]

(compare this expression to the exponential form of the state transition matrix (2.17)). As

t− t0 → 0, Λp(t) tends to the instantaneous eigenvalues Λ(t).

The concept of time-varying modes is introduced in [Kamen, 1988] and expanded in

[O’Brien and Iglesias, 1997] and [Ma et al., 2017]. Let us impose that the transformed

state matrix Ã(t) be upper triangular:

Ã(t) =


λ1(t) ∗ · · · ∗
0 λ2(t) · · · ∗
...

...
. . .

...

0 0 · · · λNx(t)

 (2.41)

and that its associated state transition matrix is Φ̃(t, t0). We are looking for a Lyapunov

transformation matrix P(t) which satisfies Ṗ(t) = A(t)P(t)−P(t)Ã(t):

P(t) = Φ(t, t0)P(t0)Φ̃(t, t0) (2.42)

Let us now consider the QR-decomposition of the state transition matrix of the original

system. We can write

Φ(t, t0)
QR
= Q(t)R(t) (2.43)

where Q(t) is orthogonal and R(t) is an upper triangular matrix4. Unlike the eigendecom-

position (2.35) (instantaneous eigenvalues), the QR matrices are real because the STM

of a physical system is real. Q(t) = P(t) is a Lyapunov transformation since ∥Q(t)∥ = 1.

4 The QR-decomposition is unique up to a factor of a diagonal matrix with entries ±1. Uniqueness is
enforced by imposing that the diagonal of R(t) be positive. Let Dii(t) ≜ sgn {Rii(t)} be a diagonal matrix.
Then the QR-decomposition R(t)← D(t)R(t), Q(t)← Q(t)DT (t) is unique.
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Furthermore, Q(t0) = I because Φ(t0, t0) = I, therefore Φ̃(t, t0) = R(t). The solution of

the homogeneous state equation x(t) = Φ(t, t0)x(t0) can be written as a linear combination

of time-varying vectors:

x(t) =

Nx∑
i=1

civi(t) (2.44)

where ci ≜ eTi P
−1(t0)x(t0) = eTi x(t0) and vi(t) ≜ P(t)eiΦ̃ii(t, t0) = Q(t)eiRii(t). The i-th

time-varying modes are then given by the diagonal elements of Φ̃(t, t0):

ψi(t, t0) = Rii(t) ∈ R (2.45)

The time-varying poles λi(t) in the upper triangular transformed state matrix (2.41) are

derived by the differentiation property of the state transition matrix (2.1.3):

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) =⇒ λi(t) =

∂

∂t
ψi(t, t0)ψ

−1

i (t, t0) ∈ R (2.46)

The time-varying modes contain information about the stability of the system [O’Brien

and Iglesias, 2001]. An example is provided in figure 2.7.

0 1 2 3

Time t [s]

-1

-0.5

0

0.5

1

S
T

M
 d

ia
g

(t
,t

0
)

0 1 2 3

Time t [s]

0

1

2

3

T
im

e
-v

a
ry

in
g
 m

o
d
e
s
 

(t
,t

0
)

0 1 2 3

Time t [s]

-4

-2

0

2

4

6
T

im
e
-v

a
ry

in
g
 p

o
le

s
 

i(t
)

Figure 2.7: State transition matrix, time-varying modes and poles of a helicopter model
from [Jhinaoui et al., 2014] (2 landing gear degrees of freedom + 4 blades, one revolution
with period T = 3 s). The time-varying modes and poles can be grouped by component (blue:
landing gear, red: rotor blades) and by state (solid line: displacement, dashed line: velocity).
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Figure 2.8: Instantaneous and actual poles of the STM of ẋ(t) = a0 (1 + 0.2es1t)x(t), where
a0 = fλ(1, 0.02) and s1 = fλ(0.25, 0.1). The instantaneous poles vary as a complex exponential.
The STM in frequency domain can be computed analytically (see section 2.5.2) and it turns
out that it has constant poles.
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2.2 Linear time-invariant systems

The most important special case of linear systems is when the system matrices are constant:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.47)

The theory of linear time-invariant systems (LTI) is widely used in all sorts of fields because

of its elegance, relative simplicity and broad applicability. Two typical examples would be

an ideal mass-damper-spring system or an electrical circuit with inductors, capacitors and

resistors. LTI systems have an extremely large number of applications in various fields of

physics and engineering: simulation of mechanical systems, description of electrical circuits,

control theory, signal processing, acoustics, optics; the body of literature on LTI systems is

accordingly immense [Shmaliy, 2007]. Under certain conditions or with some acceptable

approximations, LTI system theory can provide adequate descriptions of discontinuous

or nonlinear systems [Khalil, 1996]. A comprehensive and detailed reference for an

introduction on the subject, is the book [Oppenheim et al., 1996]. The results in this

section are either derived as particular cases from the equations of time-varying systems or

are taken from the references.

The focus in this thesis lies generally in linear time-varying systems, but there are

many limiting cases in which system parameters vary so slowly that they can be considered

constant within a certain time interval or with an acceptable degree of accuracy. In such

cases the equations introduced in the previous section undergo considerable simplifications

and assume more familiar forms. For example, aircraft in stationary level flight can be

considered as time-invariant even though their dynamic properties depend on speed and

altitude.

The linearity and invariance of LTI systems lead to a theoretically sound and practically

efficient framework. Some of the results in this section have already been anticipated

or can be deduced from the previous pages, nevertheless we shall establish here some

important equations and concepts that will be necessary further on for system identification

in chapter 5. Causality and stability are much simpler to check compared to the LTV case.

The fundamental property is that LTI systems can be completely characterized by their

impulse response or equivalently by their transfer function. Importantly, input-output

relationships are conveniently described by the convolution of the impulse response with

the input signal in time-domain or by the multiplication of the transfer function with the

input in frequency-domain.

The state transition matrix of a time-invariant system5 is given by theorem (2.1.3):

Φ(t, t0) = eA(t−t0) (2.48)

5 In many texts, the state transition matrix from x(t0) to x(t0 +∆t) is denoted by Ad ≜ Φ(t0 +∆t, t0) =
eA∆t in the context of discretized or sampled time-invariant systems.
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The complete solution is then a special case of equation (2.20) with constant matrices:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−t0)Bu(τ) dτ

y(t) = Cx(t) +Du(t)

(2.49)

Equation (2.49) can be solved exactly for inputs that are combinations of polynomial and

exponential functions, therefore, in this thesis the methods developed in [Jeličić et al.,

2021] are the preferred tools for the simulations of LTI systems, rather than direct ordinary

differential equations solvers. LTI system benchmarks can be found in [Chahlaoui and

Van Dooren, 2005].

The general impulse response expression 2.23 for constant state matrices is

H(t, τ) =

Dδ(t− τ) +CeA(t−τ)B

0

t ≥ τ

t < τ
(2.50)

where it is clear that H(t, τ) = H(t − τ) does not depend on the instant at which the

impulse happens. This means that a time shift of the input signal will produce the same

shift in the output. For time-invariant systems, the impulse response and the transfer

function are thus coupled by the Laplace transform:

H(t) = Dδ(t) +CeAtB c s H(s) = D+C(sI−A)−1B ∈ CNy×Nu (2.51)

Alternatively, it is possible to write the steady-state solution (2.49) in Laplace-domain to

obtain the well-known expression relating input and output:

y(s) = H(s)u(s) (2.52)

which was already introduced in equation (2.52). In contrast to LTV systems, time-

invariance defines clearly the relationship between input signals and output responses

through the transfer function. We have already mentioned before that LTI systems, upon

reaching a steady state, respond to a sinusoid with another sinusoid of the same frequency,

but modified amplitude and phase; they cannot produce other frequency components. Said

formally, the complex exponential is the eigenfunction of a time-invariant linear system.

We can take the ordinary differential equation form of a linear system (2.2) and set its

coefficients constant ak(t) = ak, bk(t) = bk. The relationship between the j-th input uj(t)

and the i-th output yi(t) in Laplace-domain is6:

Na∑
k=0

ak
dk

dtk
yi(t) =

Nb∑
k=0

bk
dk

dtk
uj(t) c s Na∑

k=0

aks
kyi(s) =

Nb∑
k=0

bks
kuj(s) (2.53)

6 The coefficients correspond only to entry (i, j); a more precise notation for the multi-input-multi-output
case would be aij,k and bij,k, but we drop the subscript ij in favor of legibility.
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We can write yi(s)/uj(s) to obtain the entry (i, j) of H(s):

Hij(s) =
yi(s)

uj(s)
=

∑Nb

k=0
bks

k∑Na

k=0
aks

k
(2.54)

The roots of the numerator and denominator polynomials are called respectively zeroes zk

and poles pk of Hij(s). The factoring of the two polynomials, followed by a partial fraction

decomposition delivers two other forms of the transfer function:

Hij(s) =

∑Nb

k=0
bks

k∑Na

k=0
aks

k
= g

∏Nb

k=1
(s− zk)∏Na

k=1
(s− pk)

= k(s) +

Na∑
n=1

rk
s− pk

(2.55)

where g is the scalar gain and k(s) a polynomial in s of order Nb−Na+1 (if Nb < Na, then

k(s) = 0). The transfer function Hij(s) between the j-th input and the i-th output can be

thus expressed, from left to right in equation (2.55), in the rational, in the zero-pole-gain

and in the pole-residue forms. In particular the latter tells us that in the LTI case the

transfer function is the weighted sum of simple poles (plus the direct term k(s) if the

system is not proper). The poles assume significance in determining the system’s stability

and the amplification of the input at resonance. The zeros on the other hand determine

the location of the antiresonances where the oscillation amplitude is significantly reduced.

The same results are obtained by transforming the system into modal space (2.34):

H(s) = D+CΨ (sI−Λ)
−1

Ψ−1B = D+

Nx∑
k=1

ckb
T
k

s−Λk
(2.56)

where ck ≜ CΨkek is the k-th column of the transformed input matrix and bT
k ≜ eTkΨ

−1B

the k-th row of the transformed input matrix. The residual matrices Rk = ckb
T
k ∈ CNy×Nu

have rank one. In this equation we see that the eigenvalues of the state matrix are the

system’s poles and that ck are the normal modes. The pole-residue form can be factored

to write the rational and zero-pole-gain representation of the transfer function (2.55) in

full matrix form. Let us denote the k-th eigenvalue with λk = ℜλk + iℑλk and write the

impulse response function:

H(t) = D+

Nx∑
k=1

ckb
T
k e

(ℜλk+iℑλk)t (2.57)

We see immediately that the circular terms eiℑλkt ∈ [−1, 1] are bounded, while eℜλkt is

finite as long as ℜλk ≤ 0. The imaginary part of λk defines the period of one oscillation.

The real part of λk quantifies the decay rate of free vibration due to the energy loss. The

stability of an LTI system can be thus easily checked from its eigenvalues:

Theorem (Stability of time-invariant systems). A linear time-invariant system is stable if

and only if the real part of all eigenvalues λ of the state matrix A is non-negative ℜλ < 0.
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2.2.1 Second-order time-invariant systems

Since the state matrix is real, all eigenvalues with imaginary part different than zero

must come in complex-conjugated pairs. As a consequence, mechanical systems can be

decomposed into second-order models plus possibly some purely real poles.

Second-order models represent physically systems with one oscillating element (for

example a mass attached to a spring), therefore they are also called single degree-of-

freedom systems (1-DoF). The study of their dynamic behavior serves as the prototype

for understanding more complex cases. A detailed treatment of single degree-of-freedom

systems in structural dynamics, with derivations, formulae and plots, is found in [Brandt,

2011; Den Hartog, 1985; Oppenheim et al., 1996; Rao, 2017]. The notions that will be

necessary later are taken from these references. The homogeneous equation of the simple

harmonic oscillator is:

ẍ(t) + 2ζωnẋ(t) + ω2
n = 0 (2.58)

where ωn [rad/s] is the circular eigenfrequency and ζ [adim] the damping ratio. The

frequency response function is found by transforming into frequency-domain:

H(ω) =
1

−ω2 + i2ζωnω + ω2
n

=
1

(iω − λ)(iω − λ∗)
=

1

λ− λ∗

(
1

iω − λ
− 1

iω − λ∗

)
(2.59)

where the roots λ and λ∗ of the denominator are:

λ = −ωnζ ± iωn

√
1− ζ2

ωn = |λ|

ζ = −ℜλ/|λ|
(2.60)

The impulse response of the system (2.59) is thus:

H(t) =
1

λ− λ∗
(
eλt + eλ

∗t
)
=

1

ωn

√
1− ζ2

e−ωnζt sin
(
ωnt
√

1− ζ2
)

(2.61)

The dimensionless impulse and frequency response functions ωnH(t) and ω2
nH(ω) are

plotted in figure 2.9 with the damping ratio as parameter. We see that the amplification

factor is 1/(2ζ) at resonance and that the output of a stable system lags behind the input.

In the presence of low damping the system amplifies the input signals whose frequencies

ω lie in the vicinity of the eigenfrequency ωn. For free oscillations, the decay rate is

ζωn, its reciprocal is the time constant of the system τ ≜ (ζωn)
−1, while the period is

T = 2π/(ωn

√
1− ζ2).

Depending on the damping ratio, each eigenvalue can be classified as: unstable when

ζ < 0 (the system absorbs energy and vibration amplitudes grow exponentially with time),

undamped when ζ = 0 (oscillations persist indefinitely), underdamped when 0 < ζ < 1

(oscillations decrease in amplitude with time), critically damped when ζ = 1 (there are

no more oscillations and the system reaches the rest position in the minimal time) and

overdamped when ζ > 1 (the energy dissipation is so high that it takes even longer to

reach the rest position). When |ζ| ≥ 1, the eigenvalue is purely real. The damping ratio of
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a real structure is positive because its mechanical energy is being continually converted

into heat and dissipated. For aircraft, structural modes have typically ζ < 3%. Modes

of components that are designed to dissipate energy such as the landing gear or shock

absorbers have much higher damping. More about damping and its modeling in structural

dynamics can found in [Chopra, 2019]. A particularity of aeroelastic phenomena is that

the interaction between fluid flow and structure can increase the damping ratio of some

modes above 20%. In such cases there is a small structural component and a much larger

aerodynamic contribution. This topic will be discussed at length in the next chapter.

When ζ =
√
2/2, the frequency response is monotonically decreasing, therefore, for the

usage in this thesis, we shall introduce two additional types:

Definition. Poles with 0 < ζ <
√
2/2 are called “lightly-damped”; conversely, the poles

with ζ ≥
√
2/2 are “highly-damped”.

This definition will be useful in the next chapter when the state matrix of aeroelastic

systems will be constructed because structural modes gather in the proximity of the

imaginary axis, while aerodynamic modes wander next to the real axis.
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Figure 2.9: Simple damped harmonic oscillator ẍ(t) + 2ζωnẋ(t) + ω2
n = 0. Upper row:

pole classification and the dimensionless impulse response ωnH(t) corresponding to the poles
displayed on the left ζ = [−0.05, 0, 0.05,

√
2/2, 1]. The color-coded poles will be appear

in the frozen-time eigenvalue diagrams in the next chapters. Lower row: magnitude and
phase of the dimensionless frequency response function ω2

nH(ω). For negative damping the

magnitude is the same but the phase changes sign. The maximum 1/(2ζ
√

1− ζ2) is attained
at ω/ωn =

√
1− ζ2, while at resonance ω2

nH(ωn) = (2ζ)−1. If ζ ≥
√
2/2, then H(ω) is

monotonically decreasing, otherwise the input is always attenuated when ω/ωn >
√

2− 4ζ2.
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2.3 Periodic systems

Linear systems whose coefficients vary periodically are called linear time-varying periodic

systems (LTP) and appear in many fields of science and engineering. Rotating machinery

such as wind turbines and helicopter rotors belong to this important special case [Allen

et al., 2011; Jhinaoui et al., 2014; Maurice et al., 2009; Skjoldan and Hansen,

2009]. Satellite orbital mechanics and control of elliptic orbits can be treated as linear

periodic systems with periodic solutions [Sherrill et al., 2015]. Nonlinear systems that

exhibit periodic behavior such as oscillating circuits can be linearized and treated as LTP

systems in order to characterize noise or stability [Khalil, 1996; Traversa and Bonani,

2011]. The dispersion properties of structures that are periodic in space is computed by the

same mathematical framework that is used for LTP systems [Collet et al., 2011]. Other

applications are mass spectrometry, dynamic buckling of structures, elliptical waveguides,

solid-state physics. A detailed review of linear periodic systems and their applications is

found in [Richards, 1983].

The mathematical foundation for the study of LTP systems is Floquet’s theory. It provides

a convenient decomposition of the state transition matrix from which stability can be

inferred. The relevant corollaries and consequences of the theorem will be explored in this

section.

Before diving deep into the details of Floquet theory, the relevance of periodic systems

to the study of time-varying aeroelastic systems should be motivated. The particular

interest of this work is the effect of parameter rate or amplitude of change on system

response, therefore an analytical description of the response’s spectral content may provide

a convenient investigation tool. The flexibility of Floquet theory is clearly illustrated in

literature, therefore a general method for analyzing time-varying systems is proposed in

this chapter. The previous sections have mentioned how the frequency-domain description

of LTI systems that is so important for modal analysis is generally not such a clear matter

in the time-varying case. One complicating factor is the form of the state transition matrix;

section 2.1.3 has given a very general account of its determination. On the other hand,

Floquet theory is more particular in its assumptions but offers an attractive analytical tool

to determine and decompose the STM of periodic systems. This is the crucial aspect of the

theory: if a time-varying system’s response is restricted to a finite time interval and the

state matrix is continuous, then it has an absolutely convergent Fourier series within said

interval. This periodic representation of the system can be used to decompose its STM,

respectively to find its system response analytically. It is then possible to determine the

spectrum of the response. This approach is similar to the solution of the heat equation,

which is described by a parabolic partial differential equation: the solution is represented

in terms of trigonometric functions in order simplify the mathematical treatment and the

resulting temperature distribution within the domain is described by Fourier series even

though domain, boundary and initial conditions are not periodic. The same principle is

used here to render general time-varying systems tractable.
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2.3.1 Floquet’s theorem

Consider the homogeneous linear periodic system

ẋ(t) = A(t)x(t) (2.62)

where A(t) = A(t+ T ) is a T -periodic piece-wise continuous state matrix. The state tran-

sition matrix evaluated over one period Φ(t0 + T, t0) (a constant) is called the monodromy

matrix. The STM of LTP systems is generally not periodic.

Theorem (Floquet’s theorem). If the linear time periodic system (2.62) has a non-defective

monodromy matrix Φ(T, 0), then its state transition matrix over any t, t0 can be factored

as:

Φ(t, t0) = P(t)eQ(t−t0)P−1(t0) (2.63)

where P(·) ∈ CNx×Nx is the invertible, continuous and bounded Lyapunov-Floquet trans-

formation matrix of period T and Q ∈ CNx×Nx is a constant matrix [Antsaklis and

Michel, 2006, Th. 5.2].

Knowledge of the state transition matrix in the interval t ∈ [0, T ] is sufficient to

characterize the system’s behavior in any other interval because of the recurrence relation:

Φ(t+ nT, t0) = Φ(t, t0)Φ(T, t0)
n (2.64)

Under Floquet’s theorem’s assumptions, the monodromy matrix does have a matrix

logarithm from which Q can be calculated:

Φ(T, 0) = eQT =⇒ Q =
1

T
lnΦ(T, 0) (2.65)

Definition. The unique eigenvalues µ of the monodromy matrix Φ(T, 0) are called the

“Floquet multipliers” of the system. The “Floquet exponents” λ are the eigenvalues of

Q. They are complex numbers such that µ = eλT and they are not unique because

eλT+i2πk = eλT , therefore they are defined modulo i2πk.

The matrices Φ(T, 0) and Q share the same eigenvectors:

Φ(T, 0) = eQT eig
= eΨΛΨ−1T = ΨeΛTΨ−1 (2.66)

The transformation matrix P(t) is then obtained by inverting equation (2.63) and setting

t0 = 0:

P(t) = Φ(t, 0)e−Qt (2.67)

from which it can be seen that P(0) = P(T ) = I.

The computation of the inverse of the transformation matrix P−1(t) through matrix

inversion should be avoided because the calculated transformation matrix P(t) may itself

be inaccurate. Instead, the duality property of the state transition matrix should be used
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(2.1.3). Consider the dual (or adjoint) system of the homogeneous state equation (2.62):

ż(t) = −AT (t)z(t) =⇒ z(t) = Φd(t, t0)z(t0) (2.68)

where Φd(t, t0) designates the state transition matrix corresponding to the state matrix

−AT (t) of the dual system. It is related to Φ(t, t0) by:

ΦT
d (t, t0) = Φ−1(t, t0) = P(t0)e

QT (t0−t)P−1(t) (2.69)

from which:

P−1(t) = eQ
T tΦT

d (t, 0) (2.70)

This property is particularly helpful when determining the Floquet quantities numerically.

Figure 2.10 displays, as an example, the influence of period on the state transition

matrix of a wind turbine model. The practical calculation of the Floquet quantities is

discussed section 2.4; for now it is important to focus on their properties.
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Figure 2.10: State transition matrix and transformation matrix for various values of the
system’s period (blue: low, yellow: high). Generally the STM is not periodic and the
transformation matrix is not symmetric. The figure displays entry (1,1) of the 5-DoF system
from [Skjoldan and Hansen, 2009] for T = 0.05:5 s.

2.3.2 Lyapunov-Floquet transformation

An important consequence of Floquet’s theorem is that a periodic time-varying system can

be transformed into an equivalent time-invariant system by a coordinate change (Lyapunov-

Floquet transformation). For LTP systems, the derivation property of the state transition

matrix implies [Chen, 1999, Th. 4.3]:

∂

∂t
Φ(t, 0) = A(t)Φ(t, 0)

Φ(t,0)=P(t)eQt

−−−−−−−−−−→
substitute

Ṗ(t) +P(t)Q = A(t)P(t) (2.71)

which, together with theorem (2.30), leads to the state variable change[
A(t) B(t)

C(t) D(t)

]
x(t)=P(t)x̃(t)−−−−−−−−→
transform

[
Q P−1(t)B(t)

C(t)P(t) D(t)

]
(2.72)
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where the matrix Q reveals its meaning as the constant state matrix of the transformed

system. The system states can then be uncoupled (2.34) to obtain:[
Q P−1(t)B(t)

C(t)P(t) D(t)

]
x̃(t)=Ψq(t)−−−−−−−→
transform

[
Λ Ψ−1P−1(t)B(t)

C(t)P(t)Ψ D(t)

]
(2.73)

where Λ are the eigenvalues of Q (Floquet exponents) and Ψ the associated eigenvectors.

The columns of P(t)Ψ can be interpreted as periodic mode shapes of the system and

are therefore often called Floquet eigenvectors. Since the state matrix of the transformed

systems (2.72) and (2.73) is constant, the stability criterion for LTP and LTI systems is

the same:

Theorem (Stability of periodic systems). A linear periodic system is stable if and only if

the real part of all eigenvalues λ of the transformed state matrix Q (Floquet exponents) is

non-negative ℜλ < 0. Equivalently: if and only if the all eigenvalues µ of the monodromy

matrix Φ(T, 0) (Floquet multipliers) lie within the unit circle |µ| < 1.

The (instantaneous) eigenvalues of the state matrix do not determine system stability

(as a matter of fact it is possible for periodic systems to be globally stable while crossing

local instability regions and vice versa (see figure 2.11 for such an example). A significant

difference from the time-invariant case is the existence of bifurcation points where the

system’s dynamic behavior varies abruptly as a function of period. These can be observed as

sudden changes in the Floquet exponents’ path (see for example figure 2.12). The stability

analysis of rotating systems is conducted by varying rotation speeds and identifying the

regions where the Floquet exponents have positive real parts [Allen et al., 2011]. More

about stability criteria can be found in [Richards, 1983].
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Figure 2.11: Floquet exponents of a periodic aeroelastic system (parameters: air density and
air speed). The red dots indicate where the minimal damping of the instantaneous eigenvalues
becomes negative. Floquet analysis reveals that the system is globally stable because it
dissipates more energy that it acquires in one cycle. However, the vibration amplitude in the
red region can quickly exceed unacceptable levels.
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Figure 2.12: Floquet exponents of a time-varying harmonic oscillator ẍ(t) + 0.02ẋ(t) +
x(t) + 0.4 cos(ω0t)x(t) = 0 as a function of ω0. The instantaneous eigenvalues λ(t) = −0.01±
i
√
0.012 + 1 + 0.4 cosω0t have always negative real parts irrespective of ω0. However, Floquet

analysis reveals that the system has unstable exponents (red dots) for some intervals of ω0

and that there are several bifurcations. The gray dots around ω0 = 1 rad/s denote purely real
eigenvalues. The blue lines in the right plot are ℑλ = ±ω0/2.

Figure 2.13 shows the state transition matrix and its FFT for various periods T

arranged in three regimes. The qualitative influence of “short” and “long” periods can be

observed in both time and frequency domains. What is denoted as “intermediate” period

is characterized by abrupt dynamic behavior changes. As is clear from the plot, the STM

in time-domain reveals little and the interpretation of the underlying dynamics would

benefit from an analytical frequency-domain representation of the state transition matrix.

Fortunately, this is possible for periodic systems, as we shall see in the coming sections.
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Figure 2.13: The system’s period T = 2π/ω0 has a marked influence on the state transition
matrix (in each subplot: red - high, blue - low). The same system as in figure 2.12 is displayed.
The frequency-domain representation of the STM can provide some key insight.

.
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2.3.3 Impulse response of periodic systems

The solution of periodic systems is obtained easily by applying Floquet’s theorem (2.63) to

obtain the transformed system with constant state matrix (2.72):

x(t) = eQ(t−t0)x(t0) +

∫ t

t0

eQ(t−τ)P−1(τ)B(τ)u(τ) dτ

y(t) = C(t)P(t)x(t) +D(t)u(t)

(2.74)

The impulse response is given by equation (2.23):

H(t, τ) =

D(t)δ(t− τ) +C(t)P(t)eQ(t−τ)P−1(τ)B(τ)

0

t ≥ τ

t < τ
(2.75)

The state equation integral above has a form similar to the general solution of LTI systems

(2.49). The main difference is that the input is modulated by the transformed input matrix

P−1(t)B(t), where at least P−1(t) is periodic (the output equation adds modulation through

C(t)P(t)). It is clear that this modulation adds additional frequency components apart

from those present in the input signal7 (see figure 2.4).

Let f(t) ≜ P−1(t)B(t)u(t) be the forcing function of the system and assume that it can

be expressed by a Fourier series with fundamental harmonic ω0 = 2π/T :

f(t) ≜ P−1(t)B(t)u(t) =
∑
k∈Z

eikω0tfk (2.76)

so that the convolution integral in the state equation (2.74) can be written as:∫ t

0
eQ(t−τ)f(τ) dτ =

∑
k∈Z

∫ t

0
eQte(ikω0I−Q)τ fk dτ =

∑
k∈Z

[
(ikω0 −Q)−1eQte(ikω0I−Q)τ fk

]τ=t

τ=0

(2.77)

The exact solution in the time-domain is then:

x(t) = eQtx(0)−
∑
k∈Z

eQtxk +
∑
k∈Z

eikω0txk (2.78)

where xk ≜ (ikω0I −Q)−1fk. The first addend is the homogeneous solution, the second

is the transient response due to the excitation and the third is the forced response. The

system response y(t) is thus the sum of a transient and a steady-state response:

y(t) = C(t)P(t)eQt

(
x(0)−

∑
k∈Z

xk

)
+D(t)u(t) +C(t)P(t)

∑
k∈Z

eikω0txk (2.79)

The series expansion (2.76) has in general an infinite number of terms, but a subset of just

N harmonics and coefficients {ωk, fk} can be taken into account. The state equation can

7 For example, if P
−1

(t)B(t) = sin(t) and u(t) = 2 sin 2t, then P
−1

(t)B(t)u(t) = cos t− cos 3t
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be then vectorized8 as [Jeličić et al., 2021]:

x(t) = eQtx′
0 + Feiω0t (2.81)

where xk ≜ (iωkI − Q)−1fk as before, x′
0 ≜ x(0) −

∑
xk are the augmented initial

conditions, F ≜ [x1 x2 · · · xN ] and ω0 ≜ {ω1, ω2, · · · ωN} are auxiliary variables. The

eigendecomposition of the constant state matrix Q = ΨΛΨ−1 leads to a computationally

efficient formulation of equation (2.81)

x(t) = eΛtx′
0 + Feiω0t (2.82)

where xk ≜ (iωkI − Λ)−1Ψ−1fk and x′
0 ≜ Ψ−1x(0) −

∑
xk. This formulation has the

advantage of performing scalar divisions and exponentiation of the state matrix instead of

the corresponding matrix operations. This is the preferred method for the simulation of

LTP systems instead of direct numerical integration.

2.3.4 Frequency-domain description of periodic systems

The frequency-domain representation of the impulse response of periodic systems cannot

be interpreted as a “transfer function” as it has been defined in the time-invariant case

because it does not describe a one-to-one correspondence between the input’s and output’s

frequency content. However, the so-called harmonic transfer function (HTF) can be defined

as the analogous to the transfer function of time-invariant systems using the harmonic

balance method. We follow [Wereley and Hall, 1990] in the subsequent derivations.

Let us consider the Floquet-Lyapunov coordinated change (2.73) (repeated here)

S = [Q, P−1(t)B(t), C(t)P(t), D(t)] (2.83)

and assume that the system’s time-dependent state, input and output vectors and system

matrices can be expressed as complex Fourier series:

v(t) =
∑
k∈Z

vke
ikω0t M(t) =

∑
k∈Z

Mke
ikω0t (2.84)

where v(t) and M(t) are a placeholder vector and matrix respectively.

The infinite harmonics vector is defined as

[v] ≜ {· · · v−2, v−1, v0, v1, v2 · · ·} (2.85)

8 The approach employed to find the solution to the state equation can be given even more generality by
considering a forcing function that is a combination of polynomial and exponential terms (i.e. poles with
multiplicity):

f(t) ≜ P
−1

(t)B(t)u(t) =
∑
k∈S

tpkesktfk c s f(s) =
∑
k∈S

pk!

(s− sk)pk+1
fk (2.80)

where pk are polynomial orders and sk complex frequencies.
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The series terms Mk are likewise arranged into a doubly-infinite block-Toeplitz matrix

where n ∈ Z and m ∈ Z are respectively the indices of the rows and columns:

[M]nm = Mn−m =⇒ [M] ≜



. . .
...

...
...

...

· · · M0 M−1 M−2 · · ·
· · · M1 M0 M−1 · · ·
· · · M2 M1 M0 · · ·

...
...

...
...

. . .


(2.86)

The state, input and output vectors of system (2.83) are arranged according to equation

(2.85). The same is performed with the series terms of the state, input, output and

feedthrough matrices as shown in equation (2.86). Furthermore, the diagonal entries of the

block-Toeplitz state matrix are defined as [A]kk ≜ Q− ikω0I (Hill matrix). The algebra

and properties of infinite Toeplitz matrices are explained in [Wereley, 1991]. In practice,

the block-Toeplitz matrices are limited in size by the number of terms of the Fourier series;

the truncation can be performed based on the desired fidelity. This leads to a state-space

representation of the LTP system [Wereley and Hall, 1990]

s[x] = [A][x] + [B][u]

[y] = [C][x] + [D][u]
(2.87)

The input-output relationship is thus

[y] = [H(s)][u] [H(s)] ≜ [D] + [C] (s[I]− [A])
−1

[B] (2.88)

where [H(s)] is the harmonic transfer function in analogy to the transfer function of time-

invariant systems (2.51). Among its applications are system identification and controller

design [Tcherniak and Allen, 2015; Uyanık et al., 2015].

It is possible to use another approach to derive the system’s response in frequency-

domain. From Floquet’s theorem:

Φ(t, t0) = P(t)eQ(t−t0)P−1(t0) = P(t)ΨeΛ(t−t0)Ψ−1P−1(t0) (2.89)

the STM can be reformulated as a sum:

Φ(t, t0) =

Nx∑
j=1

Rj(t, t0)e
λj(t−t0) Rj(t, t0) ≜ (P(t)Ψej)(e

T
j Ψ

−1P−1(t0)) (2.90)

where the residue Rj(t, t0) ∈ CNx×Nx associated to the j-th Floquet exponent λj is equal

to the outer product of the j-th column of P(t)Ψ and the j-th row of Ψ−1P−1(t0) (rank-1

matrices). This step is the same as has been done in equation (2.56) to transform the

transfer function of an LTI system. The residues Rj(t, t0) are continuous and periodic

because the transformation matrix P(t) is continuous and periodic, therefore they have an
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absolutely convergent Fourier series with terms Rj,k and fundamental harmonic ω0 = 2π/T :

Rj(t, t0) =
∑
k∈Z

Rj,ke
ikω0(t−t0) ∀ j = 1: Nx (2.91)

We can put this expression into the STM series, set t0 = 0 and transform immediately into

Laplace-domain:

Φ(t, 0) =

Nx∑
j=1

∑
k∈Z

Rj,ke
(λj+ikω0)t c s Φ(s, 0) =

Nx∑
j=1

∑
k∈Z

Rj,k

s− λj − ikω0
(2.92)

Let pj,k ≜ λj + ikω0 be the pole associated to the j-th Floquet exponent and the k-

th harmonic. For each index j, the corresponding poles all lie along a vertical line in

the complex plane (respectively, on the hyperbolae ζ = −ℜpj,k/ωn in an eigenfrequency-

damping plot), which implies that their real part does not change ℜ{pj,k} = ℜ{λj+ikω0} =
ℜ{λj} (respectively, the product ζωn = −ℜpj,k is constant). The eigendecomposition of Q

places the imaginary part of the Floquet exponents within the strip ℑλj ∈ [−ω0/2, ω0/2] in

the complex plane. Some combinations of j and k result in pole-residue pairs {pj,k, Rj,k}
that have more physical significance than other (for example correspond to a prominent

resonance peak). Indeed only a subset of all eigenpairs S ⊂ {pj,k,Rj,k} has a noteworthy

contribution in the series expansion of the state transition matrix. Since the STM is real,

we may consider only one pole from each complex-conjugated pair. With this in mind we

can write the STM elegantly as:

Φ(t, 0) ≈
∑
n∈S

Rne
pnt c s Φ(s, 0) ≈

∑
n∈S

Rn

s− pn
(2.93)

where the index n now enumerates the elements of S = {pn,Rn}. Assuming that the input

B(t) and output matrices C(t) are periodic, the same reasoning can be applied to the

impulse response function to obtain:

H(s, t0) = D(t0) +

Nx∑
j=1

∑
k∈Z

cj,kb
T
j,k

s− pj,k
≈ D(t0) +

∑
n∈S

cnb
T
n

s− pn
(2.94)

where n ∈ S is again the index of most significant terms of the Fourier series of cj ≜

C(t)P(t)Ψej and bj ≜ eTj Ψ
−1P−1(t0)B(t0). A subset of ikω0 harmonics of a Fourier series

can be selected according to some criterion, for example:

• frequency : keep a certain number of negative and positive frequency bins around the

greatest harmonic plus the DC bin (e.g. the first 10% of harmonics).

• amplitude: excluding DC, ignore harmonics whose amplitude is below a certain

threshold (e.g. below 1% compared to the largest amplitude).

• energy : keep the desired fraction of the system’s total energy plus the DC bin (e.g.

keep 99% of the energy).
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The harmonics selection can be performed independently for each matrix entry. The

selection of the most significant terms of the series expansions of the state transition matrix

or of the impulse response function amounts to model order reduction. Given the similarity

between the pole-residue structures of equation (2.94) for LTP systems and equation (2.56)

for LTI systems, some established model order reduction techniques can be adapted, e.g.

modal truncation; reference [Benner et al., 2015] provides a survey of this topic. It is

normally possible to obtain an accurate approximation of the system by considering just a

few harmonics [Allen et al., 2011; Wereley, 1991].

Figure 2.14 illustrates the reduced modal decomposition of the state transition according

to (2.93) and compares it with the exact solution. Figure 2.15 shows the chosen poles

among the possible combinations of Floquet exponents λj and harmonics ikω0 and the

magnitude of the associated residuals.
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Figure 2.14: Exact and approximate frequency-domain representation of the state transition
matrix. Only the poles that represent 90% of the energy of each entry Φij(t, 0) are used in the
modal decomposition. The arrows denote some of the ignored poles. This approximation is
sufficient to characterize most features of the spectrum. The figure displays entry (1,1) of the
5-DoF wind turbine model from [Skjoldan and Hansen, 2009] with ω0 = 1 rad/s.

Figure 2.15: Same data as in figure 2.14. The grid on left displays the selected poles λj+ ikω0

and the marker color the magnitude of the associated residue. Ten Floquet exponents (five
complex-conjugated pairs) are displayed, each with 2 harmonics. One additional harmonic
component per Floquet exponent is sufficient for an accurate representation of the system. The
bar plot on the right shows the absolute value of the residues corresponding to the displayed
poles (vertical lines).



44 2. Linear time-varying systems

2.3.5 On the influence of period

We have noted in section 2.1.7 that one major theoretical difficulty for time-varying systems

is the lack of a clearly-defined concept of eigenvalues as for time-invariant and periodic

systems. In many applications a time-varying system is assumed to be “slowly-varying”,

i.e. the dynamics arising because of parameter variation can be neglected and therefore a

frozen-time formulation can be applied to model the system and to understand its behavior.

This is often a necessary but completely acceptable simplification in order to render the

problem tractable. Many published works in the field utilize this assumption, for example

[Ertveldt et al., 2014; Houtzager et al., 2012; Lataire and Pintelon, 2010;

Spiridonakos and Fassois, 2009; Zhou et al., 2014]. Period has a marked influence

on periodic systems, firstly on their stability, which can be determined by computing

Floquet’s exponents. Depending on how fast does the system vary, the state transition

matrix assumes different forms (see figures 2.12 and 2.13). As another example, the state

transition matrix of a periodic system is illustrated in figure 2.16 for different periods. As

T grows, the spacing iω0 between the dynamic poles diminishes and they cluster beside

the location of the LTI poles. Given a Floquet exponent λj , the corresponding poles

λj + ikω0 of the STM are each iω0 apart in the complex plane. Depending on the system,

the resonance peaks may be heavily deformed by the presence of many close poles with

significant residues.
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Figure 2.16: The state transition matrix in frequency-domain as a function of period compared
to the underlying time-invariant system. Each vertical line denotes a pole and its hue the
magnitude of the corresponding residue. The figure displays a detail of STM entry (1,1) of a
5-DoF wind turbine model from [Skjoldan and Hansen, 2009] for T = [8, 32, 128, 512] s
(ω0 = [0.785, 0.196, 0.0491, 0.0123] rad/s). In this frequency range, the system has three very
lightly-damped LTI poles with ζωn = [0.0109, 0.0106, 0.0125] rad/s. The third pole is quite
insensitive to time variation.
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Let us consider the damped harmonic oscillator undergoing a periodic variation:

ẍ(t) + 2ζωnẋ(t) + ω2
n

(
1 + r2a sin(rfωnt)

)
x(t) = 0 (2.95)

where ζ and ωn are respectively the damping ratio9 and eigenfrequency of the underlying

LTI system and the dimensionless quantities ra and rf are respectively the amplitude and

frequency ratios of the parameter variation (ω0 = rfωn). When ra = 0 or rf = 0 the system

is time-invariant and has eigenfrequency ωn. We can use the system’s eigenfrequencies to

define a scale for what is “slow” or “fast”. Essentially three regimes appear:

• slowly-varying system ω0 ≪ ζωn: a frozen-time representation is an accurate de-

scription of the system’s dynamics. This may be valid even for large variations of a

parameter, depending on the system’s sensitivity.

• intermediate variation rate ω0 ≈ ζωn: dynamic poles slowly emerge in close proximity

to the “main” resonance peak and deform severely its shape.

• fast system variation ω0 ≫ ωn: dynamic poles move away from the main peak and

become clearly separated.

As ω0 increases further, the system varies so quickly that it appears to be insensitive to

parameter variation and the main peak is approximately at the location of the corresponding

time-invariant case. The system’s impulse response is displayed in a time-frequency plot

for different rf frequency ratios in figure 2.17. Each subplot is built by calculating H(iω, t)

at multiple instants within one period t ∈ [0, T ]. The frequency axis is normalized by the

eigenfrequency ω/ωn; likewise the time axis is normalized by the period t/T . When the

system is slowly-varying, the location of the main resonance peak is described well by the

instantaneous value of the eigenfrequency. When the rate of variation is intermediate, side

lobes appear and and grow in magnitude until they become overwhelming. Their prominence

increases if the damping ratio ζ decreases. Eventually the system varies so quickly, that

9 Equation (2.95) is similar to the Mathieu equation ẍ(t) + (a− 2q cos(2t))x(t) = 0 [Richards, 1983].
This expression is widely studied in literature, particularly with regard to the stability region as a function
of the parameters a and q.

Figure 2.17: Magnitude of the time-varying impulse response of system (2.95), where ωn = 1
rad/s, ζ = 0.04, rf = [0.002, 0.02, 0.05, 0.2, 0.5] and ra = 1/

√
2. The system varies slowly on

the left and varies quickly on the right. See text for discussion.
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the main resonance peak appears fixed at its time-invariant location, accompanied by

dynamic poles at approximately ω/ωn = 1± rf . Different regimes can be observed for the

combinations of low, middle and high variation amplitudes ra and for slow, intermediate

and fast variation rates rf . Figure 2.19 displays again the time-varying impulse response of

system (2.95) in a grid of three different variation amplitude and frequency ratios ra and

rf . When the system is slowly-varying, the frozen-time description is accurate even with

large ra, whereby the frozen-time eigenfrequency is ωn(t) = ωn

√
1 + r2a sin(rfωnt). In this

case the instantaneous eigenvalues still have significance. When the system varies quickly,

the main resonance peak is at the mean location of the instantaneous eigenfrequency
1
T

∫ T
0 ωn

√
1 + r2a sin(rfωnt)dt (even for high ra). The most dynamically complex case

arises when the side lobes become significant, typically with moderate variation rates,

even for low amplitude ratios ra. In this regime it is not possible to predict the system’s

dynamics in a simple way.

The information contained in the last two figures can be condensed by evaluating the

amplitude of the impulse response in frequency-domain H(iωn, 0) at the time-invariant

eigenfrequency ωn in order to compare it with the corresponding time-invariant values

H(iωn). The result is pictured in figure 2.18. We can see that there is a large region

where the system is insensitive to parameter variation H(iωn, 0)/H(iωn) > 0.9 (the LTV

spectrum at ωn and the LTI resonance peak have the same height). Time-varying effects

due to large amplitude ratios ra can be mitigated by increasing the frequency ratio rf .

The same happens when rf is very low (less noticeable in the plot because the resonance

peak shifts while maintaining essentially the same magnitude).

Figure 2.18: Amplitude ratio between the LTV and LTI impulse responses H(iωn, 0)/H(iωn)
of a time-varying damped harmonic oscillator (2.95) evaluated at the location of the frozen-time
eigenfrequency ωn.
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Figure 2.19: Magnitude of the time-varying impulse response of a damped harmonic oscillator
undergoing a sinusoidal stiffness variation (2.95), where ζ = 0.04, ωn = 1 rad/s, ra =
[0.3, 0.7, 0.95] (low-middle-high) and rf = [0.001, 0.05, 0.5] (slow-intermediate-fast). The
dashed line is the predicted location of the main peak. The eigenfrequency variation is constant
in each row, the period is constant in each column. See text for discussion.
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2.3.6 Windowed spectra

The state transition matrix in frequency-domain has been expressed as a weighted sum of

poles in equation (2.93), therefore it is fairly simple to calculate its windowed spectra. This

idea can be developed further into an analytical (parametric) formulation that is able to

determine the frequency content of time-varying systems that are not necessarily periodic,

but have a periodic representation in a limited domain. Consider the rectangular window

Π (t/T − 1/2). The Fourier transform of a pole epnt in the interval [0, T ] is:

F
{
Π

(
t

T
− 1

2

)
epnt

}
=

∫ T

0
epnte−iωt dt

=
1− e−(iω−pn)T

iω − pn

= T exp

(
− iω − pn

2/T

)
sinc

(
−i iω − pn

2/T

) (2.96)

where “sinc” is the unnormalized sinc function sinx
x . With this result in mind, the Fourier

transform of the state transition matrix (2.93) limited to [0, T ] is:

F
{
Π

(
t

T
− 1

2

)
Φ(t, 0)

}
=

∫ T

0
Φ(t, 0)e−iωt dt =

∑
n∈S

Rn

iω − pn

(
1− e−(iω−pn)T

)
(2.97)

The exponential term e−(iω−pn)T introduces an amplitude variation in the spectrum of each

pole pn with peak-to-peak height10 ∆ = exp(ℜ{pn}T ) and wavelength (in the frequency

axis) 1/T . It is then clear that limT→∞∆ = 0 for stable poles. Figure 2.20 compares

the FFT of the state transition matrix over a limited time interval with the analytical

frequency-domain representation over the same interval calculated with equation (2.97).
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Figure 2.20: Spectrum of the state transition matrix varying from 0 to 2.56T . The numerical
result is the FFT of the STM with zero-padding. The analytical solution is the windowed
modal decomposition of the STM. Only the poles representing 90% of the energy are used in
the modal decomposition. The figure displays the STM entry (1,1) of the 5-DoF wind turbine
model from [Skjoldan and Hansen, 2009] with T = 10 s.

10 For example, if we wish to reduce the effect of the finite window length to below ∆ = 5%, the duration
should be T > ln∆/ℜ{pk}. For a pole with 2% damping this corresponds to ln(0.05)/(−0.02 · 2π) = 23.84
periods.
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The spectrum of a time-varying system with at least a piece-wise periodic parameter

representation can be computed by windowing and shifting in time-domain (respectively by

convolving with the sinc function and multiplying by the complex exponential in frequency-

domain). Figure 2.21 illustrates a rapidly linearly-varying system for which only a tiny

amount of time data can be acquired before the variation ends and compares the numerical

(nonparametric) and analytical (parametric) solutions. The former is obtained by solving

the differential equation of motion directly and calculating its FFT from the available

data. The latter is calculated analytically with the pole-residue form of the state transition

matrix (2.97). The continuous curve that represents the analytical spectrum could be

obtained by zero-padding the FFT, however this produces no information about poles.

We can see that many dynamic poles arise from the time variation, however only few are

important.
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(a) Piece-wise linear parameter variation
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Figure 2.21: Frequency-domain solution of a parameter-varying aeroelastic system that
undergoes piece-wise linear parameter variations over a very short time (see chapter 7). The
system is decomposed using a periodic representation of the actual parameter variation. Two
time-invariant poles lie in the range [5, 20] Hz. The nonparametric solution is obtained by direct
numerical integration and FFT interpolation (zero-padding), the parametric solution is given
by a periodic representation and Floquet decomposition. The shorter the duration, the further
apart are the FFT bins on the frequency axis (the lower the resolution). Numerous additional
poles arise due to the parameter variation, but only few have large associated residues.
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2.4 Numerical methods for time-varying systems

When the state matrix commutes, the state transition matrix has an exponential form

according to theorem (2.1.3) and can be often computed analytically. An analytical

formulation is possible in simple cases with the Peano-Baker series (2.14) or Magnus

expansion (2.15) formulae. However, in the majority of practical cases, there is no other

choice but to resort to numerical techniques. Following the argumentation from the previous

section, we can decompose a periodic representation of a time-varying system. If we are

interested in stability, it is sufficient to compute the Floquet exponents from the monodromy

matrix. If we need the pole-residue form of the state transition matrix, then the Floquet

eigenvectors must be computed as well. Floquet analysis is commonly applied to rotating

machinery or electrical circuits. Several numerical techniques are available in literature,

but their application to time-varying aeroelastic systems appears to be novel or at least

not mature as those used in other fields. Specifically, aeroelastic systems such as wings are

characterized by the large aerodynamic damping acting on the lowest eigenmodes and by

the long time scale of parameter variation in comparison to the system’s eigenfrequencies.

This leads to some demanding aspects that need to be addressed: in the quest for the

optimal numerical recipe, the following techniques have been explored:

1. Time-discretization of the system

2. Direct numerical integration of an initial value problem

3. Solution of a boundary value problem

4. Harmonic balance method

5. System identification applied to LTP systems

Although mathematically equivalent, in practice there is usually a preferred approach for

a given system size, stability and parameter variation. Methods 1 and 2 and 5 can be

applied directly to any LTV systems, while methods 3 and 4 are specific to the LTP case.

The computation time and numerical conditioning of each are important concerns.

Since the state matrix is by assumption periodic and continuous, it has an absolutely

convergent Fourier series that can be truncated to the desired accuracy: this Fourier series

is the “reference” state matrix for all numerical calculations.

A(t) =

+∞∑
k=−∞

Ake
ikω0t ≈

+Nk∑
k=−Nk

Ake
ikω0t ≜ Aref (t) (2.98)

The Fourier series representation is used in order to relate the amplitude and rate of change

of the state matrix with the system response. Furthermore, it is easy to represent and

manipulate without a symbolic computing environment. The Jacobi-Liouville equation

relates directly the characteristic exponents with the trace of the state matrix :

∫ T

0
trA(τ) dτ = ln detΦ(T, 0) = ln

Nx∏
j=1

µj = T

Nx∑
j=1

λj (2.99)
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This identity is derived by pairing Floquet’s theorem with the state transition matrix’s

determinant property 2.1.3. The integral above is known exactly because the reference

state matrix is a Fourier series. The other terms (monodromy matrix, Floquet multipliers

and exponents) are determined numerically. The discrepancy from the integral of the

state matrix’s trace provides a means to quantify the accuracy of the calculated Floquet

quantities. Computation time is an ever-present worry, but the most considerable concern

is finite precision arithmetic, therefore some particular techniques are employed for the

precise calculation of Floquet quantities [Lust, 2001; Nureki and Murashige, 2009].

Why are numerical precision and accuracy important? Because Floquet multipliers

may have vastly different magnitudes and the columns of the monodromy matrix must be

linearly independent. In this regard an airfoil or wing model pose a formidable challenge

because the addition of aerodynamic lag terms increases the number of states and adds

critically-damped poles to the system. More damping implies larger time constants and

therefore longer periods correspond to events far in the future where errors have had the

time to propagate enough to render the solution inaccurate. Because of this, a lot of effort

is condensed in this short section to implement several numerical techniques. Figure 2.22

shows the envelope of the STM of an aeroelastic system undergoing the same parameter

variation but with different rates.
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Figure 2.22: Envelope of the state transition matrix of the aeroelastic system described in
section 7.2. The period and the time axis are scaled by the time constant τ ≜ −1/maxℜ{λ},
where λ are the eigenvalues of the mean time-invariant system. The decay of a single degree-
of-freedom system exp(−t/τ) provides an upper bound (the rate of convergence is 1/τ). The
value of Φ(t, 0) decays to machine precision over long periods and its column stop being linearly
independent.
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2.4.1 Discretization of the state matrix

The simplest approach for the calculation of the state transition matrix is the division of

the period into very small intervals [n∆t, (n+ 1)∆t] where the state matrix is effectively

constant:

An ≜
1

∆t

∫ (n+1)∆t

n∆t
A(τ) dτ ≈ A(n∆t) +A ((n+ 1)∆t)

2∆t
(2.100)

The state transition matrix for t ∈ [n∆t, (n+ 1)∆t] is then:

eAn∆t = Φ ((n+ 1)∆t, 0) = Φ(∆t, 0)Φ(n∆t, 0) (2.101)

This is the so-called Hsu’s method for time-varying systems [Hsu, 1974]. A higher-order

discretization formula is developed in chapter (7). For a periodic system, in the limit of

the time interval’s duration becoming vanishingly small, the monodromy matrix is given

by the composition property (2.1.3):

Φ(T, 0) = lim
∆t→0

N∏
n=1

eAn∆t (2.102)

The computation of the matrix exponential is expensive, therefore several variants with

different accuracy exist. This work employs the accurate squaring-and-scaling algorithm

with Padé approximation [Al-Mohy and Higham, 2010] as implemented in MATLAB.

2.4.2 Initial value problem

The initial value problem approach (IVP, also called direct numerical integration) is

conceptually simple and of widespread use (it can be applied to any time-varying system).

It consists of integrating the homogeneous state equation numerically

Ẋ(t) = A(t)X(t)
solve−−−−−−−→

from 0 to T
X(t) =⇒ Φ(t, 0) = X(t)X−1(0) (2.103)

for any set of linearly independent initial conditions (for convenience usually X(0) = I).

Equation (2.103) is a system of N2
x homogeneous first-order ordinary differential equations

in the form ẋ(t) = f(t, x(t)), that can be solved with common single-step and multi-step

algorithms [Hairer et al., 2008; Quarteroni et al., 2006; Shampine et al., 2003].

The method is implemented more generally in chapter 7 with the inhomogeneous term to

compute the forced response of any LTV system.

In the case of periodic systems, the fundamental solution is calculated up to t = T in

order to determine the monodromy matrix. The Floquet quantities are determined from

the eigendecomposition of the monodromy matrix, therefore the calculation of X(T ) must

attain the best possible accuracy (ideally machine precision). This seems extreme compared

to many other applications, but it is necessary because eigenvalues (Floquet multipliers)

are sensitive to changes in matrix entries (monodromy matrix). However, despite all

precautions, there is no guarantee that the columns of the solution X(t) (respectively
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of Φ(t, 0)) will be linearly independent within the domain [0, T ]. Especially when the

system’s period is very long, errors propagate and become significant enough to affect the

calculation of subsequent steps.

This thesis employs efficient ad-hoc implementations of the Runge-Kutta (single-step)

and Adams-Bashforth-Moulton (multi-step) algorithms (see algorithms 7 and 8):

• Runge-Kutta (RK) method of order Np is
Ki ← ∆tA (tn + ci∆t)

(
Xn +

∑i−1
j=1 aijKi−1

)
Xn+1 ← Xn +

∑Np

i=1 biKi

tn+1 ← tn +∆t

(2.104)

where the coefficients aij , bi and ci for stages i = 1: Np are tabulated for each order

or variant (Butcher’s array). RK performs as many evaluations of A(t) as there are

stages for each grid point tn.

• Adams-Bashforth-Moulton (ABM) predictor-corrector method of order Np is:
Xn+1 ← Xn +∆t

∑Np

j=0 bp,jA(tn−j)Xn−j

Xn+1 ← Xn +∆t
∑Np

j=0 bc,jA(tn−j+1)Xn−j+1

tn+1 ← tn +∆t

(2.105)

The first equation (Adams-Bashforth method with predictor coefficients bp) uses

the last Np calculated points to predict the next one, then the second equation

(Adams-Moulton method with corrector coefficients bc) refines the solution. The

algorithm is started by providing the first Np points with RK.

A single-step method performs several function evaluations A(t) per step, which may be

expensive for large systems or long duration. This computational cost is not present in

multi-step methods because A(t) is only evaluated at the grid points tn once per step.

Multi-step methods are efficient because previous steps are utilized to obtain a more

accurate solution, however they necessitate a smaller step size ∆t to attain the same

precision of a single-step method of the same order. When rounding errors limit accuracy,

then higher order or single-step methods are preferable because they require fewer steps.

The classical fourth-order Runge-Kutta solver is sufficient for some rotorcraft applications

[Maurice et al., 2009]. MATLAB’s ode45.m solver (ODE45) utilizes an adaptive 7-stages

RK method with the Dormand-Prince coefficients [Shampine et al., 2003].

In order to better control code execution and function evaluations, this work utilizes

custom RK10 and ABM16 algorithms with constant step size (see algorithms 7 and 8).
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2.4.3 Boundary value problem

Floquet’s theorem and the derivation property of the STM (2.1.3) lead to equation (2.71)

(repeated here):

∂

∂t
Φ(t, 0) = A(t)Φ(t, 0)

Φ(t,0)=P(t)eQt

−−−−−−−−−−→
substitute

Ṗ(t) +P(t)Q = A(t)P(t) (2.106)

The calculation of the monodromy matrix can be then reformulated as a boundary value

problem (BVP) where the unknowns are P(t) and Q:Ṗ(t) = A(t)P(t)−P(t)Q

Q̇ = 0
P(0) = P(T ) = I (2.107)

This system of first-order differential equations has the desirable property of having bounded

unknowns and very simple boundary conditions that can be enforced exactly. The BVP

can be better conditioned that the initial value problem [Montagnier et al., 2004], but

it requires the solution of a nonlinear problem, therefore an initial guess most be provided

by the discretization or the state matrix (2.102) of by direct numerical integration (2.104)

(2.105). Equation (2.107) can be solved using a collocation method for boundary value

problems of ordinary differential equations, for example MATLAB’s bvp4c.m / bvp5c.m

[Kierzenka and Shampine, 2001] and TU Wien’s BVPSUITE2.0 [Kitzhofer et al.,

2010]. While certainly an elegant theoretical approach, the practical solution of the

boundary value problem can easily overflow the computer memory because the number

of necessary grid points increases with the system’s period and because 2N2
x equations

must be solved simultaneously. The available solvers are not optimized for heavy-duty

computations required for large dynamic systems. Long computation times must be taken

into account since the BVP is solved iteratively until a certain tolerance is met. An example

is presented in figure 2.23.
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Figure 2.23: Comparison of IVP and BVP solutions (state transition matrix and Lyapunov-
Floquet transformation matrix). Aeroelastic system from section 7.2 with T = 1.53τ s, where
τ is the largest time constant of the mean time-invariant system. Compared to the system’s
characteristics, the period is long, therefore both the IVP and BVP methods struggle to meet
tolerances. Nevertheless, the latter is able to compute accurately the transformation matrix,
while the former succumbs to numerical noise towards the end of the period.



2.4. Numerical methods for time-varying systems 55

2.4.4 Harmonic balance

The boundary value problem can be reformulated to determine the Floquet exponents and

eigenvectors directly. Let Ψ(t) ≜ P(t)Ψ be the Floquet eigenvectors:

∂

∂t
Φ(t, 0) = A(t)Φ(t, 0)

Φ(t,0)=Ψ(t)eΛt

−−−−−−−−−−→
substitute

Ψ̇(t) +ΛΨ(t) = A(t)Ψ(t) (2.108)

The periodic functions A(t) =
∑

Ahe
ihω0t and Ψ(t) =

∑
Ψke

ikω0t can be expressed as

absolutely convergent Fourier series and inserted into the previous equation to obtain:

+∞∑
k=−∞

(ikω0 +Λ)Ψke
ikω0t =

+∞∑
h=−∞

Ahe
ihω0t ·

+∞∑
k=−∞

Ψke
ikω0t (2.109)

After applying the Cauchy product:

+∞∑
h=−∞

Ahe
ihω0t ·

+∞∑
k=−∞

Ψke
ikω0t =

∞∑
k=−∞

(
k∑

h=0

Ak−hΨh

)
eikω0t (2.110)

we arrive at
+∞∑

k=−∞

(
(ikω0 +Λ)Ψk −

k∑
h=0

Ak−hΨh

)
eikω0t = 0 (2.111)

The harmonic balance (HB) method consists of equating each k-th harmonic to zero. Its use

is widespread in the analysis of nonlinear systems with periodic solutions and a large body

of literature exists [Bonnin et al., 2018; Khalil, 1996; Lazarus and Thomas, 2010;

Traversa and Bonani, 2011]. This equation can be formulated as an infinite-dimensional

eigenproblem akin to what we have seen in the definition of the harmonic transfer function

(2.88):

(i[Ω] + [Ak]) [Ψ] = [Ψ][Λ] (2.112)

where [Λ], [Ψ] are the block-Toeplitz matrices (2.86) of eigenvalues and eigenvectors

respectively and i[Ω] + [Ak] is the Hill matrix:

i[Ω] + [Ak] ≜



. . .
...

...
...

...

· · · A0 + iω0I A−1 A−2 · · ·
· · · A1 A0 A−1 · · ·
· · · A2 A1 A0 − iω0I · · ·

...
...

...
...

. . .


(2.113)

The harmonic balance can be implemented as a generalized eigenvalue problem in frequency-

domain. In practice only a finite number Nh of harmonics is considered in the series

expansion (2.111). The corresponding time and harmonics vectors are:

t ≜ {t1 · · · t2Nh+1} ω ≜ ω0{−Nh : Nh} (2.114)
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from which the Vandermonde block matrix (DFT operator) is assembled:

V ≜ exp(itωT ) =⇒ [V] ≜ diag(V, ...,V) (2.115)

where “exp” indicates the scalar exponential. In order for V to be well-conditioned, the

time vector t should be irregularly-spaced. The differentiation operator [Ω] is a block

diagonal matrix built with Nx copies of ω:

[Ω] ≜ diag(ω, ...,ω) ∈ RNx(2Nh+1)×Nx(2Nh+1) (2.116)

Finally, the state matrix is composed as follows:

[A] ≜


Â1,1 · · · Â1,Nx

...
. . .

...

ÂNx,1 · · · ÂNx,Nx

 ∈ RNx(2Nh+1)×Nx(2Nh+1) (2.117)

where the entries Âi,j = diag(Ai,j(t1),Ai,j(t2), · · · ,Ai,j(t2Nh+1)) are formed from the

values of Aij(t) arranged in a diagonal matrix. The resulting eigenvalue problem

(
i[Ω] + [V]−1[A][V]

)
Ψ = ΨΛ (2.118)

returns the required Floquet exponents Λ and the Floquet eigenvectors Ψ. The best

estimation of the latter is obtained from the associated Floquet exponents found within the

strip ℑλ ∈ [−ω0/2,+ω0/2]. Figure 2.24 displays the typical result of the HB method applied

to a periodic system. Compared to the IVP and BVP formulations, the HB approach

is simpler to implement because it only requires the Fourier series of the state matrix.

However, a careful assembly of its matrices is necessary for good numerical conditioning.

Its main drawback is the dimension of the eigenproblem (2.118).
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Figure 2.24: Harmonic balance applied to the 5-DoF system from [Skjoldan and Hansen,
2009] (T = 1 s). The black points display the eigenvalues of equation (2.111), the red
circles the selected eigenvalues, i.e. the Floquet exponents. The dashed lines delimit the
−ω0/2 ≤ ℑλ ≤ ω0/2 strip, the vertical lines the real part of the poles within this strip. Ideally
each Floquet exponent appears multiple times with the same real part and imaginary parts
modulo iω0, in practice there is always some scatter away from the real axis.
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2.4.5 System identification applied to periodic systems

We have shown previously in equation (2.92) that the state transition matrix of periodic

systems has a pole-residue form:

Φ(s, t) =

Nx∑
j=1

∑
k∈Z

Rj,k

s− λj − ikω0

pj,k = λj + ikω0

Rj,k = (PkΨej)(e
T
j Ψ

−1Pk)
(2.119)

The following approach is proposed for finding the Floquet parameters:

1. Compute the state transition matrix in time-domain by direct numerical integration

2. Extract the poles and residues with a system identification procedure

The residues are rank-1 matrices, therefore we can recover the harmonics of the Floquet

eigenvectors by taking the left and right singular vectors associated with the first singular

value:

Rj,k
svd
= UΣVH =⇒

PkΨej = U1

√
Σ1

eTj Ψ
−1Pk = VH

1

√
Σ1

(2.120)

We shall call this method SID (System IDentification). The advantage of this approach is

that existing time-domain or frequency-domain identification methods may be employed

[Allen et al., 2011; Jhinaoui et al., 2014]. The Stochastic Subspace Identification

(SSI) and Least-Squares Complex Frequency (LSCF) are the methods of choice in this thesis

(see chapter 5). In some cases the identification technique may fail to resolve very close

poles (i.e. when the system varies extremely slowly), nevertheless, the identified Floquet

parameters minimize the error in the least-squares sense. A pole selection procedure may

be applied afterwards (for example, to reduce the model order). A slowly-varying system

that is beyond the capabilities of the other methods presented in this section is decomposed

successfully in figure 2.25 using system identification.
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Figure 2.25: Floquet decomposition of the system from figure 2.23 using system identification.
The plot displays a detail of the STM and its least-squares fit with the identified Floquet
parameters (vertical lines). The period is T = 10τ s, where τ is the largest time constant of
the mean time-invariant system (dashed line). Given the long period, other methods fail to
decompose this system.
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2.4.6 Multiple shooting method

The multiple shooting method (MS) for periodic solutions is often encountered in literature

because it attains extreme precision [Lust, 2001]. An LTP system has periodic solutions

for nonzero initial states if and only if at least one eigenvalue of Φ(T, 0) is unity [Rugh,

1996, Th. 5.13]. The method exploits this property by dividing the period into M sub-

intervals such that t0 < t1 < · · · < tM+1 = t0 + T . The k-th state transition matrix with

initial conditions x(tk) is computed for the k-th sub-interval: x(tk+1) = Φ(tk+1, tk)x(tk)

∀k = 0: M . An iterative Newton method is used to simultaneously enforce the continuity

condition x(tk) = x(tk−1) and the periodicity conditions x(tM+1) = x(t0) across all sub-

intervals [Nureki and Murashige, 2009]. Since the sub-intervals are short, the errors

of a numeric solutions have less time to propagate. However, in the case of aeroelastic

non-rotating systems, the system response is periodic only at the flutter condition. The

multiple shooting method is thus not considered for this thesis.

2.4.7 Comparison of numerical methods

Informally: all presented method work fine but for extreme cases. This problem is

acknowledged by some authors [Maurice et al., 2009; Montagnier et al., 2004]. In

fact, the longer the period, the more difficult it is to obtain an accurate solution using

any technique. The number of significant frequency components of the transformation

matrix is usually high in the “intermediate” period range (see section 2.3.5). Short periods

correspond to a high parameter rate of change, but are usually not difficult to treat because

the harmonics are far apart. The accuracy of the presented methods is quantified by the

Jacobi-Liouville equation (2.99).

Table 2.1: Comparison of numerical methods for LTP systems

Method Advantages Disadvantages

Hsu
2.4.1

• Simple
• Applicable to any LTV system

• Approximate
• Computes matrix exponentials

IVP
2.4.2

• Standard/established method
• Applicable to any LTV system

• Solution depends on time step
• Can be badly conditioned

BVP
2.4.3

• Well-conditioned
• Enforces boundary conditions

• Extreme computational cost
• Requires initial guess

HB
2.4.4

• Simple
• Standard/established

• Can be badly-conditioned
• Solves large eigenproblem

SID
2.4.5

• Uses “off-the-shelf” algorithms
• Well-documented theory

• Least-squares solution

MS
2.4.6

• Extreme precision • Only for periodic solutions
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2.5 Analytical solutions for time-varying systems

The previous section has highlighted the practical difficulty of computing systems with long

periods. Section 2.3.5 has shown that the dynamic mode coupling term becomes irrelevant

if the rate of parameter variation is very low or when the modes are spaced widely apart.

When this happens, the system can be diagonalized and the state transition matrix has an

exponential form according to theorem (2.1.3):

Φ(t, t0) = exp

∫ t

t0

Ã(τ) dτ (2.121)

This leads to significant simplifications because the system can be treated as a collection

of uncoupled ordinary differential equations.

Let us then develop a simplified framework for the analysis of such systems. This

section’s objective is to provide more insight into the dynamics of time-varying systems by

deriving analytical solutions. The simplified approach presented here can be utilized to

compute extreme cases and to understand the relationships between parameter variation

and system response.

We shall consider the i-th state and the j-th input to define the parameter a(t) ≜ Ãii(t)

and the inhomogeneous term q(t) ≜ B̃ij(t)uj(t). The state equation (2.20) in this scalar

case is then in the form

ẋ(t) = a(t)x(t) + q(t) (2.122)

and its solution can be found with the method of variation of parameters:

x(t) = eA(t)x(t0) + eA(t)

∫ t

t0

e−A(τ)q(τ) dτ A(t) ≜
∫ t

t0

a(τ) dτ (2.123)

It is apparent that a general closed-form solution of equation (2.123) does not exist unless

some restrictions are imposed on a(t) and q(t). To this end, the parameter variation

shall be narrowed to linear and complex exponential functions to determine an analytical

solution in the time and frequency domains.

2.5.1 Linear parameter variation

Let the parameter a(t) be a linear function of time:

ẋ(t) = a(t)x(t) + q(t) a(t) = a0 + a1t (2.124)

We shall derive an analytical solution to this linear equation. The full derivations are

found in appendix A.3. The effect of linear parameter variation on the instantaneous

eigenfrequency and damping ratio is displayed in figure 2.26. The integral of a(t) is

A(t) =

∫
a(τ) dτ = a0t+

1

2
a1t

2 + c (2.125)
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Figure 2.26: Linear parameter variation a(t) = a0 + a1t, where a0 = fλ(1, 0.1) rad/s

and a1 = fλ(0.5, p) rad/s
2
for p = 0:0.1:1 (blue: zero, red: one). fλ(·, ·) is the eigenvalue

function. The instantaneous eigenfrequency varies linearly, while the instantaneous damping
ratio approaches p = −ℜ{a1} /|a1| hyperbolically. If ℜ{a1} = 0, then the instantaneous
damping ratio approaches 0, if ℑ{a1} = 0, then the instantaneous damping ratio approaches 1.

The homogeneous solution in time-domain is thus simply:

xh(t) = x(0)eA(t) = x(0)ea0t+
1
2
a1t2 (2.126)

The Fourier transform of the homogeneous solution is a shifted Gaussian function:

xh(ω) =

∫ +∞

−∞
xh(t)e

−iωt dt = x(0)

√
π

α
exp

(
iω − a0

2α

)2

(2.127)

where α ≜
√
−a1/2. A comparison of the LTV and LTI solutions in the time and

frequency domains is presented in figure 2.27. In the time-varying case, the instantaneous

eigenfrequency increases continuously, therefore the response decays faster. The spectrum

exhibits multiple bumps whose spacing varies geometrically. Figure 2.28 illustrates the

influence the parameter’s eigenfrequency and damping ratio a1 = fλ(ω1, ζ1) on the spectrum

of the homogeneous solution. The peak amplitudes decay with increasing frequency with a

rate that depends on the damping ratio. The LTV solution approaches the time-invariant

case when the rate of change is low (
√
|a1|/|a0| → 0). When the rate of change is high,
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Figure 2.27: Analytical solutions of ẋ(t) = (a0 + a1t)x(t). The initial condition is x(0) = 1,
the parameters are a0 = fλ(1, 0.05) rad/s and a1 = fλ(0.2, 0.05) rad/s

2 (the damping ratio
does not vary). The main LTV peak is at |a0 + 2

√
a1| rad/s for small damping values.
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Figure 2.28: Spectrum of ẋ(t) = a(t)x(t), with x(0) = 1, a0 = fλ(1, 0.02) rad/s and
a(t) = a0 + a1t. Let p ∈ [0, 1] (blue: low, red: high). In the left plot a1 = fλ(p, 0.02)
(eigenfrequency change). As p→ 0, the LTV solution converges towards the LTI case. In the
right plot a1 = fλ(0.05, p) (damping ratio change).

the energy content in higher frequency increases compared to the time-invariant case. The

higher the damping ratio of a1, the more the LTV peaks are suppressed and the closer the

main peak is to |a0|. Let the forcing term be a series

q(t) =

Nq∑
q=1

cqe
sqt cq, sq ∈ C (2.128)

where both the coefficients and frequencies are complex. This assumption includes the

broad category of L2 (square-integrable) functions. The inhomogeneous term is thus

xi(t) = eA(t)

∫ t

t0

e−A(τ)q(τ) dτ =

√
π

2iα
e−α2t2+a0t

Nq∑
q=1

cqe
µ2
q
(
erf
(
iαt+ µq

)
− erf (µq)

)
(2.129)

where the constants are α ≜
√
−a1/2, µq ≜ (a0 − sq)/(2iα) and erf(z) ≜ 2√

π

∫ z
0 e−u2

du is

the complex error function. The transformation of xi(t) into frequency-domain is convoluted

because it requires a difficult kind of integral involving error functions. Details about the

derivations are found in appendix A.3. The final result is:

xi(ω) =

∫ +∞

−∞
xi(t)e

−iωtdt =
π

2α2
e

(
iω−a0

2α

)2 Nq∑
q=1

cqe
µ2
q
(
sgn(iω − sq)− 1− erf(µq)

)
(2.130)

where the auxiliary variables are as before and “sgn” is the signum function. An example

is shown later in section 2.5.3. We conclude that the frequency-domain representation of

the response of a linearly-varying system involves complicated functions of the frequency,

in contrast to the much simpler rational form of time-invariant systems. This result has

been anticipated in section 2.1.4 (see figure 2.5).
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2.5.2 Complex exponential parameter variation

Let the parameter a(t) be a series of exponential functions:

ẋ(t) = a(t)x(t) + q(t) a(t) = a0 +
∑Np

p=1
cpe

spt (2.131)

where cp, sp ∈ C. The complex frequencies sp are not necessarily purely imaginary or

multiples of a fundamental frequency (equation (2.131) satisfies the hypothesis of Floquet

theory when ℜsp = 0). This assumption gives more generality than what was shown with

periodic systems in section 2.3. Figure 2.29 shows an example of such an instantaneous

eigenfrequency and damping ratio variations. The integral of the parameter a(t) is

A(t) =

∫
a(τ) dτ = a0t+

∑Np

p=1

cp
sp

exp(spt) (2.132)

The homogeneous solution is found by the method of variation of parameters (2.123):

xh(t) = x0e
A(t) = c0 exp

(
a0t+

∑Np

p=1

cp
sp

espt
)

= c0
∑∞

k=1
cke

(a0+sk)t (2.133)

where the constant c0 ≜ x(0) exp
∑Np

p=1 cp/sp depends on the initial conditions and where

ck are the coefficients of the Fourier series of the double exponentials exp
(
cp/spe

spt
)
(they

can be computed exactly and their derivation is found in appendix A.4). We observe that

xh(t) is an infinite series of simple poles, therefore it has an immediate transform into

Laplace-domain:

xh(s) =
∑
Sh

rh
s− ph

(2.134)

where Sh is the set of pole-residue pairs {ph , rh} ≜ {c0ck , a0+sk} (the subscript h denotes

the homogeneous solution). The system is stable if ℜ{a0 + sk} ≤ 0 ∀k. The example

in figure 2.30 illustrates qualitatively the influence of the parameter a(t) = a0 + c1e
s1t

on the spectrum of the homogeneous solution, in particular the appearance of additional
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Figure 2.29: Exponential parameter variation a(t) = a0 + c1 exp(s1t), where a0 = fλ(1, 0.1)
rad/s and c1 = 0.1a0 and s1 = fλ(1, p) rad/s (so ω0 = 1 rad/s), where p = 0:0.1:1 (blue: zero,
red: one). fλ(·, ·) is the eigenvalue function (see notation in the preamble). When s1 is purely
imaginary, the parameter variation is periodic. The c1 coefficient determines the amplitude
and phase of the c1e

s1t term.
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Figure 2.30: Spectrum of ẋ(t) = (a0 + c1 exp(s1t))x(t), with x(0) = 1, a0 = fλ(1, 0.02)
rad/s. Let p ∈ [0, 1] (blue: low, red: high). In the left subplot a(t) = a0 + p|a0| · exp(fλ(1, 0)t)
(amplitude change). In the middle subplot a(t) = a0 + p|a0| · exp(fλ(p, 0)t) (eigenfrequency
change). In the right a(t) = a0 + 0.1|a0| · exp(fλ(1, p)t) (damping ratio change).

poles. Relative to the time-invariant pole a0, LTV dynamics are not significant when

the amplitude il low |c1|/|a0| → 0, the frequency is either much smaller |s1|/|a0| ≪ 1 or

much bigger |s1|/|a0| ≫ 1 or when the damping ratio is high −ℜ{s1}/|s1|) > 1/
√
(2). The

shapes of the LTV peaks vary if c1 and s1 are real, complex or purely imaginary.

Let the forcing function be again a sum of complex exponentials:

q(t) =
∑Nq

q=1
cqe

sqt cq, sq ∈ C (2.135)

After many algebraic manipulations that we are leaving for appendix A.4, the inhomoge-

neous response turns out to be in the form:

xi(t) = eA(t)

∫ t

0
e−A(τ)q(τ) dτ =

∑
St

rte
ptt +

∑
Sf

rfe
pf t (2.136)

where the subscripts t and f refer respectively to the transient and forced response and St
Sf are the corresponding sets of pole-residue pairs {p , r}. The inhomogeneous response in

Laplace-domain is simply:

xi(s) =
∑
St

rt
s− pt

+
∑
Sf

rf
s− pf

(2.137)

The complete solution is then finally:

x(ω) =
∑
Sh

rh
s− ph

+
∑
St

rt
s− pt

+
∑
Sf

rf
s− pf

(2.138)

This equation is the sum of the homogeneous response (2.134) and the transient and forced

(steady-state) responses due to the inhomogeneous term (2.137). This result is in line with

Floquet’s theory (2.78) (2.93) but it does not assume a periodic system. The pole-residue

pairs {p, r} can be computed exactly for any parameter variation and forcing function that

can be expressed by complex Fourier series. As usual, it is then a matter of manipulating
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a finite set of most significant pole-residue pairs. The number of terms can be reduced

considerably if all the complex frequencies of parameter and forcing function are multiples

of a fundamental iω0 (because the Dirac deltas with the same abscissa are summed). The

techniques used to derive the complete solution in frequency domain (2.138) can be applied

to a parameter variation that is combinations of polynomial and exponential functions

such as a(t) = a0 + tpest. The resulting response contains poles with multiplicity p+ 1.

2.5.3 Examples of analytical solutions

Figure 2.31 illustrates the response of three systems subject to the same forcing function,

but with different parameter variations. The examples are designed to illustrate the variety

of the spectral content depending on the type of parameter variation. In each case the

peaks and valleys of the spectrum may be altered greatly by modifying the parameter’s

phase. The most obvious difference compared to the underlying time-invariant case is that

the steady-state response contains additional frequency components. Save for extreme case,

few poles are sufficient to describe the response. The examples where the system variation

is truly periodic give the same results of Floquet theory.

The simplified single degree-of-freedom approach is used to decompose a time-varying

harmonic oscillator in figure 2.32.

In the case of an observation window limited to t ∈ [0, T ], the response in frequency-

domain can be computed by windowing as shown in section 2.3.6 using a periodic represen-

tation of the LTV system. The example of a parameter increasing and then decreasing

linearly11 is illustrated in figure 2.33. Assuming that some error can be accepted, the

periodic formulation is simpler to implement and easier to manipulate than the linear one.

We can therefore approximate the parameter variation with a series of complex exponentials

and then compute its response in the time and frequency domains. The results are shown

in figure 2.33. The solution computed from the linear formulation is matched well by the

periodic representation of the system. Essentially the same technique has been applied in

figure 2.21 for a full aeroelastic system.

11 Consider a parameter a(t) that increases and then decreases linearly:

a(t) =


a0 + a1t 0 ≤ t < rT

a0 − a1
r

1−r
(t− rT ) rT ≤ t < T

a0 t ≥ T

r ∈ [0, 1] (2.139)

This is a triangle wave of height A = a1rT and period 2T with the first cusp located at t = rT . The
solution of ẋ(t) = a(t)x(t) + q(t) is calculated using the linear and periodic formulations.

a(t) = a0 +
2A

π2r(1− r)

∞∑
k=1

(−1)k

k2
sin
(
kπ(r − 1)

)
sin

(
2πk

t

2T

)
(2.140)

Since a(t) ∈ L2, then its Fourier series converges absolutely.
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(a) Complex parameter variation a(t) = a0 + 0.2i · exp(i0.5t)
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(b) Decaying parameter variation a(t) = a0 + 0.2i · exp(−0.01t+ i0.5t)

-1 0 1 2 3 4 5 6

Frequency [rad/s]

10
-4

10
-2

10
0

10
2

S
p
e
c
tr

u
m

 [
u
n
it
/(

ra
d
/s

)]

Forced response

Steady-state

Transient

Input

-1 0 1 2 3 4 5 6

Frequency [rad/s]

10
-4

10
-2

10
0

10
2

S
p
e
c
tr

u
m

 [
u
n
it
/(

ra
d
/s

)]

Complete solution

LTI

LTV

(c) Periodic parameter variation a(t) = a0 − 0.2 · sin(0.5t)

Figure 2.31: Each subfigure displays the time-varying system ẋ(t) = a(t)x(t) + q(t) in
frequency-domain for different a(t). In all examples the initial conditions are zero, the constant
term is a0 = fλ(2π, 0.02) and the forcing term is q(t) = exp(3.75t). The corresponding LTI
system is ẋ(t) = a0x(t) + q(t). The left subplots show the transient response due to the forcing
function and the steady-state solution from equaiton (2.137). The vertical light blue line is
the location of the LTI system’s eigenfrequency, while the circle represents the forcing term in
frequency-domain q(ω) = δ(ω − 3.75). The strictly periodic terms in the steady-state response
appear as a Dirac delta in the spectrum. The right subplots compare the LTV and LTI cases.
The dashed lines denote the locations of significant dynamic poles.
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Figure 2.32: Harmonic oscillator m(t)ẍ(t) + cẋ(t) + kx(t) = 0, where the mass varies as
m(t)/m0 = 1 − 0.1 sin(0.1ωnt), m0 = 1 kg, d = 2 · 0.02 · 2π Nm/s and k = (2π)2 N/m. The
response is computed in frequency-domain by the simplified analytical approach using two
time-varying poles. The parametric solution compares well to the nonparametric one.
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(a) Linear parameter variation and periodic approximation with five terms
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Figure 2.33: Linear parameter variation: comparison of linear and periodic solutions.
The parameter a(t) increases and decreases linearly according to equation (2.139) where
a0 = fλ(1, 0.01), a1 = fλ(1/r/T, 0.2), T = 10 s and r = 3/4. The linear function (red) is
approximated with a five-term Fourier series (blue). The eigenfrequency of the system varies
from 1 to 2 Hz and the damping ratio from 0.01 to 0.1 circa. The inhomogeneous term is
q(t) = exp(2.1 · 2πit). The periodic formulation is set to use only five terms to represent a(t),
therefore some discrepancy in the results is expected, but the main features of the spectra are
the same. The spectrum’s waviness is due to the limited duration.
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2.6 Chapter summary

The chapter introduced the theory of linear time-varying systems and provided some of

the mathematical tools necessary for their analysis.

The objective is to study parameter-varying aeroelastic structures and the effect of

parameter variation on the system’s dynamics. In order to achieve this goal, the chapter

put much emphasis in deriving parametric representations of the response of time-varying

systems in frequency-domain. This will be required in later chapters for the correct

interpretation of modal analysis results. Two important special cases have been elaborated:

linear time-invariant (LTI) and linear time-varying periodic (LTP) systems.

The chapter’s focus is on parametric representations of time-varying processes. In the

LTI case, the system can be conveniently fully characterized by its transfer function and

by the eigenvalues and eigenvectors of the state matrix, therefore many spectral estimation

and system identification techniques operate within this framework. On the other hand,

LTP systems can be decomposed using Floquet’s theorem into equivalent time-invariant

ones with inputs and outputs modulated by periodic functions. The Floquet exponents

and Floquet-Lyapunov transformation matrix assume the role of modal parameters. In

the case of slowly-varying systems, the “frozen-time” (instantaneous) eigenvalues are still

useful. This is a common, necessary and adequate assumption in the treatment of many

time-varying systems to obtain a parametric representation of the response spectra or

modal parameters. In the general time-varying case, the concept of eigenvalues is not

unique and so-called “pseudo modal parameters”, “dynamic eigenvalues” and “time-varying

modes” can be defined.

The chapter showed that it is possible to use a periodic representation of a general

time-varying system to render it tractable. The influence of amplitude and rate of variation

is recognized and studied to define three regimes. If the system varies slowly, the dynamic

coupling terms are not significant and a frozen-time representation may be used. Conversely,

a system may appear insensible to very fast parameter variations; when this occurs, the

main resonance peaks are approximately at the location of the mean frozen-time values.

Intermediate regimes are difficult to categorize and must be analyzed case-by-case.

Numerical techniques for the solution of time-varying and periodic systems have been

researched and applied. The main practical difficulty arises when the variation is very slow.

This issue is addressed by developing a simplified single degree-of-freedom approach with

exact solutions for linear and exponential parameter variation. The method is applicable

when a system is slowly-varying or where resonance peaks are distant from each other.
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Abstract

Aeroelastic modeling couples the structure with the fluid flow surrounding it. The underlying

mechanical state-space model is augmented with terms describing the influence of aerodynamics.

The resulting system is parameter-varying with air density and air speed as independent variables.

An important characteristic of aeroelastic models is the ability to predict flutter – a dynamic

instability arising as self-excited oscillations due to the interaction with aerodynamic forces. The

theory laid down in the previous chapter is applied here specifically to aeroelastic systems to study

the influence of the airflow variables.

Aeroelasticity is the study of the interaction between aerodynamic, elastic and inertial

forces. The fluid flow around an object generates forces that induce deformations and rigid

body motions. In turn, the changes in the object’s shape influence the fluid flow around

and consequently the forces it induces. Broader definitions or more specialized applications

include thermodynamic phenomena (aerothermoelasticity) and the presence of a control

system (aeroservoelasticity).

The scope of this chapter is classical linearized aeroelastic modeling. This approach

consists of reformulating the equations of motion of a body immersed in a fluid to account

for aerodynamic forces. This leads to a state-space representation whose matrices are

functions of airflow variables such as wind speed and air density. Depending on the

structure’s geometry, it is possible for the eigenvalues to cross into the right complex

half-plane for certain critical flow conditions and render the system unstable. In fact, a

crucial aspect of aeroelastic modeling is the prediction of flutter, a dynamic instability

whereby the system absorbs energy from the airflow, leading to unbounded oscillations.

Flutter can be modeled by linearization around an equilibrium state even in nonlinear

aeroelastic systems, excluding dynamically-stable states such as limit cycle oscillations.

A general and broad introduction into aeroelasticity, loads, control, aeroservoelasticity,

maneuvers and industrial practice is found in [Wright and Cooper, 2007]. The topic is

treated rigorously in the book from [Bisplinghoff et al., 1996], which is a great reference

point for mathematical derivations. An advanced text for engineers where aeroelasticity

is covered in depth for fixed-wing aircraft, also concerning historical developments, is

[Rodden, 2011]. In the classic approach, the unsteady aerodynamic forces are formulated

in the frequency-domain according to [Theodorsen, 1935] and [Küssner, 1941]. The

transformation into time-domain for the state-space model application requires a rational

function approximation to introduce the time delay between motion and motion-induced

aerodynamic forces, for which a simple and robust approach was formulated by [Roger,

1977]. A discussion on arbitrary time-dependent equations of motion in fluid dynam-

ics, serving as a starting point for treatable, simplified solution procedures of unsteady

aerodynamics is found in [Geißler, 1980].
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Our objective is the construction of linear parameter-varying state-space models that can

predict flutter. To this end, well-established procedures will be employed [Gupta et al.,

1991]. In particular, the work of [Schwochow, 2013] contains a valuable comparison of

different flutter analyses. The aeroelastic theory outlined in this section is not evaluated on

its degree of accordance with reality – this is the purpose of other works, such as [Ritter,

2019] and [Voß, 2020a].

The theory introduced in the previous chapter has set up the tools needed to solve

time-varying systems. In this chapter we shall apply it specifically in the analysis of

parameter-varying aeroelastic systems. We aim to investigate the dynamic effects due to

the rapid change of airflow variables, therefore explicit time-dependency will be introduced

after aeroelastic modeling has been established for the time-invariant case. These relatively

simple mathematical models are the basis for the numerical simulation techniques that

will be employed in chapter 7 for fully time-varying systems.

The chapter’s roadmap is the following:

1. Introduction to aeroelastic theory, in particular the modeling of unsteady aerodynamic

effects on structures and the characteristics of aeroelastic models

2. Introduction to the flutter phenomenon and its importance for aeroelastic design

3. Continuous turbulence modeling and gusts

4. Study of time-dependency and its effect on parameter variation on system matrices

or eigenvalues.
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3.1 Aeroelastic modeling

Aeroelastic system modeling couples the inertial and elastic properties of a structure with

the aerodynamic forces generated by the airflow around it. In essence, this is accomplished

by augmenting the state-space of the underlying mechanical system to include aerodynamic

terms. In this section we shall introduce the aeroelastic equation of motion to be able to

model continuous turbulence excitation.

3.1.1 Aerodynamic forces

We proceed by establishing the linear potential theory in order to derive the aerodynamic

loads and delineate their characteristics in the unsteady case. To this end, we consider

a thin airfoil in incompressible inviscid flow and small incidence angles. The results of

this simplified analysis can be adapted to handle more complex cases; in this regard,

the techniques applied in aircraft aeroelastic design will be presented in the next section.

[Bisplinghoff et al., 1996] and [Rodden, 2011] treat the topic exhaustively. The airflow

is characterized by the following free-stream parameters (subscript “∞”):

ρ∞ [mass/length3] air density

V∞ [length/time] air speed

q∞ =
1

2
ρ∞V

2
∞ [force/length2] dynamic pressure

(3.1)

The airflow induces a lift force and pitching moment upon the airfoil. Let us consider

the lift force per unit span L and determine the change due to a small angle of attack α

variation:

L =
1

2
ρ∞V

2
∞crefCL(α) =⇒ dL =

1

2
ρ∞V

2
∞cref

dCL

dα
dα [force/length] (3.2)

where cref is the airfoil reference chord and CL(α) the lift coefficient as a function of the

angle of attack α (see figure 3.1). The lift acts perpendicularly to the free-stream speed at

the quarter-chord point. The induced pitching moment M has a similar expression.

Figure 3.1: Thin airfoil in steady incompressible inviscid flow and typical lift curve. The lift
force per unit span L is a function of dynamic pressure q∞, reference chord cref , and angle of
attack through the lift coefficient CL(α). For small α the downwash acting on the airfoil is
w = V∞ sinα ≈ V∞α. The lift center is at the quarter-chord point from the leading edge.
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In accordance with the assumption of thin airfoil and small angle of attacks, the lift slope

is constant a0 ≜ dCL/dα and the downwash is w = V∞ sinα ≈ V∞α:

dL =
1

2
ρ∞V∞crefa0 dw (3.3)

Up to this point, no assumption has been made concerning the time-dependency of the

motion. However, in the unsteady case it takes time for the lift to build up after a sudden

change of angle of attack because the disturbance propagates at a finite speed. This gradual

lift increase is modeled in time-domain by Wagner’s function Φ(·) (see figure 3.2 or equation

(A.38) in the appendix). The lift over time due to a change of downwash is thus:

dL

dt
=

1

2
ρ∞V∞crefa0Φ(tV/b)

dw

dt
(3.4)

where b ≜ cref/2 is the semi-chord1. This last equation can be used to determine the lift

to an arbitrary excitation by a superposition of steps through Duhamel’s method:

L(t) =
1

2
ρ∞V∞crefa0

(
w0 +

∫ t

t0

Φ
(
(τ − t0)V∞/b

)dw
dτ

dτ

)
(3.5)

where w0 is the steady-state contribution, while the convolution integral models the

unsteady change in lift with Wagner’s function acting as its kernel. The quantity b/V∞ is

the time needed by the unperturbed airflow to travel over a distance equal to one semi-chord,

therefore tV∞/b is a dimensionless time abscissa. Likewise, in the frequency-domain the

dimensionless reduced frequency is defined as:

k ≜
ωb

V∞
[adim] (3.6)

1 The semi-chord b appears in the derivation of the unsteady lift using thin-airfoil theory [Sears, 1941]
and is convenient for writing concisely the aeroelastic equations later on. It should be noted that some
authors and software packages use the reference chord length cref instead and denote the wingspan with b.
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Figure 3.2: Lift due to sudden incidence variation compared to the steady case as a function
of dimensionless time (or distance traveled in semi-chords). The red curve is Wagner’s function.
Compared to the steady case, it takes time for the lift to build up. After tV/b > 16, the
unsteady lift is 90% of the steady case.
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Aeroelastic equations are more conveniently expressed in frequency-domain as functions of

k. The reduced frequency is zero k = 0 for steady-state aerodynamics and static aeroelastic

phenomena such as divergence. Roughly speaking, it is possible to ignore non-stationary

effects for quasi-steady flows when 0 < k ≤ 0.05. Unsteady aerodynamic effects must be

accounted for when k > 0.05, which is the case for gust response and flutter problems.

Based on experience, for a full-size airplane flutter occurs up to k ≈ 1. Figure 3.3 illustrates

the physical meaning of the reduced frequency for a harmonically-oscillating freestream (or,

equivalently, for an oscillating airfoil in uniform freestream). Equation (3.5) provided the

means for computing the unsteady lift for arbitrary downwash in time-domain. Other linear

potential theory solutions have been developed in frequency-domain for harmonic motion

because aerodynamic loads can be described easily by a superposition of sines. Theodorsen’s

function (A.37) models the frequency-dependent amplitude reduction and phase lag of

a harmonically-oscillating airfoil relative to the steady case [Theodorsen, 1935] (see

figure 3.4). Its role in the unsteady aerodynamics of thin airfoils and frequency-domain is

developed fully in [Bisplinghoff et al., 1996] and [Rodden, 2011].

Figure 3.3: Incoming continuous gust with wavelength λg compared to an airfoil with chord
cref . The reduced frequency k compares the time scales of the unsteadiness and the time
needed by the airflow to travel by a semi-chord. When the reduced frequency is very low, the
downwash induced by the gust is almost constant along the profile.
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Figure 3.4: Lift amplitude reduction and phase lag according to Theodorsen’s function (A.37)
for an oscillating airfoil compared to steady values (dashed line). For k → 0 both amplitude
reduction and phase lag tend to zero. For k →∞, the amplitude tends to 0.5 and phase lag to
0 compared to the steady case.



74 3. Aeroelastic systems

3.1.2 Calculation of the aerodynamic influence coefficients

Ultimately, the goal of the unsteady aerodynamics theory is to describe the aerodynamic

forces fa(ω) induced by the the generalized (modal) coordinates q(ω) by determining the

aerodynamic influence coefficients (AIC) matrix2 Q(k) [Wright and Cooper, 2007]:

fa(ω) = q∞Q(k)q(ω) (3.7)

The term Qij(k) relates the j-th modal displacement qj and velocity q̇j with the i-th

aerodynamic force fa,i:

Qij(k) =
∂ci(k)

∂qj
+ ik

∂ci(k)

∂q̇j
(3.8)

where ∂ci(k)
∂qj

and ∂ci(k)
∂qj

are the Jacobians of the aerodynamic coefficients ci(k) with respect

to qj(t) and its derivative q̇j(t). The units of Q(k) depend on the method used to calculate

it because fa(t) and q(t) are often dimensionless. In the steady case, the term ik ∂ci(k)
∂q̇j

is zero

and aerodynamic forces only depend on displacements (static aeroelasticity and maneuvers).

Within the assumptions of the theory thus far, equation (3.7) linearizes the forces induced

by the motion of the structure’s fluid boundary according to the amplitude but retains

the frequency dependency. The AIC matrix is square but complex and asymmetric and

introduces additional coupling terms; section 3.1.4 will illustrate how it is used to solve the

aeroelastic equation of motion. For realistic, complex aeroelastic models, the AIC matrix

is computed numerically for a given Mach number and discrete set of reduced frequencies

using coupled computational fluid dynamics (CFD) or panel methods. Depending on the

application, three-dimensional, compressibility, transient or nonlinear effects are modeled

for several points in the flight envelope and for different aircraft configurations:

• CFD techniques solve numerically the partial differential equations governing the flow

by discretizing the fluid domain into small cells. In the framework of aeroelasticity,

the fluid dynamics core is coupled with the structural dynamics equations. CFD can

simulate the onset of turbulence, flow separation and shockwaves and has thus great

predictive power in the transonic regime where nonlinearities appear. However, its

high computational cost prevents it from covering the whole flight envelope of an

aircraft. An overview of CFD approaches is found in [Raveh, 2005].

• Panel methods represent the lift distribution using aerodynamic potential flow theory,

whereby the flow velocity field around the aircraft is expressed by a superposition of

flow singularities. The lifting surface of the aircraft and the wake are subdivided into

a mesh of panels, each with a vortex or doublet element and a control point. Each

panel generates a velocity field that induces a force on any other. A comprehensive

introduction to panel methods is found in [Katz and Plotkin, 2001]. Figures 3.5

and 3.6 provide an elementary illustration of the concept.

2 In aeroelastic software packages (see [Voß, 2020b] and references therein), the AIC matrix is defined
as ∆cp = AIC · w where ∆cp ≜ (p − p∞)/q∞ is the pressure difference induced on each panel by the
adimensional downwash w of any other. Despite the same name used for different matrices, both express
the same concept.
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Figure 3.5: Simplified illustration of the panel method. The lifting surface and the wake are
discretized into panels. Each panel’s vortex or doublet element induces a potential/velocity
field describing the airflow around the object sampled at the control points.

Figure 3.6: Schematic representation of panel method applied to a lifting surface undergoing
harmonic oscillations. The downwash produced by each “sending” panel on any “receiving”
panel is accounted to compute the pressure acting on the latter (that is, to determine the
whole velocity field around the lifting surface). The physically consistent solution is found by
imposing zero normal velocity at the surface of the panel and that a streamline detaches from
the trailing edge. The forces acting on the lifting surface can be calculated from the geometry
and velocity at the control points.

In unsteady aerodynamics the effect of a pressure disturbance of each point on the

structure due to the downwash on any other is described by Küssner’s integral for the

general wing theory [Küssner, 1941]. This integral is evaluated numerically in the doublet

lattice method (DLM) or the unsteady vortex lattice method (UVLM) in order to construct

the AIC. DLM requires no wake modeling due to the evaluation of the acceleration potential,

which is zero in the free wake. On the other hand, the wake must be modeled with UVLM

because it evaluates the velocity potential and thus requires much more computational

effort. DLM applied to unsteady aerodynamics has been introduced in [Albano and

Rodden, 1969]. For a short introduction on DLM theory, see [Nam et al., 2001]. A

detailed description and complete application of DLM to aeroelastic problems is found

in [Schwochow, 2013]. A UVLM approach for highly-flexible aircraft structures is

described in [Ritter, 2019]. An implementation and validation of both methods with

respect to commercial packages is presented in [Voß, 2020b]; the references therein offer

additional information about historical developments and current applications. For the

certification of new aircraft types, regulation CS 25.629 [EASA, 2007; FAA, 2014] requires

the analysis of aeroelastic response by three-dimensional unsteady panel methods because

they generally lead to better modeling of the aerodynamic interference between lifting

surfaces. The main advantage of panel methods over CFD is that the AIC can be calculated
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in advance without knowing the mode shapes because it only dependent on geometry,

reduced frequency and Mach number. Panel methods assume that the flow is inviscid

and incompressible and require corrections to include compressibility and nonlinear effects

arising in the transonic regime [Crouse and Leishman, 1992; Friedewald et al., 2018;

Gupta, 1997]. Nevertheless they provide an analytical relationship between mechanical and

aerodynamic forces that is rich in predictive capability. Given their simplicity and speed

compared to CFD, panel methods in the subsonic and supersonic regimes are still considered

acceptable means for compliance for aeroelastic modeling in the industry [Wright and

Cooper, 2007]. Within the scope of this thesis it is not necessary to completely elucidate

the process for calculating the AIC matrix, but rather how it is employed, which will

become clearer in the next section.

3.1.3 Aeroelastic equation of motion

The development of the aeroelastic equation of motion in the present subsection follows

[Gupta et al., 1991] and [Nam et al., 2001].

Notation. In aerodynamics, free-stream quantities have subscript “∞” while local quantities

have no subscript. In this chapter we only ever consider the free-stream quantities (3.1),

therefore the subscript is omitted for readability.

Let us consider a time-invariant second-order mechanical system (2.8) with Nm degrees

of freedom that is subject to aerodynamic forces modeled by equation (3.7):

M̃¨̃q(t) + D̃ ˙̃q(t) + K̃q̃(t) + qQ̃(k)q̃(t) = f̃(t) (3.9)

where the symbols denote (in physical coordinates):

M̃ ∈ RNm×Nm mass matrix

D̃ ∈ RNm×Nm damping matrix

K̃ ∈ RNm×Nm stiffness matrix

Q̃(k) ∈ CNm×Nm aerodynamic influence coefficients matrix (AIC)

q̃(t) ∈ RNm displacement vector

f̃(t) ∈ RNm external forces

Equation (3.9) in the time-domain requires a convolution integral for the aerodynamic

term. Here time and frequency domain terms appear at the same time, which may confuse

the reader; using the approximation introduced by [Roger, 1977], the integral can be

replaced by the aerodynamic model in time-domain with the introduction of lag states.

We shall provide more details in the next two sections.

The coordinate q̃(t) describes rigid body, elastic and control surface degrees of freedom.

However, the equation of motion of aeroelastic systems is usually written in modal space

(generalized displacements), therefore we shall apply a coordinate transformation that

is valid for the rest of the chapter. The mode shapes Ψ of the underlying undamped
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mechanical system are

M¨̃q(t) +Kq̃(t) = 0
eig−−→ Λ , Ψ (3.10)

The coordinate transformation q̃(t) = Ψq(t) of equation (3.9) yields:

Mq̈(t) +Dq̇(t) +Kq(t) + qQ(k)q(t) = f(t) (3.11)

where q(t) are now the generalized coordinates in modal space and

M ≜ Ψ−1M̃Ψ Q(k) ≜ Ψ−1Q̃(k)Ψ

D ≜ Ψ−1D̃Ψ f(t) ≜ Ψ−1f̃(t)

K ≜ Ψ−1K̃Ψ

(3.12)

The generalized mass, damping and stiffness matrices describe the underlying mechanical

system subject only to inertial and elastic forces. The AIC matrix expresses the combined

effects of lifting surface airloads, pressure coefficients, gusts, control surfaces, structure

motion and deformation.

3.1.4 Rational function approximation of aerodynamic influence coefficients

The aerodynamic influence coefficients matrix (3.7) is generally computed for a discrete

set of N reduced frequencies k as Q[k], but we need a continuous function of the reduced

frequency Q(k) to be able to solve the equation of motion. We proceed according to the

established aeroelastic modeling introduced in [Roger, 1977] and [Abel, 1979] by applying

a rational function approximation of the type:

Q[k] ≈ Q(k) = Q0 + ikQ1 + (ik)2Q2 +

Nl∑
j=1

ik

ik + γj
Qj+2

Qj ∈ RNm×Nm

γj ∈ R
(3.13)

where Qj are called aerodynamic matrices and γj are the aerodynamic lag terms. The

former are the unknowns, while the latter are chosen to have a low least-squares error of

the approximant. The choice of the approximant’s form will become apparent in the next

section. The rational terms in the last equation can be written as:

ik

ik + γj
=

k2

k2 + γ2j
+ i

kγj
k2 + γ2j

(3.14)

in order to separate the real and imaginary parts of the known discrete AIC matrix:

[
ℜQ[k]

ℑQ[k]

]
=

I 0 −k2I k2

k2+γ2
1
I · · · k2

k2+γ2
Nl

I

0 I 0 kγ1
k2+γ2

1
I · · · kγNl

k2+γ2
Nl

I



Q0

...

QNl

 (3.15)
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This is performed in order to force the unknowns Q0, ...,QNl
to be real. Likewise, the

lag terms are assumed to be real to make sure that only damping is introduced into the

system, otherwise additional poles might appear and render the system unstable. The last

equation can be written for all N known reduced frequencies k simultaneously:



ℜQ[k1]

ℑQ[k1]
...

ℜQ[kN ]

ℑQ[kN ]


=





1 0 −k21
k21

k21+γ2
1
· · · k21

k21+γ2
Nl

0 1 0 k1γ1
k21+γ2

1
· · · k1γNl

k21+γ2
Nl

...
...

...
...

...

1 0 −k2N
k2N

k2N+γ2
1
· · · k2N

k2N+γ2
Nl

0 1 0 kNγ1
k2N+γ2

1
· · · kNγNl

k2N+γ2
Nl


⊗ I




Q0

...

QNl



def
==⇒ [Q] = [P][X]

(3.16)

where [Q] ∈ R2NNx×Nx are the real and imaginary parts of the discrete AIC matrix Q[k],

[P] ∈ R2NNx×(Nl+3)Nx the known lag and reduced frequency terms and [X] the unknowns

Q0, ...,QNl
in the rational function approximation (3.13). The solution is computed by

pseudoinverse:

[X] = [P]+[Q] =⇒ [X] =
(∑N

j=1P
T
j Pj

)+ (∑N
j=1P

T
j Qj

)
(3.17)

Various optimization and iterative methods can be applied to obtain a good fit with the

minimal number of lag terms [Karpel, 1982; Tiffany and Adams, 1988]. An example of

the rational functional approximation of the AIC is shown in figure 3.7. A method based

on tangential interpolation applied to aeroelastic modeling is proposed in [Quero et al.,

2021], together with a detailed comparison between established techniques.

Figure 3.7: The plots display three entries of the complex-valued AIC matrix of a sailplane
model [Schwochow, 2013] (Nm = 23). The black circles represent the known Q[k] at
the reduced frequencies k = [0.001, 0.01, 0.1, 0.2, 0.4, 0.8, 1.6]. The chosen lag states are
γ = [0.2, 0.4, 0.6, 0.8]. The resulting rational function approximation Q(k) is represented by
lines (blue: low k, yellow: high k) and provides a good continuous representation of the AIC
matrix. It can be seed that as k → 0, then ℑQ(k)→ 0 (steady aeroelastic case).
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3.1.5 Aeroelastic model: state matrix

Now that a continuous representation of the aerodynamic influence coefficients is available,

the assembly of the aeroelastic state matrix can be elucidated. We shall consider for

now only the free vibration case; external forces can be added by superposition. The

homogeneous equation of motion in modal coordinates (3.11) can be combined with the

continuous representation of the AIC matrix (3.13) to yield [Gupta et al., 1991]:(
M+ q (b/V )2Q2

)
q̈(t) +

(
D+ q (b/V )Q1

)
q̇(t) +

(
K+ qQ0

)
q(t) + . . .

+q

Nl∑
j=1

Qj+2zj(t) = 0
(3.18)

where the aerodynamic lag states zj(t) follow from equation (3.13):

zj(s) ≜
s

s+ γjV/b
q(s) s c żj(t) = q̇(t)− γjV/bzj(t) ∈ RN

x (3.19)

The mass, damping and stiffness matrices are thus augmented by aerodynamic terms:

M̂ ≜ M+ q(b/V )2Q2 ≡M+ 1
2ρb

2Q2 dynamic mass

D̂ ≜ D+ q(b/V )Q1 ≡ D+ 1
2ρbVQ1 dynamic damping

K̂ ≜ K+ qQ0 ≡ K+ 1
2ρV

2Q0 dynamic stiffness

(3.20)

The structural matrices M, D and K from equation (3.12) are symmetric, while the

associated AIC terms Q2, Q1 and Q0 are not. The dynamic matrices (3.20) are functions

of air density and air speed. A better impression of the system’s dynamics is obtained by

arranging equation (3.18) into a state-space model3 according to equation (2.9):

I

M̂

I
. . .

I


d

dt



q

q̇

z1
...

zNl


=



0 I 0 · · · 0

−K̂ −D̂ −qQ3 · · · −qQNl+2

0 I −γ1V/bI · · · 0
...

...
...

. . .
...

0 I 0 · · · −γNl
V/bI





q

q̇

z1
...

zNl


(3.21)

or, compactly:

Eẋ(t) = Ax(t) (3.22)

where E, A ∈ RNx×Nx are respectively the descriptor matrix and augmented state matrix,

while Nx = Nm(2 +Nl) is their size. The state vector x(t) = {q(t), q̇(t), z(t)} includes
the underlying mechanical system’s generalized displacements q(t) and the lag states z(t)

modeling the unsteady aerodynamics. The state matrix is solely a function of {ρ, V },
therefore the system is parameter-varying since there is no explicit time-dependency. It

3 Some authors place the term qQ(k) on the right hand side of equation (3.9), therefore, in the state
matrix, the aerodynamic terms qQj and the lower diagonal terms γjV/b have positive sign.
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is recognizable that, the lower the dynamic pressure, the weaker the coupling between

mechanical degrees of freedom and lag states. The system’s stability can be analyzed by

solving the generalized eigenvalue problem:

EΨΛ = AΨ (3.23)

If the descriptor matrix is nonsingular, it is possible to use the explicit form of the system:

E−1A =



0 I 0 · · · 0

−M̂−1K̂ −M̂−1D̂ −qM̂−1Q3 · · · −qM̂−1QNl+2

0 I −γ1V/bI · · · 0
...

...
...

. . .
...

0 I 0 · · · −γNl
V/bI


(3.24)

The state matrix has 2Nm complex-conjugate pairs of lightly-damped eigenvalues repre-

senting the physical poles and additional NmNl purely real or highly-damped aerodynamic

poles. The characteristic sparsity pattern assumed by models based on Roger’s formulation

[Karpel, 1981; Nam et al., 2001] is shown in figure 3.8.

Figure 3.9 displays a typical frozen-time pole evolution diagram for an aeroelastic system

undergoing a parameter change and crossing the instability boundary. Time is normalized

by duration because, given a set of parameters {ρ, V }, the state matrix A(ρ(t), V (t)) is

always the same. The poles are displayed on an eigenfrequency-damping ratio plot and in

the complex plane. A look at the eigenvalues of the state matrix reveals the contribution

of the aerodynamic forces. The magnitude of aerodynamic poles correlates strongly with

speed according to equation (3.19), therefore they often wander into the frequency range of

Figure 3.8: Typical sparsity plot of the system matrices of an aeroelastic model. The upper
left corner describes the underlying mass-damping-stiffness mechanical system. The upper
right part contains the rational part of the AIC matrix. The lower part is the feedback loop of
the lag states. In this example there are 3 physical degrees-of-freedom and 4 lag states for a
total of 3 · (2 + 4) = 18 states.
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(a) Frozen-time pole loci in the complex plane

(b) Frozen-time pole loci in the eigenfrequency-damping ratio plane

Figure 3.9: Example frozen-time poles of the aeroelastic model 7.2 as a function of time. The
parameter variation has been chosen so that this example is as rich as possible. The circles are
the underlying mechanical system’s poles. The dots represent the system eigenvalues (see figure
2.9): red – unstable, black – lightly-damped, gray – purely real, light blue – highly-damped.
Vertical lines in the lower right plots: unstable region boundaries. The diagonal straight lines
are where ζ = ±

√
2/2, or |ℜλ| = ℑλ. See text for discussion.
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physical poles, but maintain a distinctively high damping ratio. The physical eigenvalues

gather next to the imaginary axis, whereas the aerodynamic eigenvalues cluster next to

the real axis as shown in figure 3.9. This phenomenon was already observed in [Roger,

1977]. Two purely real poles are seen splitting into one complex-conjugate pair with high

damping. Despite the system being linear, such sudden bifurcation behavior is commonly

observed in the dynamics of time-varying or parameter-varying systems (see for example

figure 2.12). The locus of {ρ, V } pairs where the system’s minimal damping is zero defines

the boundary of its stability region. When the damping ratio of an eigenmode becomes

negative, the system starts absorbing energy from the stream and its response amplitude

grows without bound.

Aeroelastic modeling can generate very large sparse state matrices, therefore techniques

for achieving the minimal number of lag states have been developed by modeling their

feedback loop with full matrices. The aerodynamic influence coefficient matrix can be

represented by a non-proper rational function [Karpel, 1982; Ripepi and Mantegazza,

2013]:

Q(k) = Q0 + ikQ1 + (ik)2Q2 +Ca(ikEa −Aa)
−1Ba (3.25)

The matrices Aa, Ba, Ca and Ea can be determined with standard system identification

methods [Lind, 1998]. Recently, [Gosea et al., 2020] applied the Loewner framework

to this type of problem. The rational function form of the AIC matrix (3.25) is used to

construct a state-space model with generalized displacements q(t) in input and aerodynamic

forces fa(t) in output [Pasinetti and Mantegazza, 1999]:

Eaż(t) = V/bAaz(t) + V/bBaq(t)

fa(t) = qCaz(t) + qQ0q(t) + qb/VQ1q̇(t) + q(b/V )2Q2q̈(t)
(3.26)

where z(t) are the lag states. Following this same principle used to derive the state matrix

of the aeroelastic model in section 3.1.5, we can write:I M̂

Ea

 d

dt


q

q̇

z

 =

 0 I 0

−K̂ −D̂ −qCa

−V/bBa 0 −V/bAa



q

q̇

z

 (3.27)

where the dynamic mass damping and stiffness matrices are defined as before. Compared

to equation (3.21), here Aa and Ba are full, resulting in possibly less states. The modeling

approach in [Kim, 2019] and related publications produces aeroelastic matrices where the

number of lag states is only Nl = 2Nm.
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3.1.6 State matrix inverse

The state matrix of aeroelastic systems (3.24) has a noteworthy block structure that can be

exploited by a divide-and-conquer algorithm to compute its inverse efficiently, for instance

in the simulation of time-varying aeroelastic systems. This will be helpful in section 7.1

where numerical methods are presented. The aeroelastic model’s state matrix (3.24) can

be subdivided into blocks

E−1A ≜

[
A11 A12

A21 A22

]
where the four sub-matrices are:

A11 ≜

[
0 I

−M̂−1K̂ −M̂−1D̂

]
A21 ≜


0 I
...

...

0 I


A12 ≜ −qM̂−1

[
0 · · · 0

Q3 · · · QNl

]
A22 ≜ −

V

b
diag{γ} ⊗ I

(3.28)

The block matrix inversion formula [Bernstein, 2009, Eq. 2.8.17] with the lower-right

block A22 as pivot is:[
A11 A12

A21 A22

]−1

=

[
P−1 −P−1A12A

−1

22

−A−1

22A21P
−1 A−1

22 +A−1

22A21P
−1A12A

−1

22

]
(3.29)

where A22 and P ≜ A11 −A12A
−1

22A21 must be non-singular. After some simplifications

the state matrix inverse turns out to be:

A−1E =



−K̂−1
(
D̂+Da

)
−K̂−1M̂ −qb/V γ−1

1 K̂−1Q3 · · · −qb/V γ−1

Nl
K̂−1QNl

I 0 0 · · · 0

b/V γ−1

1 I 0 b/V γ−1

1 I · · · 0
...

...
...

. . .
...

b/V γ−1

Nl
I 0 0 · · · b/V γ−1

Nl
I


(3.30)

where Da ≜ q b
V

∑Nl
j=1 γ

−1

j Qj+2 is the damping induced by aerodynamic coupling terms.

This strategy’s strength lies in the fact that A22 is diagonal4 and A11 is smaller than the

whole state matrix by a factor 2/(2 + Nl) (e.g. with four lag states, 2/(2 + 4) = 0.33).

It is reminded that matrix inversion has the same time complexity O(N3
x) as matrix

multiplication. Both the construction of the state matrix (3.24) and its inverse (3.30)

requires the calculation of M̂−1 and K̂−1 respectively, therefore computational complexity

is the same. Equation (3.30) provides a means for the fast calculation of A−1E when the

number of states and lag terms is large. This is particularly desirable in the parameter-

varying case.

4 If aerodynamic forces are modeled as in equation (3.25), the A22 = −V/bAa term can be diagonalized
by solving a generalized eigenvalue problem.
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3.1.7 Aeroelastic model: full state-space formulation

Now that the plant dynamics have been described, it is conceptually simple to include

the inhomogeneous terms and the output equation. The aeroelastic system can be thus

portrayed by the implicit state-space formulation:

Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.31)

When E = I the system is said to be in explicit form. Depending on the application at hand,

B, C and D assume different forms [Gupta et al., 1991; Ripepi and Mantegazza,

2013] (they must be consistent with the modeling employed to augment the state matrix).

The input matrix models the forced response, the influence of control surfaces or gusts (see

section (3.3)). The output matrix relates the generalized coordinates with the structural

displacements or velocities and includes often matrices that transform the states into sensor

outputs. The feed-through matrix can be used to describe control surface motions or the

influence of gusts. Here we shall consider the basic formulation for B, C and D that

results from the second-order mass-damping-stiffness model (2.9) (3.11) (it is assumed that

the state-space model is implicit, therefore the descriptor matrix E is not necessarily an

identity matrix). The input matrix in this case is:

B =


0

I
...

0

 ∈ RNm(2+Nl)×Nm (3.32)

Section 3.3 will show how the input matrix is modified to include the influence of gusts.

For displacements or velocities, the output matrix is respectively:

C =
[
I 0 · · · 0

]
or C =

[
0 I · · · 0

]
∈ RNy×Nm(2+Nl) (3.33)

Finally the feed-through matrix is zero:

D = 0 ∈ RNy×Nu (3.34)

It is reminded once more that in order to obtain a solution in the physical domain, the

modal responses must be converted back into physical coordinates. Likewise, the physical

forces entering the system must be transformed into modal space.
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3.2 Flutter mechanism

Flutter is a kind of self-exciting linear dynamic instability of aeroelastic structures. It

manifests when the system extracts energy from the stream and the resulting positive

feedback increases the vibration amplitude until structural failure is reached. It can have

such violence that a wing is ripped apart in seconds. Flutter must not be confused with

resonance, where, in the absence of damping, an excitation with a frequency component

equal to an eigenfrequency leads to a linearly-increasing response amplitude, whereas

it grows exponentially irrespective of the excitation’s character in an unstable system.

Buffeting, another dynamic instability, occurs from airflow separations or shock wave

oscillations, but it is not modeled by the linear potential theory employed here.

The avoidance of flutter is a critical task in aircraft design and in the definition of the

flight envelope [EASA, 2007; FAA, 2014]. For a fixed altitude, the flutter speed is the

minimal air speed at which one eigenmode becomes unstable. A historical, but detailed

and widely-cited study of aircraft flutter is [Scanlan and Rosenbaum, 1952]. Classical

flutter usually involves the coupling of two or more degrees of freedom. Non-classical

flutter is associated to flow separation phenomena [Rodden, 2011]. The presence of any

structural, aerodynamic or control nonlinearities in the system can give rise to limit cycle

oscillations, a type of stationary and bounded flutter. The special case of limit cycle

oscillations with nonlinear aerodynamics is treated in detail in [Rooij, 2017]. In real-world

problems, nonlinear characteristics of actuators and control surfaces may effectively reduce

the dynamic stiffness of the system. In such cases, small oscillations may be unstable, while

large ones maintain a limited amplitude. The most frequently encountered and dangerous

situation is instability with small oscillations – flutter is thus analyzed by linear techniques

[Bisplinghoff et al., 1996; Rodden, 2011].

In the aeroelastic equation of motion (3.18) we see that aerodynamic damping is added

to the structural one. The latter is often ignored because of uncertainties in its modeling,

unless determined from measurements. In a real aircraft, structural damping provides an

additional mechanism for energy dissipation, therefore it is always beneficial in terms of

flutter. Likewise, nonlinear effects that provide some margin to flutter onset such as cubic

stiffening or geometric nonlinearities are conservatively neglected, but may be favorable in

flutter assessments [Iovnovich et al., 2018]. Active control techniques greatly improve

flutter suppression [Karpel, 1982]; an extensive overview of this topic is found in [Livne,

2018]. Under stationary conditions, due to the influence of aerodynamics, the damping ratio

of some eigenmodes increases steadily with speed, reaches a maximum that is appreciably

higher than what the structure alone has in wind-off conditions and then starts to decrease.

The introduction of aerodynamic damping of heave/bending oscillations increases the

damping ratio of wing modes substantially: for example, aircraft wings have low structural

damping (under 3%), but aerodynamic effects can increase it to more than 20% and even

to 100% for pure heave motion in aperiodic condition. At the flutter boundary where the

net damping is zero, the system undergoes harmonic motion. Any further reduction leads

to instability of critical eigenmodes.
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Depending on the gradient of the damping reduction, flutter can be classified into:

• Hard flutter : the damping ratio decrease is sudden and pronounced.

• Soft flutter : the damping decrease is gentle and the system may eventually recover

from instability for higher speeds.

Figure 3.10 illustrates the two types of flutter with two configurations of an airfoil-rudder

model (see section 7.2). The flutter boundary is determined using a frozen-time formulation

that, strictly speaking, is valid only in the time-invariant case. Time-varying dynamics can

excite or dampen the system, i.e. to stabilize (destabilize) a previously unstable (stable)

condition, as we have seen in chapter 2. In the LPV case it is necessary to study the path

traversed by the parameters and their rate of change, e.g. the instantaneous eigenvalues

may cross into the positive Laplace half-plane without impacting stability (see figure 2.6).

For slowly-varying systems it is possible to apply the LTI stability criteria or at least to

assert that the proximity to the flutter boundary can lead to a large response RMS and

must be avoided.

Figure 3.10: Example of typical flutter curves, in this case two configurations of an airfoil
with rudder for constant air density 7.2. The degrees of freedom are the heave and pitch of
the airfoil and the flapping of the rudder. The red dots are unstable eigenvalues. Hard flutter
can be observed on the left side: the heave and the pitch modes come closer and then the
damping of the former plummets. Soft flutter is illustrated on the right side: the damping
decrease is much slower and the system eventually recovers from instability for higher speeds
(not pictured). The flutter speeds are 92.2 m/s and 91.3 m/s for ρ = 1.225 kg/m

3
.
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3.3 Wind turbulence model

Aircraft are subject to atmospheric turbulence resulting in gust loads that vary in space

and time. The observed turbulent flow encountered by aircraft is described by the von

Kármán and the Dryden wind models. The book from [Hoblit, 1988] is a prime reference

on this topic. The von Kármán wind turbulence model is usually adopted because it

matches experimental data better than the Dryden model, but in the present research the

choice is inconsequential since both have a low-pass characteristic with slightly different

roll-off. The Dryden model is analytically simpler because it has integer frequency powers

in its transfer function. Nevertheless, we proceed with the Von Kármán model because

its use is more common in aircraft design. The gust power spectral densities Φ(ω) for the

longitudinal, lateral and vertical directions are given in [Hoblit, 1988, Eq. 4.16-4.17] as a

function of angular frequency ω:

Φu(ω) = σ2u
2Lg/V

π

1

(1 + ν2)
5
6

Φv(ω) = σ2v
Lg/V

π

1 + 8
3ν

2

(1 + ν2)
11
6

Φw(ω) = σ2w
Lg/V

π

1 + 8
3ν

2

(1 + ν2)
11
6

ν ≜ 1.339
Lg

V
ω [adim] (3.35)

where σ is the gust velocity component’s variance, Lg = 2500 ft = 762 m is the characteristic

turbulence scale used in design and V is the wind speed. The variable ν is essentially a

scaled reduced frequency. The gusts have zero mean (e.g., there is no preferred lateral

direction), therefore Φ(0) = 0 must be set. The lateral and vertical PSDs are equal, while

the longitudinal (fore-aft) gust is seldom needed. Wind turbulence spectra for angular

rates contribute less to the aircraft gust response than the turbulence velocity spectra

and are thus ignored here. Figure 3.11 displays, for several wind speeds, a vertical gust

computed by transforming a frequency-domain signal with random uniformly-distributed

phase and amplitude shaped as the von Kármán spectrum (3.35). Analytical gust spectra

lose physical significance at very low frequencies as motivated in [Hoblit, 1988, Ch. 4.5],
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Figure 3.11: Vertical Von Kármán gust. The gust’s low-pass characteristic is visible in the
time-domain data, where high-frequency components are visibly attenuated. The analytical
spectra (3.35) are displayed on the right for different wind speeds (blue – low, red – high).
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but this is not a concern for design or for our modeling. The von Kármán model’s power

spectral density does not have integer frequency powers in its numerator, therefore some

very accurate rational filter approximations are available for forming white noise into a

colored spectrum [U.S. Department of Defense, 1997]:

Hu(s) = σu

√
2τ

π
· 1 + 0.25τs

1 + 1.357τs+ 0.1987τ2s2

Hv(s) = σv

√
τ

π
· 1 + 2.7478τs+ 0.3398τ2s2

1 + 2.9958τs+ 1.9754τ2s2 + 0.1539τ3s3

Hw(s) = σw

√
τ

π
· 1 + 2.7478τs+ 0.3398τ2s2

1 + 2.9958τs+ 1.9754τ2s2 + 0.1539τ3s3

(3.36)

where s = iω, τ ≜ Lg/V and the range of validity is τω < 50 rad. These filters are required

for the calculation of gusts whose spectrum varies with speed.

The input matrix for gust excitation is assembled depending on the aeroelastic modeling

technique employed to construct the state matrix (3.21) [Ripepi and Mantegazza, 2013].

The full state space model in our case is:

ẋ(t) = Ax(t) +Bg
0u(t) +Bg

1u̇(t)

y(t) = Cx(t) +Du(t)
(3.37)

where the input matrix models the effect of the gust velocity u(t) and its derivative onto

the system’s mechanical degrees of freedom and lag states:

Bg
0 =

q

V



0

−Qg
0

0
...

0


Bg

1 =
q

V



0

−(b/V )Qg
1

Qg
3
...

Qg
Nl


(3.38)

where the Qg matrices are gust-related terms. The derivative u̇(t) can be calculated

by applying a differentiator filter (see, for example [Brandt, 2011]) or by analytical

differentiation when the input signal is formed from random-phase multi-sines. A better

option is to reformulate the state-space model. Let us define the new state variable

x′(t) ≜ x(t) −Bg
1u(t) and put it into the previous equation to get a state-space model

without the input derivative5 u̇(t):

ẋ′(t) = Ax′(t) + (ABg
1 +Bg

0)u(t)

y(t) = Cx′(t) + (CBg
1 +D)u(t)

(3.39)

5 Alternatively, the convolution property H(t) ∗ d
dt
u(t) = d

dt
H(t) ∗ u(t) can be used.
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3.4 Time-dependency of system matrices

The aeroelastic model has been derived for stationary parameters {ρ, V } following the

established state-space model found in literature [Abel, 1979; Roger, 1977]. In this section

we include the time-dependency in the parameters {ρ(t), V (t)} to study the frequency

content of the system matrices and of the instantaneous eigenvalues. Let us rewrite the

expressions for dynamic mass, damping and stiffness (3.20) with explicit time-dependency6:

M̂(t) = M+
1

2
ρ(t)b2Q2

D̂(t) = D+
1

2
ρ(t)V (t)bQ1

K̂(t) = K+
1

2
ρ(t)V 2(t)Q0

(3.41)

We are interested in the relationship between parameter variation and system matrices.

Instead of studying the effect of air density and speed in terms of influence coefficients, we

want to know how their frequency content is reflected in the system’s eigenvalues. To this

end, we develop the air density and air speed into Fourier series:

ρ(t) =
∑
k∈S

ρke
ikω0t V (t) =

∑
k∈S

Vke
ikω0t (3.42)

where S is the set of harmonics7. This should provide some insight concerning “slow” and

“fast” system variation in the perspective of modal parameter estimation.

Let us consider a generic time-dependent matrix P(t) that can be expressed as a Fourier

series:

P(t) =
+∞∑

k=−∞
Pke

ikω0t (3.43)

We start by providing some general results. The positive powers Pn(t) can be determined

by applying the Cauchy product repeatedly. Squaring the matrix provides the prototype

for all other powers:(
+∞∑

k=−∞
Pke

ikω0t

)
·

(
+∞∑

k=−∞
Pke

ikω0t

)
=

∞∑
k=−∞

(
k∑

h=0

Pk−hPh

)
eikω0t =

∑
k∈Z

P′
ke

ikω0t (3.44)

6 In principle it is possible to include the derivatives of the dynamic mass, damping and stiffness matrices.
The equation of motion of the underlying mechanical system could then look like:

M(t)ẍ(t) +
(
D(t) + Ṁ(t)

)
ẋ(t) +

(
K(t) + Ḋ(t)

)
x(t) + K̇(t)

∫ t

t0

x(τ) dτ = 0 (3.40)

The dynamic terms depend on the specific problem and type of modeling that is carried out. For instance,
in [Huang and Qiu, 2013] the flutter analysis of a morphing vehicle is performed with constant first and
second derivatives in order to solve the time-varying problem with a time-invariant model.

7 The parameters and the system matrices are real and positive. The series is written using exponentials
instead of trigonometric functions for compactness, therefore all harmonics are complex conjugates ±kω0
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where P′
k are the new terms of P(t) and where the fundamental frequency ω0 is preserved.

If P(t) is described by a finite set S of frequency components eiωkt, then

P(t)2 =

(∑
k∈S

Pke
ikωt

)2

=
∑

k∈S×S

P′
ke

ikωt (3.45)

It has been thus established, that positive powers Pn(t) have frequency components kω0,

where the index k belongs to a discrete set that is finite if P(t) has a finite number of

harmonics. Finally, we recall that the inverse of (nI−P) can be expressed as a Neumann

series whenever the absolute value of P’s eigenvalues is lower than 1:

(nI−P)−1 =
∞∑
k=0

(−1)kn−k−1Pk (3.46)

In light of the previous results we now see that the matrix inversion always produces an

infinite set of discrete harmonics ±kω0.

3.4.1 Variation of system matrices

The physical degrees of freedom of an aeroelastic system are influenced by aerodynamic

terms Qk, the dynamic pressure q(t) and dynamic mass M̂(t):

∀ k = 3: Nl M̂−1(t) · q(t)Qk (3.47)

The inverse of the dynamic mass matrix can be written as:

M̂−1(t) =

(
M+

1

2
ρ(t)b2Q2

)−1

=

(
I+

1

2
ρ(t)b2M−1Q2

)−1

M−1 (3.48)

After some simplifications we obtain M̂−1(t) as a complex Fourier series:

M̂−1(t) =

∞∑
n=0

(
−1

2
ρ(t)b2M−1Q2

)n

M−1

=
∞∑
n=0

(−1)n
(
1

2
b2M−1Q2

)n

M−1

(∑
k∈S

ρke
ikω0t

)n

=
∑
k∈Z

M′
ke

ikω0t

(3.49)

where M′
n are the series terms that result from the Cauchy product. Similar results can

be obtained for the dynamic damping and dynamic stiffness where air speed appears too.

Speed plays generally a more prominent role because it appears in the lag states (3.19)

and in practice it is more likely to vary considerably. We shall indeed see in chapter 8 that

during flight vibration testing speed variation is more prominent than the altitude (air

density) variation.
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As an example, we consider independent variations of speed and density in the airfoil-

rudder system 7.2. Figure 3.12 displays the frequency content of the state matrix when

one parameter varies as p(t) = p0 + p1 sin(ωt) while the other is held constant.

• Only air speed variation ρ(t) = ρ0, V (t) = V0 + V1 sin(ω0t): the mean value and

fundamental harmonic of A(t) are found respectively at ω/ω0 = 0 and ω/ω0 = 1,

but the speed squared in K̂(t) = K+ 1
2ρ(t)V

2(t)Q0 and q(t)Q injects energy into

ω/ω0 = 2 as well.

• Only air density variation ρ(t) = ρ0 + ρ1 sin(ω0t), V (t) = V0: the term M̂−1(t) =(
M+ 1

2ρ(t)b
2Q2

)−1
spreads the energy over all multiples of the fundamental harmonic

ω0, regardless of the number of harmonics in ρ(t).
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Figure 3.12: Frequency components of the state matrix for air speed and air density variations.
The plot displays one entry of the time-varying state matrix A(t) in frequency-domain. The
key fact is that the harmonics are discrete and decaying. Left plot: only air speed variation
ρ(t) = 1.225 kg/m3, V (t) = 70+20 sin(ω0t) m/s, two harmonics plus DC are correctly predicted.
Right plot: only air density variation ρ(t) = 1.2 + 0.3 sin(ω0t) kg/m

3, V (t) = 80 m/s, infinite
number of decaying harmonics.

3.4.2 Variation of instantaneous eigenvalues

Time-dependency assumes a more complex role when dealing with the instantaneous

eigenvalues of the system. In light of the linear transformation theorem (2.17), the

eigendecomposition of the state matrix A(t) = Ψ(t)Λ(t)Ψ−1(t) transforms the system into:[
A(t) B(t)

C(t) D(t)

]
x(t)=Ψ(t)x̃(t)−−−−−−−−−→
transform

[
Λ(t)−Ψ−1(t)Ψ̇(t) Ψ−1(t)B(t)

C(t)Ψ(t) D(t)

]
(3.50)

where the transformed state matrix is not diagonal8 because of the mode coupling term

Ψ−1(t)Ψ̇(t). It is reminded that the state matrix is a function of air density and speed

8 From section 2.1.7: the system can be diagonalized using the Lyapunov matrix (2.32):

L(t) ≜ Φ(t, t0) exp

{
−
∫ t

t0

Λ̃(τ) dτ

}
=⇒ x(t) = L(t)x̃(t) (3.51)

where Λ̃(t) is an arbitrary diagonal matrix, therefore the matrix exponential above is equal to a scalar
exponential. However, the state transition matrix Φ(t, t0) must be known to apply this transformation,
which may prove impractical and in general requires a numerical solution.
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alone, therefore its entries and consequently its eigenvalues depend only on the parameter

path regardless of their rate of variation. Assuming the instantaneous eigenvectors Ψ(t)

and eigenvalues Λ(t) are C1 continuous, they can be expressed as Fourier series:

Λ(t) =
∞∑
k=0

Λke
ikω0t Ψ(t) =

∞∑
k=0

Ψke
ikω0t Ψ−1(t) =

∞∑
k=0

Ψ′
ke

ikω0t (3.52)

where the series terms Ψ′
k = f(ρ, v) are also only a function of parameters and not of

time or period. This implies that the derivative is simply Ψ̇(t) =
∑

k∈S ikω0Ψke
ikω0t. The

terms Ψ′
k are decaying, so the series (3.52) can be approximated by few terms. The Fourier

series of the transformed state matrix is then:

Ã(t) =
∞∑
k=0

Λke
ikω0t +

( ∞∑
k=0

Ψ′
he

ihω0t

)( ∞∑
k=0

ikω0Ψke
ikω0t

)

=
∞∑
k=0

(
Λk + ikω0Ψ̃k

)
eikω0t

(3.53)

where Ψ̃k ≜
∑k

h=0Ψ
′
k−hΨh are the dimensionless Fourier coefficients of the mode coupling

term9. We can split it into a diagonal and off-diagonal part Ψ̃k = Ψ̃di
k + Ψ̃nd

k :

Ã(t) =
∞∑
k=0

(
Λk + ikω0Ψ̃

di
k

)
eikω0t +

∞∑
k=0

ikω0Ψ̃
nd
k eikω0t (3.54)

Equation (3.54) provides the means to quantify the magnitude of the dynamic coupling.

When the system varies slowly or when the off-diagonal terms ikω0Ψ̃
nd
k can be neglected, the

system’s time-varying poles can be described by the Λk + ikω0Ψ̃
di
k terms. This observation

can be used to justify a single-degree-of-freedom formulation for slowly-varying systems.

The Ψ−1(t)Ψ̇(t) term is inversely proportional to the period ω0 = 2π/T and tends to

vanish when ω0 is small:

lim
ω0→0

Ã(t) = lim
ω0→0

∞∑
k=0

(
Λk + ikω0Ψ̃k

)
eikω0t = lim

ω0→0

∞∑
k=0

Λke
ikω0t (3.55)

The numerical approach used to determine the mode coupling term is to represent the

time-varying eigenvectors as a Fourier series using the FFT. In practice this requires a

preprocessing step where eigenvectors are scaled, rotated and sorted so that their entries are

differentiable. The frozen-time eigenpairs must be tracked in order to have consistent sorting

(see chapter 6). A smooth interpolation between the entries of consecutive eigenvectors

that preserves the eigenspace can be obtained by solving the Procrustes problem (3.60) as

detailed in section 3.4.3. Another problem that is difficult to address is the occurrence of

bifurcations because they are singular points that have different right and left derivatives

(see figure 3.9). As an example, the mode coupling term of an aeroelastic system is

illustrated in figure 3.13.

9 The mode coupling term may be easier to compute using the identity: Ψ
−1

(t) · d
dt
Ψ(t) = d

dt
Ψ

−1
(t) ·Ψ(t)
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Figure 3.13: Dynamic coupling term of an aeroelastic system undergoing a sinusoidal
parameter variation with ω0 = 1 rad/s. The plots display the diagonal and non-diagonal
elements of Ψ−1(t)Ψ̇(t). The black lines are mode coupling terms corresponding to stable,
physical poles; the blue lines those corresponding to aerodynamic lag states. Complex-
conjugated pairs are excluded in the figure.
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Figure 3.14: Numerical noise in the estimation of eigenvectors can be observed even when
the parameter variation is smooth (in this case sinusoidal). The color blue refers to one entry
of Φ(t) as per eigendecomposition of A(t), the color red to the same entry after high-frequency
noise components have been removed. The black lines are the thresholds.

The calculation of Ψ−1(t)Ψ̇(t) is hindered by the numerical high-frequency noise that

is inevitably present in some entries of the eigenvector matrix. This noise can create

disproportionate effects by the matrix inverse or the calculation of the first derivative. This

issue can be addressed by carefully removing high-frequency and low-amplitude components.

Figure 3.14 provides an example. The calculation of Ψ̇(t) can be performed analytically

from a regression function or by FFT differentiation if the parameter variation is periodic.

We can collect Λ(t) in the transformed state matrix and insert equation (3.52) to obtain

Λ(t)−Ψ−1(t)Ψ̇(t) = Λ(t)

(
I− iω0

Λ(t)

∑
k∈Z

Ψ′
ke

ikω0t

)
(3.56)

The ratio iω0/Λ(t) determines the importance of the mode coupling for a given parameter

path {ρ(t), V (t)} (which in turn sets the terms Ψ′
k) with respect to the instantaneous

eigenvalues of the system.
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The dimensionless frequency of parameter variation is thus defined as:

kω0(t) ≜
ω0

min |Λ(t)|
[adim] (3.57)

The higher kω0 is, the more important is the dynamic effect of parameter variation. This

criterion is easy to apply.

Alternatively it is possible consider the ratio between element (i, j) of the mode coupling

term and the corresponding i-th eigenvalue:

kΛ,ij(t) ≜

∣∣∣∣∣eTi Ψ−1(t)Ψ̇(t)ej
Λi(t)

∣∣∣∣∣ [adim] (3.58)

This dimensionless parameter quantifies the importance of diagonal and off-diagonal terms

of Ψ−1(t)Ψ̇(t). If the latter are negligible compared to the former, the system is weakly

coupled. The model reduction technique presented in [Luspay et al., 2018] performs a

transformation of the time-varying system where the structure of the mode coupling is

matched to the structure of the state matrix. The mode coupling’s elements corresponding

to the state matrix’s zero entries are then ignored under the assumption that they do not

contribute much the system’s input-output behavior. Figure 3.15 displays the parameter

kΛ of an aeroelastic system undergoing a half-sinusoidal speed variation. Notice that there

is no mode coupling where speed has a minimum or maximum (in this case respectively at

t/T = 0 and t/T = 1). When the system is weakly dynamically coupled (approximately

diagonal) its state transition matrix can be calculated analytically (see section 2.1.3).

All things considered, the calculation of kΛ is quite cumbersome even for medium-sized

analytical systems, while the adimensional frequency kω0 maintains its usefulness for

relating parameter variation speed and system eigenvalues.

Figure 3.15: Scaled mode coupling kΛ for diagonal elements for ω0 = 1 rad/s (respectively
for diagonal and non-diagonal elements). For example, reading from the right plot, if ω0 = 1
rad/s (kω0

= 0.02) dynamic mode coupling contributes to less than 0.6% of the system’s states.
If the system varies faster ω0 = 10 rad/s, then the coupling term’s contribution increases to
6%. Reading from the left plot, the diagonal elements have a similar contribution, but they
can be added to the instantaneous eigenvalues. The color represents the associated eigenvalues
(blue: low, red: high). Judging by this criterion, the system is weakly coupled. This will be
confirmed by simulations in chapter 7.
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3.4.3 Eigenvector rotation

The eigenvectors may be rotated by an orthogonal matrix without altering their eigenspace.

A smooth matrix interpolation between the entries of two consecutive eigenvectors Ψn and

Ψn+1 can be determined by solving an unconstrained Procrustes problem [Geuss et al.,

2013]. The goal is to determine the orthogonal matrix R that maps the eigenvector as

close as possible to the the preceding one

Ψn+1 ≈ RΨn (3.59)

This can be stated as a minimization problem where R is a rotation matrix:

Q = arg min
RHR=I

∥RΨn −Ψn+1∥F (3.60)

The matrix Q preserves the eigenspace and norms of Ψn+1 (i.e. the transformation is a

rotation). Its solution is found by the singular value decomposition

ΨH
n+1Ψn

svd
= UΣVH =⇒ Q = UVH (3.61)

This procedure is repeated between all eigenvector pairs n : n+ 1

Ψn+1 ← Ψn+1Q ∀ n = 1: N − 1 (3.62)

The eigenvector rotation is put to use in section 3.4 to determine the dynamic coupling

term Ψ−1(t)Ψ̇(t). This technique will be applied again when comparing the mode shapes

estimated from noisy output-only data to minimize the phase difference between each

group of sensors. It is applied in the animated plots of two experimentally-determined

mode shapes to assist the user in comparing and recognizing the modes of vibration.

Figure 3.16: Eigenvectors or aeroelastic system C2 (refer to table 7.2) undergoing a linear
air speed variation. The plots show the first row of Ψ(t) and the columns corresponding
to the heave, pitch and flap modes (only one of the complex-conjugated pairs). Left plot:
eigenvectors as computed by the eigendecomposition of the state matrix. Right plot: the
solution to the Procrustes problem rotates the eigenvectors while preserving the eigenspace
and creating smooth paths.
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3.5 Chapter summary

The chapter introduced the linearized modeling of aeroelastic systems used to represent

the interaction of inertial, elastic and aerodynamic forces.

The air stream around a structure exerts forces that deform its shape, which in turn

affects the flow. The unsteady aerodynamic forces are linearly dependent on dynamic

pressure and generalized displacement of the structure. This dependence is described by

the aerodynamic influence coefficients matrix (AIC). This matrix is computed for a discrete

set of reduced frequencies, therefore a continuous representation must be interpolated in

order to construct the aeroelastic model. Various techniques exist for this purpose. Once

this is done, the equation of motion of the underlying structure can be augmented to

include aerodynamic terms. The eigenvalues of the resulting state matrix are a function of

air density and air speed. In particular, it is possible to model the occurrence of flutter as

an instability arising when damping becomes negative for certain combinations of airflow

variables. The input, output and feedthrough matrices are constructed depending on the

intended aeroelastic application, for example gust excitation. Wind turbulence is modeled

by empirical equations that specify the spectrum magnitude, while the phase is random

uniformly distributed.

Making use of the information gathered in the previous chapter, the aeroelastic matrices

are studied as explicit functions of time. In particular, it is shown under which conditions

the time-varying matrix can be diagonalized, i.e. when the system may be considered

slowly-varying. In this regard, two fairly simple criteria are proposed.



4 Spectral estimation

Abstract

The response of an aeroelastic system to atmospheric turbulence is random and is thus best

analyzed in the frequency-domain. Numerous spectral estimation techniques have been developed

for a variety of applications on sampled, noisy and finite signals. Our goal is the estimation

of the power spectral density in order to monitor the acquired signals and to provide data to

frequency-domain identification methods. The chapter focuses on nonparametric estimators, in

particular the periodogram approach and multi-taper method. Their limits in terms of achievable

frequency resolution and variance reduction are discussed. A mixed spectral estimation method

is also proposed. Finally, spectral estimation of time-varying systems is discussed to examine the

limits of stationarity assumptions.

Spectral estimation is the process of determining a frequency-domain representation of

a signal from a limited number of samples. In modal analysis, it is employed in vibration

monitoring and system identification. Spectral estimation provides the analyst with vital

and easy-to-interpret information about acquired signals and is an important component for

the quality control of measurements. For instance, it reveals the location of resonances, the

presence of harmonic components and noise, the effect of filters, the excitation bandwidth,

the coherence between inputs and outputs, the variance of estimated spectra and so forth.

This chapter focuses on establishing the spectral estimation methods necessary to

support the real-time online-monitoring of aeroelastic systems during vibration testing.

To reach this goal it is necessary to understand the limitations imposed by finite sample

size, noise and the assumptions of spectral estimation. Two expert references on digital

signal processing can be found in [Oppenheim and Schafer, 2010] and in [Proakis

and Manolakis, 2013]. Spectral estimation is the main focus of [Stoica and Moses,

2005], who examine numerous techniques that have been developed for various purposes.

Ample space is devoted in literature to spectral estimation applied to modal analysis, for

example in [Pintelon and Schoukens, 2004] and [Brandt, 2011]. Ambient excitation

on aircraft produces stochastic response signals and the classic book from [Bendat and

Piersol, 2010] provides theoretical tools for the analysis of random data in the time

and frequency domains. [Hoblit, 1988] offers an extensive treatment of gust loads on

aircraft and covers some spectral estimation topics. [Cohen, 1995] treats extensively the

time-frequency description of signals, which can be employed in the analysis of the response

of time-varying systems.

In real-world applications, obtaining long records may be excessively costly or im-

practical. For instance, records in the order of seconds suffice to estimate the spectra of

particularly stiff systems [Hannemann et al., 2015]; on the other hand, a light-weight

structure with extremely low eigenfrequencies requires considerable measurement times

[Böswald et al., 2010]. The nature of the signal may limit the acquisition time or
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invalidate some assumptions, e.g. it is second-order stationary only over short observation

intervals. In the case of flight vibration testing, the main constraint is the ability to

maintain stationarity over a sufficiently long duration [Jeličić et al., 2017]. Vibration

testing is often confronted with such limitations.

The spectral estimation process must be fast in order to satisfy the real-time monitoring

requirement, which restricts somewhat the number of candidate algorithms. We have

shown in chapter 2 how to compute parametrically the spectra of periodic or slowly-varying

systems, i.e. the analytical frequency-domain representation of the system’s response.

This theoretical development is necessary to understand the applicability and to correctly

interpret the results of a spectral estimator. In chapter 3 we have seen that the interaction

between structure and aerodynamic forces modifies the system’s modal parameters with

wind speed and flight altitude, particularly the damping. We shall discuss here how

system variation influences spectral estimation and have a look at experimental data from

aeroelastic experiments. The methods presented in this chapter shall be put to use for

frequency-domain system identification in chapter 5 and for the analysis of simulated and

experimental data in chapters 7 and 8.

The chapter’s roadmap is as follows:

1. Introduction of spectral estimation concepts

2. Nonparametric methods for power spectral density estimation

3. Spectral estimation of time-varying systems
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4.1 Fourier transform

Spectral estimation begins with the study of continuous signals and their representation

in the frequency-domain via Fourier transform. This is motivated by the fact that the

most widespread analytical, digital signal processing and spectral estimation methods in

structural dynamics feature the Fourier transform. Before proceeding, without delving too

deep into the topic, this brief section introduces some notation or conventions and reviews

some of the properties that will be of use later in the text. Detailed information about

the transformation into frequency-domain, various theorems, its applications and many

examples can be found in [Oppenheim et al., 1996; Proakis and Manolakis, 2013;

Shmaliy, 2007].

The continuous Fourier transform (CFT) of a real signal x(t) is:

x̃(f) = F {x(t)} ≜
∫ +∞

−∞
x(τ)e−i2πfτ dτ [signal/Hz] (4.1)

where the frequency variable is f [Hz]. This definition of CFT is unitary, i.e. its inverse

has the same factor in front of the integral (namely, 1). Another common CFT definition

utilizes the angular frequency ω [rad/s]) as its variable:

x̃(ω) = F {x(t)} ≜
∫ +∞

−∞
x(τ)e−iωτ dτ [signal/(rad/s)] (4.2)

This definition is unitary if the integral’s factor is 1/
√
2π.

For a sampled signal x[n] of length N , the discrete Fourier transform (DFT) has a

similar definition:

x̃[k] = DFT {x[n]} ≜
N−1∑
n=0

y[n]e−i2πkn/N [signal] (4.3)

Notice that the DFT has the same units of the input signal. The correct scaling needed to

approximate the CFT using the DFT is obtained by dividing by the sample rate1 fs [Hz].

A factor 1/
√
N in equation (4.3) makes the DFT unitary. The Fourier series of various

analytical signals in chapters 2 and 3 have been computed using the DFT.

Notation. The tilde indicates signals in frequency-domain. For continuous signals the

frequency variable is denoted by round brackets “(f)” or “(ω)”. For discrete signals, the

frequency bins are denoted by the square brackets “[k]”.

The sampling theorem establishes a sufficient condition for the perfect (continuous)

x(t) reconstruction of a band-limited sampled signal x[n]: the discrete signal’s bandwidth

fmax − fmin must be less than half the sampling frequency fmax − fmin < fs/2. The

theorem, its corollaries and the consequences on digital signal processing are discussed

1 For example, if n = 0 : N − 1 and x[n] = A0 + A1 sin(2πk0/Nn), then 2
N
DFT{x[n]} has two peaks of

amplitude A1 located at k = k0 and k = N − k0 and one peak of amplitude 2A0 at k = 0.
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at length in the aforementioned references. The theorem sets conditions on the minimal

sample rate (or, equivalently, the time step ∆t = 1/fs) in measurements and simulations.

The frequency vector associated to the transformed signal in frequency-domain x̃[k] is:

f = (0 : 1/N : 1/2)fs ∈ RL (4.4)

where fs/N = 1/T = ∆f is the frequency resolution. The DFT{·} operator outputs the

DFT coefficients with the zero frequency bin at the beginning of the array. The zero

frequency is often called DC bin (constant term). Depending on the DFT’s length, the bin

with the highest frequency is: if mod (N, 2) = 0 : L = N/2 + 1 f [L] = fs/2

if mod (N, 2) = 1 : L = (N + 1)/2 f [L] = (1− 1/N)fs/2
(4.5)

If the signal x[n] is real, then its DFT is complex-conjugated, hence only its first L (positive)

frequency bins are sufficient. In such case, if N is even, then x̃[L] is real; if N is odd, then

x̃[L] is complex and x̃[L] = x̃∗[L+ 1].

Lastly, it can be shown how the DFT is related to the first two moments of the signal:
N−1∑
n=0

x[n] = x̃[0]

N−1∑
n=0

x2[n] =
1

N

N−1∑
k=0

|x̃[k]|2
=⇒


µ{x[n]} =

1

N
x̃[0]

σ2{x[n]} =
1

N2

N−1∑
k=1

|x̃[k]|2
(4.6)

The top equations tell us that x̃[0]/N is equal to the signal’s mean and that the DC bin is

always real for a real signal. The bottom equations are Parseval’s theorem for the DFT

(notice that the index on the right excludes the DC bin!). Leakage in signals of period N

is avoided by computing the DFT as DFT{x[0 : N − 2]} (the last point is discarded). DFT

interpolation is performed by zero-padding, i.e. appending zeros to a signal to increase its

frequency resolution (this operation does not add new information, however it is helpful in

the interpretation of some spectra). N periods of a signal are computed by inserting N − 1

zeros between each frequency bin of its DFT and transforming back into time-domain.

The discrete Fourier transform is computed using the Fast Fourier Transform (FFT)2.

Given the FFT’s importance in digital signal processing, an entire chapter is dedicated

to it in [Proakis and Manolakis, 2013]. Additional information about its properties,

computation and applications can be found in this book. Useful examples about the FFT

and several of its applications such as convolution can be found in [Brandt, 2011].

2 MATLAB employs the FFTW algorithm (Fastest Fourier Transform of the West) [Frigo and Johnson,
1998]. It is fastest when the sample length has small prime factors, therefore N is very often selected to
be a power of two (but not necessarily!). This algorithm is notable for having a linearithmic O(N lnN)
time complexity, therefore the computation time of many operations in time-domain can be significantly
improved by switching to the corresponding frequency-domain operation (for example the convolution and
cross-correlation).
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4.2 Power spectral density

The cross-power spectral density (CPSD) of two signals x(t) ∈ RNx and y(t) ∈ RNy is:

Syx(f) ≜ lim
T→∞

1

T
ỹ(f)x̃H(f) ∈ CNy×Nx (4.7)

The cross-correlation of the signals

Ryx(t) ≜
∫ ∞

−∞
y(τ)xH(τ + t) dτ ∈ RNy×Nx (4.8)

is related to the cross-power spectral density by the Wiener–Khinchin theorem:

Syx(f) =

∫ +∞

−∞
Ryx(τ)e

−i2πfτ dτ (4.9)

For convenience we shall call y(t) the responses and x(t) the references because they are

respectively related to the rows and columns of the frequency response function matrix.

From equation (4.7) it can be seen that the CPSD3 has dimensions [unit{y} ·unit{xT }/Hz]
and that it is Hermitian Syx(f) = SH

xy(f). The physical meaning of the power spectral

density is discussed at length in [Bendat and Piersol, 2010].

The autopower spectral density (APSD) of a vector x(t) is the real function

Sx(f) ≜ lim
T→∞

1

T
|x̃(f)|2 ∈ RNx (4.11)

According to equation (4.7), the matrix Sxx(f) ∈ CNx×Nx is the cross-power spectral

density of vector x(t) with itself, consequently only its diagonal is real.

Notation. The autopower spectral density of the vector function x(t) is denoted by a single

subscript Sx(f) ∈ RNx and is the diagonal of the corresponding cross-power spectral density

matrix Sxx(f) ∈ CNx×Nx . The CPSDs are generally complex. This distinction is necessary

because all equations are written for the multi-input-multi-output case. There is usually no

such distinction in literature, which can be confusing.

The Fourier transform of a real signal has a complex-conjugated spectrum, therefore in

signal processing the single-sided PSD G(f) is used instead of the double-sided PSD S(f).

The two are related as:

G(f) =

{
2S(f) f > 0

S(0) f = 0
(4.12)

This definition ensures that the signal’s energy is conserved
∫ +∞
−∞ S(f) df =

∫∞
0 G(f) df .

3 Some authors, for example [Bendat and Piersol, 2010] and [Brincker et al., 2000], define the
CPSD (and correspondingly the cross-correlation) as:

S′
yx(f) ≜ lim

T→∞

1

T
ỹ∗(f)x̃T (f) = S∗

yx(f) (4.10)

which is the complex conjugate of equation (4.7). The convention in this thesis follows [Brandt, 2011;
Oppenheim and Schafer, 2010; Pintelon and Schoukens, 2004].
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If the frequency is expressed in rad/s, then S(ω) = 1
2πS(f). The scaling of the PSD must

be such that the square root of its integral is equal to the signal’s RMS value:∫ ∞

0
Gx(f) df = µ2{x(t)}+ σ2{x(t)} = RMS2{x(t)} (4.13)

Let us consider the input-output mapping of an LTI system (2.52) and post-multiply it by

its Hermitian transpose:

y(s) = H(s)u(s) =⇒ y(s) · yH(s) = H(s)u(s) · uH(s)HH(s) (4.14)

If we take the limit for T →∞

lim
T→∞

1

T
y(s)yH(s) = Gyy(s) lim

T→∞

1

T
u(s)uH(s) = Guu(s) (4.15)

we obtain the well-known formula:

Gyy(s) = H(s)Guu(s)H
H(s) (4.16)

This is the relationship between input and output PSDs for linear time-invariant systems,

but under some circumstances it is valid or at least approximately correct for time-varying

systems as well. This equation also tells us that the response PSD contains the system’s

but also the excitation’s poles and zeros.

It is reasonable to assume that the input spectrum’s amplitude is constant, at least

within a limited frequency range. When Guu(s) = Guu, equation (4.16) can be represented

by a sum of simple poles, which will be useful in the next chapter in the framework

of operational modal analysis. We start by inserting the frequency response function’s

pole-residue form (2.56) into equation (4.16):

Gyy(ω) = H(ω)GuuH
H(ω)

=

(
Nx∑
i=1

Ri

iω − λi

)
Guu

 Nx∑
j=1

RH
j

−iω − λ∗j


=

Nx∑
i=1

Nx∑
j=1

−
RiGuuR

H
j

λi + λ∗j

(
1

iω − λi
+

1

−iω − λ∗j

) (4.17)

where Ri ≜ cib
T
i , ci ≜ CΨei and bi ≜ eTi Ψ

−1B (and analogously for index j). The

indices i and j refer to the positive and negative frequencies respectively. The last step

was obtained by partial fraction decomposition:

1

iω − λi
· 1

−iω − λ∗j
=

−1
λi + λj

(
1

iω − λi
+

1

−iω − λ∗j

)
(4.18)

Since the input PSD is constant by hypothesis, it is possible to sum the constants
RiGuuRH

j

λi+λ∗
j
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once over the index j (for the residuals corresponding to positive frequencies) and once

over the index i (for negative frequencies) in order to define:

RkGuuL
H
k ≜ −

Nx∑
j=1

RkGuuR
H
j

λk + λ∗j
LkGuuR

H
k ≜ −

Nx∑
i=1

RiGuuR
H
k

λi + λ∗k
(4.19)

The output CPSD can now be written in a pole-residue form4:

Gyy(ω) =

Nx∑
k=1

(
RkGuuL

H
k

iω − λk
+

LkGuuR
H
k

−iω − λ∗k

)
=

Nx∑
k=1

(
ψkϕ

H
k

iω − λk
+

ϕkψ
H
k

−iω − λ∗k

)
(4.21)

where the mode shapes ψk and operational reference vectors ϕk are:

RkGuuL
H
k

svd
= UΣVH =⇒

ψk = U1

√
Σ1

ϕk = V1

√
Σ1

(4.22)

where the subscript 1 denotes the left and right singular vectors corresponding to the largest

singular value. The residues in equation (4.19) depend on the system’s modal parameters

as well as on the excited degrees of freedom. We can see that, in contrast to the frequency

response function (2.56), each pole appears also on the negative semi-plane: the PSDs

have thus a so-called “4-quadrant symmetry” illustrated in figure 4.1 (complex-conjugated

pairs, positive-negative frequencies {−λk , −λ∗k , λk , λ∗k}). The poles are the roots of

the denominator, therefore each complex-conjugated eigenvalue pair is represented by a

polynomial of order four (whereas the frequency response function requires a polynomial

of order two). This observation sets a lower limit to the model order based on the number

of poles within a certain frequency band.
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Figure 4.1: Pole-zero map of H(s) = s−1
(s−p1)(s−p∗

1)(s−p2)
and Gyy(s) = H(s)GxxH

H(s) with

Gxx = 1. The system’s three eigenvalues are the complex-conjugated pair p1 = fλ(1, 0.4), (blue
crosses) and the purely real p2 = fλ(0.5, 1) (orange cross). The red circles represent the zero
z1 = 1.

4 The output power spectral density for white noise inputs is developed in [Brincker and Ventura,
2015] and [Rainieri and Fabbrocino, 2014] for mass-damping-stiffness systems and is often found in
literature as a sum of four residues for each of the complex eigenvalue pairs (“unique” mode shapes):

Gyy(ω) =

Nm∑
k=1

(
LkGuuR

H
k

−iω − λ∗
k

+
L∗

kGuuR
T
k

−iω − λk
+

RkGuuL
H
k

iω − λk
+

R∗
kGuuL

T
k

iω − λ∗
k

)
(4.20)

Equation (4.21) is a more general form for any observable combination of states, inputs and outputs.
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The modal form of the output cross-power spectral density (4.21) can be related to

cross-correlation function through the Wiener-Khinchin theorem (4.9) to obtain:

Ryy(τ) =

∫ +∞

−∞
Syy(f)e

i2πfτ dt =



Nx∑
k=1

ψkϕ
T
k e

λkτ τ ≥ 0

Nx∑
k=1

ϕkψ
T
k e

−λk|τ | τ < 0

(4.23)

This expression is very similar to the pole-residue form of the impulse response function

(2.57) (“2-quadrant symmetry”). The system’s modal parameters can be extracted from

the causal part5 of the correlation function (positive lags τ ≥ 0), thus requiring only Nx

instead of 2Nx poles. A similar approach can be applied to frequency-domain identification

by estimating the so-called positive power spectral density (also known as half-power PSD)

from the correlation function at positive time lags only:

G+
yy(ω) =

∫ ∞

0
Ryy(t)e

−iωt dt =

Nx∑
k=1

ψkϕ
T
k

iω − λk
(4.24)

The positive power spectra have sometimes preferential applications in operational modal

analysis because they have less poles and because of better numerical conditioning

[Brincker and Ventura, 2015; Rainieri and Fabbrocino, 2014], however they

demand more computation6. The contribution of noise, leakage and variance of the tail of

the correlation function (higher lags) can be reduced by an exponential window, in which

case the estimated damping must be corrected [Verboven, 2002]. An example of positive

PSD is provided in figure 4.2.
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Figure 4.2: Cross-correlation Ryy(t), cross-power spectral density Gyy(ω) and positive cross-
power spectral density G+

yy(ω) between the heave and flap degrees of freedom of aeroelastic
system 7.2, configuration C2, with unit heave excitation. The positive-CPSD has usually few
dominant peaks.

5 The positive lags contain poles with negative real parts ℜλ < 0, while the negative lags the corresponding
poles with positive real parts ℜλ > 0.

6 Positive power spectra require the estimation of the cross-correlation function, which is performed
efficiently using an FFT instead of a convolution. However, it is necessary to calculate of the outer product
between responses and references over the whole bandwidth (from DC to the Nyquist frequency). Depending
on the number of samples and channels, this operation may be exceedingly expensive.
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4.3 Spectral estimation methods

The expressions presented so far state that perfect knowledge of a signal’s spectrum requires

an infinite measurement time. It is clear that this is not achievable in practice, consequently

the power spectral density is said to be estimated from a limited, but still useful amount

of data. This can be stated formally as:

Ŝyx(f) ≜ lim
T→∞

E
{
1

T
ỹ(f)x̃H(f)

}
Ŝyx[k] ≜ lim

T→∞
E
{
∆t2

T
ỹ[k]x̃H [k]

} (4.25)

where E{·} is the expectation operator and ỹ, x̃ are the Fourier transforms of the signals.

In digital signal processing the objective is to find the best possible estimate Ŝ.

Notation. In control theory and statistics, a circumflex underlines that the true spectrum

S has been estimated Ŝ by whatever means; the same convention is applied here.

The finite length of signals coupled with noise gives rise to some specific challenges

such as leakage and variance that distort the estimated spectrum and that must be

addressed. Depending on the analysis that is to be performed, for instance transfer function

estimation, various experimental procedures exist for obtaining optimal spectra [Brandt,

2011; Pintelon and Schoukens, 2004]. Given our overarching goal of performing

output-only system identification, we focus on the determination of the frequency content

of stochastic signals, in particular in the PSD estimation. The time data record’s duration

determines the amount of information that has been collected. Stated in DFT terms, the

inverse of the signal’s duration T sets the frequency resolution of the signal:

∆f =
1

T
=
fs
N

(4.26)

Spectral features can be resolved better when ∆f is low. Since this is desirable, a “frequency

resolution increase” actually means that ∆f decreases. The magnitude of ∆f is meaningful

in relation to the signal’s time-scale or its frequency components. For instance, the half-

power width of a resonance peak is ∆ωn ≈ ζωn for low damping (see section 2.2.1), therefore

the peak is well-resolved if 2π∆f/∆ωn ≪ 1. The quantity 2π∆f/∆ωn is thus related to

the frequency bias of spectral estimation as we shall see in the next section. Wind tunnel

models tend to be very stiff (fn > 50 Hz) due to their small size and strong construction,

whereas aircraft have low eigenfrequencies (fn < 50 Hz) due to larger dimensions and

light-weight hollow structure [Kehoe, 1995, Tab. 1]. Compared to the time scale of a

typical measurement in vibration testing (in the order of minutes), a signal with very

high frequency components requires only a “short” record and vice versa. Extreme cases

like the Solar Impulse aircraft [Böswald et al., 2010] or a hypersonic scramjet model

[Hannemann et al., 2015] require respectively very long and very short measurements

for accurate spectral estimates.
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In modal analysis the frequency band of interest starts typically at zero to pick up any

rigid body motions (in practice: at the minimal frequency that the sensors can pick up)

and ends with the highest eigenfrequency that is to be identified. The frequency band of

interest ∆fB sets a lower bound for the sample rate according to the sampling theorem7:

fs > 2∆fB

The sample rate (or bandwidth) is “high” when there is a large number of resonance

peaks within the current frequency band. A common misconception is that a high fs

increases the information content of a measured signal, but in reality it merely extends the

spectrum’s frequency abscissa to the right. A slight oversampling is necessary to account

for the transition band of the anti-aliasing filters in the data acquisition system, however

in experimental setups the sample rate is often much higher than strictly necessary due to

technical limitations or other concurrent measurements. Decimation or resampling should

be carried out to reduce the amount of processed data and subsequent workload.

It can be shown that a finite random sequence has also a random spectrum [Bendat

and Piersol, 2010]. Several realizations of the same stochastic process must be averaged

in order to reduce this variance. The estimation of the spectral content from a limited

sample of random data has thus two main concerns:

• frequency resolution must be increased by increasing the measurement time; the

lower the frequency resolution, the lower the frequency bias error

• spectrum variance must be reduced by averaging several realizations of the system;

the lower the variance, the lower the random error

These requirements are conflicting: the spectral estimation theorems mandate that, for

a given record length, spectrum variance and frequency resolution cannot be reduced

arbitrarily8. As already stated, it is the record duration that determines the frequency

resolution, the amount of useful information and goodness of spectral estimation. Where

possible, the experiment is designed to acquire the necessary data amount plus some margin.

Records cannot thus be too short because the noise and variance would be intolerable,

nor can they be excessively long because of cost and data management. Furthermore,

in the case of LTV systems, multiple realizations must be acquired in order to capture

time-varying dynamics [Majji et al., 2010].

7 The sampling theorem is often misinterpreted as meaning that the maximal frequency (and not the
bandwidth) that can be acquired is half the sample rate. This is true if the signal has frequency components
near 0 Hz, which is almost always the case in modal analysis. For a structure with free-free boundary
conditions, the lowest system poles correspond to the six rigid-body modes and are important for the
verification of the measurement setup during ground vibration testing.

8 This is a consequence of the uncertainty principle applied to harmonic analysis: the product of duration
and bandwidth has a lower bound that cannot be exceed. In digital signal processing it is expressed as the
product of the second central moment of the signal’s energy distribution in the time and frequency domains:(∫ +∞

−∞
t2|x(t)|2 dt

)(
1

2π

∫ +∞

−∞
ω2|x(ω)|2 dω

)
≥ 1

4
(4.27)

There are many equivalent variations of this equation in literature [Stoica and Moses, 2005].
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Several parametric and non-parametric spectral estimators have been devised for a very

wide variety of applications. They can be grouped into two large categories:

• non-parametric methods estimate the spectrum without assuming any particular

structure in the data (for example, FFT-based methods).

• parametric methods try to model the underlying stationary stochastic process that

generated the time data by describing it with a small number of parameters (for

example, auto-regressive or moving-average methods)

The method or algorithm of choice depends on the use case. The monograph from [Sto-

ica and Moses, 2005] provides an exhaustive treatment of this topic. An overview of

non-parametric time-frequency analysis methods for non-stationary signals is found in

[Hammond and White, 1996]. In the next chapter we will see that one of the possible

results of system identification is the reconstruction of the output signal’s PSD, which

is closely related to parametric methods of spectral estimation. In this chapter we shall

focus on non-parametric techniques because they require little a priori knowledge, less

computational capacity and their results are readily available. Non-parametric spectral

estimators are used to analyze the acquired signals before they are passed to more sophis-

ticated procedures that require more processing power. For our intended use, Welch’s

modified periodogram and the multi-taper method are two candidates.

4.3.1 Welch’s modified periodogram

In experimental structural dynamics, spectral estimation of vibration data is commonly

carried out using Welch’s modified periodogram (WMP), an FFT-based well-known non-

parametric method [Brandt, 2011]. It is commonly used to estimate the cross-power

spectral density of vibration data in order to compute the transfer function, coherence,

output noise variance et cetera.

The pseudo-code in algorithm 1 provides a simple implementation. Welch’s periodogram

subdivides the whole record of N samples into Nw overlapping segments of length Lw < N

and estimates the cross-power spectral density by averaging them in order to reduce

measurement noise. Frequency resolution is thus traded with noise reduction since fs/Lw >

fs/N . The fractional overlap Ow is equivalent to shifting each segment by N − ⌊OwLw⌋
samples. Each data segment is tapered by a smooth bell-shaped window function in order

to reduce leakage due to transients at the start of each segment. A quantification of error

sources and approaches for reducing said error for WOSA procedures (weighted overlapped

segment averaging) such as Welch’s modified periodogram, is published in [Antoni and

Schoukens, 2007]. Many window functions have been developed for specific applications or

desired energy concentration characteristics. The window function is selected based on its

main lobe width and sidelobe attenuation, with some preference depending on application

(spectral analysis, filter design, beamforming etc.). The choice of optimal window type

and length for a given finite sequence with unknown signal-to-noise ratio remains an open

question that requires some trial-and-error.
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Algorithm 1: Welch’s modified periodogram

Data: Discrete signals x[n], y[n] of length N and sample rate fs
Result: Cross-power spectral density estimate Ĝyx[k]

Run:
Select window function w, its length Lw and a fractional overlap Ow

Initialize indices of first segment: Iw ← {1 : Lw}
Compute number of non-overlapping samples: No = ⌊Lw(1−Ow)⌋
Compute number of windows: Nw = ⌊(N − Lw)/No⌋+ 1
for i = 1 : Nw do

Compute the DFT of i-th segment (◦ is the Hadamard product):

ỹ← DFT(y[Iw] ◦w) x̃← DFT(x[Iw] ◦w)

Compute outer product of the transformed signals:

Ĝi[k]← ỹ[k]x̃H [k]

Slide data segment forwards:

Iw ← No + Iw

end
Calculate the average and scale:

Ĝyx ←
2

fs ∥w∥2
· 1

Nw

Nw∑
i=1

Ĝi

Halve the power at DC: Ĝyx[0]← Ĝyx[0]/2

The following window functions are considered for the task at hand:

• Rectangular : for periodic signals when no leakage is expected, for impulses/transients

or signals where the time-energy distribution is uneven. Provides the highest frequency

resolution but poor side-lobe attenuation.

• Kaiser : all-purpose window, the main lobe and sidelobes can be tailored to specific

needs by changing the window’s parameter. For example, when a low Nw is a serious

concern, windows with a high equivalent averaging factor can be designed.

• Hann: good compromise between resolution and leakage, safe choice when no other

window has a clear advantage and most commonly used in modal analysis. Often

called improperly “Hanning”.

• Chebyshev : the side-lobes have all equal height (equiripple) and can be tuned to the

desired attenuation by enlarging the main lobe.

• Flat-top: used when the exact amplitude of a frequency component is more important

than frequency resolution, for example with engine harmonic components.
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Welch’s method is not a consistent estimator of the true power spectral density of a

broadband signal. This can be observed as frequency bias error on the PSD estimate. The

normalized frequency bias error for a single-DoF system is a function of the resonance

bandwidth B ≜ 2ζfn and the duration of the window Lw/fs:

εf =
|Ĝy −Gy|

Gy
= f(BLw/fs) (4.28)

The causes and appearance of this phenomenon are discussed [Bendat and Piersol,

2010], while [Schmidt, 1985] provides better estimates of εf . Figure 4.3 shows the

frequency bias error as a function of the product BLw/fs. The frequency bias error is low

when the resonance bandwidth is high (highly-damped or high-frequency poles) or when

the frequency resolution is high (fs/Lw is small). Practical limitations on the maximal

measurement duration (lower bound on the frequency resolution 1/T = fs/N < fs/Lw)

force the experimenter to accept some frequency bias error.

We will be dealing with systems excited randomly by air turbulence and ambient noise.

Even the PSD of a noiseless system response due to stochastic excitation has a variance

greater than zero that must be reduced by averaging. The normalized random error of a

Welch estimate is

εr =
1√

kewN/Lw

(4.29)

where N/Lw is the ratio between the number of samples and window length and kew ≥ 1

is the equivalent averaging factor. The latter is a function of window type and overlap.

This inverse square law shows that there are diminishing returns when N/Lw is large. A

more detailed discussion about the spectrum variance error is found in [Brandt, 2011,

Ch. 10.3.5]. Figure 4.4 displays the equivalent averaging factor as a function of overlap.

There exists an optimal value for each window type after which kew reaches a plateau.

Beyond the optimal overlap, adjacent data segments are so correlated with each other
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Figure 4.3: Frequency bias error in Welch’s modified periodogram as a function of BLw/fs
for three different window functions. For example, if we accept εf = 0.01, a mode with
B = 2 · 1 · 0.01 would require a record length of about 200 s. For a very stiff wind tunnel
model fn > 100 Hz, the measurement time could be as low as 2 s (without accounting for any
spectral averaging).
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Figure 4.4: Left: equivalent averaging factor kew as function of window overlap Ow. Right:
normalized random error εr as a function of the ratio between number of samples and window
length N/Lw for optimal overlap (4.29). See text for discussion.

Table 4.1: The main lobe width in normalized frequency bins and the sidelobe height in
decibel of some window functions.

Window
Main lobe

width [·π/N ]
Sidelobe

height [dB]
Optimal

overlap [adim]
Equivalent averaging

factor [adim]

Rectangular 4.0 -13.32 - -
Kaiser 4 6.5 -30.14 0.64 1.72
Hann 8.0 -31.55 0.66 2.07
Chebyshev 6 18.9 -120.00 0.76 2.97
Flat top 20.0 -69.01 0.82 4.58

that not only there is no improvement of the equivalent number of averages, but it is also

detrimental for computation because Nw grows hyperbolically. Table 4.1 reports the main

lobe width, sidelobe height, optimal overlap and equivalent averaging factor for of some

window functions. Windows that have better spectrum variance reduction have worse

frequency resolution capabilities, or equivalently, windows with a narrow main lobe have a

lower sidelobe attenuation. We see from figure 4.4 that a low normalized random error

requires a high N/Lw ratio, which means that the frequency resolution of the estimated

spectra is higher than 1/T because N/Lw/T > 1/T (equivalently: fs/Lw > fs/N). As

already mentioned, the lower bound for the sample rate is set by the maximal eigenfrequency

of interest fs > 2∆fB. The minimal frequency resolution is determined by the acceptable

frequency bias error (or known capabilities of system identification method of choice): this

sets a lower bound fs/∆fmin ≤ Lw for the window length. The nomogram A.2 in the

appendix condenses all this information. Given a certain minimal resonance bandwidth,

the maximal frequency of interest, this nomogram can be used to estimate the number of

samples and measurement time that lead to acceptable bias and random errors.
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4.3.2 Multi-taper spectral estimation

The multi-taper method (MTM) reduces variance by averaging estimates obtained from

a family of mutually orthogonal taper functions. It uses the same principle of Welch’s

modified periodogram but instead of tapering several data segments with one window

function, it uses multiple taper functions with the whole record. The pseudo-code in

algorithm 2 shows an implementation of MTM where its similarity with WMP may be

apparent. The multi-taper method is well-established in geophysics [Prieto et al.,

2007] and bioengineering [Babadi and Brown, 2014], but it remains relatively unknown

in the modal analysis community. Multiple tapers have favorable characteristics with

regard to variance and leakage [Bronez, 1992]. The original paper that proposed this

technique [Thomson, 1982] used Slepian tapers (also known as DPSS – discrete prolate

spheroidal sequences) because they have optimal energy concentration characteristics. The

Slepian tapers are solutions to an eigenvalue problem that determines a family of mutually

orthogonal time sequences of length N samples that maximize their DFT energy in a given

frequency interval [−2πW, 2πW ] [rad/samples]. Alternatively a sequence of orthogonal sine

functions may be used (see figure 4.5). The analyst sets the dimensionless time-bandwidth

product NW and computes the tapers of orders 0 : ⌊2NW ⌋ − 1. The random error is

εr = 1/
√
⌊2NW − 1⌋ because the tapers are uncorrelated. The higher NW is with respect

to N , the wider the main lobe of a peak becomes and the benefit of variance reduction

through tapers is offset by damping bias on the peaks (see figure 4.6). Since the proportion

of the energy that is concentrated in the bandwidth diminishes with the order of each

Algorithm 2: Multi-taper method

Data: Discrete signals x[n], y[n] of length N and sample rate fs
Result: Cross-power spectral density estimate Ĝyx[k]

Run:
Calculate ⌊2NW ⌋ tapers of length N T ∈ R⌊2NW ⌋×N (sine or Slepian sequences)
Select weighting of each taper wi (e.g.: unity or eigenvalues of Slepian windows)
for i = 1 : ⌊2NW ⌋ do

Compute the DFT of k-th taper:

ỹ← DFT(y ◦T[i, :]) x̃← DFT(x ◦T[i, :])

Compute outer product:
Ĝi[k]← ỹ[k]x̃H [k]

end
Calculate weighted average and scale (◦ is the Hadamard product):

Ĝyx ←
2

fs
· 1

Nt

⌊2NW ⌋∑
i=1

giĜi

Halve the power at DC: Ĝyx[0]← Ĝyx[0]/2
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Figure 4.5: The first five Slepian and sine tapers (in time-domain). The tapers must be
mutually orthogonal functions in order to obtain multiple independent estimates from the
same sample. The Slepian (or DPSS) window maximizes the energy in the main lobe. The
tapers are often weighted because energy loss increases with order.

Slepian sequence, an adaptive weighting technique has been developed in [Percival and

Walden, 1993]. Typical choices for the time-bandwidth product are [2, 2.5, 3, 3.5, 4], but

can be higher when the record length N is large (for example when the frequency range of

interest is small compared to the sample rate). [Haley and Anitescu, 2017] describe the

optimal selection of the time-bandwidth product. [Prieto et al., 2007] elaborate a bias

reduction technique for MTM based on the estimation of spectral derivatives. [Babadi and

Brown, 2014] provide a review of multi-taper spectral analysis. The MTM implementation

developed for this thesis makes use of the aforementioned techniques to obtain good spectral

estimates in difficult situations. The MTM has attractive properties for the analysis of

time-varying systems due to the concern about the stationarity of long system responses.

The spectrograms in this text are estimated by MTM because a better time resolution can

be achieved. Since MTM estimates cross-power spectral densities, it can be exchanged with

WMP to determine the frequency response function and coherence in the experimental

modal analysis framework. Figure 4.6 compares the PSDs estimated from experimental

data using WPM and MTM with different tapers.
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Figure 4.6: Left plot: comparison between WMP and MTM. Right plot: comparison between
DPSS and sine tapers. The signal is the response of an aircraft model at DLR-Göttingen
(N = 50000 samples, fs = 3000 Hz). The first few modes are displayed (the one with the
lowest damping). All spectra have the same frequency precision. The reference spectrum is
constructed from 850000 samples using WMP. The half-bandwidth product is NW = 3 (5
tapers). In the left plot, the MTM has smaller spectral variance for a fixed signal duration.
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4.3.3 Segmented multi-taper method

Welch’s modified periodogram tapers each data segment with a window function, while

the multi-taper method uses the whole data and multiple tapers. We will show in this

section how the two can be combined into a single general estimator, which we shall

call segmented multi-taper method (SMT). The pseudo-code in algorithm 3 describes the

vectorized implementation of the SMT that has been deployed for operational modal

analysis during flight vibration testing; the same algorithm estimates the spectrogram. The

frequency bias of the SMT method is shown in figure 4.7. εf tends to be higher compared

to WMP because the main lobe width increases with taper order. However, this can be

compensated by a greater Lw since the tapers provide averaging. The WMP and SMT

methods are compared in figure 4.8 in terms of the dimensionless quantity9 εfεr
√
BN/fs.
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Figure 4.7: Frequency bias error of the segmented multi-taper method as a function of
BLw/fs for the time-half bandwidth product NW = [2, 3, 4] using Slepian (DPSS) tapers.
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Figure 4.8: Comparison between Welch’s modified periodogram and the segmented multi-
taper method. The quantity εfεr

√
BN/fs combines the frequency bias error and random

error as functions of the product of resonance bandwidth and window duration BLw/fs.

9 If we multiply the random error εr by
√

BN/fs, we obtain:

εr ·
√

BN/fs =
1√

kewN/Lw

√
BN/fs =

√
BLw/fs

kew
(4.30)

The frequency bias error εf = f(BLw/fs) and εr
√

BN/fs are both functions of the same abscissa BLw/fs.
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The segmented multi-taper method performs better with short records. The bias of multi-

taper estimates could be further reduced by applying the technique described in [Prieto

et al., 2007]. A comparison of the modal parameters identified using a frequency-domain

technique from the response CPSD estimated using WMP and SMT is shown in figure 4.9.

The algorithm 3 is one of the key components of the real-time modal analysis procedure.

By tuning its parameters it functions as both WMP and MTM10. In the experimental

implementation, the most recent data block is appended at the end of the data buffer,

therefore the segments slide backwards to be able to observe transients as soon as possible.

The most resource-intensive steps in the algorithm are the FFT and the computation of

the outer product of response and reference channels. This is addressed by computing the

CPSD matrix only for the frequency bins within the current frequency band and from

unique channels among the selected responses and references11. In principle it is possible

to parallelize the loops for additional speed, but this is convenient only when the overhead

(setup) time is small compared to the computation time12. In [Jeličić et al., 2017]

operational modal analysis has been performed using a frequency-domain method whose

data source is the output cross-power spectral density. Typically only a subset of all sensors

can be used as reference because of limits on computational capabilities. In the cited

experiment, a CPSD matrix with 51 responses, 21 references and 630 frequency bins had

to be computed efficiently in less than two seconds.
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Figure 4.9: Comparison between WMP and SMT. The model of a 5-story building with four
lateral degrees of freedom is randomly excited at the ground floor in a Monte Carlo simulation
with 1000 runs. 10000 samples are acquired to estimate a full 4 × 4 CPSD matrix with a
window of length 512 and overlap 2/3 (WMP: Hann window, SMT: DPSS tapers with time-half
bandwidth product 2). The modal parameters are then identified with a frequency-domain
method. When the number of samples is low, SMT performs better.

10 If the taper matrix input is a vector and Lw < N , then SMT is equivalent to WMP (algorithm 1). If
the taper matrix input is a matrix and Lw = N , then SMT is equivalent to MTM (algorithm 2).

11 The autopower spectral density of all acquired channels is always estimated because it is a very
important source of information and diagnostic tool during experiments.

12 In practice parallelization may not be feasible because the setup time and the portion of the code that
cannot be parallelized are large fractions of the total available time, hence Amdahl’s law predicts a meager
performance improvement.



4.3. Spectral estimation methods 115

Algorithm 3: Segmented multi-taper method

Data: Sampled time data v[n] of length N and sample rate fs
Settings: response Y and reference X channels, taper matrix T ∈ RNt×Lw , taper
weights w ∈ RNt , overlap Ow, frequency range [fmin , fmax]
Result: CPSD Ĝyx[k], APSD of all channels Ĝc[k], frequency vector f

Initialization:
Construct frequency vector: f ← {0 : 1/N : 1/2}fs
Compute number of non-overlapping samples: No = ⌊Lw(1−Ow)⌋
Compute number of windows: Nw = ⌊(N − Lw)/No⌋+ 1

Get indices of first segment starting from the back: Iw ← {N − Lw + 1 : N}
Get indices of unique channels: Iu = Y ∪ X
Get logical indices of unique channels that are responses: Iy ← Iu ∈ Y?
Get logical indices of unique channels that are references: Ix ← Iu ∈ X?
Get logical indices of frequency bins in range If ← f ≥ fmin ∩ f ≤ fmax

Get frequency vector within range f ← f(If )

Run:
Initialize PSD matrices Ĝyx = 0 and Ĝc = 0
for i = 1 : Nw do

Scale j-th taper by its norm-2 and weight:

t← w[j]

∥T[j, :]∥
T[j, :]

for j = 1 : Nt do
Compute the DFT of i-th tapered segment with j-th taper:

ṽ← DFT(v[Iu , Iw] ◦ t)

Get DFT of response and reference channels in current frequency range:

ỹ← ṽ[Iy , If ] x̃← ṽ[Ix , If ]

Compute outer product and square of each DFT:

Ĝyx[k]← Ĝyx[k] + ỹ[k]x̃H [k] Ĝc[k]← Ĝc[k] + |ṽ[:, If [k]]|2

end
Slide data segment backwards: Iw ← Iw −No

end
if fmin = 0 then

Halve the PSD at DC: Ĝyx[0]← Ĝyx[0]/2 and Ĝa[0]← Ĝa[0]/2
end
Calculate average and apply correct scaling:

Ĝyx ←
2

fsNwNt
Ĝyx Ĝa ←

2

fsNwNt
Ĝa



116 4. Spectral estimation

4.4 Spectral estimation of time-varying systems

The aim of spectral analysis of LTV systems is to obtain a useful time-frequency represen-

tation of the response that can provide (immediately or in additional steps) information in

terms of eigenfrequency (resonance), damping ratio (decay) and eigenmodes (mode shapes).

[Cohen, 1989] reviews at length several time-frequency distributions and concludes that

there is no one method that outperforms others in all metrics. Time-frequency analysis

is covered exhaustively in the monograph [Cohen, 1995]. Recent and equally detailed

surveys of the topic [Feng et al., 2013; Shafi et al., 2009] reach similar conclusions:

the method of time-frequency analysis should be tailored for its intended purpose and

selected for the class of signals it is applied to. The simplest and most intuitive technique

is the short-time Fourier transform (STFT) to observe changes in the frequency component

of the signal. It is physically meaningful, fast, but has a limited ∆t∆f resolution because it

uses a fixed-size window and its basis functions have infinite support. Wavelets tackle this

issues by adopting multiple time-scales and kernels with limited support in both the time

and frequency domains [Mallat, 2008; Walnut, 2002] (see also appendix A.12). They

are a popular and effective choice in detecting transients and low frequency components,

but require the selection of the right basis and have bad resolution for high frequencies.

Wavelets find applications in both spectral estimation and system identification problems

[Avendaño-Valencia et al., 2020]. Other non-parametric methods utilize bilinear

time-frequency distributions [Zhou et al., 2014] and the Hilbert-Huang transform [Bao

et al., 2009]. Figure 4.10 presents a comparison between the short-time Fourier transform,

the continuous wavelet transform and a bilinear time-frequency distribution.

In this research we aim to analyze signals that are broadband random, contain many

lightly-damped poles and are affected by noise. The system variation is expected to be

sufficiently slow and spectral estimation must be performed efficiently for dozens of channels.

The chosen approach is thus to employ the short-time Fourier transform because it is

economical, easy to interpret, does not require foreknowledge about the signals and can be

paired with existing frequency-domain identification techniques.

Figure 4.10: Comparison of short-time Fourier transform, wavelet transform and a bilinear
time-frequency distribution (in this case, the smoothed pseudo Wigner-Ville distribution).
Data from the airfoil-rudder system 7.2 with linear speed profile from rest to flutter. Only
4000 samples are available for spectral estimation.
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In [Eugeni et al., 2018] it is argued that a system is slowly-varying as long as the

maximal eigenfrequency variation ∆fn = Tbmax
{

∂fn
∂t

}
over the observation interval Tb is

lower than the corresponding frequency resolution ∆f = 1/Tb. The maximal allowed rate

of variation is thus: √
max

{
∂fn
∂t

}
≤ 1

Tb
(4.31)

The faster the system variation, the smaller the possible observation interval. However,

this simplified criterion is excessively conservative and does not account for the type of

parameter variation. For example, for periodic systems the instantaneous eigenvalues may

change rapidly, yet the actual eigenvalues (Floquet’s exponents) are constant. In this

regard we have seen in chapter 2 that time-invariant and periodic systems have a similar

pole-residue form in frequency-domain representation. Consequently, spectral estimation

works the same way for periodic systems.

When parameter variation is arbitrary, then the working hypothesis is that the system is

slowly-varying within the observation interval:

Hypothesis. The system S does not vary significantly within the interval [tn, tn + Tb],

where Tb = Lw/fs > 0 is an appropriately short block used for spectral estimation.

Depending on the system, the observation time Tb can be determined based on the

criteria delineated in chapters 2 and 3. For instance, the maximal variation of the mode

dynamic coupling can be limited to 0.05 (see for example figure 3.15). Without numerical

models, Tb must be determined experimentally. In practice the observation window is as

small as necessary for reasonably stationary conditions13. Equivalently, it may be stated

that the system is slowly-varying. This assumption is used, among others, in [Ertveldt

et al., 2014; Lataire and Pintelon, 2010; Spiridonakos and Fassois, 2009].

Let Gxx(ω, t0) be the CPSD of the input signal in the interval [t0 , t0 + Tb]. The

corresponding output CPSD Gyy(ω, t0) can be determined by equation (4.16):

Gyy(ω, t0) ≈ H(ω, t0)Gxx(ω, t0)H
H(ω, t0) (4.32)

The transfer function H(ω, t0) corresponds to the system at the mean time S(t̄) or mean

parameters14 S(p̄). Equation (4.32) is a frozen-time approximation of the system: the

analytical output spectra Gyy(ω, t0) differ from the estimated output spectra estimated

Ĝyy(ω, t0) due to time-varying dynamics, but under the current assumptions these are

higher-order terms that are less important than estimation bias. Averaging is necessary to

reduce variance, but in the time-varying case, each data segment contains the response

of a system with different parameters and therefore a “snapshot” of the system at that

13 Normally Tb is much larger than the sampling interval Tb ≫ 1/fs. For an aeroelastic system with a
realistic parameter variation this can be as large as a hundred times the lowest time constant. The duration
Tb is determined by the lowest resonance bandwidth of interest.

14 Taking the mean is one of the possible choices. Poles with low damping have high peaks that tend to
dominate the spectrum. This effect is particularly prominent in a hard flutter case because the real part of
the critical mode plunges rapidly and the corresponding peak grows (see figure 4.13).
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time. Consequently, during the whole data buffer the variation may be significant even

when within a single segment it is not. This limitation can be circumvented by acquiring

several realizations of the system and by averaging the time data blocks corresponding to

the same point along the parameter path.

Two approaches are thus considered for time-varying system spectral estimation:

• Sequential averaging (subscript “w”) is the average of spectra estimated by from

overlapping data blocks (windows) within a long time data buffer (see Welch’s

modified periodogram in section 4.3.1).

• Ensemble averaging (subscript “e”) consists in acquiring several uncorrelated sys-

tem realizations with the same parameter variation. The spectrum is estimated

by averaging all data blocks corresponding to the same starting time within one

realization.

Figure 4.11 illustrates the two approaches schematically. Let L be the data block (window)

length and fs the sample rate. The data block length is a trade-off between acceptable

frequency resolution and system variation during the time L/fs. In sequential averaging

the window advances by an interval ∆tw = ⌊L(1 − Ow)⌋/fs, where the optimal overlap

Ow is specific to each window type. For a given frequency resolution, let N/fs be the

buffer duration needed to reduce the variance below the desired level using Nw averages.

The spectral estimates Ĝyy(ω, t0 + n∆tw) are then obtained from the time intervals

t0 + n∆tw + [0 , N/fs] for n = 0, 1, ... by averaging within the buffer and then sliding

Figure 4.11: Sequential and ensemble averaging in the spectral estimation of time-varying
systems. For the sake of clarity, the data blocks are not overlapping in this figure. In the
sequential approach averaging is performed from Nw contiguous segments. The buffer is then
shifted by L samples to produce a new spectral estimate. In the ensemble approach the
spectrum is estimated from Ne block from different experiments but with the same phase along
the parameter path. The buffer is then shifted by L samples to produce a new estimate valid
for different parameter. Both approaches process the same amount of data and result in a
temporal resolution of L/fs. See text for discussion.
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it forward. On the other hand, in ensemble averaging the fractional overlap Oe can

be chosen freely (in some cases even 0.99) based on the desired temporal resolution

∆te = ⌊L(1−Oe)⌋/fs of the spectra. The spectral estimates Ĝyy(ω, t0 + n∆te) are now

obtained from the time intervals t0 + n∆te + [0 , L/fs] for n = 0, 1, ... by averaging Ne

realizations and then sliding the buffer forward. The system must now be slowly-varying

only within the duration of a data segment L/fs instead of N/fs, a condition that is easier

to satisfy in the normal operating range of aircraft and wind tunnels.

Figure 4.12 provides an example of sequential averaging from a buffer of duration

N/fs. In this case one estimate Ĝyy(ω, 0) is obtained. Figure 4.13 displays the comparison

between the analytical prediction and the spectra estimated using ensemble averaging. For a

given overlap Oe, the spectral estimates are Ĝyy(ω, n∆te) where n = 0 : ⌊(N −L)/∆te/fs⌋.
There is good agreement between the experimental and predicted spectra and sufficient

temporal resolution to observe the eigenvalue evolution.
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Figure 4.12: Short-time spectral estimation of airfoil-rudder system response with linear
speed profile from rest to flutter (blue: low, red: high) in T = 20 s. The line color represents
the parameter (blue: low, red: high). Left column: instantaneous spectra corresponding to 20
windows, right column: resulting average. A large parameter variation results in three peaks
appearing where there are only two eigenmodes. Conversely a smaller parameter variation
would enlarged one peak due to superposition; the estimated damping is consequently higher.
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Figure 4.13: Same system as in figure 4.12. Short-time spectral estimation of airfoil-rudder
system response with linear speed profile from rest to flutter (blue: low, red: high) in T = 20 s.
The red line marks the location of the unstable mode. The left plot displays APSDs estimated
using very short time intervals (as long as a single periodogram segment). The right plot shows,
in very good agreement, the analytical output spectra calculated from the mean system within
this short interval. The temporal resolution of the spectra is very high.
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Let us set the number Nt of time instants (or parameter points) at which the system must

be identified and impose that the two methods have the same number of spectral averages

Na and frequency resolution ∆f = fs/L, i.e. equal frequency bias and random error. The

total number of samples N tot
w and N tot

e that must be acquired is15:

N tot
w = Nt · L

(
(Na − 1)(1−Ow) + 1

)
N tot

e = Na · L
(
(Nt − 1)(1−Oe) + 1

) (4.34)

The two equations look very similar, but data is employed differently. Sequential averaging

overlaps its data blocks, but it requires a contiguous and long data buffer. Ensemble

averaging does not overlap its data blocks, but it compensates with a lower parameter

variation within the buffer it uses to estimate spectra. This means that in sequential

averaging the system evolves longer than with ensemble averaging by a factor:

N/fs
L/fs

= (Nw − 1)(1−Ow) + 1 (4.35)

Let us take a look at the random error εr. In the usual sequential approach we have

εr = 1/
√
Nwkeq, where keq is the equivalent number of averages factor based on the chosen

window function and overlap16 (see figure 4.4). In contrast, in ensemble approach the

spectral averages do not overlap, therefore the normalized random error is εr = 1/
√
Ne,

which implies Nw < Ne.

In conclusion:

• Sequential averaging is suitable for invariant or, at most, very slowly-varying systems

because it uses a contiguous data buffer for each parameter point / time instant. If the

experiment’s purpose is measuring time-varying dynamics, then this point-by-point

frozen-time estimation arguably does not fulfill the requirement. This approach can

estimate spectra continually “online” as new data comes in.

• Ensemble averaging is to be used where the experiment must take a faster system

variation into account. It requires several equal system realizations, which might

be difficult to execute experimentally (this has to be verified case by case). If the

system is periodic, this approach can refine “online” its estimate with each new

parameter cycle (period). The important advantage of this technique is the less

stringent requirement on parameter variation.

15 The number of samples for a single parameter is (for convenience we drop the floor function):

Nw = (Na − 1) · L(1−Ow) + L

Ne = NaL
=⇒ Nw ≤ Ne (4.33)

16 For example, assuming an optimal Hann window overlap Ow = 2/3, which corresponds to an equivalent
number of averages factor keq = 2.04, a normalized random error of εr = 0.1 is achieved when:

N

L
= (0.1−2/2.04− 1)(1− 2/3) + 1 ≈ 17

therefore, for a certain block length L, the system must evolve approximately 17 times longer when
employing the sequential averaging.
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Ensemble averaging may be applied in an experimental setting when fast parameter

variation warrants a closer inspection of its dynamics and when obtaining the necessary

number of realizations is not a concern. For arbitrary LTV systems, multiple experiments

must be carried out to collect enough data for system identification. This is well attested in

literature, see for example [Liu, 1997; Ma et al., 2017; Majji et al., 2010; Spiridonakos

and Fassois, 2009; Zhou et al., 2014] and references therein. Ensemble averaging will

be applied in chapter 7 to study time-varying systems whose variation is too fast for a

single contiguous data buffer.

4.4.1 On spectral estimation applied to aeroelastic systems

In ground vibration testing of aircraft, the frequency response function estimation is

performed by a carefully-designed experiment, with methodical sensor selection and place-

ment to increase the signal-to-noise ratio, optimal excitation, location, level and direction,

controlled boundary conditions, noise characterization and long acquisition times over

several runs [Govers et al., 2014; Stéphan et al., 2015]. In this regard, the book from

[Pintelon and Schoukens, 2004] is a recommended reference on the topic.

Spectral estimation applied to aeroelastic systems in operating conditions has unfor-

tunately few such amenities. Duration is always constrained by schedule and cost (e.g.

flight hours, wind tunnel operation, testing of different configurations, hiccups). Sensor

selection may be severely limited in number, location, type and operating temperatures.

The experimenter may have little control over excitation types or levels and weather

conditions. Additionally, there may be unavoidable contributions from feedback loops (for

example an aircraft’s flight control system and the pilot) or interactions with neighboring

systems (for instance the brakes, balance and pumps in a wind tunnel).

An important consequence of the system’s linearity is that a random input produces

a random output with the same distribution and a different amplitude and phase. Since

turbulent excitation is normally-distributed, the responses must be as well. Channels

that deviate from the Gaussian distribution can indicate that data is non-stationary, that

nonlinearities are at play, that a flutter condition is being approached, that a sensor is

faulty or that there is another component exciting the system such as rotating machinery.

As an example, figure 4.14 displays the measured acceleration distributions of a wind

tunnel test near the flutter conditions.

Aircraft are subject to gust excitation, aerodynamic forces and maneuver loads under

different flight conditions, therefore the response signals have in general a non-stationary

character. Implicitly it is assumed that the time data record provided to spectral estimation

is stationary and ergodic (i.e. its principal moments do not vary). This assumption is

not easy to satisfy during flight vibration testing as excitation levels may change due to

transient turbulence, maneuvers, flight speed or altitude variations. As an example, figure

4.15 displays the principal moments of the measured responses at constant altitude during

flight vibration testing in order to highlight their non-stationary character.
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Figure 4.14: Probability density distribution of the measured accelerations during a wind
tunnel test displayed as histograms. The mean, variance, skewness and excess kurtosis of each
channel (see appendix A.11) are displayed in the upper left corner. The top channels deviate
considerably from the Gaussian function distribution computed from the sample’s mean and
variance (black line). In channel 2 the onset of flutter is seen as a sine overlaid with a normal
distribution. Data from the transonic wind tunnel DNW-TWG [Jeličić et al., 2014].
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Figure 4.15: Three principal moments of vertical accelerations recorded on an airplane while
entering turbulence. The time blocks where skewness and excess kurtosis deviate suddenly
from zero denote non-stationary conditions because the response is not normally-distributed.
Flight test data from [Jeličić et al., 2017] (see chapter 8).

Figure 4.16 displays the spectrogram of a channel acquired while flying in the wake of

another aircraft. The local characteristics of the signal are resolved by short overlapping

buffers (short-time Fourier transform). The spectrogram reveals immediately that the

excitation level is not constant and a closer inspection reveals that resonance peaks shift

due to flight speed variation. The spectral estimation parameters are chosen carefully in

order to maintain simultaneously adequate time and frequency resolutions. The MTM is

set up to have the same spectrum variance of Welch’s modified periodogram, but with a

higher frequency resolution, which is beneficial to frequency-domain system identification

methods. In the construction of the spectrogram, the faithful estimation of the resonance

peak (reducing the frequency bias error) may be relaxed for more flexibility in the choice

of ∆t∆f .
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Figure 4.16: The spectrogram on the left displays the uneven turbulence encountered by
an aircraft flying into the wake of another. The plot on the right is a section of the same
spectrogram. The WMP and MTM methods have approximately the same variance, but the
latter has a threefold frequency resolution increase. Flight test data from [Jeličić et al.,
2017] (see chapter 8).

In [Brenner et al., 1997], in the context of aeroservoelastic investigations with

nonstationary and time-varying dynamics, the authors note the limits of FFT-based spectral

estimates and supplement them with time-frequency techniques to assist the detection of

nonlinearities and to improve modal analysis. The frequency-domain representation of

non-stationary signals of LTV systems may be difficult to interpret, that is, it may not

clearly reveal the locations of the system’s poles or the input’s frequency components.

However, there are circumstances under which time-varying systems can be considered

stationary or quasi-stationary enough for spectral estimation methods to deliver sensible

results. Wind tunnel experiments are essentially stationary and spectra can be estimated

by “classical” methods [Jeličić et al., 2014]. Flight vibration testing is more challenging

due to the non-stationary character of excitation but also because the signal-to-noise ratio

may be inadequate for some sensors [Jeličić et al., 2017]. Experimental results will be

discussed in chapter 8 where this topic will be expanded further.
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4.5 Chapter summary

Spectral estimation in introduced for the purpose of vibration monitoring and modal

analysis of experimental data. Two non-parametric approaches are considered: Welch’s

modified periodogram and the multi-taper method. Based on existing theory, we have

combined them into the segment multi-taper method, which shows better performance for

very short signals.

Two issues arise with real measurements of random data: limited frequency resolution

and variance of spectral estimates. To address the first problem, the signal’s duration

(amount of collected information) must be greater than a certain threshold. On the other

hand, in order to reduce variance, several spectral estimates must be averaged. It is not

possible to reduce both at will lest more data is collected, consequently the experimenter

must find a compromise between frequency bias and random errors. To this end, the

chapter has detailed the parameters of spectral estimation.

Sequential averaging can be employed when the system undergoes a limited variation.

Ensemble averaging employs several realizations with the same parameter variation to

attain better time-frequency resolution. There exist numerous time-frequency analysis

methods for the general time-varying case. However, when the system is slowly-varying

with respect to the estimation buffer or window, it is possible to obtain useful spectral

estimates with adequate time resolution. The non-parametric spectral estimation based

on the Fourier transform is therefore the preferred approach for the application at hand

because it is easy to compute and interpret.
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Abstract

The system identification methods estimate the modal parameters from time-domain or frequency-

domain data. The objective is to determine the eigenfrequency, damping ratio and mode shapes

solely from the measured system responses and to track their evolution over time or external

variables. For this purpose, the Stochastic Subspace Identification and Least-Squares Complex

Frequency algorithms are employed within the operational modal analysis framework.

System identification is the analysis of the measured response of a dynamic system

subject to some excitation in order to construct a simplified mathematical representation

of it. The system’s complex behavior is thus modeled by a limited set of variables

whose purpose is to provide an adequate characterization of its dynamics. This task

incorporates experiment design, model structure selection, parameter estimation and

validation. Several different techniques have been developed to estimate the system

parameters under various experimental conditions. The identified model enhances the

physical understanding of the system and forms a basis for simulation, control, prediction

and filtering. System identification is therefore a multidisciplinary science that attains from

control theory, signal processing, optimization and statistics. It has found a very broad

range of applications in structural dynamics, robotics, electronics, bioengineering, chemical

processes and astrophysics. The reader is referred, among many others, to [Ljung, 1999],

[Pintelon and Schoukens, 2004] and [Verhaegen and Verdult, 2007] for a complete

overview and treatment of the topic.

In the context of modal analysis applied to aircraft, modal parameter estimation is

performed to determine the eigenfrequency, damping ratio and modes of vibration, to study

the sensitivity to structural modification, to update finite element models with experimental

data, to tune flight control laws, to understand the vibroacoustic coupling between structure

and radiated noise. The identification of time-varying systems is still an open issue whose

theoretical background is being constantly expanded. Our goal is the real-time system

identification of parameter-varying aeroelastic systems excited by turbulence and acoustic

noise. We are interested in the in-flight monitoring of the structure’s modal parameters as

a function of wind speed and air density. This can be accomplished by modal parameter

estimation techniques that process the measured system outputs.

The chapter’s roadmap is thus:

1. Introduction of system identification and modal analysis frameworks.

2. Description of the adopted output-only system identification methods.

This chapter is dedicated to the methodology, while the application on simulations and

experimental data will be presented in chapter 8.
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5.1 Modal analysis frameworks

The measured outputs are the primary data source of system identification. Three scenarios

appear depending on whether the input can be acquired as well:

• When the excitation is known, system identification is performed within the framework

of input-output or experimental modal analysis (EMA). In this scenario optimal

experimental conditions are designed to estimate the system’s transfer function.

• When the excitation is unknown, unmeasurable or the structure’s modal parameters

must be determined during operation, the methods of output-only or operational

modal analysis (OMA) are invoked. In this case only the structure’s response signals

(typically accelerations, velocities or strains) can be used to extract modal parameters.

• When the system is subject to both known and unknown inputs, then the operational

modal analysis with exogenous inputs (OMAX) approach provides maximal data

exploitation by utilizing the ambient excitation to extract information about the

system as well.

In the EMA framework, the measurement of the frequency response function provides the

full description of a linear time-invariant system. The experimenter strives to realize almost

ideal and controlled laboratory conditions. Furthermore, it is possible to characterize the

input and output noise spectra in order to improve the estimated transfer function in the

errors-in-the-variable framework. This is a field of great engineering interest because it can

provide very accurate information about dynamic systems [Pintelon and Schoukens,

2004; Verhaegen and Verdult, 2007].

When conditions for EMA are not possible or feasible, the modal parameters must be

extracted using output-only techniques. This happens when the available system model

is not representative of actual operating conditions or when ambient excitation cannot

be isolated or measured. This is typically the case for buildings, ships, wind turbines,

aircraft in flight and any other very large structure. A specific application of OMA is

structural health monitoring: modal analysis is performed to identify the structure’s real

behavior under operating conditions, to monitor its integrity over a very long period and

to reduce inspection costs due to its remoteness. The OMA framework is challenging

because the quality or quantity of available information is inferior compared to EMA.

The analyst is confronted with non-ideal experimental conditions, higher susceptibility to

errors and unaccounted dynamical effects. A key assumption is that the input is stationary

and normally distributed white noise, which is almost never the case. Nevertheless, it

remains a topic of active research and of great interest for engineers because OMA delivers

useful data. The books from [Van Overschee and De Moor, 1996], [Brincker and

Ventura, 2015] and [Rainieri and Fabbrocino, 2014] offer an overview of several

aspects of operational modal analysis.
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5.2 Modal analysis of aeroelastic systems

Within the context of aeronautic testing there are three modal analysis approaches:

• The ground vibration test (GVT) of an aircraft is carried out by applying known

forces and measuring the response of the structure, hence it is conducted within the

EMA framework. The airplane is suspended to realize a free-free condition while

sweep or random signals are applied by electrodynamic shakers. The measurement

campaign is designed to achieve optimal sensor distribution, excitation locations and

directions, signal duration, signal-to-noise ratio, and so forth. During GVT several

load levels, driving point locations and geometric configurations are investigated to

construct a complete modal model of the aircraft [Govers et al., 2014; Stéphan

et al., 2015]. The experimental results are typically used to validate the structural

dynamics modeling and for the design of the electronic flight control system.

• The taxi vibration test (TVT) is performed by taxiing or towing the aircraft on the

taxiway. Excitation is provided either by the uneven pavement, path roughness or

low-lying obstacles such as wood planks. The TVT assists in checking the flight test

instrumentation before actual testing. This is of great importance for assessing the

data acquisition setup when large numbers of different sensors are employed [Govers

et al., 2017; Sinske et al., 2018].

• The flight vibration test (FVT) of an aircraft is conducted by analyzing the structure’s

dynamics under a variety of flight conditions. The real operating environment can

differ significantly from the ideal laboratory conditions of a GVT. The simulation of

new aircraft’s flutter behavior is conducted with considerable effort, but adequate

aeroelastic stability must be demonstrated in flight for the whole flight envelope

up to maximum speed and maximum altitude. Often artificial excitation with

control surface impulses is employed to inject energy into the system. The identified

modal parameters are used to analyze the system stability within the flight envelope

or to update numerical models [Corda et al., 2002; Iovnovich et al., 2018;

Schwochow and Zöger, 2013].

Parameter-varying aeroelastic systems such as aircraft in flight or wind tunnel models

during operation are subject to air turbulence and acoustic noise, therefore identification

is carried out in the output-only framework. If available, information from a GVT is

utilized to locate and label the main modes, to construct a reference modal model, to gain

further insight about the system. An overview of aircraft vibration testing can be found in

[Böswald et al., 2017; König, 1995]. The system identification methodology applied in

this thesis has been developed and gradually improved and refined during ground vibration

testing [Govers et al., 2014], wind tunnel testing [Böswald et al., 2019; Jeličić

et al., 2014] and flight vibration testing [Jeličić et al., 2017]. We shall focus on the

practical aspects of FVT in chapter 8
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5.3 System identification methods

In the endless quest of finding the most efficient, unbiased and robust modal parameter

estimator, a great number of system identification methods in the time and frequency

domains have been developed over the years. The ability to estimate modal parameters

reliably under various experimental circumstances is important to many engineering

applications. As one should always “expect the unexpected” when performing experiments,

the chosen method must be able to deal with faulty sensors, interruptions, bad data,

noise and errors. Importantly, the system identification procedure must be fast and

responsive because the user is allowed to constantly adjust settings during data acquisition.

Such requirements restrict the algorithm choice. [Reynders, 2012] describes in much

mathematical detail several system identification methods for modal analysis and provides

a review and comparison.

In the present work we need to perform vibration monitoring and modal analysis in

real-time. In order to accomplish this goal, two methods have been taken into consideration:

• SSI : Stochastic Subspace Identification

• LSCF : Least-Squares Complex Frequency

Both are popular in the modal analysis community as experimental tools and as research

topics and are implemented in various vibration analysis software packages. SSI features

predominantly in time-domain data-driven applications, whereas LSCF is a frequency-

domain technique particularly suited for EMA. The two methods have advantages and

disadvantages that may clearly favor one over the other in certain circumstances, but they

are generally complementary. In the author’s experience it is difficult to state a preference.

For flexibility and redundancy, both methods have been researched and implemented as

fail-safe when performing online vibration monitoring (see chapter 8). Their algorithms

have been adapted to the task at hand particularly with regard to efficiency and clear

stabilization diagrams. We shall provide more details and references in the corresponding

sections 5.4 and 5.5.

5.3.1 Modeling assumptions

Let us consider a time-varying system in the operational modal analysis framework:

ẋ(t) = A(t)x(t) + v(t)

y(t) = C(t)x(t) +w(t)
(5.1)

where v(t) are the unknown/unmeasured inputs and w(t) is the output measurement noise.

It is assumed that the system is observable and controllable, i.e. that the observability

and controllability Gramians are nonsingular [Rugh, 1996]. In operational modal analysis

the inputs are unmeasurable, but random. It is also assumed that the excitation satisfies

wide-sense stationarity (the covariance between two samples depends only on time difference

and not on the time at which they have been sampled) and quadratic mean ergodicity
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(ensemble averaging can be replaced by time averaging) [Dougherty, 1998]. The variance

of the identified modal parameters increases when the last two assumptions are not fully

met. [Benveniste and Mevel, 2007] show that subspace algorithms can converge to

the “true” eigenstructure (only the system poles, not the zeroes) despite nonstationary

excitation. In real-life situations, the unobserved input is mostly: random, harmonic

or a combination of the two. Within operational modal analysis it is assumed that the

excitation is white noise, i.e. a stochastic process with constant-amplitude power spectral

density within a finite interval and with uniformly-distributed random phase [Bendat

and Piersol, 2010]. In reality, the input is more likely to be colored (see, for example,

the von Kármán gust spectra in section 3.3), therefore highly-damped and complex modes

may be fitting the colored input spectrum [Neu et al., 2016]. Furthermore, there might

be harmonic components due to the presence of rotating machinery and electronic devices

(see figure 5.2 for a real example). The characterization or modeling of input and output

noise leads to better spectral estimates and system identification results, however this is

not always feasible or possible [Pintelon and Schoukens, 2004].

5.3.2 System formulations

Depending on the system identification method, the system is described in one formulation

or the other. We shall at first consider the time-invariant case and describe the application

of “classic” techniques to time-varying systems in later sections. We shall review concisely

the forms of the transfer function introduced in section 2.2 and, for simplicity, ignore the

feed-through matrix because it can be simply added back later:

• State-space form: the transfer function of an LTI system is:

H(s) = C(sI−A)−1B (5.2)

where A ∈ RNx×Nx , B ∈ RNx×Nu and C ∈ RNy×Nx . Subspace methods determine

the system in this form [Van Overschee and De Moor, 1996].

• Pole-residue form: the system can be diagonalized by the eigendecomposition of the

state matrix and written as a sum of simple poles:

H(s) = CΨ(sI−Λ)−1Ψ−1B =

Nx∑
k=1

ckb
T
k

s− λk
=

Nx∑
k=1

Rk

s− λk
(5.3)

where λk are eigenvalues, R = ckb
T
k the residues and ck ≜ CΨek ∈ CNy and

bT
k ≜ eTkΨ

−1B ∈ C1×Nu the columns and rows of the transformed output and

input matrices respectively. In modal analysis applied to mechanical or aeroelastic

structures, identification results are usually presented in the modal form because

the interest lies in the resonances and modes of vibration [Böswald et al., 2010;

Govers et al., 2014].
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• Polynomial form: by factoring the previous equation we obtain

H(s) =

∑Nb
k=0Bks

k∑Na
k=1 aks

k
(5.4)

whereBk ∈ RNy×Nu ∈ R and ak are respectively the k-order numerator and denomina-

tor polynomial’s coefficients. This equation is a common-denominator model because

the denominator is a scalar function. Other formulations are the left- and right-

polynomial fraction models where the denominator is a matrix: H(s) = A−1(s)B(s)

and H(s) = B(s)A−1(s) [Rugh, 1996, Ch. 16]. LSCF methods fit a polynomial

model [Cauberghe, 2004].

• Zero-pole-gain form: by writing the roots of the numerator and denominator poly-

nomials the transfer function can be expressed in the zero-pole-gain formulation for

each pair of outputs and inputs:

Hij(s) = Gij

∏Nz
k=1(s− Zk,ij)∏Np

k=1(s− pk)
(5.5)

where pk are the poles (denominator’s roots), Zk,ij ∈ CNy×Nu are the zeros (nu-

merator’s roots) and Gij ∈ RNy×Nu the gain between the i-th output and j-th

input.

In theory all formulations are equivalent, but in practice some transformations are numeri-

cally badly conditioned. For instance, a rational polynomial’s partial fraction decomposition

is an ill-posed numerical problem because slight changes in the data can cause dispro-

portionate change in the poles and residues. It is thus advisable to use the state-space

or zero-pole-gain representations as much as possible [Proakis and Manolakis, 2013].

Mechanical systems are mostly described by the pole-residue form1.

5.3.3 Stabilization diagram

The primary result of a system identification method is a set of eigenvalue and eigenvector

pairs that have been estimated for various model orders. The row of each eigenvector

describes a mode shape’s amplitude and phase at the corresponding response channel on

1 Mechanical systems are second-order and the mass, damping and stiffness matrices are real and
symmetric (2.8), which leads to a pole-residue (or modal) form of the frequency response function (5.6)
that is omnipresent in structural dynamics [Brandt, 2011; Rainieri and Fabbrocino, 2014]:

H(ω) =

Nm∑
k=1

(
Rk

iω − λk
+

R∗
k

iω − λ∗
k

)
(5.6)

where Rk ≜ ψkψ
T
k /ak ∈ CNm×Nm are the residues corresponding to each eigenpair {ψk, λk} and ak are

the so-called “modal-a” scaling constants. They can be computed by[
0 I

−M−1
K −M−1

D

]
= ΨΛΨ

−1
=⇒ ak = ψ̂

T

k (D+ 2λkM) ψ̂k (5.7)

where ψ̂k denotes the upper half of each eigenvector ψk [Reynders, 2012, Eq. 172].
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the structure. Model order, band, variance and other metadata are associated to each

identified mode. The modal model is the collection of those modes that have been selected

to represent the system, i.e. the terms in its pole-residue form.

The stabilization diagram is an effective system identification results supervision tool.

It is the plot of each identified pole’s eigenfrequency over its model order overlaid above a

frequency-domain representation of the acquired data (transfer function for EMA or power

spectral density for OMA). Reconstructed spectra are also displayed to validate the identi-

fication procedure. If available, coherence, spectrum variance, (complex) mode indicator

function and so forth can be plotted. The stabilization diagram is often accompanied by

a geometry plot to display the animated mode shapes and an eigenvector orthogonality

plot to check if there are missing or double modes (see section 6.2). If available, the

variance of each identified pole can be displayed as a horizontal bar to indicate visually

the accuracy of fitted poles, as shown in [Döhler et al., 2013b]. Figure 5.1 displays an

example constructed from real data and figure 5.2 comments some of its features. The

stabilization diagram shows graphically which system poles have been estimated consis-

tently over several model orders. Poles that are identified with little variation in terms of

absolute value, damping ratio or associated eigenvector are termed “stable” and give a

strong indication that they are indeed physical poles of the system. Conversely, “unstable”

poles that wander around are fitting artifacts (in this context “unstable” modes do not

assess the system’s stability!). We refer to the classification of poles introduced in section

2.2.1. In the case of mechanical structures, lightly-damped 0 ≤ ζ ≤ 1/
√
2 eigenvalues are

very likely to represent the physical poles of the system, therefore any unstable ζ < 0

or highly-damped ζ > 1/
√
2 modes are usually automatically ignored. Aeroelastic sys-

tems, however, have several purely real or highly-damped eigenvalues corresponding to

the lag states or the colored input (see chapter 3.1). Purely imaginary or very slightly

unstable estimated eigenvalues may appear near the flutter boundary. Undamped periodic

vibration corresponds to the flutter condition, a limit cycle oscillation or the harmonics

of rotating machinery. Since the system is real, the identified eigenvalues must come in

complex-conjugated pairs, possibly with some single purely real poles: we shall therefore

display only poles with ℑλ ≥ 0. For identification methods that represent the system with

a rational polynomial (5.4), poles at infinity are obtained when the order of the numerator

is higher than the order of the denominator (for example for acceleration spectra). Given a

frequency range in which we want to identify the system, we shall thus apply the constraint

fmin + 0.005∆fB ≤ fn ≤ fmax − 0.005∆fB where ∆fB ≜ fmax − fmin. Mathematical

(spurious) poles arise as the system identification method tries to fit disturbances in the

data. They may appear due to the presence of errors, nonlinearities, or because of poor

signal-to-noise ratio on some sensors. They appear as lone poles with unrealistic damping,

where there is no resonance peak, do not have a stable eigenfrequency over several model

orders or have highly complex associated mode shapes.
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A clean stabilization diagram is obtained – first and foremost – by good estimators,

careful numerical implementation and proper signal processing. No sorting or cleaning of

estimated modal parameters is performed on the stabilization diagrams in this thesis.

Figure 5.1: Stabilization diagram example. The square markers represent the identified
poles over several model orders and their color encodes the damping ratio (blue: low, yellow:
high) (color highlights unrealistic variations between model orders). The text reports the
modal model’s eigenfrequency in Hz (bottom) and damping ratio in % (top). The vertical
gray lines are located at the modal model’s eigenfrequencies. The red line (or dots) is the
frequency-domain representation of the input data (OMA: CPSD, EMA: FRF). The blue line
is the mean of the reconstructed (synthesized) spectrum according to the current modal model.
No sorting or cleaning of the eigenvalues has been applied. Data from the transonic wind
tunnel DNW-TWG [Jeličić et al., 2014].

Figure 5.2: Details from figure 5.1. Left plot: the second mode did not stabilize completely
and its estimated damping is too high (the model order may be too low). Middle plot: when
the model order is sufficiently high the main peak is fitted by two modes and the damping
ratio stabilizes. A closer look at the data reveals that all three modes are indeed physical.
Right plot: the pole with vanishingly small damping is the vibration induced by a pump in the
wind tunnel. Periodic disturbances such as power line frequency and rotating machinery are
discussed in [Brandt, 2015].
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5.4 Stochastic Subspace Identification (SSI)

Stochastic Subspace Identification (SSI) is a family of widely-adopted system identification

methods that are especially suitable for data-driven applications. Mathematically it is

based on geometric projections extended to multidimensional spaces and makes use of

various factorization techniques to improve numerical robustness and noise tolerance. It

incorporates directly a model order reduction technique that is helpful in dealing with

noise found in experimental data. SSI is particularly well-represented in the structural

health monitoring community. There also exist variants for experimental modal analysis,

but we shall focus only on output-only applications.

The core concept behind subspace identification has been developed into at least four

variants:

• data-driven (SSI-dd): output-only method, utilizes time-domain data directly.

• covariance-based (SSI-cov): performs modal parameter estimation from the covariance

of time data.

• reference-based (SSI-ref): only reference sensors are considered in the identification

phase, but all sensors are used to determine mode shapes.

• frequency-domain-based (SSI-f): uses frequency response functions or power spectral

densities as input data.

Subspace identification can be applied to time-invariant, slowly-varying, periodic and

arbitrarily-varying systems, however the identification of LTI systems enjoys the broadest

development and applications. A review of SSI methods applied to mechanical engineering

is found in [De Cock et al., 2002; Verhaegen, 2013]. The mathematical details of the

aforementioned SSI variants are found in [Mckelvey, 2004; Peeters and de Roeck,

1999; Van Overschee and De Moor, 1996], while [Trnka and Havlena, 2007] describe

their unifying features and the geometrical interpretation of their operation. The basic

SSI algorithm can be expanded to estimate the eigenvalue and mode shape variance to

provide additional information when constructing the modal model of the system [Döhler

et al., 2013a; Reynders et al., 2008]. The SSI stabilization diagram can be cleaned up

by eliminating poles whose eigenfrequency, damping ratio or mode shape vary excessively

from one model order to the next [Goursat et al., 2011].

When it is reasonable to assume that a system is slowly-varying within the time frame

used to extract the modal parameters, a sliding-window approach can be applied. In

this regard, an application of SSI to in-flight modal analysis of aircraft is presented in

[De Cock et al., 2006; Jeličić et al., 2017; Schwochow and Jeličić, 2015].

Floquet analysis in chapter 2.3 revealed that an LTP system can be thought as time-

invariant with periodically-modulated inputs and outputs and that its state transition

matrix has a pole-residue form (2.92) with multiple harmonics of its Floquet exponents

[Allen, 2009]. It is possible to analyze periodic systems with LTI techniques by increasing

the model order to compensate for the additional harmonics (a procedure called “lifting”).
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This is computationally not a sound choice, therefore specialized SSI variants have been

developed that have proven popular in the output-only modal analysis of periodic systems

such as wind turbines, helicopters rotors and turbomachinery [Jhinaoui et al., 2014]

[Uyanık et al., 2019].

In the case of arbitrarily-varying systems it is possible to identify the state transition

matrix between two time instants by performing multiple independent experiments with

the same system variation (“ensemble identification”, analogous to ensemble averaging in

spectral estimation 4.4) [Liu, 1997; Ma et al., 2017; Majji et al., 2010; Verhaegen

and Yu, 1995; Zhou et al., 2018]. The eigenvalues and eigenvectors of the state transition

matrix can be then interpreted a “pseudo” modal parameters (2.40).

The time-invariant and slowly-varying formulations will be adopted in the flight vibration

testing application that will be described in chapter 8. This choice is adequate given

the parameter variation in relation to the aircraft’s dynamic characteristics. Ensemble

identification is not practically feasible for testing aircraft in flight. Likewise, the assump-

tions required by specialized variants for periodic systems are not satisfied or impose stiff

conditions. These two methodologies can be still applied to aeroelastic testing in controlled

environments such as wind tunnels and simulations. The current section will provide a

general explanation of SSI’s functioning in the time-varying case; the same principle can

be transferred to periodic and time-invariant systems. The mathematical details attain

from the aforementioned references. Subsection 5.4.1 will be more specific concerning the

data-driven, reference-based and covariance-based versions of the algorithm.

Notation. Let ∆t be the sampling time. Sampled time-dependent vectors and matrices are

denoted by x(n) ≜ x(n∆t). Likewise, for the STM: x(k) = Φ(k, n)x(n).

The time-varying state-space formulation with unknown inputs (5.1) can be combined

with the definition of the state transition matrix (2.1.3) to write:

x(n+ 1) = Φ(n+ 1, n)x(n) + v(n)

y(n) = C(n)x(n) +w(n)
(5.8)

From this equation it holds that the output after k steps is:

y(n+ k) = C(n+ k)Φ(n+ k, n+ 1)x(n+ 1) +w(n+ k)+

+C(n+ k)

k∑
j=1

Φ(n+ k, n+ j)v(n+ j)
(5.9)

We can post-multiply this expression by yT (n) and compute the expectation to obtain:

E{y(n+ k)yT (n)} = C(n+ k)Φ(n+ k, n+ 1)G(n) (5.10)

where G(n) ≜ E{x(n+ 1)yT (n)} is the next state-output covariance matrix. The unmea-

sured inputs and output noise are uncorrelated with the states, therefore E{w(n)xT (n)} = 0
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and E{v(n)xT (n)} = 0. Subspace methods store acquired data into a structured block-

Hankel matrix of order p. In the case of a general time-varying system, let us assume that

j = 1 : NE independent experiments have been acquired where the system undergoes the

same parameter variation. The measured outputs yj of the j-th realization are arranged

in a block-Hankel matrix as:

H(n) =


y1(n) y2(n) · · · yj(n)

y1(n+ 1) y2(n+ 1) · · · yj(n+ 1)
...

...
. . .

...

y1(n+ p− 1) y2(n+ p− 1) · · · yj(n+ p− 1)

 (5.11)

For periodic systems with period T = P∆t, the state transition matrix satisfies Φ(n+ 1 +

P, n+ T ) = Φ(n+ 1, n). The Hankel matrix can be then assembled as:

H(n) =


y(n) y(n+ P ) · · · y(n+NP − P )

y(n+ 1) y(n+ 1 + P ) · · · y(k + 1 +NP −N)
...

...
. . .

...

y(n+ p− 1) y(n+ P + p− 1) · · · y(n+NP + P + p− 1)

 (5.12)

In the case of time-invariant or slowly-varying systems, the classical SSI formulation arranges

the recorded output data samples into the so-called “past” and “future” block-Hankel

matrices Y− ∈ RqNr×N and Y+ ∈ RpNy×N :

H =

[
Y−

Y+

]
≜

1√
N



yr(q) yr(q + 1) · · · yr(q +N − 2p)

yr(q + 1) yr(q + 2) · · · yr(q +N − 2p+ 1)
...

...
. . .

...

yr(q + p) yr(q + p+ 1) · · · yr(q +N − p)
y(q + p+ 1) y(q + p+ 2) · · · y(q +N − p+ 1)

y(q + p+ 2) y(q + p+ 3) · · · y(q +N − p+ 2)
...

...
. . .

...

y(q + 2p) y(q + 2p+ 1) · · · y(q +N)


(5.13)

where a subset of the outputs can be selected as reference sensors yr ∈ RNr for identifying

the system while all outputs y ∈ RNy are still used for estimating the mode shapes.

The number p is the maximal model order of the system, while q is the number of rows

(p ≥ q + 1). For numerical and statistical reasons, N ≫ p+ q.

The SSI algorithm constructs the so-called subspace matrix from the block-Hankel

matrix (5.11) (5.12) (5.13). More details are provided later in subsection 5.4.1 because its

construction depends on the method variant. This subspace matrix has the factorization:

H(n) = O(n)C(n) ∈ R(p+1)Ny×(p+1)Nr (5.14)

where O(n) ∈ C(p+1)Ny×Nx and C(n) ∈ CNx×(p+1)Nr denote respectively the observability
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and controllability matrices:

O(n) ≜



C(n)

C(n+ 1)Φ(n+ 1, n)

C(n+ 2)Φ(n+ 2, n)
...

C(n+ p+ 1)Φ(n+ p− 1, n)


C(n) ≜

[
G(n) Φ(n+ 1, n)G(n+ 1) · · · Φ(n+ p− 1, n)G(n+ p− 1)

]
W(n)

(5.15)

and where the matrix W(n) depends on SSI variant [Trnka and Havlena, 2007]. The

observability and controllability matrices are computed by the singular value decomposition

of the subspace matrix (5.14). It is possible to consider only the significant singular values

Σ1 and ignore the others Σ2 (low-rank approximation):

H(n) SVD
=
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]T
=⇒ H(n) ≈ U1Σ1V

T
1 (5.16)

The subspace matrix is thus truncated at the desired model order (that is, the assumed

number of states Nx ≤ (p+ 1)Ny):

O(n) = U1Σ
1/2
1 C(n) = Σ

1/2
1 VH

1 (5.17)

The observability matrix has rank equal to the system order in the purely noiseless

analytical case. Experimental data have typically a high number of degrees of freedom

plus contributions from colored noise and possibly nonlinearities, therefore the model order

determination is not as clear. Figure 5.3 provides an example.

Notation. From now on, the “p-th row block” refers to rows with indices pNy + (1 : Ny),

where p starts from 0. A negative subscript such as “−p” refers to all but the p-th block.
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Experimental case

Figure 5.3: Subspace matrix singular values from an analytical 7-DoF model [Cauberghe,
2004] and from experimental data (wind tunnel test from DNW-TWG [Jeličić et al., 2014]).
The former has a sharp drop when the model order (14) is exceeded, the latter has typically a
relatively irregular drop followed by a steady decrease and then a final sharp drop.
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The system’s state and output matrices can be extracted from the observability matrix

O(n) by exploiting its structure (5.15). For an LTV system we need to compute also

O(n + 1) from H(n + 1). The state transition matrix Φ(n + 1, n) is estimated by the

least-squares solution:

Φ(n+ 1, n) = O+
−p(n+ 1)O−0(n) ∈ CNx×Nx (5.18)

where O−p are all but the last row block of the observability matrix and O−0 are all but

the first row block (often denoted O↑ and O↓ in literature). We have seen in chapter 2

that the STM of LTI systems is Φ(n+ 1, n) = Φ(∆t, 0) = eA∆t (often denoted by Ad) and

that its eigenvalues Λ′ are related to the system’s poles Λ by:

Φ(∆t, 0) = eA∆t = ΨΛ′Ψ−1 = ΨeΛ∆tΨ−1 =⇒ Λ =
lnΛ′

∆t
(5.19)

In the time-varying case this expression becomes [Liu, 1997]:

Φ(n+ 1, n)
eig
= Ψ(n+ 1, n)Λ′(n+ 1, n)Ψ−1(n+ 1, n)

=⇒ Λ(n+ 1, n) =
lnΛ′(n+ 1, n)

∆t

(5.20)

where Λ(n+ 1, n) are now the pseudo eigenvalues. Since the state transition matrix is real,

they come in complex-conjugated pairs. In analogy to time-invariant systems, it is possible

to define a pseudo eigenfrequency and pseudo damping ratio:

ωn,k(n+ 1, n) = |λk(n+ 1, n)| ζk(n+ 1, n) = −ℜλk(n+ 1, n)

|λk(n+ 1, n)|
(5.21)

The properties of LTV systems can now be discussed in terms of pseudo modal parameters.

Temporary stability can be checked by the sign of the pseudo damping ratio. If the system is

slowly-varying, the pseudo eigenvalues approach the frozen-time eigenvalues of the system.

The output matrix C(n) is given by the first block (first Ny rows) of O (5.15)

C(n) = O0(n) (5.22)

The modal parameters computed up to this point correspond to the highest model order p.

The stabilization diagram is built by estimating the eigenvalues over several model orders:

section 5.4.3 details a method for efficient computation.

5.4.1 Subspace matrix construction

There are several ways of constructing the subspace matrix, depending on SSI variant.

More details are found, for example, in [Peeters and de Roeck, 1999]. In [Trnka

and Havlena, 2007] it is proved that the concept of orthogonal projection extended to

subspaces unites the subspace identification algorithms N4SID [Van Overschee and

De Moor, 1996], MOESP [Verhaegen and Dewilde, 1992] and CVA [Larimore, 1990]
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into one general formulation The subspace matrix estimation is where the SSI algorithms

differ and spend most computational resources:

• Data-driven SSI : the subspace matrix is formed from the projection of the future

data horizon onto the past data horizon:

Hdd = Y+/Y− ≡ Y+Y
T
−(Y−Y

T
−)

−1Y− (5.23)

Alternatively, this operation can be performed by an LQ-decomposition of the stacked

past and future matrices:[
Y−

Y+

]
LQ
=

[
R1,1 0

R2,1 R2,2

][
Q1

Q2

]
=⇒ Hdd = R2,1 (5.24)

The canonical variate analysis algorithm performs one step more to provide a better

separation between noise and the physical poles of the signal:[
R2,1 R2,2

] [
R2,1 R2,2

]H
Chol
= LLH =⇒ Hcva = L−1R2,1 (5.25)

where
Chol
= is the Cholesky decomposition.

• Covariance-driven SSI : it can be shown that output covariances can be considered

as impulse responses of a time-invariant system, therefore algorithms that employ

the latter can also utilize the former for system identification. The covariance-based

SSI constructs the subspace matrix from the past and future block matrices:

Hcov = Y+Y
T
− (5.26)

or by assembling a block Hankel matrix of the covariances:

Hcov =


R̂1 R̂2 · · · R̂q

R̂2 R̂3 · · · R̂q+1

...
...

. . .
...

R̂p+1 R̂p+2 · · · R̂p+q

 R̂k ≜
1

N − k

N∑
n=k+1

yny
r,T
n−k (5.27)

The correlation function and the power spectral density are Fourier transform pairs

(Wiener-Khinchin theorem), therefore the former can be computed efficiently as the

product of two DFTs instead of calculating the convolutions in time-domain.

5.4.2 Reconstruction of input spectra

The output cross-power spectral density Gyy(z) can be synthesized from the identified

modal parameters by [Reynders et al., 2012]:

Gsyn
yy (z) = R0 +C(zI−Ad)

−1G+GH(z−1I−AH
d )−1CH (5.28)
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The zero-lag output covariance matrix R0 ∈ RNy×Ny is estimated by:

R0 = E{y,yT } ≈ 1

N

N∑
n=1

yny
T
n ≈ H0HH

0 (5.29)

where H0 denotes first Ny rows of the subspace matrix. The next state-reference output

matrix G in the data-driven or the covariance-based variants is estimated respectively by:

Gdd = Σ
1/2
1 VH

1 e0 Gcov = O+HRH
1,1ep (5.30)

where e0 denotes the first Ny columns (0-th block) and ep denotes the last Ny columns

(p-th block). The first equation is derived from (5.17); matrix R1,1 is taken from (5.24).

Equation (5.28) can be vectorized by computing the eigendecomposition of Φ(n+ 1, n) ≡
Ad = ΨΛ′Ψ−1 in order to obtain its pole-residue form:

Gsyn
yy (z) = R0 +

Nx∑
k=1

(
c̃kg̃

T
k

z −Λ′
k

+
g̃∗
kc̃

H
k

z∗ −Λ′∗
k

)
(5.31)

where c̃k ≜ CΨek and g̃T
k ≜ eTkΨ

−1G as usual. Equation (5.31) involves only scalar

divisions. The pole-residue form can be used to validate identification results assembled

by peak-picking or obtained from different data sets. Positive power spectra can be

reconstructed from in a similar way:

S+,syn
yy (z) =

R0,k

2
+

Nx∑
k=1

c̃kg̃
T
k

z −Λ′
k

(5.32)

where R0 =
∑Nx

k=1 c̃kg̃
T
k /Λ

′
k is the zero-lag output covariance matrix.

5.4.3 Efficient construction of the stabilization diagram

The modal parameters computed up to this point correspond to the highest model order p.

The stabilization diagram is built by calculating the system eigenvalues over several model

orders: this corresponds to solving equation (5.18) for all desired orders in a set q ∈ S up

to p:

∀ q ∈ S : Φq(n+ 1, n) = O+
0:(q−1)O1:q (5.33)

where the subscripts indicate the row blocks of O. In our implementation of SSI we

adapt the procedure detailed in [Döhler and Mevel, 2010] to compute the stabilization

diagram faster. This approach factorizes only the observability matrix (5.17) corresponding

to the highest-order p:
O−p

QR
= QR

T ≜ R−1

S ≜ QTO−0

=⇒ ∀ n ∈ S :

Φq(n+ 1, n) = T1:q,1:qS1:q,1:q

Cq = O0,1:q

(5.34)
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where the subscripts 1 : q refer to rows or columns. The size of the observability matrix

O ∈ C(p+1)Ny×Nx depends on the product of model order and number of inputs, therefore it

is not uncommon to work with over two thousand rows. The SSI implementation is efficient

when most of the time is spent constructing the subspace matrix; thanks to equation (5.34)

the estimation of the observability matrix is sped-up appreciably.

5.4.4 Multi-band processing

In aeroelastic testing it is common to work with sample rates that are much higher than

the frequency band of interest, consequently decimation or resampling of the signal should

be carried out to reduce the amount of processed data and the sample rate. The model

order determines how many modes can be identified within a given frequency band. The

algorithm may miss some eigenmodes when their density is high with respect to the model

order. SSI performs several matrix decompositions, multiplications and divisions that have

computational complexity of about O(n3). If the acquired data stream is downsampled

by a factor q, the workload of subsequent operations is reduced by a factor q2 at least.

A narrower frequency band necessitates therefore a lower model order and consequently

much less computation. Figure 5.4 compares identification results obtained from a single

large band and multiple ones.

Let us suppose that the frequency range of interest is [fmin , fmax]. The automated

multi-band procedure for SSI is as follows:

1. Perform data reduction using the method of choice:

• resampling : perform frequency shift −fmin. Resample data by p/q where p and

q are given by a rational fraction approximation of 2(fmax − fmin)/fs.

• decimation: given the actual rational downsampling factor q ≜ fs/2/(fmax −
fmin), determine the integer decimation stages qi where q ≈

∏
qi. The maximal

recommended decimation factor per stage is 13 therefore algorithm 6 (see

appendix) has been developed to determine the number of stages. Design a FIR

low-pass filter and decimate data y(t) by integer factor qi. Repeat for every

stage. The filter order must be a multiple of the decimation factor2.

• brick-wall : Set DFT bins corresponding to positive and negative frequencies

outside the band |f | < fmin ∨ |f | > fmax to zero. Remove bins corresponding

to fs/2± fmin and transform back into time-domain.

2. Compute the effective sample rate and frequency ranges after data reduction:

f rs ← p/q · fs and [f rmin , f
r
max]← p/q · [fmin , fmax]

3. Perform system identification on decimated and shifted data. The identified eigenval-

ues must be corrected by λ← (2πf rmin + |λ|) exp(i∠λ).

2 Example: Let the actual decimation factor be q0 = 26.5, for which q = 26 = 2 · 13. The algorithm
would try the effective decimation factors q = 25 = 5 · 5 (R = 261/2 = 5.0990) or q = 27 = 3 · 3 · 3
(R = 261/3 = 2.962). The effective decimation factors lead to a slightly different bandwidth of the decimated
data, respectively by factors 26.5/25 = 1.060 and 26.5/27 = 0.9815.
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The frequency shift is performed as follows:

1. Compute DFT of data ŷ[k] = DFT{y[n]}

2. Get frequency shift in samples d ≜ ⌊fmin/∆f⌋

3. Perform circular shift of FFT bins: y[k]← [ŷ[d+ (1 : L)] , ŷ∗[d+ (N − L : −1 : 2)]]

where L is the DFT’s length from DC to Nyquist frequency.

4. Convert back into time-domain DFT−1{y[k]} to obtain real data.

5.4.5 Contribution to system identification with SSI

The SSI data-driven, reference-based and covariance-driven variants have been implemented

to perform output-only modal parameter estimation using the cited sources as references.

The base algorithms have been then improved to achieve the best performance possible.

The main contribution to this identification pipeline is in the form of careful digital signal

processing to allow automated data reduction and multi-band identification. Furthermore,

the output cross-power spectral densities are reconstructed efficiently to validate the iden-

tification’s quality as detailed in section (5.4.2). In this regard, some results are illustrated

in figure 5.4. When multiple bands must be identified, the SSI algorithm can be paired

with the mode shape estimation procedure described in section 5.6.

Figure 5.4: Wind tunnel measurements: the raw data stream is sampled at 4 kHz. The two
stabilization diagrams display the lower frequency range, where the flutter-critical modes are.
A very high model order is necessary for the single band, however not all peaks are fitted. The
multi-band approach in [15, 250] Hz is much faster and delivers better results. Data from the
transonic wind tunnel DNW-TWG [Jeličić et al., 2014]

.
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5.5 Least-Squares Complex Frequency (LSCF)

The LSCF family fits a polynomial model (5.4), which, depending on the algorithm variant,

is a common-denominator, right or left polynomial fraction. [Allemang and Brown,

1998] compare several modal parameter estimation algorithms that utilize this matrix

polynomial approach. Detailed descriptions of LSCF, some of its variants, applications and

drawbacks are found in [Verboven, 2002] and [Cauberghe, 2004]. The simplest LSCF

version represents the input spectra with a common-denominator model (rational function).

The poly-reference pLSCF algorithm (commercially known as PolyMax [Peeters and

Van der Auweraer, 2005]) models the input spectra as a right matrix fraction polynomial

model. Concerning the modal analysis of flight data, [Mevel et al., 2006] comment that

pLSCF provides clear stabilization diagrams. The literature reports variants that compute

the confidence intervals of identified modal parameters [Troyer et al., 2009] or employ

an iterative maximum-likelihood scheme [Amador et al., 2019; El-kafafy et al.,

2013; Guillaume et al., 1999]. [Verboven et al., 2004] describes a flutter monitoring

application with mode tracking using an iterative weighted LSCF. The rational polynomial

description of the system can be adjusted to include the contribution of time-varying

coefficients for the prediction of aeroelastic flutter [Ertveldt et al., 2014]. In [Tang

et al., 2017], LSCF is employed to generate reduced-order LTI modes from flutter test

data. This procedure is enhanced by an iterative maximum-likelihood step and validated

with nonparametric frequency response function estimates.

LSCF can be adapted to fit bivariate time-frequency functions maintaining essentially

the same formulation employed for the LTI case [Zhou et al., 2014]. Following the same

argumentation exposed for SSI, we shall focus on slowly-varying systems. Periodic systems

can be still identified by lifting the model. The identification of general time-varying

systems can be performed by computing the spectra using ensemble averaging (see section

4.4), which will be demonstrated in chapter 7.

In the coming pages we attain from the aforementioned references. We shall consider the

poly-reference pLSCF algorithm because the simpler LSCF method can be seen as a special

case. Iterative (maximum-likelihood) versions can refine the initial modal parameters

estimate, but are not considered here because they require additional computation cycles

that we cannot afford. Data is provided as frequency response functions for EMA or

full/positive cross-power spectral densities for OMA. We focus on the output-only case

where the data source is a CPSD matrix F̂(ω) = Ĝyx(ω) ∈ CNy×Nx . Its rows shall be

referred to as responses and its columns as references. The rows correspond to the selected

Ny output channels on the structure, while the columns to a subset of Nx sensor channels

used to construct the CPSD matrix.

Notation. Given the focus on the output-only case, we use Ny for the number of rows and

Nx for the number of columns of the input spectra. Some authors use No and Ni instead.

Nm denotes the number of poles.
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The poly-reference pLSCF algorithm fits a right matrix fraction representation of the

estimated spectra:

F̂(ω) = B(z)A−1(z) ∈ CNy×Nx B(z) ≜
Nb∑
p=0

Bpz
p A(z) ≜

Na∑
p=0

Apz
p (5.35)

where B(z) ∈ CNy×Nx and A(z) ∈ CNx×Nx are respectively the numerator and denominator

matrices expressed as polynomials, z ≜ eiω/ωN is the discrete frequency and ωN is the

highest frequency bin of the input spectrum F̂(ω). The parameters that must be identified

are the numerator and denominator coefficients in the rational polynomial model (5.35).

We seek to minimize the linear-in-the-parameters error model in the least-squares sense:

∀ i : Ei(ωn) ≜ wi(ω)
(
Bi(z)− F̂i(ω)A(z)

)
=⇒ minimize

N∑
n=1

Ni∑
i=1

|Ei(ωn)|2 (5.36)

where w(ω) ∈ CNy is a frequency-dependent weight function for each output. The choice

of weighting is discussed in section 5.5.3.

Notation. The index “i” denotes one of the Ny rows of F̂(ω), B(z), A(z), E(z) or w(z).

The index “p” refers to the p = 0 : Np − 1 polynomial orders of the coefficient matrices Bp

and Ap, where Np ≜ max{Na, Nb}+ 1. The index “n” refers to the frequency ω or z (the

symbol “ωn” does not denote the eigenfrequency as in previous chapters).

Minimizing the error in the least-squares sense (5.36) is equivalent to solving the normal

equation

Jθ = 0 (5.37)

where J is the Jacobian of the error function ∂
∂θE(ω) and θ are the parameters that must

be identified:

βi ≜


Bi,0

...

Bi,Np

 ∈ CNp×Nx α ≜


A0

...

ANp

 ∈ CNpNx×Nx θ =


β1
...

βNy

α

 (5.38)

where βi and α are respectively the numerator and denominator coefficients (5.35) each

arranged into matrices in ascending polynomial order

Notation. The block matrices βi, α and θ are denoted with lowercase Greek letters in

order to be consistent with existing literature.

The Jacobian of the error function (5.36) is:

J =


Ei

...

ENy

[ ∂
∂β1

· · · ∂
∂βNy

∂
∂α

]
=


X1 · · · 0 Y1

...
. . .

...
...

0 · · · XNy YNy

 ∈ CNNy×NpNx(Ny+1))

(5.39)
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where Xi and Yi are weighted Vandermonde sub-matrices:

Xi ≜
∂Ei

∂βi

=


wi(ω1)[1 z1 · · · zn1 ]

...

wi(ωN )[1 zN · · · znN ]

 ∈ CN×Np

Yi ≜
∂Ei

∂α
=


−wi(ω1)[1 z1 · · · zn1 ]⊗ F̂i(ω1)

...

−wi(ωN )[1 zN · · · znN ]⊗ F̂i(ωN )

 ∈ CN×NxNp

(5.40)

The Jacobian is a very large matrix, however the dimension of the normal equation (5.37)

can be significantly reduced by premultiplying it by its Hermitian transpose to obtain:

JHJθ =


R1 · · · 0 S1

...
. . .

...
...

0 · · · RNy SNy

SH
1 · · · SH

Ny

∑Ny

i=1Ti



β1
...

βNy

α

 = 0 (5.41)

where Ri, Si and Ti are sub-matrices corresponding to the i = 1 : Ny outputs:

Ri ≜ XH
i Xi ∈ CNp×Np

Si ≜ XH
i Yi ∈ CNp×NyNp

Ti ≜ YH
i Yi ∈ CNyNp×NyNp

(5.42)

Equation (5.41) has now as many columns as there are parameters NpNx(Ny + 1). The

entries of Ri, Si and Ti are equal to:

Ri[k, l] =
N∑

n=1

|wi(ωn)|2zl−k
n

Si[k,K] =
N∑

n=1

|wi(ωn)|2F̂i(ωn)z
l−k
n

Ti[K,L] =
N∑

n=1

|wi(ωn)|2F̂H
i (ωn)F̂i(ωn)z

l−k
n

(5.43)

where K ≜ (k− 1)Nx + (1 :Nx) and L ≜ (l− 1)Nx + (1 :Nx) are blocks of consecutive rows

or columns for k, l = 1 :Np. Equations (5.43) show that the sub-matrices Ri, Si and Ti

have a Toeplitz structure because their entries depend on l− k. Only one row of Ri and Ti

and only one row and column of Si need to be computed to construct the whole sub-matrix.

This means that they can be constructed efficiently using the FFT [Verboven, 2002]. We

have shown in [Jeličić et al., 2015] how this efficiency is important to real-time system

identification applications. When the common-denominator LSCF algorithm is employed

an even larger gain in computation time is achieved.
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The rows pertaining to the numerator coefficients βi can be substituted into the

lower row of equation (5.41) to obtain a system of equations where only the denominator

coefficients α are unknowns:
Riβi + Siα = 0
Ny∑
i=1

(
SH
i βi +Tiα

)
= 0

=⇒


βi = −R−1

i Siα
Ny∑
i=1

(
Ti − SH

i R−1
i Si

)
α = 0

(5.44)

Taking the bottom equation we can finally write:

Ny∑
i=1

(
Ti − SH

i R−1
i Si

)
≜ M =⇒ Mα = 0 (5.45)

The square matrix M has only NxNp rows.

The least-squares solution of the equation (5.45) is obtained by adding one constraint,

for example by fixing one denominator coefficient to 1 (usually the zero or highest orders).

For instance, by fixing the denominator’s highest order coefficient ANp = I we obtain:

∀ p ∈ S αp ≡


A0

...

Ap−1

I

 =

[
−M−1

+pM−p

I

]
∈ C(p+1)Ny×Ny (5.46)

where M+p denotes the square submatrix M1:pNx,1:pNx , while M−p is a rectangular sub-

matrix M1:pNx,p+(1:Nx). The same logic applies if the order zero coefficient is fixed A0 = I.

This equation is solved multiple times to calculate the denominator coefficients αp corre-

sponding to the desired model orders p ∈ S (for example p = 0 :Np − 1). [Cauberghe,

2004] provides a helpful analysis of the coefficient choice that allows a simple separation of

physical (stable) and mathematical (unstable) poles to obtain clear stabilization diagrams;

figure 5.5 provides an example.

Figure 5.5: OMA system identification of a 7-DoF model from [Verboven, 2002]. Left plot:
stabilization diagram with all the stable (physical) and unstable (spurious) poles. Right plot:
in the complex plane, the unstable poles lie on the right semi-plane (outside the unit circle).
This clear separation depends on the choice of coefficients in equation (5.46).
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The system eigenvalues and participation factors for order p can be extracted by the

eigendecomposition of the companion matrix:
Ap−1 · · · A1 A0

I · · · 0 0
...

. . .
...

...

0 · · · I 0

 eig
= ΨpΛ

′
pΨ

−1
p ∈ CpNy×pNy (5.47)

where Ap is the p-th block of matrix α in equation (5.46) (denominator coefficient matrix

of order p). For each order p, the system eigenvalues Λ and the modal participation factors

ϕj related to the j-th mode are computed by:

∀ p : Λ =
1

∆t
lnΛ′ Ψj =

{
Λ′p−1

j ϕj , · · · , Λ′
jϕj , ϕj

}
(5.48)

where 1/∆t is the sample rate. Assuming the inputs F̂(ω) are CPSDs, the mode shapes

are extracted in a second step (covered in section 5.6) by fitting:
F̂i(ω)

...

F̂Ny(ω)

 =

Nm∑
k=1

(
ψkϕ

H
k

iω − λk
+

ϕkψ
H
k

−iω − λ∗k

)
− RL

ω4
+Ru (5.49)

The companion matrix is assembled for each model order p = 0:Np−1 in order to construct

the stabilization diagram. The eigendecomposition of the companion matrix (5.47) is an

unavoidable bottleneck of the identification procedure. When the model order p or the

number of response channels Ny is high, this matrix can easily grow to a thousand rows. In

a common-denominator model estimator (for example LSCF) the coefficients αp are simply

a vector and the system poles are the denominator polynomial’s roots. The model order

can be reduced by performing the analysis over different frequency bands or by utilizing

positive power spectra (4.24) instead of cross-power spectral densities.

In a real structure the energy transfer to certain modes of vibration is in many cases

suboptimal because the excitation is perpendicular to the dominant direction of a mode, e.g.

to identify the wing in-plane bending mode by applying a vertical excitation. The quality

of the mode shapes estimates can be increased by applying the appropriate weighting.

Common-denominator models appear to produce lesser fits for highly-damped modes

and to have a lower resolution capability for closely-spaced modes. The first drawback

leads to a more conservative damping estimate, the second can be solved by increasing

the model order. Right matrix fraction polynomial models tend to be more sensitive to

data inconsistencies and the model order increments are the number of columns of the

data matrix. They require significantly more computation because of a cubic complexity

dependency on the number of columns of the input spectra. This observation is also found

in [Cauberghe, 2004; Verboven, 2002].
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5.5.1 Efficient construction of the stabilization diagram

The stabilization diagram is constructed in a fast way by computing the pseudo-inverse in

equation (5.46) for all model orders of interest S :

∀ p ∈ S : αp =

[
−M−1

+pM−p

I

]
(5.50)

where M+p ∈ CpNy×pNy and M−p ∈ CpNy×Ny are sub-matrices of M from equation (5.45).

We can improve the computation of αp by adapting the QR decomposition technique

introduced in section 5.4.3 for SSI:

∀ p ∈ S :


M+p

QR
= QR

T ≜ R−1

S ≜ QTM1:pNy ,:

=⇒ αp =

[
−T1:pNy ,1:pNyS1:pNy ,pNy+(1:Ny)

I

]

(5.51)

5.5.2 Reconstruction of input spectra

The numerator coefficients referring to each response-reference pair are calculated by

substituting the denominator coefficients α back into the normal equation (5.41):

βi = −R−1
i Siα (5.52)

from which Bp can be reassembled according to equation (5.38). Instead of the naive sum

(5.35), we calculate the synthesized spectrum utilizing a Vandermonde matrix:

V = z−(0:p)T =⇒
B(z) = V[β1 · · ·βNy

]

A(z) = Vα
(5.53)

where z = exp{iπ(0 : N − 1)/N} is the discrete frequency vector. The pole-residue form of

the transfer function (5.3) is:

Fsyn(z) = P(z) +

Nm∑
k=1

R′
k

z − zk
(5.54)

where the residues matrices R′
k are:

R′
k = lim

z→zk
(z − zk)H(z) =

zk
∑Np

p=0Bpz
−p
k∏Np

m̸=k(1− zmz
−1
k )

(5.55)

Once the pole-residue form has been determined, it is possible to compose the modal model

by mode selection. However, in [Cauberghe, 2004; Rainieri and Fabbrocino, 2014] it

is noted that the computation of residuals from the coefficients βi (respectively Bp) should

be avoided. An better approach is explained in section 5.6.
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5.5.3 Weighting choice

In the EMA framework the optimal weighting is the frequency response covariance matrix,

which can be estimated when some information about output noise is available [Pintelon

and Schoukens, 2004]. In the OMA framework this information is not obtainable.

• If white additive noise on the estimated spectra is expected, then the weight is simply

Wi(ωn) = 1. Good results can be obtained even if no weighting is used.

• If relative noise is assumed, then the weight function is Wi(ωn) = 1/|Ĝi(ωn)|. This
gives the same importance to the resonances and antiresonances in the error function

(5.36). Since the latter contain information about mode shapes, better results can be

achieved in mode tracking. In OMA the assumption of relative noise is often in good

agreement with the actual noise conditions [Cauberghe, 2004].

5.5.4 Contributions to system identification with LSCF

The LSCF algorithm outlined has been improved for real-time identification. Figure 5.6

illustrates some of the differences between the “canonical” and “modified” versions.

• The one-sided input spectrum F̂(ω) is mirrored to provide better separation of stable

and unstable poles.

• The strategy outlined in section 5.5.1 is implemented for better numerical conditioning

when computing the system eigenvalues.

• The algorithm fits complex instead of real denominator coefficients in order to have

more liberty. The system eigenvalues are then Λp = iω1 − 1
π (ωN − ω1) ln{Λ′

p} where
ω1, ωN are the first and last circular frequencies of the input spectrum F̂(ω) (compare

to equation (5.48)).

Figure 5.6: Comparison between the canonical LSCF and the modified version implemented
in the current research. Raw algorithm output, no sorting or cleaning of the eigenvalues has
been applied. Data from the transonic wind tunnel DNW-TWG [Jeličić et al., 2014].
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5.6 Least-squares frequency-domain method (LSFD)

There are circumstances in modal analysis where eigenvalues have been estimated from

heterogeneous sources, for instance different runs, excitation type or bands. When the

system’s eigenvalues are known from a previous identification step, it is possible to fit a

pole-residue model using the whole band of estimated spectra. Historically this approach

has been used to obtain consistent mode shape estimates when eigenvalues have been

determined using different methods or even different experiments [Van der Auweraer

et al., 2000]. Systems that have a high density of poles are identified in limited frequency

bands, lest a very high model order be used, especially in the OMA case and even more so

when the system is time-varying. Excessive model orders are detrimental due to numerical

inaccuracies, longer computation times, spurious mathematical modes or fitting of noise

artifacts. The identification of separate frequency bands is straightforward for eigenvalues

but more involved for eigenvectors. Multi-band identification is a common practice because

it delivers better results and can find local or badly-excited modes [Govers et al., 2014].

The least-squares frequency-domain (LSFD) algorithm fits the residues using a least-

squares approach. We shall describe the method in the OMA framework when CPSDs are

the data source, but the same principle can be applied to EMA or positive power spectral

densities as well. Assuming the input spectrum Guu(ω) has constant amplitude at least

within a certain range (see modeling assumptions in section 5.3.1) and recalling equation

(4.21), the pole-residue form of the output cross-power spectral density Gyx is:

Gyx(ω) =

Nm∑
k=1

(
ψkϕ

H
k

iω − λk
+

ϕkψ
H
k

−iω − λ∗k

)
(5.56)

This equation can be written in matrix form as:


{Gyx(ω1)}T

{Gyx(ω2)}T
...

{Gyx(ωN )}T

 =


p1,1 p1,2 · · · p1,Nm fL(ω1) fU (ω1)

p2,1 p2,2 · · · p2,Nm fL(ω2) fU (ω2)
...

...
. . .

...
...

...

pN,1 pN,2 · · · pN,Nm fL(ωN ) fU (ωN )





R1

R2

...

RN

RL

RU


(5.57)

where pnk are the known Nm poles for positive and negative frequencies:

pn,k ≜

[
1

iωn − λk
,

1

−iωn − λk

]
∈ C1×2 (5.58)

where Rk are the unknown Nm CPSD residues corresponding to the k-th eigenvalue:

Rk =

[
{ψkϕ

H
k }T

{ϕkψ
H
k }T

]
∈ C2×N2

y (5.59)
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Table 5.1: Factors fL(ω) and fU (ω) of the lower and upper residuals RL RU when the
input spectra are frequency response functions, full or positive cross-power spectral densities
of displacements, velocity and accelerations (or their dynamic equivalents).

Input spectra
FRF CPSD P-CPSD

fL(ω) fU (ω) fL(ω) fU (ω) fL(ω) fU (ω)

Displacement
1

(iω)2
1

1

(iω)4
1

1

iω
iω

Velocity
1

iω
iω

1

(iω)2
(iω)2

1

iω
iω

Acceleration 1 (iω)2 1 (iω)4
1

iω
iω

and where RL and RU are respectively the lower and upper residues added to model

out-of-band terms and fL(ω) and fU (ω) their factors
3 according to table 5.1. The order in

which the terms in pn,k and Rn are written must match according to equation (5.57). Some

authors define pn,k so that the real and imaginary parts of each residual are estimated

separately [Amador et al., 2019]. Equation (5.57) is assembled from the matrix of

known output cross-power spectral densities [G] ∈ CN×N2
y , the known eigenvalues with

lower and upper residuals [P] ∈ CN×(2Nm+Nr) and the matrix of the unknown residues

[R] ∈ C(2Nm+Nr)×N2
y . It is solved in least-squares terms by the pseudoinverse:

[G] = [P][R] =⇒ [R] = [P]+[G] (5.61)

The rows corresponding to the lower and upper residuals in [R] can be removed and

the matrix reshaped to obtain the 2Nm residue matrices corresponding to the Nx known

eigenvalues. In the final step, each estimated residue Rk is decomposed into a mode shape

vector ψk and an operational reference vector ϕk corresponding to the k-th eigenvalue

[Rainieri and Fabbrocino, 2014]:

Rk
SVD
= U1Σ1V

H
1 = ψkϕ

H
k

ψk = U1

√
Σ1 ∈ CNy

ϕk = V∗
1

√
Σ1 ∈ CNx

(5.62)

where the subscript 1 denotes the columns of left-singular Uk and right-singular Vk vectors

associated to the largest singular value Σ1. The left-singular vectors correspond to the

operational mode shapes. The estimated output and input matrices in modal space are

thus:
CΨ = [ψ1 · · ·ψNm

]

Ψ−1B = [ϕ1 · · ·ϕNm
]

(5.63)

3 For example, in EMA, for displacements, the LSFD model is usually written as:

H(ω) =

Nm∑
k=1

(
Rk

iω − λk
+

R∗
k

iω − λ∗
k

)
− RL

ω2
+RU (5.60)

This equation is common in literature, see for example [Rainieri and Fabbrocino, 2014].
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Since Ĝyx(ω) is in general not square, the vectors ψk and ϕk are not equal to each other4.

Furthermore, they are similar to CΨek and eTkΨ
−1B up to a scaling and rotation. In

aeroelastic systems, when the influence of aerodynamics is low, the linearity between ψk and

ϕk is high for the eigenvectors associated to physical poles and low for those corresponding

to lag states. Conversely, when the aerodynamic influence is high (for instance close to the

flutter boundary), the modes shape ψk and the operational reference vectors ϕk become

dissimilar.

Let us assume that we are interested in Nm lightly-damped modes (i.e. complex-

conjugated eigenvalue pairs) within a certain frequency band. If CPSDs are being used for

frequency-domain system identification, we can guess that a denominator polynomial order

of at least Na > 4Nm is necessary to account for noise and out-of-band modes. On the other

hand, if we were to identify a system using estimated positive power spectra, equation (4.24)

shows that the necessary model order is just Na > 2Nm. These relationships imply that

the model order is high when the number of modes within a frequency band is substantial.

Doubling the model order (or number of poles within the band) has an O(n3) effect in the

estimator’s complexity5, whereas doubling the bands has only an O(n) effect. In part due

to this constraint, system identification with LSCF is often performed in multiple bands.

Figure 5.7 displays an inconsistency in the synthesized spectra because the modal

parameters (including eigenvectors) have been estimated from two different bands. This

can be corrected by estimating the residues using LSFD.

Figure 5.7: Frequency-domain parameter estimation using output-only data from an aircraft
model at DLR-Göttingen. The spectra tell that there are two clusters of poles in the bands
[2 , 45] Hz and [45 , 120] Hz. Better results are achieved by identifying two bands. If the
spectrum is reconstructed separately for each band, inconsistencies are visible in the detail on
the right.

4 For mass-damping-stiffness systems the residual is the outer product of a mode shape by itself:

ψk = ϕk = −U1

√
Σ1V1,1/U1,1 =⇒ Rk = ψkψ

T
k

5 All system identification methods perform some kind of matrix decomposition (EIG, QR, LU, SVD)
and matrix multiplications or divisions. For a n×m matrix, these operations have at least O(min{n,m}3)
complexity.
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5.7 Chapter summary

The methods of system identification construct a parametric model of a dynamic system

by analyzing its response to known or unknown excitation signals. Within the scope

of the current research, modal parameter estimation of aircraft in flight excited by air

turbulence and acoustic noise is performed in the operational modal analysis framework.

In such applications, the experimenter is confronted with the presence of noise and with

the high variance of the estimated modal parameters. A central assumption here is that

the excitation spectrum, at least within a certain frequency range, has a flat magnitude,

otherwise poles representing colored noise could be fitted. Such white noise input is almost

never the case, but fortunately the coloring filter’s poles are highly-damped and can be

thus easily separated from the physical ones.

The model structures selected for our intended experimental case represent the system

in the state-space or rational function forms. The mathematical details of two widely-

adopted approaches and some of their variants have been delineated: the Stochastic

Subspace Identification (SSI) and the Least-Squares Complex Frequency (LSCF) algorithms.

Both have been developed for maximal computational efficiency with regard to real-time

applications. SSI estimates the modal parameters from time-domain or frequency-domain

data to construct a state-space model of the system. A preprocessing step has been

developed in this work to allow multi-band identification and therefore reduce the model

order and improve the stabilization diagram. The LSCF algorithm in the OMA framework

utilizes full or positive power spectral densities to identify the system. In this thesis it has

been upgraded to obtain clearer stabilization diagrams.

The identification frameworks for general time-varying, periodic, slowly-varying and

time-invariant systems have been considered for each estimator. In the general time-varying

case it is necessary to perform ensemble identification with repeated realizations undergoing

the same system variation, which may not be feasible experimentally. For periodic systems

it is possible to use specialized algorithms to reduce the model order, however LTI variants

are still viable. In the slowly-varying case, identification algorithms for time-invariant

systems can be applied to determine the modal parameter variation over time. The indented

use case – monitoring during flight vibration testing – falls within the latter category.
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Abstract

Continuous system identification estimates mode sets that must be tracked to be able to follow the

evolution of the eigenmodes as a function of time or external parameters. However, given the presence

of noise and errors in the measurements and the limited amount of data, the eigenmode variation is

characterized by high variance, spurious poles and interruptions. Furthermore, permanent vibration

monitoring generates huge amounts of data that must be organized. It is consequently necessary

to resort to automation. The chapter describes the automated mode tracking process applied to

permanent operational modal analysis.

Automated mode tracking is a fundamental component in the modal analysis of time-

varying or parameter-varying systems. Its purpose is to organize the system identification

algorithm’s output so that modal data can be correlated with other parameters such as

air speed and air density. Tracking is an absolute necessity for large systems, unfavorable

experimental conditions and real-time applications. The topic has attracted attention from

several fronts and much effort has been expended in devising strategies for pairing modes.

Output-only system identification of time-varying systems can be classified into paramet-

ric and nonparametric techniques. The former are based on time-dependent autoregressive

moving average methods (TARMA), while the latter utilize a nonparametric time-frequency

representation such as short-time Fourier transforms or wavelets (see section 4.4). Paramet-

ric methods estimate a modal model that is also a function of time or external parameters;

nonparametric methods identify each mode set independently and must perform mode

tracking in a separate step.

One of the first researches to apply an automated procedure on experimental data

has been presented in [Pappa et al., 1997] where system identification is complemented

with mode quality indices and autonomous mode selection. Tracking of the time-varying

damping ratio can be implemented into recursive subspace identification and applied to

flight vibration test data [De Cock et al., 2006]. An exhaustive survey of TARMA

methods is conducted in [Poulimenos and Fassois, 2006] and a recent example is found in

[Avendaño-Valencia et al., 2020]. Some approaches aim to simplify the interpretation

of the stabilization diagram and to select the best representative of each stabilization

column (multiple instances of the same eigenmode identified over several model orders), for

example [Reynders et al., 2012]. Mode tracking is useful in the numerical investigations

of time-varying systems as well: for example, the finite element analysis of rotating ma-

chinery requires the plots of eigenfrequency over rotation speed, but since the eigenvalue

traces intersect or present sharp turns, the correct paths must be reconstructed by tracking

[Mogenier et al., 2012]. In [Beaverstock et al., 2015] a minimum spanning tree

algorithm is employed in the tracking of an aircraft model capable of morphing its wingspan.

Recently, a general multi-stage clustering technique that does not require user-defined
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thresholds has been coupled with data-driven SSI in [Neu et al., 2017] to monitor a plate

in a wind tunnel in closed loop. In [Soal, 2018] a modal tracking procedure is applied to

the operational modal analysis of a ship under nonstationary excitation and time-varying

conditions. The management of continually-estimated modal parameters in structural

health monitoring applications is performed by grouping several instances of the same mode

to perform statistical analyses or to observe variations over time. Automated procedures

are deployed for example in [Cabboi et al., 2017] and [Marrongelli and Gentile,

2019]. A novel application of mode tracking is the model reduction of parameter-varying

systems by clustering smaller subsystems of similar dynamic properties [Luspay et al.,

2018]. Recently, [Yaghoubi et al., 2018] have applied bootstrap sampling to forgo the

need of high-dimensional optimization to obtain statistical information about identified

modes.

Given the selected identification framework, in order to analyze parameter-varying systems,

we need to develop a mode tracking technique that allows us to observe the variation of

estimated eigenvalues over time, external parameters or model order. In order to do so,

we need to define a methodology to quantify how “similar” or “distant” two modes are in

order to pair them together or sort them into different groups. Furthermore, it is necessary

to assess the “quality” of the identified data to be able to recognize spurious modes.

The chapter roadmap is therefore as follows:

1. Problem statement

2. Definition of mode similarity metrics

3. Definition of mode quality indices

4. Description of the tracking algorithm

5. Fitting of tracking data
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6.1 Mode tracking problem statement

The overarching goal of mode tracking is the automation of modal analysis. Specifically, it

is applied to the following tasks:

• Mode matching in stabilization diagrams over model order. This is often performed

in the EMA framework in order to assist the user in the pole-picking procedure.

• Real-time sorting of identified modes during aeroelastic testing, for instance, for

different flight conditions or wind tunnel parameters.

• Comparison between several identification algorithms, for example time-domain and

frequency-domain methods.

• Mode pairing of system identification results with analytical or numerical models of

the physical system. This is commonly performed in the context of model updating.

A nonparametric time-varying system identification approach has been selected for speed

and simplicity. Measurements are stored into a first-in-first-out buffer and analyzed as soon

as a new data block arrives. Since the tracking algorithm is uncoupled from the system

identification procedure, it can be applied to any of the tasks above. This chapter focuses

on the procedure used to organize the modal parameters determined experimentally during

real-time monitoring of time-varying aeroelastic systems.

Some clarification about terminology is given first:

• Mode set : group of eigenvector-eigenvalue pairs (shorthand: modes) identified from a

single data source. Each mode set is assigned an identification number (set ID) and

linked to system parameters and other metadata.

• Mode matching (or pairing): the association of a mode from a reference set to a

mode of a comparison set. Paired modes are assigned the same identification number

(mode ID); modes that cannot be paired are assigned a new ID. The matching is

performed by evaluating the “distance”/“similarity” between each pair of modes.

• Mode family : collection of matching modes from several sets with the same mode ID.

When possible, mode families are named, for instance “first wing torsion”, “pylon

pitch”, “winglet bending”.

• Mode tracking : matching of several mode sets, each with an associated parameter

(time, speed, order, etc...). The final result is an organized collection of mode families

plus spurious modes. The latter are identification artifacts arising from noise, errors

or nonlinearities that do not display a realistic or consistent eigenfrequency trail.

• Mode paths: the continuous track in a graph left by an evolving eigenvalue.

• Mode traces: the single eigenvalues represented by dots in a graph, signifying that

they have not been matched.
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Matching is one step in the clustering process – a general procedure that groups data points

with similar characteristics. This can be performed by histogram analysis, partitioning

methods, hierarchical clustering and more recently by neural networks and deep learning

techniques. An overview is found in [Saxena et al., 2017]. In this chapter we focus on

solving this problem as fast as possible by collecting all similar modes in the same mode

family. The result of non-parametric identification of a time-varying system is a collection

of mode sets whose members are not related to each other. The matching algorithm’s task

is to “connect the dots”, something simple for a human, but not so for a machine. The

matching algorithm does not alter modal data, but merely assigns the correct mode ID to

each eigenpair. The user may name each mode family afterwards.

Figure 6.1 illustrates the process of building mode families by matching different mode

sets. The mode matching procedure is explained in more detail later in the text. Figure

6.2 illustrates the raw system identification output on the left and the processed (tracked)

data on the right. The expected results from a mode tracking procedure are plausible or

smooth eigenfrequency paths, the removal of spurious modes and that mode families are

labeled or numbered.

Figure 6.1: Mode matching example. Three modes from the comparison set are matched to
the reference set modes. One unpaired mode becomes the ancestor of a new mode family.

Figure 6.2: Completed mode matching example. The left plot displays the eigenfrequency
trace over time as raw identification output. The right plot shows the corresponding eigenfre-
quency paths in the completed tracking diagram: the members of the same mode family are
connected neatly by a line and lonely poles are erased. The ancestor of each mode family is
denoted by a circle. Output-only data from an aircraft model at DLR-Göttingen.
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6.2 Similarity metrics

Two scalars zi and zj can be compared by defining a “distance” between them, for example

the norm-2:

d(zi, zj) = ∥zi − zj∥ (6.1)

In this case a distance equal to zero indicates perfect congruence. Comparably, two vectors

vi and vj are “similar” when their inner product is almost equal to the product of their

norms (Cauchy-Schwarz inequality):

vH
i vj ≤ ∥vi∥∥vj∥ (6.2)

The two sides are equal only if the two vectors are equal.

Distance and similarity are complementary. In modal analysis these concepts are

extended to eigenvalue-eigenvector pairs. Tracking relies on quantifying the distance or

similarity between identified modes of vibration in order to assign each to its corresponding

mode family. We shall settle on concept of “similarity” because historically, in the structural

dynamics community, mode shapes have been compared in terms of orthogonality. Several

measures have been devised and we shall call them similarity metrics. This formalism

introduces some generality that is helpful later in this section.

Definition. The similarity metric is an operator Θ(· , ·) that takes two sets of eigenvectors

and/or eigenvalues {Ψ,Λ}ref {Ψ,Λ}cmp (respectively the reference and comparison sets)

and computes a similarity matrix Θ ∈ RNi×Nj whose entry (i, j) quantifies the similarity

between the i-th eigenmode of {Ψ,Λ}ref and the j-th eigenmode of {Ψ,Λ}cmp:

Θij = Θ
(
{Ψ,Λ}refi , {Ψ,Λ}cmp

j

) Ψref ∈ CNy×Ni Ψcmp ∈ CNy×Nj

Λref ∈ CNi Λcmp ∈ CNj
(6.3)

The similarity is a real number between zero and one 0 ≤ Θij ≤ 1. It is defined so that

Θ = 1 indicates perfect congruence and Θ = 0 that the modes are completely dissimilar.

The rows of Ψref and Ψcmp refer implicitly to the same outputs.

Notation. The reference modes have subscript “i” because they relate to the rows of the

similarity matrix Θ. Conversely, the comparison modes has subscript “j” and appear on

the columns.

Notation. For ease of notation, instead of writing the similarity metric’s full argument

as {Ψ,Λ} we shall sometimes simply write Ψ and refer to the eigenpair as “mode”. The

symbol Ψ denotes all modes of a set, while ψk denotes the k-th mode of a set.

In order to perform mode tracking, we need to define when two modes can belong to

the same family. We say that ψi and ψj are “similar” when their similarity is higher that

a threshold (this value may have to be adjusted depending on the chosen metric):

Θ(ψi,ψj) ≥ Θmin =⇒ ψi and ψj are similar (6.4)
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A similarity metric must satisfy the following properties:

Property. Similarity metric The operator Θ(· , ·) is reflexive, commutative and insensi-

tive to scaling and phase rotation of eigenvectors:

Θ(ψi,ψi) = 1

Θ(ψi,ψj) = Θ(ψj ,ψi)
T

Θ(ψi,ψj) = Θ(zψi,ψj) ∀z ∈ C

(6.5)

Our intended application of mode tracking needs selectivity and speed. We shall

consider the following metrics:

• MAC : modal assurance criterion

• MAC-λ: modal assurance criterion with eigenvalues

• MACXP : expanded modal assurance criterion

• HDM : hyperbolic distance metric

Several other metrics can be defined; reference [Reynders et al., 2012] provides more. In

[Yaghoubi and Abrahamsson, 2014] the modal observability correlation (MOC) criterion

is introduced. It is based on the orthogonality between the columns of the observability

matrix of a balanced system realizatio, therefore it can be easily combined with subspace

identification. Regarding our application however, it is not suitable for comparing modal

data from heterogeneous sources.

6.2.1 Output sensor selection

When two eigenvectors are compared, their rows must refer to the same output sensors

on the structure for consistency. This is often overlooked, but during measurements it is

common to modify the channel setup when preparing different system configurations. In

the OMA framework it may be convenient to use different sets of responses to identify the

modal parameters, for example, to exclude faulty sensors or badly excited directions or

structure components. This means that there are usually several slightly different channel

tables over the course of one experimental campaign.

Let us suppose that the eigenvectors ψi and ψj have been identified using different

sets of outputs with global indices Yi and Yj . The similarity is computed considering only

the common sensors (rows of the eigenvector matrix)1:

Yu = Yi ∩ Yj =⇒ Θij = Θ(ψi[Yu],ψj [Yu]) (6.6)

Output channels that do not appear in both eigenvectors are ignored. We shall tacitly

assume that the rows of two eigenvectors are consistent when computing their similarity.

1 The output channels must be intersected and sorted consistently. This requires additional computation
but it is first and foremost a considerable challenge from the point of view of algorithmic implementation
because the rows (outputs) of any combination of reference and comparison modes must be checked.
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6.2.2 MAC - modal assurance criterion

This is by far the most known and widespread similarity metric. A detailed treatise about

the modal assurance criterion, its historical development and applications is found in

[Allemang, 2003]. The MAC-value quantifies the degree of eigenvector linearity:

MAC(ψi,ψj) ≜

(
ψH

i ψj

∥ψi∥ · ∥ψj∥

)2

(6.7)

The MAC is used extensively for validating numerical mode shapes on the basis of ex-

perimental data, comparing eigenvectors calculated from different sources or checking if

the neighboring poles in the stabilization diagram have the same associated mode shape

[Govers et al., 2014]. MAC-based tracking is applied in [Jeličić et al., 2014] to a

wind tunnel model to determine the flutter boundary.

6.2.3 MAC-λ - modal assurances criterion with eigenvalues

The modal assurance criterion (6.7) does not include any information about the associated

eigenvalues. In [Reynders et al., 2012] a criterion that incorporates eigenvector orthogo-

nality and eigenvalue distance is proposed. The equivalent definition as similarity metric is

presented here and, lacking an established name, it is called MAC-λ:

MAC-λ(ψi, λi,ψj , λj) ≜
1

2

1− |λi − λj |
max(|λi|, |λj |)

+

(
ψH

i ψj

∥ψi∥ · ∥ψj∥

)2
 (6.8)

This criterion has been applied to mode tracking of civil structures, for example in [Cabboi

et al., 2017; Marrongelli and Gentile, 2019].

6.2.4 MACXP - expanded modal assurance criterion

The expanded modal assurance criterion has been proposed in [Vacher et al., 2010] to

improve some of the shortcomings of the MAC (6.7). This metric utilizes both eigenvalues

and eigenvectors to determine similarity:

MACXP(ψi, λi,ψj , λj) ≜

(∣∣∣∣ψH
i ψj

λ∗
i+λj

∣∣∣∣+ ∣∣∣∣ψT
i ψj

λi+λj

∣∣∣∣)2

(
ψH

i ψi

2|ℜλi| +
|ψT

i ψi|
2|λi|

)(
ψH

j ψj

2|ℜλj | +
|ψT

j ψj|
2|λj |

) (6.9)

Its derivation is based on maximizing the correlation between two complex vectors and

extending this concept to the free-decay response corresponding to each eigenpair. The

mathematical details are found in the aforementioned reference. MACXP has much better

selectivity than MAC, a helpful property when the amount of sensors is limited, when

experimental data is scarce or when the estimated modal parameters contain many spurious

poles. The price is a higher computational burden that can become considerable for larger
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data sets. We have applied MACXP in the tracking of flight vibration testing data in

[Jeličić et al., 2017; Schwochow and Jeličić, 2015].

6.2.5 HDM - hyperbolic distance metric

The distance between eigenvalues can be measured using the so-called pseudo-hyperbolic

metric:

d(zi, zj) =

∣∣∣∣ zi − zj1− z∗i zj

∣∣∣∣ (6.10)

where z ≜ eλ/fs is a “discretized” version of the eigenvalue λ (in the continuous case the

sample rate can be set as fs = 2.1max{fn}). Unstable eigenvalues are mapped inside the

unit circle by z ← 1/z. According to this definition, d = 0 indicates no distance between

eigenvalues and thus perfect correspondence. This equation can be combined with the

modal assurance criterion to include eigenvectors for the calculation of the hyperbolic

distance metric (HDM):

HDM(ψi, λi,ψj , λj) ≜

(
1−

∣∣∣∣ zi − zj1− z∗i zj

∣∣∣∣) ψH
i ψj

∥ψi∥ · ∥ψj∥
(6.11)

The HDM has a very good selectivity that is comparable with the MACXP, but can be

calculated much faster. Because of this, it is the preferred similarity metric applied to

experimental data in chapter 8. The research by [Luspay et al., 2018] documents its use

in the sorting of instantaneous eigenvalues of a parameter-varying system.

6.2.6 Tracking of analytical eigenvalues

Tracking of instantaneous eigenvalues of time-varying matrices is necessary to construct

flutter plots, but this is not easily performed even with analytical or numerical data.

For example, [Mogenier et al., 2012] describe the mode tracking technique applied to

finite-element models of rotating systems in order to construct clean Campbell diagrams. A

simpler and effective approach in our case is pairing modes with the help of the interpoint

distance (IPD). This a metric devised for a linear assignment problem to track eigenvalues

of analytically-determined state matrices. The IPD is calculated by evaluating two full

sets of eigenvalues and eigenvectors:

IPD(Ψi,Λi,Ψj ,Λj) ≜
(
1−

∣∣∣Ψ̃H
i Ψ̃j

∣∣∣) ◦ ∥Λi −ΛT
j ∥ (6.12)

where ◦ is the Hadamard (element-wise) product and Ψ̃ ≜ Ψ/∥Ψ∥ is the norm-2 scaled

eigenvector (so that that A
eig
= Ψ̃ΛΨ̃−1). A consistent eigenvalue sorting algorithm for

analytical data that employs the IPD is provided in [D’Errico, 2020]. The IPD score

is robust enough to handle bifurcations, crossing eigenvalue paths and modes changing

stability. Naturally, a big advantage for the analytical case is the constant number of

eigenvalues and the absence of spurious modes. In this thesis most plots of analytical

time-varying modal parameters have been produced with the help of this algorithm.
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6.2.7 Comparison of mode similarity metrics

Figure 6.3 displays the similarity between two mode sets using the MAC, MAC-λ, MACXP

and HDM metrics (IPD is meant only for analytical data). This type of plot is universally

known as “MAC-plot” in the structural dynamics community. As already mentioned,

criteria that incorporate information about eigenvalues have better selectivity. The ability

to filter out two adjacent modes is particularly important for effective mode tracking.

One of the first checks to be performed on identified mode shapes is the auto-MAC

matrix MAC(ψi,ψi). The eigenvectors are orthogonal when weighted by the mass matrix

(ψT
i Mψj = 0 for i ̸= j), but in the OMA framework this information is not available,

therefore even in the ideal case the auto-MAC matrix is not perfectly diagonal (unless the

system mass is lumped). Nevertheless, if the MAC value between two adjacent modes is

high, it can hint at a mode of vibration that has been identified twice2. This can happen

when a pole has moved within the system identification buffer. In periodic systems several

harmonics associated to the same Floquet exponents can cluster together – in this case

the MAC value between neighboring modes is supposed to be very high (for example the

identified eigenvalues in figure 2.25 have almost identical associated residuals). Very often,

however, based on the stabilization diagram, it is just a spurious mode next to a physical

one and can thus be ignored.

Figure 6.3: Comparison of two mode sets estimated from two uncorrelated realizations of
the same system (output-only data from an aircraft model at DLR-Göttingen). The similarity
metric is visualized as a matrix and the color of cell (i, j) encodes the similarity between mode
i from the reference set and mode j from the comparison set (white: Θij = 0, dark brown:
Θij = 1). The MACXP and HDM criteria are useful in filtering out cross-similarities. MACXP
and HDM are very similar, however the latter can be calculated much faster.

2 Let us suppose that the system identification procedure has found two very close eigenvalues λ1 ≈ λ2

where only one physical pole λ0 should be. The corresponding term in the pole-residue form (5.3) is then:

λ0 ≈ λ1 ≈ λ2 :
ψ0ϕ

T
0

iω − λ0
≈
(

1

iω − λ1
+

1

iω − λ2

)
ψ0ϕ

T
0

2
≈ ψ1ϕ

T
1

iω − λ1
+
ψ2ϕ

T
2

iω − λ2
=⇒ MAC(ψ1,ψ2) ≈ 1

(6.13)
The MAC-matrix reveals that same mode shape appears twice (with different scaling), therefore one of the
two eigenvalues can be picked and the other ignored.
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6.3 Mode quality indices

The tracking algorithm must be able to assess the “quality” of identified modes in order to

perform a choice in case of a double match or to remove modes that are likely spurious.

Several indices can be found in literature. We shall focus on the following:

• MIF : mode indicator function

• MPC : mode phase collinearity

• MPD : mean phase deviation

• MOV : mode overcomplexity value

A mode quality index associates a dimensionless number between zero and one to each

eigenvalue-eigenvector pair. The next pages describe briefly some mode quality indices,

while more detailed descriptions, such as a geometrical interpretation of how they work

and how they have been derived, are provided in the cited literature.

The combination of several quality indices into a weighted sum provides the means

to assign a “score” to each identified mode and hopefully to recognize spurious poles.

Nevertheless, a manual inspection of the representative of each mode family is always rec-

ommended. For instance, a mode shape with irregular phase difference between eigenvector

components / neighboring sensors (high complexity) is unlikely to represent a physical

mode of vibration. However, a critical mode near the flutter boundary exhibits high

complexity because of high aerodynamic damping and the interaction with another nearby

mode. Since mode quality indices do not incorporate any geometric information, such a

mode could be erroneously labeled as spurious, therefore an animated plot can reveal if

the identified mode shape is physical.

Lastly, quality can be assessed effectively by the estimated variance of eigenvalues, if

available. SSI and maximum-likelihood LSCF can compute the variance of the estimated

modal parameters and include this information in the stabilization diagram [Döhler

et al., 2013b; El-kafafy et al., 2013].

6.3.1 MIF - mode indicator function

The MIF3 is defined as [Breitbach, 1973]:MIF(ψ) ≜ 1− |ℜψ̃|T |ψ̃|/∥ψ̃∥2 when
∑

k |ℜψ̃i| ≤
∑

k |ℑψ̃i|

MIF(ψ) ≜ 1− |ℑψ̃|T |ψ̃|/∥ψ̃∥2 when
∑

k |ℜψ̃i| >
∑

k |ℑψ̃i|
(6.14)

where ψ̃ = ψ/max{ψ} are scaled eigenvectors and i is the index of their rows. Purely real

modes have MIF(ψ) = 1, while for badly-identified modes MIF(ψ) ≈ 0.

3 There exist at least another function with the same name (MIF) that is used to find the location of
poles with frequency response functions as input [Brandt, 2011; Radeş, 2010]. The OMA equivalent is
the complex mode indicator function (CMIF).
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6.3.2 MPC - mode phase collinearity

The mode phase collinearity quantifies the spatial consistency of identified mode shapes4

[Pappa et al., 1993]:

MPC(ψ) ≜
(σyy − σxx)2 + 4σ2xy

(σxx + σyy)2
(6.17)

where

σxx ≜ ℜψTℜψ σyy ≜ ℑψTℑψ σxy ≜ ℜψTℑψ (6.18)

The eigenvector entries lie on a straight line in the complex plane in the presence of

proportional damping. When MPC(ψ) = 1 the mode is perfectly collinear.

6.3.3 MPD - mean phase deviation

The MPD quantifies the discordance of the eigenvector from the mean phase in the complex

plane [Reynders et al., 2012]:

MPD(ψ) ≜
wT arccos

∣∣cos(∠ψ − ϕ̄)∣∣∑Ny

j=1wj

(6.19)

where the mean phase ϕ̄ is computed by:

[ℜψ , ℑψ] SVD= UΣVH =⇒ ϕ̄ ≜ arctan(−V[1, 2]/V[2, 2]) (6.20)

The positive weights w can be assigned to give more importance to some sensors over

others (by default w = |ψ|). When MPD(ψ) = 1, the mode’s mean phase difference from

the linear fit of its entries is zero.

6.3.4 MOV - mode overcomplexity value

The mode overcomplexity value is defined as the (weighted) percentage of the response

stations, for which a mass addition decreases the natural frequency for a specific mode

[Heylen et al., 1998]:

MOV(ψ) ≜

∑Ny

j=1wjaj∑Ny

j=1wj

aj = 1 ψ2
j/∥ψj∥ > 0

aj = 0 ψ2
j/∥ψj∥ = 0

(6.21)

where j is the index of the rows of ψ and w is their weights.

4 [Reynders et al., 2012] define the MPC equivalently as:

MPC(ψ) =
∥ℜψ′∥2 + ϵ

−1ℜψ′Tℑψ′ (2 (ϵ2 + 1
)
sin2 θ − 1

)
∥ℜψ′∥2 + ∥ℑψ′∥2

(6.15)

where the auxiliary variables ψ′, ϵ and θ are:

ψ′ ≜ ψ −mean{ψ} ϵ ≜
∥ℑψ∥2 − ∥ℜψ∥2

2ℜψTℑψ
θ ≜ arctan

(
|ϵ|+ sgnϵ ·

√
1 + ϵ2

)
(6.16)
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6.3.5 Comparison of mode quality criteria

Figure 6.4 presents a comparison of quality indices evaluated on the modes of an aeroelastic

system in order to illustrate their behavior.

Figure 6.4: Comparison of the mode quality indices MPC, MIF, MOV and MPD using data
from the C1 aeroelastic model 7.2. The marker color indicates the value of each mode quality
index (blue: 0, red: 1). The horizontal red line denotes the flutter speed.
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6.4 The tracking algorithm

We have seen in chapter 3.1 that the eigenvalues and eigenvectors of an aeroelastic system

can vary significantly, especially for flutter-critical modes. We know from experience that

a large number of spurious modes appear when performing operational modal analysis.

There are cases where identified eigenvalues can be clustered by defining frequency intervals,

but this approach is unable to resolve bifurcations or crossings and is vulnerable to the

presence of spurious poles. Tracking methods recognize identified poles by their associated

eigenvector because, at least in the ideal case, mode shapes are generally approximately

orthogonal to each other even for closely-spaced poles.

Let us assume that a mode Ψ(x) varies continuously within the time or parameter

interval x ∈ [x0 , xf ] to such extent that the similarity between the extremes is very low

Θ(Ψ(x0),Ψ(xf )) ≈ 0. We assume that a sufficient number of intermediate steps is available

so that the following condition can be satisfied:

Hypothesis. The modes Ψ(x) are identified ∆x units apart, where ∆x is such that

consecutive eigenpairs are similar Θ(Ψ(x),Ψ(x+∆x)) ≥ Θmin.

Figure 6.5 displays an aeroelastic system undergoing a linear variation from low speed

to a little over the flutter speed. As the flutter condition is approached, the eigenvectors

become increasingly more complex and change shape. Aerodynamic poles display dramatic

changes as speed increases. Nevertheless, the system can be tracked if the modes vary

negligibly between mode sets. We conclude that, for successful tracking, an adequate

temporal/parameter resolution is required.

In an online monitoring application for aeroelastic systems this assumption is verified

when the modal analysis is completed fast enough relative to the system’s rate of variation.

This observation forms the basis for the tracking algorithm described in the coming pages.

We have seen in section 4.2 that the cross-power spectral density’s residuals contain

information about the mode shapes but also the poles of the excitation spectrum. In

Figure 6.5: Aeroelastic system undergoing linear speed variation (vf = 91.8 m/s). The plots
display the physical modes on the left and the aerodynamic ones on the right. The marker
color denotes the MACXP value of each mode shape with respect to the system at rest (blue:
0, yellow: 1). The parameter’s variation ∆v = 2 m/s is such that adjacent mode sets are so
similar that no difference is visible.
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output-only applications, it may difficult to maintain stationary conditions. Due to varying

excitation levels or external parameters, some modes may be identified poorly or not at all,

thus severing the chain of a mode family. This must be dealt with by devising a robust

mode matching strategy. Several approaches can be found in literature. [Reynders et al.,

2012] present a fully-automated modal analysis procedure that makes use of hierarchical

clustering. A method using self-adjusting thresholds is presented in [Cabboi et al., 2017]

and [Marrongelli and Gentile, 2019]. In [Yaghoubi et al., 2018] a combination of

correlation-based clustering and bootstrapping is proposed. The paper of [Luspay et al.,

2018] presents a multi-step technique for the purpose of LPV system model reduction of

aeroelastic systems.

In our approach, the mode tracking algorithm’s purpose is the consistent pairing of all

the mode sets that have been identified during an experiment or data run. Its inputs are

estimated mode sets with corresponding parameters and metadata, the chosen similarity

metric, threshold and settings. Its output is simply a table containing the mode IDs

associated with each set ID. Through the set ID there is a one-to-one correspondence

between all identified eigenvector-eigenvalue pairs and metadata. The tracking diagram

is then built by plotting the eigenfrequencies of all modes with the same ID over the

corresponding abscissa as a simple polygonal chain (see for example figure 6.9).

6.4.1 Mode matching

We begin by illustrating the mode matching process. The pairing is performed by assigning

each comparison mode to a reference mode – when possible. This can be carried out in at

least two ways:

• For each column of Θ, get the index of the row where the maximum similarity is

found. This index corresponds to the matched reference mode. This is a very simple

and fast approach that delivers good results.

• Solve an assignment problem with the Hungarian (Munkres) algorithm where Θ

is the cost matrix. The similarity matrix is generally rectangular, therefore some

“dummy” columns/rows with the minimal cost (0) must be added. The algorithm

solves a combinatorial optimization problem in polynomial time [Burkard et al.,

2009].

A multiple match happens when two comparison modes are assigned to the same reference

mode (mode family). When a multiple match is detected, the algorithm must perform a

choice, for example by assigning a score to each mode and picking the one with the highest

one. A possible score is:

SCORE(ψj) = 1−MPC(ψj) +MPD(ψj) +MAC(ψi,ψj) (6.22)

The comparison mode ψj with the highest score is matched, the others unpaired. Un-

matched modes become the ancestors of new mode families. Figure 6.6 illustrates the

matching process schematically.
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Figure 6.6: Mode matching procedure example. The reference set is 0x and the comparison
set is 1x. In the figure the colors symbolize the level of similarity between each pair of modes
(red: high, white: low). Two modes are paired when their similarity exceeds a threshold. It is
possible that no matches are found for some reference modes (in this case 03 and 05). Multiple
matches are resolved by assigning a score to each mode (modes 13 and 14). Unmatched modes
are not discarded but become the ancestor of a new mode family (mode 13). Mode families
with large variance and sparse members are marked as spurious.

6.4.2 Mode library

The core strategy of the tracking algorithm developed in this thesis consists in storing the

identified mode sets in a large mode library and maintain a dynamically-updated index of

reference modes within it. Multiple slightly different estimations (instances) of the same

modes are thus stored to provide a larger reference base for any newly-estimated modes.

Spurious eigenpairs will not be matched consistently and will form mode families whose

members are few and sparse, thus being much easier to recognize and eliminate. This

approach is necessary for OMA because the estimated mode shapes have a large variance

even in the nominally stationary conditions and more so when the system is time-varying.

Figure 6.7 presents three mode matching steps to illustrate the concept of mode library.

[De Cock et al., 2006] presented a recursive EMA method that utilizes a forgetting

factor for tracking abrupt changes in modal parameters. In [Jacquier and Ayme, 2018]

a tracking tool that utilizes a similar “mode library” concept has been recently presented.

The pseudo-code of the algorithm that has been developed for flight vibration testing in

[Jeličić et al., 2017] is described in algorithm 4 at the end of this subsection. The

library is a reference base that contains significantly more elements than the comparison

set (typically thousands of modes versus less than a hundred). Fast computation of the

similarity criterion and efficient solution of the assignment problem are required for a

real-time application (it may be necessary to employ the HDM metric (6.11) instead of

the MACXP (6.9) or to forgo the Hungarian algorithm when available CPU resources are

scarce).
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Figure 6.7: In this example the reference library is set to use only the last two mode sets.
Step 1: the first set 1x is matched with the starter reference set 0x. Reference mode 02 finds
no corresponding comparison mode. Step 2: the reference contains sets 0x and 1x and is used
to match 2x, There is no match for mode 24, so it becomes the ancestor of a new mode family.
Step 3: since the library is to use only the last two sets, set 0x is removed from the reference
set. All comparison modes are matched in this step.

In order to limit the unbound growth of the mode library, the user defines the maximal

number of mode sets that are stored within and how they are replaced as new data is

acquired. There are various ways of selecting the reference mode sets:

• A simple approach is to consider just to the last few sets that have been identified

(first-in-first-out buffer). The tracking algorithm has thus a “fading memory” and

forgets the older mode sets with a hard cut-off.

• In the time-varying case a weight function that depends on the “distance” from the

current external parameters can be applied. This strategy is sound, but it requires

potentially a large reference base.

• Scoring the modes to use only the “best” ones as reference, for example the least

complex ones or by performing a search on the stabilization diagram. This is a topic

of ongoing research, see for example [Volkmar et al., 2019].

The first approach requires the least amount of computation and has proven quite effective.

Two phases of our tracking procedure are illustrated in figure 6.8 using real data. As

tracking progresses, there can be thousands of modes in the library. Figure 6.9 displays an

intentionally “bad” tracking diagram. The goal is to highlight what happens when the

similarity threshold is too low or when the library’s length is too short. In this example

the threshold is so low that some modes are clearly mismatched. Similarly, a threshold

close to 1 may be too restrictive for OMA data. Transient phenomena that impede the

identification of some modes should not have longer time scales than the library’s length,

lest a mode family chain be broken (see example in figure). This can be corrected by

increasing the library’s length.
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Figure 6.8: Two snapshots of the tracking process. The comparison modes are shown along
the rows for clarity. Left plot: similarity between a comparison set (12 modes) and a reference
library containing 2 sets with 35 modes in total. Each row in the matrix (comparison mode)
has up to two matches because there are this many instances of the same mode in the library.
The library grows up to the specified length by inserting these newly-matched modes and this
procedure is repeated for all identified sets. Right plot: the last step of the tracking process.
At this stage the library contains the last 20 sets containing 239 modes in total. The red
outline indicates which reference mode has been matched.

Figure 6.9: Tracking diagram with very low threshold and short library length. The red
circles are lone spurious poles. The line color represents the MAC value between consecutive
modes within the same family (blue: high, yellow: low). The oblique yellow lines denote thus
clearly mismatched modes. The library’s length determines the algorithm’s capability to track
disappearing modes. For example, the mode family at f = 0.14 is disrupted because the library
contains only the last 5 sets (a length 10 would have “bridged” this jump where the mode has
not been identified). Flight test data from [Jeličić et al., 2017].
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Algorithm 4: Tracking algorithm

Data: N sets of identifed modes [Ψ1 , Ψ2 , ... , ΨN ] (with consistent rows)
Result: Global mode IDs I[n], where the n-th array element contains the mode

IDs of the n-th mode set.

Initialization:
Get starter reference set Ψref ← Ψ0 (from FEM, GVT or first identified set)
Assign mode IDs Iref ← 1 :N0 (N0: number of modes in Ψ0)
Initialize global mode IDs: I[1]← Iref
Run:
for every identified mode set after the first n = 1 :N do

Get reference set Ψref and corresponding mode IDs Iref
Get comparison set Ψcmp ← Ψn

Consider only common sensors for the computation of the similarity; get correct
row sorting for the reference and comparison sets:

Yu ≜ Yref ∩ Ycmp =⇒ Yref
u = Yref ∈ Yu Ycmp

u = Ycmp ∈ Yu

Compute similarity between reference and comparison mode sets:

Θij = Θ(Ψref [Yref
u , i],Ψcmp[Ycmp

u , j])

Solve assignment problem f(·) with Θ as cost matrix to obtain local indices J:

J = f(Θ)

where J[j] = i indicates that Ψcmp
j is matched to Ψref

i

Assign referenced IDs to matched comparison modes: Icmp ← Iref [J]
for every reference mode i = 1 :Ni do

Calculate score (mode quality index) s of each mode matched with i-th
reference mode

Unmatch multiple matches Icmp[s < max(s)]← 0

end
for every comparison mode j = 1 :Nj do

if the similarity is below the threshold Θ[J[j]], j] < Θmin then
Unmatch comparison mode: Icmp[j]← 0

end
if the comparison mode has been unmatched Icmp[j] == 0 then

Assign new ID to unmatched comparison mode: Icmp[j]← max(Iref ) + j
end

end
Update global mode IDs I[n]← Icmp

Select which mode sets Isel can remain in the reference set according to the
mode library management strategy: Iref ← Iref [Isel]
Build new reference indices by appending comparison indices:
Iref ← {Iref , Icmp}

The new reference modes are Ψref ← Ψ[Iref ]
end
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6.4.3 Variance of modal parameters

The SSI and maximum-likelihood LSCF methods that estimate the population variance

of modal parameters (see chapter 7) are the focus of several publications, for example

[Döhler et al., 2013b; El-kafafy et al., 2013; Guillaume et al., 1999; Pintelon

et al., 2007; Reynders et al., 2008]. The estimated modal parameters are assumed to

have Gaussian distribution and their variance quantifies the confidence with which they

have been identified.

SSI can perform a sensitivity analysis of the identified system matrices starting from

perturbations of the observability matrix (5.15). This leads ultimately to an estimate

of the covariances of the system eigenvalues, which can be extended to mode shapes.

The maximum-likelihood LSCF estimator performs an iterative minimization of the error

between the estimated and synthesized spectra. The inverse of the reduced Jacobian matrix

(5.41) computed this way is an estimate of the modal parameters covariance matrix. The

eigenvalue variance is usually represented as error bars on the stabilization diagram in

order to assist the test engineer in the composition of the modal model. Spurious poles

have commonly a standard deviation that is at least one order of magnitude greater than

that of physical poles.

Due to tight limitations on computation time, the tracking strategy described in this

chapter does not have access to the estimated population variance, but can calculate the

sample variance from one or several stabilization diagrams. When a statistically significant

number of model orders has been computed, the eigenvalues can be tracked to estimate their

variance. In [Yaghoubi et al., 2018] bootstrap sampling is used to provide information

for clustering and noisy modes removal. Figure 6.10 provides an example with real data.

Another approach is to identify the system during nominally stationary conditions using

short data blocks, track the mode sets and then calculate the variance. Figure 8.39 will

provide an example using flight vibration testing data.
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Figure 6.10: The eigenvalue and their variance are estimated using the covariance-driven SSI.
The mean value is denoted by a dot, the ellipses represent the covariance of eigenfrequency
and damping ratio. The variance of the former is typically larger than that of the latter. Two
clearly spurious poles are visible at about 15 and 90 Hz. Output-only data from an aircraft
model at DLR-Göttingen.
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6.4.4 Cleaning of the stabilization diagram

The tracking algorithm can be used to clean up the stabilization by scooping identified

poles with large variance, lone poles or the ones whose modal parameters vary excessively

between two consecutive model orders p and p − 1 (starting from the top) [Goursat

et al., 2011]. A common and effective strategy is to define the maximal relative variation

for eigenfrequency εf and damping εζ :∣∣∣∣1− fp−1

fp

∣∣∣∣ ≤ εf ∣∣∣∣1− ζp−1

ζp

∣∣∣∣ ≤ εζ (6.23)

Based on such stability criteria, many authors and modal analysis packages label the

poles with letters (s: stable, f: stable frequency, d: stable damping, m: stable mode, o:

origin mode). The poles can be selected automatically or manually, depending on the

situation. In [Lanslots et al., 2004] a validation methodology for automated pole

selection is presented. During ground vibration testing, as more knowledge about the

structure becomes available through the analysis of many data runs, the modal model is

constructed by selecting the best from a pool of identified modes [Govers et al., 2014].

Recently neural networks have been applied to modal model selection in the post-processing

phase [Volkmar et al., 2019]. In this regard real-time system identification is challenging

because there is very little available time to perform any selection. The approach followed in

this thesis and that has been deployed during flight testing constructs the full stabilization

diagram, but the eigenmodes and reconstructed input spectra are only estimated for the

highest four model orders. These four model orders are compared by computing a mode

quality index. The order with the best overall score is used to form the modal model.

Tracking over model order is fortunately easier to perform than tracking over time, but

it requires the additional identification over many model orders to produce statistically

relevant results. This may not be feasible because additional computation may be necessary

to estimate the eigenvectors. Figure 6.11 provides an example of our technique applied to

the full stabilization diagram.

Figure 6.11: Automatic clean-up of stabilization diagram using tracking along mode orders.
This is normally not performed in an online application due to time constraints. Plot adapted
from [Schwochow and Jeličić, 2015].
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6.5 Parametric representation of tracked data

After the identification data has been tracked or organized, the eigenvalue traces can

be interpolated or regression can be applied to construct a parametric representation of

each mode family with respect to time or external parameters. Fitting can be helpful in

compensating insufficient data acquisition time, sub-optimal signal processing or system

identification parameters, errors, outliers and bad tracking. When the system is time-

varying some running average technique must be employed. In the case of flutter diagrams,

polynomials of order 2 can be used for fitting [Verboven et al., 2004]. The extrapolation

of flutter data from quasi-stationary input-output measurements is discussed in [De Troyer

et al., 2008]. A model-based technique is applied in [Ertveldt et al., 2014] to predict

the onset of flutter. In our approach we employ two main methods:

• The locally-weighted polynomial (LOWESS) approach can be applied with different

combinations of kernels and polynomial orders. Since it computes the so-called

smoothing matrix, various validation techniques (such as Akaike’s information crite-

rion) can be employed. A local regression toolbox is found in [Jekabsons, 2016].

• The Savitzky-Golay filter is a finite impulse response filter that can be designed in

advance for a certain order and frame length and then deployed to provide moving

average smoothing. It is a very efficient solution that can be easily implemented. It

is applied to flight vibration testing results in chapter 8.

The Gaussian kernel up to order 3 has been found to deliver good results for constructing

flutter diagrams, while a moving average method is preferred in real-time monitoring

applications.

Figure 6.12 presents the experimental flutter diagram constructed while conducting a

measurements in a transonic wind tunnel and the fit used to extrapolate the critical speed.

Figure 6.12: Wind tunnel results for constant pressure and variable Mach number. The circles
are mean values, the bars represent three standard deviations, the lines a Gaussian smoothing
kernel fit of order 3. The system is held under stationary free-stream conditions at each Mach
number and a pitching moment impulse is applied to the model. Several uncorrelated system
identifications are performed to assess the modal parameter variance. The variability that can
be observed in the identified damping is due to artificial excitation (atop turbulence). Data
from the transonic wind tunnel DNW-TWG [Jeličić et al., 2014].
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In figure 6.13 the modal parameters are estimated in real-time and regression is

performed as new data is acquired. Spurious modes appear when the system undergoes

an abrupt variation, when linearity assumptions are violated, when few data points are

available or when the excitation varies. Information about damping is displayed more

effectively in the complex plane as the real part of the eigenvalue because each mode is

then well-separated vertically. The damping fit is computed with time as the independent

variable. The eigenvalue variance is due to nonstationary flight conditions and short data

blocks.

(a) Raw tracking output

(b) Fit of tracking data

Figure 6.13: Top: tracked modal parameters from a flight vibration test from [Jeličić
et al., 2017]. The gray markers are spurious modes, the colored markers denote tracked
mode families, a line connects two adjacent modes belonging to the same family. This tracking
diagram is a completely automatic output. Bottom: tracked modes fitted using a Gaussian
smoothing kernel of order 1.
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6.6 Chapter summary

The results of continuous system identification during vibration testing must be organized in

relation to time or external parameters in order to monitor the evolution of eigenfrequency

and damping ratio.

The chapter described the mode tracking strategy that has been developed within this

research for the automation of real-time modal analysis. The tracking algorithm is based

on a library of many instances of the same eigenmodes that is constructed as measurements

progress in order to successfully match newly-identified eigenmodes. These are paired by

similarity criteria based on some concept of distance between different eigenpairs, such as

the modal assurance criterion (MAC). The goodness of estimated and matched modes is

evaluated by mode quality criteria such as the mean phase deviation (MPD). Modes that

are matched with each other belong to the same mode family and trace smooth lines on a

time-eigenfrequency plot. It is then possible to observe the damping ratio variation over

flight parameters to construct flutter curves.

The end result is a nonparametric representation of time-varying modal parameters.

Once the identified modes have been organized into families, it is possible to apply regression

techniques to construct a parametric representation.





7 Aeroelastic system simulation

Abstract

The theoretical development and modal analysis tools described in the previous chapters are put to

the test on simulated data. The chapter elaborates the solvers used to compute the numerical solution

of time-varying systems. A three degrees-of-freedom aeroelastic system with two configurations that

display hard and soft flutter is employed. The system response to stochastic excitation is simulated

under various parameter variation profiles and the system’s modal parameters are identified. The

influence of duration, block length and number of averages is investigated.

The previous chapters have set up the theoretical tools required to model parameter-

varying aeroelastic systems and to perform spectral estimation, system identification and

mode tracking. The present chapter demonstrates the applicability of those methods

on simulated data. The results of operational modal analysis can be compared with an

analytical model or instantaneous modal parameters if the system is slowly-varying. To

this end, records with sufficiently long duration and ensemble identification are necessary

to produce good estimations, but lengthy simulations of large dynamic systems have

many demanding aspects. Numerical solutions must have the correct frequency-domain

characteristics, lest the identified system present some kind of bias, unaccounted poles and

zeroes, numerical damping added by the integrator et cetera. In order to control the quality

of simulated data, ad-hoc numerical methods are implemented with particular attention to

accuracy and computation time.

To recapitulate, our objectives are:

• Simulations of large time-varying systems

• Datasets of adequate length for the verification of system identification techniques

• Investigation of the effect of amplitude and rate of parameter change

The requirements for the simulation methods are: precisely known assumptions and ap-

proximations, controllable distortions and artifacts of the simulated data, computationally

efficient handling of large systems for long duration.

The chapter’s roadmap is thus:

1. Simulation of parameter-varying systems: system matrix generation, excitation

signals and numerical implementation.

2. Presentation of a simple benchmark aeroelastic system with two flutter configurations.

3. Modal analysis: spectral estimation, system identification and mode tracking.

4. Discussion of results
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7.1 Numerical analysis of time-varying systems

The bounded-input-bounded-output stability assessment does not exclude a localized

response amplification (see for example figure 2.6). For real-world mechanical systems,

structural integrity must be guaranteed by limiting the maximal vibration amplitude below

a certain level. For this purpose, a direct numerical solution is necessary.

In the case of periodic systems, section 2.3.4 explained that the stability and a parametric

frequency-domain description of the response can be computed via Floquet decomposition.

Furthermore, an aperiodic system can be approximated by an arbitrarily accurate periodic

representation. A number of practical methods have been implemented for this purpose in

section 2.4 with various degrees of accuracy. Unfortunately, even for variation rates in the

order of the lowest eigenfrequency, it may not be possible to decompose the system due to

numerical limitations, preventing us from constructing the parametric frequency-domain

representation of the system’s response. The simplified approach described in section 2.5

may help with such extreme cases.

As an example applied to a periodic aeroelastic system, figure 7.1 plots the rank decay of

the monodromy matrix Φ(T, 0) as a function of the adimensional frequency kω0 = ω0/ωmin,

where ωmin = min |λ| is the lowest eigenfrequency of interest for the system at rest (see

section 3.4.2). The critically-damped aeroelastic poles decay much faster than those

associated with structural modes, therefore the computation of the state transition matrix

for a large period displays a rank drop. This sets a limit for the slowest systems that

we can analyze with this technique. This illustrates the same phenomenon discussed in

section 2.4. Fortunately, for slowly-varying systems the frozen-time eigenvalues are easy to

compute.

In aeroelastic systems such as aircraft and wind tunnel models the rate and amplitude

of parameter variation over the typical operating range is low, therefore the dynamic effects

they induce are expected to be small or negligible.

Figure 7.1: Floquet exponents over the normalized fundamental frequency for the C1 system
7.2 with a sine velocity profile. The vertical gray line indicates the lowest eigenfrequency of
the system at rest, the vertical red line indicates the start of the rank decay. The horizontal
gray lines on the right plot show where the rank is full (18) and where the aerodynamic states
lose importance (6). The rank decay for this system appears at ω0/ωmin = 0.7.
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7.1.1 Generation of system matrices

Aeroelastic modeling has been elucidated in chapter 3. The main concern lies in the

system’s feedback loop where A(t) and B(t) must be known/constructed at each time

instant t as functions of air density and air speed {ρ(t), V (t)}. Two scenarios appear:

• State-space model arrays (system matrix interpolation): the system matrices are

known at discrete time instants or for some parameters on a grid. Intermediate values

are interpolated from neighboring known grid points.

• Procedural generation (parameter interpolation): the system matrices are constructed

numerically or calculated analytically at the desired time instant or parameters.

State-space model arrays are common for parameter-varying systems that are described

by interpolated LTI arrays. The latter are obtained from large finite-element models

or by linearization around an operating point of nonlinear systems for a grid (discrete

set) of parameters. Figure 7.2 illustrates the concept. A continuous representation of

the whole system is obtained by applying some kind of interpolation within the grid of

known parameters, e.g. standard n-dimensional polynomial interpolation (nearest-neighbor,

linear, Akima, spline,...) either for gridded (uniform or nonuniform) or scattered data.

An interpolation technique for LTV systems is proposed in [De Caigny et al., 2014]

to produce numerically well-conditioned coherent state-space representations with some

limitations on parameter variation. Memory or data management requirements penalize

this formulation for large parameter spaces. On the other hand, procedural generation is

more favorable because no interpolation or complicated data storage are needed, but, in

return, memory is traded for computation. For the analysis at hand the system matrices will

be generated as functions of {ρ(t), V (t)} as detailed in section 3.1. The eigendecomposition

is generally sensitive to the modification of matrix entries and frozen-time eigenvalues

of time-varying systems can display sudden jumps due to bifurcations even when the

parameters vary smoothly (see figure 3.9). Consequently, in order to remove at least one

source of uncertainty, procedural generation is preferred. If the parameters are known

only at discrete points, then one-dimensional interpolation techniques such as splines are

employed.

Figure 7.2: Example of an aircraft’s aerodynamic behavior scheduled over a grid parameters.
The available grid points are known LTI submodels S(ρ, V ). The system matrices between
grid points are either interpolated from the LTI submodels or procedurally generated from
interpolated system parameters. The latter option is not possible with very complex models.
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7.1.2 Excitation signals

The excitation signals are designed in frequency-domain with the magnitude being either

constant or a von Kármán gust spectrum, with a random uniformly-distributed phase

(random-phase multi-sine RPMS signal). The inter-sample behavior of the discrete random

sequence is modeled piece-wise by splines with some light oversampling (see section 7.1.6

for more details). Von Kármán spectra are defined by equation (3.35) for constant speed

(only vertical gusts are considered here as motivated in section 3.3). Time-dependent speed

is handled using two approaches:

1. Speed is segmented using zero-order hold (assumed constant within an interval) and

the gust is computed by F−1{Φg(ω)}. The phase of adjacent segments is adjusted to

match the starting sample of the next segment with the end sample of the previous

one. This approximation is fast.

2. The Von Kármán gust can be defined as a rational function whose coefficients vary

with air speed (3.36). This s-domain model can be converted into z -domain filter

coefficients to color input white noise in order to provide a time response with

the desired gust spectrum. This approach is slower and delicate because of the

continuous-to-discrete filter coefficient conversion, but more accurate.

The excitation signal is band-limited, therefore it can be upsampled without modifying its

spectrum by padding its FFT with zeroes and transforming back into time-domain. Some

oversampling must be allowed to achieve the appropriate simulation accuracy, but since

high frequencies excite the decaying part of the system’s spectrum, the excitation signal’s

band can be limited to, say, 1.1max{fn} < fs/2. A time-varying gust excitation computed

this way is shown in figure 7.3.
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Figure 7.3: Example of a time-varying von Kármán gust in the frequency and time domains.
Right plot: the air speed varies like a sine and is discretized using zero-order hold. Within
each such interval, the gust is computed as an RPMS signal. In each interval, a boundary
condition is enforced to match the first sample with the last point of the preceding interval.
Left plot: the resulting signal’s PSD matches the analytical prediction obtained by summing
the delayed theoretical gust spectrum corresponding to each speed interval.
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7.1.3 Numerical methods

LTV systems in general do not have a well-defined frequency-domain representation as LTI

systems do, therefore we need to resort to time-domain numerical integration schemes. We

shall consider the explicit form of the time-varying system in the coming discussion:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(7.1)

Equation (7.1) can be solved with various well-known single-step and multi-step algorithms.

To meet our requirements, three methods are considered:

• Runge-Kutta (RK) single-step family

• Adams-Bashforth-Moulton (ABM) multi-step predictor-corrector methods

• Discretization of the state transition matrix (LSIM)

Numerical techniques are certainly attractive but they are not a panacea:

• Systematic error may be introduced by integration or signal processing

• The interpolation of system matrices and input signals influences results

• Very long computation times are necessary

• Loss of information compared to an analytical formulation

An excellent reference for scientific computing that treats exhaustively various topics in

numerical mathematics (and provides the related code) is the book from [Quarteroni

et al., 2006], where the Runge-Kutta and Adams-Bashforth-Moulton families are explained

in detail. RK and ABM have been already mentioned in chapter 2 to compute the

homogeneous solution of equation (7.1). The LSIM method calculates the response of a

linear system in state-space form [DeCarlo, 1989; Jeličić et al., 2021].

Aeroelastic models of aircraft have states describing the free-body motion and several

extremely low-frequency or lightly-damped poles. These are often challenging to address

because their response may be unrealistic due to numerical artifacts. An “off-the-shelf”

solver meant for some other application may introduce some numerical damping if not

checked appropriately. The implementation of dedicated fast algorithms is therefore a

sensible choice. For this thesis, efficient ad-hoc implementations of the RK, ABM and

LSIM for time-varying systems excited by random signals have been implemented in order

to provide controllable results. They are validated with code provided by other authors.

Why is computation time important? Chiefly because the amount of information that must

be collected about time-varying systems is inevitably higher than for time-invariant ones,

particularly for large parameter spaces and even more so when system identification must

be performed where long time histories are required. The faster the simulation throughput,

the better the exploration of the parameter space.
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Notation. For ease of notation, the state equation (7.1) is rewritten as

ẋ(t) = f(t,x) (7.2)

where the vector-valued forcing function is:

f(t,x) ≜ A
(
ρ(t), V (t)

)
x(t) +B

(
ρ(t), V (t)

)
u(t) (7.3)

Equation (7.2) is solved by the chosen ODE solver.

We divide the simulation process into two phases:

• Set-up: settings check, collection of all metadata required by the run-time, estimation

of space and time requirements. We need to precompute the aerodynamic influence

coefficients matrix and its rational function approximation 3.1.1 (provide all the

necessary information for the procedural generation of the aeroelastic system). Since

integrator time may be different from the grid points at which the excitation and the

parameter are known, an interpolating function may have to be computed beforehand.

• Run-time: numerical integrator execution. The evaluation of f(t,x) at integrator

time t requires the input u(t), the parameters {ρ(t), V (t)} and the corresponding

matrices A(t) and B(t). These evaluations may require significant resources given

that they are performed at least once per time step. The input u(t) or parameters

{ρ(t), V (t)} are thus calculated from precomputed interpolation functions. The state

matrices are assembled on-the-fly using procedural generation. This step exploits

the sparse1 array implementation and the known structure of the state matrix. The

run-time phase executes only strictly necessary operations. The number of f(t,x)

evaluations can be reduced with a tolerance on parameter variation, for example by

requiring that a certain threshold be exceeded, say |pn − pn+1| > 10−9|pn|.

The coming pages provide more details about the run-time of the ad-hoc RK, ABM and

LSIM algorithms.

Notation. ∆t is the time step of the numerical solution. The subscript “n” denotes

the matrices and vectors referring to the time instant t = n∆t. The state matrix at the

time instant t = n∆t is denoted by An ≡ A(n∆t); the same notation applies to other

time-dependent matrices and vectors. Left curly braces encompassing several equations

denote for-loops.

1 The unit cost of assembling the system matrices grows linearly with the number of evaluations in the
time integration scheme. It is negligible at first but can be crippling in long simulations. For this reason, a
practical implementation must employ the sparse matrix formulation [Gilbert et al., 1992]. For example,
in MATLAB the state matrix can be assembled fairly easily in one line using sparse(i,j,A) where {i,j}
are the indices of the nonzero elements of A.
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7.1.4 Ad-hoc fixed-step Runge-Kutta solver

The Runge-Kutta solvers are explained in great detail in [Quarteroni et al., 2006, Ch.

11]. The present implementation of the fixed-step Np-stage RK method for the integration

of the state equation is 


ti = tn + ci∆t

xi = xn +∆t
∑i−1

j=1 aijki−1

ki = f (ti,xi)

xn+1 = xn +∆t
∑Np

i=1 biki

tn+1 = tn +∆t

(7.4)

where the Butcher’s tableau coefficients aij , bi and ci are tabulated for each order or

variant2. The pseudo-code can be found in algorithm 7 in the appendix. The algorithm

integrates the states xn one step at a time by calculating and storing the slopes ki at

the intermediate instants ti ∈ [tn, tn +∆t]. The next step xn+1 is a weighted average of

the slopes times the time increment ∆t. The order of the method is not always related

to the number of stages. The evaluation of f(ti,xi) at each stage for every step is very

expensive for large systems or long duration. This entails interpolating ρ(ti), V (ti) and

u(ti) and constructing A(ti) and B(ti) for each intermediate ti, therefore the algorithmic

implementation must be correspondingly efficient3.

The popular MATLAB ode45.m solver (ODE45) implements an adaptive 7-stages RK

method with the Dormand-Prince coefficients [Shampine et al., 2003], but its very general

implementation is not fast. Since the step size is modified in order to keep errors within

a tolerance, the results must be interpolated to a regular grid. It is advisable to use a

fixed-step method because the simulated data will be scrutinized in frequency-domain and

interpolation artifacts may affect the peaks of the spectra. In this thesis the simulations

are computed with fixed-step RK 8-7 and RK 10 [Hairer et al., 2008].

2 Example: the Butcher’s tableau of the well-known RK4 is

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(7.5)

where the bi and ci coefficients are respectively the row and the column and aij the remaining ones.
3 An efficient RK implementation makes use of the FSAL (first same as last) property to reduce the

number of evaluations by at least one. There is always c1 = 0 and at least one ci coefficient is equal to 1,
therefore

ci = 1 =⇒ ti = tn + 1 ·∆t = tn+1 + 0 ·∆t (7.6)

This means that f(tn+1,xn+1) is calculated already at step n and then stored for the first stage of step
n+1. For example, the 8th-order Runge-Kutta has 13 stages and two ci = 1 coefficients. Making use of the
FSAL property requires 11 evaluations of f(t,x) per time step.
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7.1.5 Ad-hoc Adams-Bashforth-Moulton solver

Multi-step methods are discussed in [Quarteroni et al., 2006, Ch. 11]. The present

implementation of the Adams-Bashforth-Moulton of order Np is:
xn+1 = xn +∆t/kp

∑Np

j=0 bp,jf (tn−j ,xn−j)

xn+1 = xn +∆t/kc
∑Np

j=0 bc,jf (tn−j+1,xn−j+1)

tn+1 = tn +∆t

(7.7)

where bp,j and bc,j are respectively the predictor and corrector weights (integers) and kp and

kc the respective denominators4 [Hairer et al., 2008]. The pseudo-code can be found in

algorithm 8 in the appendix. The first equation (Adams-Bashforth predictor) predicts the

next step using the last Np computed steps, then the second equation (Adams-Moulton cor-

rector) refines the solution. ABM stores the last Np values of the system matrices and states

and evaluates the input u(n∆t) only at the grid points, therefore only one new evaluation

f(t,x) per step is performed and no input interpolation is necessary. RK provides the first

Np steps to start ABM. Multi-step methods like ABM have great efficiency because they

employ information from previous steps in order to obtain a higher-order approximation

of the solution. In return they need a smaller step size to attain the same precision of a

single-step method of the same order. This lower accuracy of ABM is compensated by

upsampling the input signal and then downsampling the response, typically by a factor 4

or more. This work uses an efficient ABM formulation of orders 8, 10 and 12, depending

on the case at hand.

7.1.6 Higher-order discretization of time-varying systems

There is no general closed-form solution of the state equation if the system is continuous

and time-varying (see chapter 2). Nevertheless, it is plausible to assume that the system

matrices barely change within [n∆t , (n+ 1)∆t], where ∆t is an appropriately short time

step. This observation is equivalent to treating a time-continuous system as discrete,

therefore its state transition matrix is Φ(t, t0) ≈ eA(t−t0). The state-space representation

of a discrete system is: xn+1 = Anxn +Bnun

yn = Cnxn +Dnun

(7.9)

4 Example: the predictor and corrector coefficients for the fifth-order ABM method are:

bp

kp
=

1

720

{
+1091 −2774 +2616 −1274 +251

}
bc

kc
=

1

720

{
+251 +646 −264 +106 −19

} (7.8)

In literature the coefficients are usually provided in reversed order: the first coefficient b corresponds to the
newest sample {tn,xn} and the last one to the oldest {tn−Np ,xn−Np}.
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The discretization, assuming constant input between two time steps, is explained in texts

on linear systems such as [DeCarlo, 1989] and [Rugh, 1996]. It is possible to discretize

the system in such a way to return exact solutions for a large class of inputs. The LSIM

algorithm implements this procedure. We follow the development presented in [Jeličić

et al., 2021], with some key differences to adapt it to time-varying systems.

Let the input be modeled by a polynomial

u(t) =

Np∑
p=0

un,pt
p (7.10)

where p is the polynomial order. The states in the interval [n∆t , (n+ 1)∆t] can be then

computed by:

ẋ(t) = Anx(t) +Bnu(t) c s x(s) = (sI−An)
−1

x0 +Bn

Np∑
p=0

p!

sp+1
un,p

 (7.11)

In order to transform the expression above back into time-domain, we must integrate the

impulse response (sI−An)
−1 for each hold order p:

1

sp+1
(sI−An)

−1 s c Hn,p ≜ A−p−1
n

eAnt −
p∑

q=0

tq

q!
Aq

n

 ∀p ≥ 0 (7.12)

The equation above can be separated into the transient and steady-state contributions of

the forced response Hn,p = Htr
n,pe

An∆t +Hfr
n,p (respectively superscripts “tr” and “fr”)

and calculated recursively:Htr
n,−1 ≜ I

Htr
n,p ≜ A−1

n Htr
n,p−1

Hfr
n,−1 ≜ 0

Hfr
n,p ≜ A−1

n

(
Hfr

n,p−1 − ∆tp

p! I
) (7.13)

Given the structure of the state matrix of an aeroelastic system, its inverse A−1
n can be

constructed block-wise directly from equation (3.30). We can then write the zero-state

response at the n-th time step as the sum of transient and forced responses and add them

to the zero-input response:
xn,tr =

∑Np

p=0 p!H
tr
n,pBnun,p

xn,fr =
∑Np

p=0 p!H
fr
n,pBnun,p

xn+1 = eAn∆t (xn + xn,tr) + xn,fr

(7.14)

There are specialized numerical techniques that compute the product eMv without calcu-

lating the matrix exponential eM, for example based on Krylov subspaces [Al-Mohy and

Higham, 2011]. Let “expf” denote a function performing this kind of operation

expf {An∆t,xn + xn,tr} ≜ eAn∆t (xn + xn,tr) (7.15)
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The final algorithm is thus:
xn,tr =

∑Np

p=0 p!H
tr
n,pBnun,p

xn,fr =
∑Np

p=0 p!H
fr
n,pBnun,p

xn+1 = expf {An∆t,xn + xn,tr}+ xn,fr

(7.16)

where un,p are the coefficients of the piece-wise polynomial that interpolates the input u(t)

and where the matrices Htr
n,p and Hfr

n,p are computed from (7.13). For LTI systems, order

three p = 3 is preferable to zero-order hold or first-order hold because it can work with

a higher ∆t and therefore reduce computation time [Jeličić et al., 2021]. In the LTV

case, the almost cubic effect of hold order on time complexity dominates, therefore it is

better to increase the computation time linearly by decreasing the time step. Aeroelastic

modeling with a minimal number of lag states can be applied to reduce the overall size of

the state matrix and thus improve performance [Karpel, 1982; Quero et al., 2021].

The state transition matrix can be discretized to take into account the system variation.

Let us write the homogeneous solution as a MacLaurin series:

x(t) =
∞∑
p=0

tp

p!

dp

dtp
x(t0) (7.17)

The state derivatives dp

dtpx(t0) can be found recursively from ẋ(t0) = A(t0)x(t0):

dp

dtp
x(t0) = Ap(t0)x(t) where

A0(t) = I

Ap(t) = Ap−1(t)A(t)− d
dtAp−1(t)

(7.18)

which allows us to express x(t) without evaluating dp

dtpx(t0) explicitly. The desired MacLau-

rin series of the state transition matrix follows by combining x(t) = Φ(t, t0)x(t0) (2.1.3)

and equation (7.18):

x(t) =

 ∞∑
p=0

tp

p!
Ap(t0)

x(t0) =⇒ Φ(t, t0) =

∞∑
p=0

tp

p!
Ap(t0) (7.19)

whose first few terms5 are:

Φ(t, t0) = I+ tA(t0)+

+
t2

2!

(
A2(t0) + Ȧ(t0)

)
+

+
t3

3!

(
A3(t0) + Ä(t0) +A(t0)Ȧ(t0) + 2Ȧ(t0)A(t0)

)
+ o(A4(t0))

(7.21)

5 Generally A(t) and Ȧ(t) do not commute, therefore the derivative of the square of a matrix is

d

dt
A2(t) =

d

dt

(
A(t) ·A(t)

)
= A(t)Ȧ(t) + Ȧ(t)A(t) ̸= 2A(t)Ȧ(t) ̸= 2Ȧ(t)A(t) (7.20)
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In the previous expression it is possible to collect the matrix exponential to write:

Φ(t, t0) = eA(t0)t+
t2

2!
Ȧ(t0)+

t3

3!

(
Ä(t0) +A(t0)Ȧ(t0) + 2Ȧ(t0)A(t0)

)
+ o(A4(t0)) (7.22)

The terms with the powers of t represent a correction of the LTI state transition matrix due

to the system variation. For each power p, when the terms with derivatives of A(t) are small

compared to Ap(t), the system is slowly-varying. The series (7.22) can be reformulated

using a Padé approximant for faster convergence because we know its Taylor series terms

Ap(t) from equation (7.18). The STM can be computed in steps ∆t:

Φ((n+ 1)∆t, t0) = Φ((n+ 1)∆t, n∆t)Φ(n∆t, t0) =⇒ xn+1 = Φnxn (7.23)

Once the state transition matrix is known, the inhomogeneous solution can be formulated.

If A(t) can be represented by a Fourier series, then so do the coefficients Ar(t) of the

powers of t in equation (7.22): Ar(t) =
∑

k∈SAr,ke
ikω0t. It is then possible to write:

Φ(t, t0) = eA(t0)t +

Nr∑
r=2

(
tr

r!

∑
k∈S

Ar,ke
ikω0·t0

)
+ o

(
ANr(t0)

)
(7.24)

where the index r refers to the powers of t, the index k to the harmonics of Ar(t). The

coefficients [Ar,1, Ar,1, · · · , Ar,Nk
] can be computed exactly before entering run-time. This

expression can be inserted into equation (7.16) to obtain the full solution.

7.1.7 Comparison of numerical methods

The three solvers all have advantages and disadvantages when applied to time-varying

systems. The standard MATLAB solver for ordinary differential equations ode45.m is

added for reference. Table 7.1 summarizes their merits and flaws.

Table 7.1: Simulation method comparison

Method Advantages Disadvantages

ODE45 • High accuracy
• Standard/established method

• Computationally very expensive
• Unoptimized solver

RK • High accuracy
• Flexible order selection

• Multiple f(t,x) evaluations per step
• Input interpolation u(t)

ABM • One f(t,x) evaluation per step
• No input interpolation
• Flexible order selection

• Higher oversampling required
• Resampling of input and response

LSIM • High accuracy
• Large ∆t acceptable
• Uses interpolation coefficients

• Computationally expensive
• Places assumptions on the input
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The effort of writing dedicated ordinary differential equations solvers is rewarded by

the flexibility necessary when balancing computation time, memory requirements and

results accuracy. The three methods do not exclude each other and disparate simulations

require different approaches. When rounding errors limit accuracy, then higher order or

single-step methods are preferable because they require fewer steps. Depending on the

system’s characteristics, this effect can manifest itself for either fast or slow parameter

variations.

In ascending order of importance, the total computation time is most sensible to:

• Number of steps: linear increase of the number of total operations

• Order: depending on the method, it can have a marked effect on performance (from

least to most affected: ABM, RK, LSIM)

• System size: strong effect on operations with matrices (quadratic or more)

Depending on the combinations of these three factors, a slow algorithm can be faster than

an asymptotically fast one due to the constants of the time complexity powers. Because of

this, when a new simulation case is being set up, the solvers are ranked in terms of accuracy

and computation time, after which one of the three is used to gather the necessary results.

The procedure is as follows:

1. The sample rate is selected for each input interpolation order by the appropriate

oversampling factor [Jeličić et al., 2021, Eq. 51] and maximal frozen time

eigenfrequency

fs = 2kf max{fn} (7.25)

2. The input is a band-limited RPMS signal with the desired PSD.

3. The input is upsampled and an accurate solution is computed with low step size.

The response is then decimated to the original sample rate. This data set constitutes

the “reference” solution.

4. The solvers are ranked based on milliseconds per time step and the error with respect

to the reference:

εy =
∥y − yref∥
∥yref∥

[adim] (7.26)
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7.2 Aeroelastic model

The airfoil with rudder (trailing edge flap) is an instructive model because, by tuning

its geometrical properties, it can display different aeroelastic behaviors. The airfoil is

suspended by a spring, and torque is applied by two torsion springs: one at the airfoil’s

shear center and one on the rudder’s hinge. There is no element introducing structural

damping. The system has three mechanical degrees of freedom: heave, pitch and rudder

pitch (flap). The model is illustrated in figure 7.4 and its geometry data are listed in table

7.2. The corresponding eigenfrequencies of the mass-damping-stiffness model are reported

in table 7.3. Two model configurations are set up to display different kinds of instabilities:

in C1 the airfoil pitch and heave modes are critical, while in C2 they are the rudder pitch

and airfoil heave modes.

b
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Elastic axis CG CG aileron

Figure 7.4: Aeroelastic model: airfoil with rudder [Schulze, 1999].

Table 7.2: Airfoil-rudder aeroelastic model. Configuration C1 from [Nam et al., 2001],
configuration C2 from [Schulze, 1999]

Quantity Symbol Unit C1 C2
Semi-chord b m 0.3048 1
Elastic axis location e m -0.4 -0.2
Aileron hinge location. cβ m 0.6 0.5
Center of gravity location xα m 0.2 0.1
Aileron center of gravity location xβ m 0.0125 0.005
Spring stiffness kh N/m 35770 38373
Torsional spring stiffness kα N ·m 3323.1 86339
Aileron torsional spring stiffness kβ N ·m 747.7 195.7
Total mass m kg 14.3 12.0
Airfoil moment of inertia Iα kg ·m2 0.332 3
Aileron moment of inertia Iβ kg ·m2 0.0083 0.2448
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Table 7.3: Structural eigenfrequencies of the base mechanical C1 and C2 configurations.
Structural damping is zero. C1 has a stiffer rudder pitch mode than C2.

Structural Eigenfrequency Eigenfrequency Approximation
mode C1 model [Hz] C2 model [Hz] [rad/s]

Heave 7.7615 8.9887 ωh ≈
√
kh/m

Pitch 17.546 29.351 ωα ≈
√
kα/Iα

Rudder pitch 55.077 4.4918 ωβ ≈
√
kβ/Iβ

The analytical construction of the aerodynamic influence coefficients matrix from

the geometrical characteristics of the model is detailed (with code) in [Nam et al.,

2001]. Its AIC matrix can be derived analytically from the theory of [Küssner, 1941]

and [Theodorsen, 1935]. The mathematical details are collected in [Scanlan and

Rosenbaum, 1952]. Figure 7.5 displays the rational function approximation of the system’s

aerodynamic forces. The system has 3 · 2 = 6 states from the underlying 3-DoF mechanical

structure plus 3 · 4 = 12 lag states, for a total of 18 states.

Figure 7.5: Rational function approximation (3.13) of the aerodynamic influence coefficients
(AIC) matrix of model C1 (the entries for model C2 are qualitatively the same). The AIC
matrix has been computed at 10 logarithmically-spaced reduced frequencies k = 0.01 : 2 with 4
lag states γ = [0.02, 0.0737, 0.2714, 1]. The color of the line denotes the reduced frequency
(blue: k = 0.01, yellow: k = 2). The error of the rational function approximation is < 1%.
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The frozen-time flutter diagrams in figure 7.6 highlight two different types of flutter:

• Hard flutter in C1: the damping ratio reduction is sudden and pronounced, the heave

and pitch modes get closer until the former becomes unstable.

• Soft flutter in C2: damping decreases slowly and eventually recovers for higher speed

(not displayed in the figure), the heave and the critical rudder pitch modes cross

eigenfrequencies, the critical damping reduction is softer.

The flutter diagrams can be extended into a third dimension by plotting the eigenvalues on

a grid of density and speed. The eigenvalue locus draws an “eigensurface” that is only a

function of {ρ, V } (see figure 7.7). The eigensurface of the critical eigenmode is displayed

as contour in figure 7.8 with overlaid gradient. The gradient quantifies the sensitivity of a

certain eigenmode to density and speed variations. Far away from the flutter boundary

the parameter variation has limited effect on the frozen-time eigenvalues of the system

(aerodynamic effects are weak for low speed or density). There can still be regions near

the flutter boundary where a parameter change does not influence the eigenmode (see

C2 eigenfrequency subplot in figure 7.8: dynamic effects due to parameter variation have

little importance there). It is reminded once again that the flutter boundary is determined

using a frozen-time formulation. The flutter behavior of each system must be investigated

individually; it is not possible to generalize all results. For strongly time-varying systems

stability must be investigated for each parameter path {ρ, V }.

Figure 7.6: Flutter curves of (C1: top, C2: bottom) for constant air density and linearly-
varying speed (frozen-time description). The black dots are the heave, pitch and rudder pitch
modes. The red dots indicate critical eigenvalues. The flutter speeds are 92.2 m/s and 91.3
m/s (ρ = 1.225 kg/m3). See text for discussion.
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Figure 7.7: Heave, pitch and rudder pitch eigensurfaces (C1: top, C2: bottom). The red line
is the flutter boundary. The instantaneous damping ratio is sensitive to parameter variation.

Figure 7.8: Critical mode of C1 (top row) and C2 (bottom row). The contour lines are the
eigenfrequency in Hz (left column) and damping ratio in percent (right column), the surface is
their gradient’s magnitude, the red line is the flutter boundary. The damping of C1’s critical
mode increases, then drops abruptly just before the flutter boundary (hard flutter). C2 has a
circumscribed unstable region and a softer damping decrease (soft flutter).
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7.3 Simulation results

The modal analysis procedure consists of the methods detailed in chapters 4, 5 and 6.

Spectral estimation and system identification are performed on the simulated data and

the modal parameters are tracked to assess the damping estimate. The results of the C1

configuration of the airfoil-rudder model are presented because it displays the occurrence

of hard flutter. Compared to configuration C2 (soft flutter), the damping ratio decline

within a narrow region induces stronger dynamic effects.

The system undergoes a linear and a sinusoidal speed change at constant air density.

Five runs with different duration are simulated for each type of parameter variation. The

rate of change is halved (respectively: the duration is doubled) between each run. The

information pertaining to each simulation run is reported in tables 7.4 and 7.5.

Table 7.4: Simulation L1: effect of speed rate of change with constant air density ρ = 1.0
kg/m3 and linear speed profile V0 = 10 m/s, ∆V = 80 m/s. The flutter speed is vf = 99.8 m/s

Quantity L1R1 L1R2 L1R3 L1R4 L1R5

Air density [kg/m3] 1.0

Sample rate [Hz] 180

Air speed [m/s] 20 + 80 · t/T (linear profile)

Excitation [N/m] RPMS at pitch DoF, σ2(u) = 1

Duration [s] 10 20 40 80 160

Fundamental harmonic [rad/s] 0.6283 0.3142 0.1571 0.07854 0.03927

Adimensional period [adim · 10−3] 6.442 3.221 1.611 0.8053 0.4026

Maximal speed variation [m/s/s] 8 4 2 1 0.5

Table 7.5: Simulation S1: effect of speed rate of change with constant air density ρ = 1.0
kg/m3 and sine speed profile V0 = 10 m/s, ∆V = 80 m/s. The flutter speed is vf = 99.8 m/s.

Quantity S1R1 S1R2 S1R3 S1R4 S1R5

Air density [kg/m3] 1.0

Sample rate [Hz] 180

Air speed [m/s] 20 + 80 sin (πt/T )2 (sinusoidal profile)

Excitation [N/m] RPMS at pitch DoF, σ2(u) = 1

Duration [s] 20 40 80 160 320

Fundamental harmonic [rad/s] 0.3142 0.1571 0.07854 0.03927 0.01963

Adimensional period [adim · 10−3] 6.442 3.221 1.611 0.8053 0.4026

Maximal speed variation [m/s/s] 12.57 6.283 3.142 1.579 0.7854
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7.3.1 Simulation parameters

The Runge-Kutta order 8 solver is selected following the criterion described in section

7.1.7. Hold order 3 for the input discretization is chosen to reduce the sample rate and

number of time steps as much as possible, resulting in an oversampling factor kf = 1.64

(fs = 2 · 1.64 · 55.08 = 180 Hz). The airfoil-rudder aeroelastic system has 18 states, but only

three degrees of freedom (heave, pitch and rudder flap). The response vector’s physical

units are one displacement and two angles. The excitation is broadband random applied

at one physical degree-of-freedom. The output noise is set as 2% of the response RMS.

For a given parameter path, the duration may be still constrained by the rate of

parameter change, therefore ensemble averaging is performed by computing one hundred

system realizations. The computation time for the longest run is about 45 seconds, therefore

75 minutes are needed for just one full data set with all necessary realizations.

7.3.2 Spectral estimation

Spectral estimation is performed by a nonparametric approach and compared with analytical

results to validate the assumption of slow system variation. The speed of parameter change

affects the number of available data samples: a higher variation rate, respectively a shorter

duration, imposes stronger limitations on the signal processing procedure and on the

temporal resolution of the identified modal parameters, which therefore set a lower bound.

The system’s lowest eigenfrequency at wind-off conditions is ωmin = 7.76 Hz (heave mode,

refer to table 7.3), therefore the variation rate is kω0 = ω0/ωmin < 6.4 · 10−3. The mode

coupling term Ψ−1(t)Ψ̇(t) can be computed as described in section 3.4. Its non-diagonal

terms relative to the instantaneous eigenvalues contribute to less than 0.4 % of the system’s

dynamics. The system can be considered slowly-varying and a frozen-time approach for

spectral estimation and system identification is justified. Block length and number of

averages determine the spectral estimation bias (see section 4.3). The results in this

chapter are produced with an ensemble overlap Oe of either 0.75 or 0.80. The real-time

output-only modal analysis application we have presented in [Jeličić et al., 2017] sets

1− 1/20 = 0.95 (set by the desired refresh rate of the monitoring software). Some authors

use as much as 1−1/128 = 0.992 [Avendaño-Valencia et al., 2020]. Figure 7.9 displays

the estimated PSD with adequate time-frequency resolution, in good agreement with the

analytical prediction. This echoes the results from figure 4.13.

7.3.3 System identification

Time-domain techniques utilize data collected from several experiments to perform ensemble

identification, while frequency-domain algorithms can process spectra estimated by ensemble

averaging. In this chapter system identification is performed in the OMA framework using

the Least-Squares Complex Frequency (LSCF) algorithm. Its data source is the 3 × 3

response cross-power spectral density matrix estimated in the range [0 70] Hz using the

segmented multi-taper method 4.3.3. CPSDs have 4-quadrant symmetry (see section 4.2)
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for 3 physical degrees of freedom. In order to compensate for any out-of-range poles and

noise, 4 poles are added for residuals. The model order is at least 3 × 4 + 4 = 16 with

a single-band evaluation. The aerodynamic eigenmodes have high damping ζ ≥ 1/
√
2,

therefore they can be easily separated from the physical ones. The eigenvalues are obtained

from the roots of the denominator polynomial, while the eigenvectors are calculate in a

second step by the LSFD algorithm (see section 5.6). The modes identified at each step

are then passed to the tracking algorithm for sorting. A typical stabilization diagram is

illustrated in figure 7.10.

7.3.4 Mode tracking

The chosen system identification methods are nonparametric with respect to time variation,

therefore the estimated modal parameters are obtained as independent data sets whose

interrelation is unknown at first. Mode tracking is performed as the last step of the

analysis chain. Details about the mode tracking algorithm and similarity metrics have been

provided in chapter 6. The tracking algorithm’s purpose is connecting the estimated modes

so that they can be related to aeroelastic parameters through regression analysis, moving

averages or interpolation. For smooth variations we expect the physical eigenmodes to

follow similarly smooth paths since their eigensurfaces do not present any crease or jump

(refer to figure 7.7).

As an example, figure 7.11 illustrates the system undergoing a complex parameter

variation and the estimated and instantaneous modal parameters. The modes are matched

to the three reference modes at wind-off conditions using the hyperbolic distance metric

(HDM) (6.11) with threshold 0.5. The tracking algorithm’s reference memory is set to

5% of the run duration. Some general observations can be made. The eigenfrequency of

physical modes leaves a smooth trace that normally has little variance. Spurious, purely

mathematical poles may gather between or next to physical poles, but do not form an

orderly set with similar eigenvectors or eigenvalues and can thus be recognized and discarded

(this is performed automatically by the tracking algorithm). The damping variance is

higher and its estimate tends to be biased for ζ > 0.2
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Figure 7.9: C1 system with varying speed from rest to flutter for T = 10 s. Left plot:
the frozen-time heave and pitch damping ratios are displayed on the left. Right plot: PSD
estimated from ensemble averaging in the neighborhood of the heave and pitch modes The
estimated spectrum is in accordance with the analytical result.

Figure 7.10: Typical stabilization diagram of output-only data. There are always spurious
poles due to noise. Those that appear next to a physical pole are insidious because they have
a very similar associated eigenvector that can mislead the tracking algorithm.

Figure 7.11: Example of mode tracking results. Round markers or dots represent the identified
poles. Gray dots are spurious mathematical poles. The gray lines are the instantaneous (frozen-
time) eigenvalues of the physical degrees of freedom. The colors in the middle plot denote the
damping ratio (blue: low – yellow: high). In the right plot each eigenmode is assigned one
color (blue – heave, red – pitch, yellow – rudder flap). Other figures follow this prototype.
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7.3.5 Influence of rate of variation

Figure 7.12 illustrates the influence of speed of variation on modal parameter estimation

(set S1R, half-sine speed change). The spectral estimation settings are the same for all

runs, i.e. LSCF works with the same data quality for every parameter point and for each

run. The number of averages Nb = 100 is high in order to rule out at least the uncertainty

due to the random error. The window length Lb = 512 is a compromise between frequency

resolution and parameter variation during one block. The block overlap is only Ob = 0.75

to reduce the load for the tracking algorithm. The shortest run lasts 20 seconds (S1R1)

and has the coarsest temporal and frequency resolution (∆f = 0.352 Hz), but the damping

estimate is still acceptable. Although it may not appear so in the plot, the density of

spurious poles (number per unit time) is constant. The numerical nonparametric results

confirm what was predicted parametrically, i.e. that the time-varying dynamics are not

observable because the system varies too slowly. That being said, the parameter variation is

still fast compared to the amount of data that is necessary for sequential spectral estimation

or system identification, thus motivating the use of ensemble averaging.

7.3.6 Influence of number of averages

The tracking diagram 7.13 displays the effect of number of averages on estimated modal

parameters on set S1R3 (half-sine speed variation, middle duration). Few averages increase

the spectral variance, which in turn affects the smoothness of the eigenfrequency and

produces bias on the identified damping ratio. This result mirrors what happens for

time-invariant systems. The eigenfrequency estimation is usually not problematic even in

adverse conditions, therefore we focus on damping estimation because it is a more critical

aspect of aeroelastic system identification.

The tracking diagram 7.14 illustrates the effect of number of averages size on the

identified damping ratio for constant air density and linearly-varying speed. The more

system realizations (experiments) are performed, the lower are bias and scatter in the

identified damping. The same can be observed for all rates of change. The available

data suggests that about twenty averages appear enough to track the damping of the

critical heave mode. The two modes participating in the flutter (experiencing a significant

variation) are more affected by time variation than the rudder flap. The same behavior

could be observed in chapter 2 for other systems.

The same data are plotted again in the complex plane in figure 7.15. Similar observations

about averaging and bias can be deducted from these plots, namely that the eigenvalue’s

real part can be estimated better with more averages. As the system approaches the flutter

boundary, the critical (heave) and interacting (pitch) modes become increasingly complex

and dissimilar with respect to the reference at wind-off conditions. This phenomenon

motivates the first-in-first-out buffer in the tracking algorithm’s reference memory (see

section 6.4.2). Additionally, while the modal indicator function MIF (6.14) can be used as

an effective quality criterion for selecting the “best” eigenvalues in the EMA framework

(that is, with the highest phase purity), it is less useful for aeroelastic modes.
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Figure 7.12: Mode tracking of set S1R. Refer also to figure 7.11. The three runs provide the
same amount of information to the spectral estimation and system identification algorithms,
the only difference being the duration and thus the corresponding temporal resolution.
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Figure 7.13: Effect of number of spectral averages on damping estimation. Same data as in
figure 7.12. Refer also to figure 7.11. Right plot: blue – heave, red – pitch, yellow – rudder
flap.
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Figure 7.14: Effect of number of spectral averages on damping estimation (data from set
L1R5, block length: 512). Twenty averages appear sufficient for adequate tracking with this
block length. See text for discussion.

Figure 7.15: The heave and pitch modes are displayed in the complex plane (same data
as in figure 7.14). The colors indicate the MAC value with respect to the base eigenmodes
(blue: high, red: low). As the flutter boundary is approached, the mode shapes should become
increasingly complex.
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7.3.7 Influence of block length

The power spectral density of a long record (where poles may wander substantially, but

slowly) is equal to the sum of many short-time PSDs (whose poles are approximately

invariant, refer to section 4.4). The block length is a compromise between good frequency

resolution and sufficiently low parameter variation within the block’s duration. Too short

a data block does not contain enough information about the system. On the other hand,

too long a data sample will contain multiple instances of the same mode of vibration. The

system identification algorithm will catch the most dominant poles and try to reduce the

fit’s least-squares error by placing additional spurious poles. Table 7.6 reports the spectral

estimation parameters for different block lengths for a data set where speed varies linearly.

Figure 7.16 displays the effect of block size on identified damping ratio for a fast

parameter variation (Tb = 20 s). Set S1R1 (sine variation) is chosen in order to reduce

the border effects that would be preponderant for such a short duration. In principle, a

more sophisticated method could set the block length dynamically depending on the rate

of change the aeroelastic parameters. In this case it can be long in the interval t/T < 0.75),

but must be short next to the flutter point for modes whose eigenfrequency or damping

changes rapidly. It is possible to use different block lengths for each frequency band of the

analysis. For instance, modes that are not coupled aeroelastically can be identified using

longer block lengths (in this case the rudder flap).

Figure 7.17 shows the heave and pitch modes in the complex plane. The effect

of exceedingly coarse or fine frequency resolution is clearly visible in the scatter of the

eigenvalues. The same eigenvalues are compared to the corresponding analytical eigenvectors

in figure 7.18. The marker color displays the MAC value between the estimated eigenvector

and the nominal one. It can be deduced that too long a block length affects the quality

of the estimated mode shapes as well. The further the system strays from the time-

invariant case and the less data is collected, the lower the quality of identified modal

parameters. Typically the damping ratio is the most affected, followed by mode shapes,

while eigenfrequency is normally quite accurate.

Table 7.6: Parameter variation as function of data block length. The sample rate is 180 Hz,
the frequency range is [0 60] Hz, the maximal speed variation is 8 m/s/s. The block speed
increase is specific to case S1R1 (run with fastest sinusoidal variation).

Block length Lb [num] 256 512 1024

Block overlap Ob [adim] 0.75 0.75 0.75

Spectrum length ⌊Lb/fs · fmax⌋ [num] 85 171 341

Block duration Tb = Lb/fs [s] 1.422 2.844 5.689

Block frequency resolution ∆f = 1/Tb [Hz] 0.7031 0.3516 0.1758

Block angular frequency ωb = 2π/Tb [rad/s] 4.418 2.209 1.104

Block adim. frequency ωb/ωmin [adim] 0.09059 0.04529 0.02265
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Figure 7.16: Effect of block length on damping estimation (data from set S1R1). This short
data set exemplifies a difficult estimation case. The shorter the block, the bigger the variance
and the number of spurious poles (not pictured here).

Figure 7.17: The heave and pitch modes in the complex plane (same data as in figure 7.16).
The colors indicate the MAC value with respect to the base eigenmodes (blue: high, red: low).
As the flutter boundary is approached, the mode shapes become increasingly complex.

Figure 7.18: Same data as in figure 7.16, but the estimated mode shapes are compared with
the corresponding analytical ones. The MAC value in the figure varies from 0.85 (red) to 0.99
(blue). Excessive block length correlates with slightly worse mode shape estimates when the
system varies excessively within one estimation window.
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7.3.8 Flutter boundary extrapolation

The flutter boundary and eigensurfaces are reconstructed from estimated modal parameter

using a multivariate regression method for empirical modeling. Part of the task’s difficulty

comes from the quality of experimental data (missing points, scattered data, variance of

damping estimates, etc...), but also from the eigensurface’s shape. With some modeling

effort and by reducing the parameter range, data can be fitted using low model orders

to extrapolate the flutter boundary. A classic and comprehensive reference for regression

analysis is [Kutner et al., 2008]. We shall use the following methods:

• Locally estimated scatterplot smoothing (LOESS): provides simplicity and flexibility

that make it ideal when no theoretical models exist. However, since it relies on the

local data structure, it requires a fairly dense grid to provide accurate results.

• Polynomial fitting : easy to use and well-understood, but it may notoriously behave

poorly between sample points and when extrapolating.

• Rational functions: simple nonlinear models that fit a large array of shapes and

require less coefficients than equivalent polynomial models. Asymptotes may appear

over the range of data and the method is generally less understood than others.

Figure 7.19 displays the fitted eigensurfaces for the heave and pitch modes. The modal

parameters are identified from a linear speed sweep with constant density (the speed

variation dV/dt stays the same). Data acquisition is arrested just before the flutter

boundary is reached. Once the estimated eigenvalues have been tracked, the fit is performed

one eigenmode at a time. When the overall fit is satisfactory, the damping ratio of the

critical mode can be extrapolated to determine the flutter boundary.

Figure 7.19: Eigensurface fit of the estimated damping ratio for the heave and pitch modes.
The blue line is the predicted flutter boundary, the red line is the analytical one. The fitted
surface is a polynomial function of order 5 for speed and order 4 for air density with least
absolute residual robust fitting and normalization of data points. The fit struggles where
damping plummets, particularly for higher values of ρ.
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7.4 Chapter summary

The modal analysis tools presented in the previous chapters have been demonstrated here

with a simple analytical aeroelastic model. Two configurations of the aeroelastic model of

an airfoil with rudder are set up to display hard and soft flutter.

The chapter elaborates the numerical procedures for the simulations of time-varying

systems. The well-known fixed-step Runge-Kutta and Adams-Bashforth-Moulton solvers

are implemented for maximal efficiency. Additionally, in this research an analytical

method based on the discretization and series expansion of the state transition matrix

has been derived for the simulation of time-varying systems. The technique allows the

characterization of the rate of parameter variation using the state matrix and its derivatives.

The simulations focus on the verification of the slow system variation assumption

and the influence of duration, number of averages and block length on the estimated

damping ratio. Dynamic effects due to parameter variation are not important for the

system under consideration. An upper bound for the rate of variation is imposed by the

spectral estimation and system identification methods in this case. The block length must

be moderate - neither too short (impacts identification performance), nor too long (modes

wander significantly within the block’s duration). By conducting several experiments with

the same parameter variation, it is possible to reduce the variance of estimated modal

parameters by ensemble averaging. At least twenty averages appear to be necessary for

good damping ratio tracking.
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Abstract

The methods and tools described in the previous chapters are finally applied in experiments. The

real-time system identification of parameter-varying systems is performed during the flight vibration

testing of a research aircraft. Different excitation and flight conditions are reviewed and the acquired

data is analyzed to estimate the modal parameters of the aircraft.

The aeroelastic stability of new aircraft or modifications of existing ones is investigated

with numerical models that combine structural dynamics and unsteady aeroelastic loads.

Their validity must be proven by a comparison with experimental results obtained from a

ground vibration test (GVT) and a flight vibration test (FVT). The modal parameters are

determined experimentally with GVT and are used for refining the aircraft finite element

model and for updating the control laws of the electronic flight control system. The

evaluation of aeroelastic stability, however, must be performed in-flight and demonstrated

for the whole flight envelope. FVT remains a hazardous activity, since stability must be

investigated point-wise for several altitude/Mach number combinations and flight conditions

to cover the full flight envelope.

Conventional flight vibration testing is performed by introducing additional forces into

the aircraft structure through the control surfaces by means of pulses or swept sines or

sometimes by external oscillating vanes or unbalanced masses. This approach requires a

fly-by-wire or electronic control system and the installation of external wing exciters can

be expensive and demanding. The AGARD report [van Nunen et al., 1979] provides an

overview of the classical testing approach in terms of flight test instrumentation, excitation

types and analysis procedures. [König, 1995] reviews flutter-relevant tests and discusses

the contrast between desired and obtained reliability of acquired data, pointing out that

flutter tests would benefit from continuous updating of estimated parameters. A historical

survey of flutter testing has been compiled by [Kehoe, 1995]. The report from [Brenner

et al., 1997] reviews the developments in flutter testing at NASA Dryden, particularly

excitation mechanisms. [Morelli and Klein, 2005] discuss the research conducted at

NASA Langley on system identification applied to aircraft, in particular with regard to real-

time parameter estimation and low-order equivalent model identification. [Schwochow

and Zöger, 2013] describe the flutter test activities performed at DLR and present a

comparison of experimental data and aeroelastic analysis.

In some circumstances, the purpose of FVT may be to assess the vibration environment

encountered by aircraft in steady flight or while performing maneuvers [Corda et al.,

2002]; in this case the analysis is conducted in terms of frequency content and magnitude

levels of the aircraft response. The comparison between sweep excitation and ambient

turbulence in terms of estimated modal parameters in [Peeters et al., 2006] suggested

that OMA can be performed without artificial system inputs. [Mevel et al., 2006] analyze
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the same topic and conclude that, while it is of course preferable to operate with known

inputs, output-only techniques still provide satisfactory results. Recently, [Iovnovich

et al., 2018] published an assessment of flutter prediction methods; the authors confirm

that atmospheric turbulence provides adequate stochastic excitation for the identification

of lightly-damped modes and conclude that operational modal analysis is an accurate and

cost-effective flutter testing methodology.

Aircraft have typically sufficiently low eigenfrequencies that atmospheric turbulence

encountered during normal flight provides a useful amount of natural broadband excitation.

The resulting acceleration response can be acquired by a compact data acquisition system

and combined with the methods of operational modal analysis to perform system identifi-

cation in-flight. The whole process can be set up to run autonomously in order to estimate

almost in real-time the instantaneous damping ratio and eigenfrequency of the aircraft’s

modes of vibration. This information is provided to the flight test engineer to monitor

flutter-critical conditions by comparing experimentally-determined modal parameters with

available computational flutter analysis results. The extrapolation of the damping ratio

trend of critical modes towards higher flight speed, i.e. the rapid decrease after reaching

a maximum, can signal the approach of an unstable state (combination of altitude and

speed). This information can inform the pilot about the available flutter margin and thus

enhance the test safety. Such a real-time online monitoring of the aircraft response is a

novel application that can contribute towards cost and flight time reductions.

The previous chapters of this thesis offered an overview of the theoretical and numerical

tools that are at our disposal for investigating the dynamics of time-varying systems. The

current chapter will describe in detail the cooperation of said tools – from data acquisition

to modal parameter tracking – in an automated modal analysis application deployed

during output-only vibration testing. In order to achieve practical real-time capabilities,

considerations about the application’s architecture and its software implementation will be

briefly provided here. The rest of the chapter shall focus on the results.

The chapter is organized as follows:

1. Review of dynamic effects in time-varying systems. Of specific importance to this

research are flight parameter variation during FVT.

2. Description of the flight vibration test whose data will be analyzed in this chapter.

This section details the experimental setup, the instrumentation and the test matrix.

3. Short review of the aerodynamic quantities relevant for FVT. This is necessary to

describe the flight conditions and understand their effect on modal parameters.

4. Brief presentation of the real-time automatic modal analysis application that has

been deployed during FVT.

5. Flight vibration test results and detailed analysis of experimental data.
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8.1 Dynamic effects in parameter-varying aeroelastic systems

The analytical and numerical investigation of LTV systems in chapter 2 showed that

the parameter variation’s magnitude and frequency contribute together to the system’s

dynamics. Starting from periodic systems, whose spectra can be computed analytically

for a large class of input functions, it has been shown how to extend this formulation to

aperiodic variations as well, to obtain a frequency-domain representation of the system’s

output. Here we restrict the treatment to aeroelastic systems such as aircraft and wind

tunnel models, therefore dynamic effects are not expected to be as prominent as in rotating

systems like propellers, helicopters and wind turbines.

If either the magnitude or frequency are very small, the system will not deviate

significantly from the time-invariant case. The sensibility to the amplitude of parameter

variations must be investigated case-by-case, as generalization is not possible. For instance,

we have seen in chapter 3 that the effect of air density or speed change is large in the

flutter boundary’s proximity, whereas it is not significant otherwise.

On the other hand, the parameter variation’s frequency defines, broadly speaking,

three regimes. These are related to the frequency of parameter variation 1/T and pole

bandwidth of the frozen-time system ζfn, or, equivalently, to the variation’s time scale T

and frozen-time time constant 1/(ζfn):

• Fast parameter variation: the frequency is comparable to or larger than the system’s

time constant 1/T ≫ ζfn. Time-varying effects manifest as dynamic poles appearing

at equally-space intervals fn + k/T , where k are small integers (in practice, |k| ≤ 3).

The shorter the time scale, the larger the peak separation in the response spectra.

The parameter variation’s magnitude determines the amplitude of the dynamic peaks

and the number of visible ones, but unless parameters change substantially, only few

peaks are significant.

• Intermediate parameter variation rate: dynamic effects appear when 1/T ≈ ζfn and

generate complex patterns around the location of the frozen-time eigenvalues.

• Slow parameter variation: the variation’s time scale is much larger than the system’s

time constants 1/T ≪ ζfn. In practice, under such conditions, the system will behave

like its frozen-time representation.

As an example, we consider the simulation of a large sailplane model from [Schwochow,

2013] undergoing the same air density and air speed variation but with different rates.

Figure 8.1 presents the response spectra and system identification results undergoing a fast

variation where dynamic effects are clearly visible. Figure 8.2 shows the same parameter

variation with an intermediate rate of change. Figure 8.3 displays a system undergoing a

slow variation.

A parameter change does not translate uniformly over all eigenmodes, as some are

clearly more affected than others and some not at all. The dynamic poles are visible

already in the estimated spectra if the frozen-time eigenvalue variation is large enough or

damping is low (the dynamic peaks are pronounced). However, under nominal operating
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Figure 8.1: Fast parameter variation: simulated sailplane model with speed variation with
frequency 1/T = 1 Hz. Two modes are in this frequency range at about 28 and 31 Hz (time
constants ζf0 ≈ 0.1 Hz). In the left plot, one output APSD is displayed for the LTV and
the “mean” LTI systems. The vertical lines denote the mode at 28 Hz and its dynamic poles
induced by the parameter variation. System identification confirms that the first four poles are
associated to the same mode shapes and the fifth belongs to another mode (verified by the
MAC values between eigenvectors).

Figure 8.2: Intermediate parameter variation rate 1/T = 0.01 < ζf0 = 0.1 Hz. The first
mode’s frozen-time eigenfrequencies vary approximately between 27.6 and 28.4 Hz (denoted
by the gray vertical lines in the left plot). The APSDs estimated from the whole data set
display a “plateau” because of the continuous summation of slowly-varying spectral estimation
windows (see section 4.4). In the stabilization diagram the extreme eigenvalues are identified
with matching damping ratio. The second mode at 31 Hz does not vary.

Figure 8.3: Slow parameter variation rate 1/T = 0.0001 < ζf0 = 0.1 Hz. The stabilization
diagram displays, from right to left, the eigenvalues identified at the beginning, middle and
end of parameter variation. Time data is analyzed in several overlapping blocks.
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conditions far from the flutter boundary, the first elastic modes tend to be highly damped,

therefore it is unlikely that a dynamic pole has a significant residual associated to it.

Furthermore, safety concerns and operational guidelines for wind tunnels and aircraft may

prevent or prohibit large and sudden parameter variations. Lastly, the investigation of

dynamic effects of real time-varying systems is often limited by the available control on

external and operational parameters.

Numerical analyses have been carried out in chapter 7 to investigate the effect of

parameter variation on system identification and mode tracking. Noise and limited

frequency resolution render the dynamic poles invisible to spectral estimation or system

identification methods. We concluded that, lest unrealistic operating conditions are forced,

the appearance of dynamic poles can be ruled out and that a frozen-time formulation can

be employed. This assumption shall be used in this chapter.

8.1.1 Wind tunnel tests

Wind tunnel tests are usually organized in a measurement matrix, i.e. various combinations

of total pressure, Mach number, angle of attack and so forth. The wind tunnel operators

control the flow parameters until the desired conditions are met and stationary, after which

a static measurement is performed, for instance lift and drag or pressure distribution.

The system’s behavior while undergoing an angle of attack variation or the appearance

of limit-cycle oscillations are often of interest during aeroelastic experiments in the wind

tunnel. System identification is carried out by holding the measurement point until

enough data has been collected. The wind tunnel parameters are then set to the next

measurement point and, by repeating this process, a flutter diagram can be slowly filled

out. Strictly speaking, such an experiment estimates the frozen-time eigenvalues of the

parameter-varying aeroelastic system. This test procedure is illustrated in figure 8.4.

Wind tunnel models have typically higher eigenfrequencies than aircraft because they

are smaller, not hollow and often made of stronger materials than aluminum, thus being

stiffer (typical frequency ranges are ≳ 50 Hz, although some special models reach ≳ 500

Hz). Based on the author’s own experience in the DNW-TWG, DNW-KKK and DNW-

HST facilities [DNW, 2021], measurement times in the order of one minute are therefore

normally sufficient to estimate the system’s eigenvalues with confidence1 [Böswald et al.,

2019; Jeličić et al., 2014, 2015]. The wind tunnel’s design makes it impossible to change

the flow variables in a way that induces dynamic effects. Under normal conditions, within

the duration of a spectral estimation window, the modal parameters present only the

secular variation of slowly-varying systems.

1 The measurement’s duration, i.e. the amount of data that can be collected about a system, affects the
variance of the spectral and modal parameter estimates (see section 4.3). Given a certain allowed error, the
duration is related to the frequency band of interest for spectral estimation or system identification: the
higher the eigenfrequencies of interest, the lower the measurement time.
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Figure 8.4: Aeroelastic testing procedure. The stability boundary is carefully approached
by slowly increasing the dynamic pressure while keeping the Mach number constant. In the
transonic regime the “transonic dip” occurs due to nonlinear flow conditions.

8.1.2 Flight vibration testing

Airworthiness requirements mandate that new or modified aircraft perform a full flutter

test at speeds up to maximum speed and monitor the response amplitude, frequency and

damping changes [EASA, 2007; FAA, 2014]. The purpose of FVT is to prove that flutter

does not occur within the flight envelope up to maximal airspeed and altitude.

Flight vibration testing is traditionally carried out by stabilizing the aircraft at the

specified altitude and airspeed and then by exciting the airframe through control surfaces

or other devices [Iovnovich et al., 2018; König, 1995; Mevel et al., 2006]. The

resulting response is analyzed to estimate the damping ratio of the aeroelastic modes

and to reconstruct its trend over several test points. Once a test point has been cleared

and the trend is deemed safe, airspeed is carefully increased until the next test point

is reached (see figure 8.4). The flutter diagram is thus slowly constructed by testing

several airspeed-altitude combinations within the flight envelope. In principle it would

be possible to construct the flutter diagrams by accelerating the aircraft slowly, a claim

that numerical investigations seem to support [Jacquier and Ayme, 2018]. Continuous

system identification of FVT is discussed in this chapter.

The eigenfrequencies of most aircraft are low because of their lightweight construction

(usually in the range 1÷50 Hz) [Kehoe, 1995, Tab. 1]. This implies that, in order to collect

a sufficient amount of data for system identification, longer records are necessary compared

to wind tunnel models. The low eigenfrequency may be offset by large aerodynamic damping

for some modes. Longer measurement times increase the probability of including transients,

course corrections, maneuvers or gusts within one nominally stationary condition. Due to

safety concerns, flight vibration testing has serious constraints on what can and cannot be

done, therefore sudden and simultaneously large airspeed and altitude variations are off

the table. Consequently, we can expect the aircraft to behave mostly as a slowly-varying

system, while still experiencing significant parameter variation in the course of one flight

test. Under some circumstances it is still possible to observe time-varying effects due to

aerodynamic phenomena.
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8.2 HALO flight vibration test

Flight vibration testing was conducted aboard DLR’s High Altitude and Long Range

Research Aircraft (HALO). The HALO is based on a Gulfstream Aerospace G550 business

jet modified to be easily configurable for a wide array of research projects. Apart from

the extended flight envelope and improved range, its most prominent features are various

hardpoints for outfitting equipment for atmospheric experiments, for example a ventral

pod, a dorsal sensor array and instrument carriers on the wings. The HALO provides

an important platform for the execution of aeroelastic experiments thanks to its flexible

mission capabilities. Part of HALO’s technical data is reported in the appendix in table

A.1 and its flight envelope is reproduced in figure 8.14.

Aeroelasticity is a big issue for external installations on the aircraft fuselage or wings,

therefore stability must be demonstrated experimentally for any modifications up to maxi-

mum altitude and airspeed. The airworthiness requirements for new aircraft configurations,

with particular focus on the HALO, are outlined in [Schwochow and Zöger, 2013] and

the references therein. For the mission at hand, we are mainly interested in its operating

ceiling: pressure altitude 51000 ft and Mach number 0.885.

Figure 8.5: Front view of the G550 DLR-HALO before a test flight. Photo credit: DLR.

Figure 8.6: Aft view of the HALO aircraft during roll-out. Author’s photograph.
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Figure 8.7: HALO performing a banked turn. The under-wing stores (PMS carriers) are
visible under both wings. Photo credit: DLR.

Within the framework of the iLOADS project [Krüger and Klimmek, 2016], the

HALO has been equipped with under-wing stores for atmospheric research called Particle

Measurement Sensors (PMS) carrier (see figure 8.7). The dynamic loads and aeroelastic

stability of the PMS carriers had to be evaluated in-flight and compared with numerical

analyses [Sinske et al., 2018]. The project provided the opportunity to conduct an

extensive measurement campaign, to acquire aeroelastic system responses in flight and to

assess the real-time capabilities of the modal analysis procedure that has been developed

within the scope of this thesis. This application provides autonomously information that

can be used to monitor flutter-critical conditions by comparing the instantaneous estimated

modal parameters with available numerical results. This has the potential to inform the

flight test engineer or test pilot about the remaining flutter stability margin and to enhance

safety and efficiency. There is no regulation requirement for specific excitation to be

performed within the flight envelope, since no reference to system inputs is evaluated,

therefore, the monitoring application can contribute to reduce the test’s duration and

consequently its cost. During the course of the iLOADS experimental campaign, the

ground, taxi and flight vibration tests have been performed (see chapter 5.2). Considering

the scope of this research, we shall focus only on the latter. Data have been acquired over

the course of five days for a total of 14 hours of flight. At the maximal pressure altitude of

48000 ft (14.6 km) the HALO was flying in the stratosphere at maximal Mach number

0.88 (936 km/h).

We proceed with the description of the FVT instrumentation, the modes of vibration

of the aircraft and the automated modal analysis application. Section 8.2.3 describes how

the flight parameters are calculated. More information about the flights is provided in

section 8.2.4.
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8.2.1 Instrumentation

Data acquisition during FVT has been carried out by a distributed network configura-

tion that combines three NI-cDAQ chassis, the aircraft on-board measurement system

BAHAMAS (BAsic HALO Measurement And Sensor system), a DAQ computer and four

analysis PCs. Flight parameters such as Mach number, positioning, pressure data and so

forth are recorded by BAHAMAS. The rugged flight test instrumentation (FTI) developed

for this experimental campaign and the requirements imposed by the mission are detailed

in [Burwitz et al., 2017] and [Sinske et al., 2018]. Prior to the test flights, the taxi

vibration test provided an adequate test-bed for the vibration monitoring application by

proofing the sensor setup by means of OMA [Govers et al., 2017]. To sum up, the

analysis computers have accelerometer and flight data at their disposal for modal analysis.

The more response channels are acquired during modal analysis, the better the estimate

of the structure’s modal parameters. However, in a flight vibration test the number of

sensors and their location must account for cable management and accessibility within the

airframe, therefore it is unlikely to be optimal. The HALO aircraft was instrumented with

51 piezoelectric accelerometers for vibration monitoring. Figure 8.8 displays the sensor

layout, while figure 8.9 shows the unique locations of all sensors and the names of each

sensor group (component).

Figure 8.8: HALO flight vibration test sensor layout. There are 51 accelerometers in total
(9 longitudinal, 20 lateral and 22 vertical). Sensor number and location must account for
accessibility within the airframe.

Figure 8.9: HALO flight vibration test sensor groups. Throughout the text and in the plots
the sensors are denoted by abbreviations (sensor number in parentheses). FUS: fuselage (8),
HBM: hanger beam (8), PMS: particle measurement system (20), TTL: T-tail (3), WING:
wings (6), WLT: winglets (6).
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The HALO carried the PMS component in its under-wing stores (see figure 8.7), therefore

most wing sensors were installed on it in order to resolve the local dynamic behavior. The

wing should be instrumented along its span with vertical sensors on the leading and trailing

edges in order to distinguish bending and torsion modes, but this was not possible for FVT.

No accelerometers could be attached to the engines or to their pylons, therefore the engine

modes known from GVT are likely to blend with other global modes. Regarding wing

torsion and engine modes, foreknowledge from the GVT about their location is applied to

OMA results when the similarity of neighboring mode shapes is high. The hanger beam

component (wing hardpoint) was instrumented with 16 strain gauges for load monitoring,

but also provided convenient locations for accelerometers.

The sensor location and direction are of great importance for both the system identi-

fication algorithms and for the test engineer analyzing the identified eigenmodes [Covioli

and Coppotelli, 2019]. The mode tracking procedure described in chapter 6 uses eigen-

vectors to distinguish one eigenvalue trace from another, consequently a good sensor setup

is necessary. Figure 8.10 provides a simple example.

Figure 8.10: Identification of mode shapes of wing profile using three sensors. The leading
edge is instrumented with x and z sensors, the trailing edge only with a z sensor. This
configuration can distinguish between the (first) wing bending, the torsion and the in-plane
bending modes. Additional sensors along the wingspan are necessary to resolve eigenmodes
with more nodes (e.g. the higher wing bending and torsion modes).

The instrumentation must account for spread, sparsity and locality of the sensors:

• Spread : ability to visually recognize a global mode shape because of sensor location,

orientation and number. For example, wing torsion (especially for swept wings) is

difficult to distinguish from wing bending if the leading and trailing edges are not

both instrumented.

• Sparsity : important substructures may not be instrumented, e.g. the stabilizer or the

engines. Two global modes may appear very similar if the substructure vibrates in

one but not in the other. Control surfaces must be instrumented if their flap modes

are important to aeroelastic stability.

• Locality : local modes are over-represented when sensors are clustered on a substruc-

ture, which can be a disadvantage for system identification as well as for mode tracking.

This should be avoided if there is a significant non-linearity on the connection with

the rest of structure.
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Figure 8.11: Examples of sensor setup issues. Left: poor sensor spread – the sensors are
located only on leading edge, therefore the wing torsion appears as a wing bending. Middle: bad
sparsity – the pylon bending mode appears similar to a wing bending mode (not instrumented
substructure). Right: excessive locality – the wing tip has many sensors, but the first and
second wing bending modes are difficult to distinguish.

Figure 8.11 provides an example of bad sensor spread, sparsity and locality. Let us

consider the problem from the test engineer’s point of view: the sensor distribution along

the structure should aid visual identification of the eigenmodes in order to name and to

recognize them. This is desirable in order to compare different data runs, to eliminate

spurious modes from the stabilization diagram or to assist the automated mode tracking

procedure. System identification or mode tracking methods do not have any geometrical

information, therefore eigenvectors are analyzed only in terms of similarity or mode quality

criteria. The visualization and animation of mode shapes are powerful tools delivering

precious insight about measurement setup errors, identification quality and, in the case

of aeroelasticity, about the interaction between different modes. During FVT it is to

be expected that some flying conditions or excitation types can be inadequate for the

identification of some eigenmodes. In the case of HALO, some modes are indeed difficult

to identify depending on the kind of excitation acting on the aircraft. For example, when

the phase difference between neighboring output sensors is high, an animated mode can be

immediately recognized as spurious and eliminated.

Visual inspection of the mode shapes brings the following improvements:

• Channel table correction: errors in the channel table setup can be correct by recon-

structing the “ideal” shape of the first few elastic modes and correcting the channel

table entries with the wrong location, orientation or calibration factor (for instance,

the first wing bending eigenvectors must point all in the same direction and display

an approximately parabolic trend).

• Modal model selection: the visual inspection of identified mode shapes resolves

bifurcations in the stabilization diagram (such as those arising when a pole shifts

within the time data buffer).

• Mode tracking enhancement : mode tracking is of course automated, but it can be

greatly assisted by occasional human intervention, for example, by selecting the “best

identified instance” of an important mode as the ancestor of its mode family or by

discarding badly-identified, complex and irregular mode families.
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Theoretically, the response measured at any location on a linear system contains all its

poles, but in practice the signal-to-noise ratio might be inadequate for part of the frequency

range of interest. In the modal analysis of real structures there is a connection between

the excitation vector and dominant direction of a particular eigenmode: for example, wing

modes are best identified by applying a vertical force during ground vibration testing

[Govers et al., 2014]. The number of linearly independent eigenvectors that can be

identified is at most equal to the number of system outputs. This can be a limiting factor in

experimental setups with few sensors. For instance, in the wind tunnel data from [Jeličić

et al., 2014] at least a dozen clearly-defined resonance peaks are observable, yet only six

response channels are available.

8.2.2 Modes of vibration

The mode shapes of an aircraft are first estimated during GVT and constitute later the

reference data for the flight vibration test. From now on we shall often refer to HALO’s

modes of vibration, either in terms of eigenfrequency or mode shapes. In order to help

commit them to memory, we anticipate some of the results that will be presented later in

this chapter. The mode shapes do not vary much and are recognizable during almost any

flight condition, therefore it is convenient to visualize and name them.

Figure 8.12 displays the first eight HALO mode shapes identified during stationary

flight conditions. Their eigenfrequency and damping ratio are, strictly speaking, valid only

for the flight condition at which they have been identified, but are nevertheless reported for

the reader’s convenience. The modes with large participation of the wings are expected to

be well-excited during normal stationary flight and to feature prominently as well-defined

resonance peaks in the spectra. The first symmetrical wing bending has a high damping

ratio (typically ≥ 10%) because of aerodynamic damping. There are modes that are known

from GVT (where a more comprehensive sensor setup is used) but that are difficult to

observe in-flight, for example aft fuselage torsion with wing in-plane bending.
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Figure 8.12: First eight elastic HALO modes (normalized mode shape amplitude): 1 - first
symmetric wing bending, 2 - first antisymmetric engine bending, 3 - first antisymmetric wing
bending, 4 - first fuselage bending, 5 - aft fuselage torsion with wing in-plane bending, 6 - second
symmetric wing bending, 7 - first antisymmetric PMS bending, 8 - first in-plane wing bending.
The displayed modal parameters have been identified from the stationary measurement point
MP12 (steady level flight at 27000 ft, Mach number 0.65, see table 8.1).
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8.2.3 Flight aerodynamic quantities

The linearized aeroelastic theory based on potential flow introduced in chapter 3 has

described the influence on the structure of the unperturbed freestream’s speed V∞ and

density ρ∞. This section elaborates further on the experimental determination of flow

parameters during flight using [Gracey, 1981] as reference. Strictly speaking, the following

treatment is valid for an ideal gas but it is nevertheless still accurate for air.

Notation. In aerodynamics, freestream variables are subscripted by “∞”, whereas local

ones have no subscript. Total variables (also known as impact or stagnation variables)

have superscript “0”.

The potential flow theory describes the forces acting on an object as function of the

surrounding velocity field. The flow is considered incompressible and there is no account of

thermodynamics. The modeling of an aircraft flying at high speed must include temperature

in order to describe air compressibility effects.

Mach number

The Mach number is the dimensionless parameter describing point-wise the flow regime

and the phenomena arising from compressibility. It is the ratio between the local flow

speed and the local speed of sound:

Ma ≜
V√
γR∗T

[adim] (8.1)

where V is the speed, γ the ratio of specific heat2 (γ = 1.4 for air), R∗ = 286.94 J/(kg·K)

the specific ideal gas constant for dry3 air and T the local static temperature.

Fluids with the same Mach number behave in a similar way and many flight charac-

teristics depend on the local Ma and not on the actual local flow speed. For example,

since air temperature in the troposphere decreases with altitude, so does the speed of

sound and the Mach number consequently increases even if the aircraft’s speed relative

to the air were to stay the same. Where the local wind speed is equal to the speed of

sound (Ma = 1, the sonic condition), a shock wave forms, i.e. an instantaneous and

abrupt variation of the flow’s variables. The formation of shock waves is important in

aerodynamics because they alter the flow around the aircraft, increase the drag coefficient

and affect the propulsive efficiency, but also for aeroelastic stability because of buffeting

(high-frequency flow separation or shock oscillation) and the transonic dip phenomenon

(sudden decrease of the flutter margin, see figure 8.4).

2 The ratio of specific heat at constant pressure to heat at constant volume is denoted by the letter γ in
aerospace engineering, while in thermodynamics the symbols k or κ are much more common.

3 The effect of humidity is negligible below -10 degrees Celsius (at altitudes 12400 ≤ h ≤ 131000 ft). For
the current flight test we can ignore it. This value of the ideal gas constant is taken from HALO’s air data
computer.
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We shall consider the following regimes:

• Incompressible subsonic 0 < Ma∞ ≤ 0.3: air density varies very little with speed.

Classic aerodynamic potential theory can be applied for quasi-steady and isothermal

flows (for the purpose of aeroelastic design, this regime is 0 < Ma ≤ 0.5).

• Compressible subsonic 0.3 < Ma∞ ≤ 0.8: the aerodynamic potential theory must

account for compressibility effects by applying corrections. Most time during the

experimental campaign was spent in this regime.

• Transonic 0.8 < Ma∞ ≤ 1.2: since the stream moving next to the aircraft is

accelerated, local supersonic patches develop (typically around the wings). The flow

is highly nonlinear and a modified aeroelastic formulation must be applied.

The supersonic Ma∞ ≥ 1.2 and higher regimes are outside the scope of this work. The

incompressible subsonic regime is of importance for sailplanes and other light aircraft.

Modern airplanes are engineered to fly in the transonic regime at higher flight altitudes

because of optimal propulsive efficiency and lift-to-drag ratio [Hill and Peterson,

1992]. Compressibility and nonlinear effects must be incorporated in the calculation of

the aerodynamic influence coefficients. The AIC matrix can be computed directly using

computational fluid dynamics or by applying corrections to the potential flow theory

[Friedewald et al., 2018], but the construction of the state-space model still follows the

steps outlined in chapter 3.

At cruise altitude the flight speed is given as Mach number because it is more represen-

tative of aerodynamic phenomena. The freestream Mach number can be calculated using

the isentropic flow relations [Hill and Peterson, 1992]:

Ma2 =
2

γ − 1

(
T 0

T
− 1

)
=

2

γ − 1

((
p0

p

) γ−1
γ

− 1

)
(8.2)

where T 0 and T are the total and static temperatures4 and p0 and p the total and static

pressures5. Aircraft have a Pitot tube to measure stagnation and static pressures in the

subsonic regime. Coupled with a measurement of stagnation and static temperature of the

airflow, the Mach number, air speed, air density and pressure altitude can be calculated.

The static quantities are measured where freestream conditions are met (in the case of

HALO, on the aft sensor boom). Equation (8.2) is used to calculate Ma∞ and from there

the other freestream flow variables.
4 The total temperature is the stagnation temperature of a flow line whose the kinetic energy has been

converted entirely into internal energy:

T 0 = T +
v2

2cp
(8.3)

where T is the static temperature, v the flow speed and cp the specific isobaric heat capacity.
5 The total pressure is calculated from Bernoulli’s principle as

p0 = p+
1

2
ρv2 + ρgz (8.4)

where p is the static pressure, 1
2
ρv2 the dynamic pressure and ρgz the gravitational head. For air traveling

on a horizontal path the latter term is so small that it is ignored.
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Air speed

In aeronautics several types of “airspeed” are defined: calibrated (CAS), equivalent (EAS),

indicated (IAS) and true (TAS) airspeed. Their purpose and measurement are detailed

in every flight manual. These conventions serve different needs in navigation or testing

and the instruments of an airplane usually display or record all four. We only need the

true airspeed (TAS), i.e. the relative velocity between aircraft and the air mass. This is

equivalent to what in aerodynamics is classically called freestream/wind speed V∞ and

what has been known simply as “air speed” in previous chapters. True airspeed is not

equivalent to ground speed because compressibility effects or winds are not taken into

account [Gracey, 1981].

When the Mach number and static temperature are known, the true airspeed can be

computed from reference quantities at sea level:

V =Ma · a0
√
T

T0
[m/s] (8.5)

where a0 = 340.29 m/s and T0 = 288.15 K are respectively the speed of sound and the

reference temperature at sea level. The accurate measurements of Mach number and true

airspeed are provided by the HALO flight data computer.

Air density

The ideal gas law relates the state quantities p, ρ and T of an ideal gas with each other:

p

ρ
= R∗T =⇒ ρ =

p

R∗T
(8.6)

Air density is not directly measured by the flight data computer, but it can be calculated

either from the dynamic pressure and true airspeed or from the static pressure and static

temperature. In equation (8.6) humidity must be accounted for in order to compute the air

density accurately. Fortunately, the correction factor is in the range of the measurement’s

error already at 4000 m above sea level, therefore it can be ignored since the lowest HALO

flight level of interest to us is at 15000 ft (4500 m).

The HALO has a nose boom housing the five-hole-probe to determine the air velocity

vector in conjunction with pressure sensors to measure the static pressure accurately. The

technical report from [Giez et al., 2020] details the calibration of the nose boom sensors

and provides rich information about static pressure measurements on aircraft. The flight

data computer (air data system) applies some corrections and calibration factors to provide

accurate static pressure and static temperature values to the DAQ computer. According

to the available technical expertise, the most accurate way to compute air density is thus

equation (8.6) through the measured static pressure and static temperature.
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Flight altitude

The variation of air temperature, pressure and density as a function of altitude is described

by the International Standard Atmosphere model [ISO, 1975]. The measured atmospheric

data from the HALO campaign are reproduced in figure 8.13 as a function of altitude. The

lower part of the atmosphere down to sea level is the troposphere, where most of the air

turbulence and almost all weather phenomena take place. The thin layer starting at circa

39000 ft (11900 m) where the temperature is constant is the tropopause. Above 40000 ft

(12100 m) (with seasonal and latitude variations) the temperature gradient changes sign

and thus signals the beginning of the stratosphere. In the troposphere the air temperature

decreases linearly, while the static pressure and air density follow a decreasing power law.

The flight altitude is measured by the barometric altimeter aboard the aircraft. The

instrumentation determines the altitude above sea level through air pressure. This so-called

pressure altitude h is calculated from the static pressure p according to an exponential

relationship [US-NOAA et al., 2021]:

h = 145366.45

(
1−

(
p [Pa]

101325

)0.190284
)

[ft] (8.7)

The pilot reads the pressure altitude and adjusts the flight level according to the mission

profile. This reading is one of the measurement channels in the DAQ system and is more

accurate than the available geodesic (GPS) altitude. In this chapter, when talking about

“altitude”, we always intend the pressure altitude. When the mission profile designates

the flight level, small static pressure and air density variations can be neglected. At fixed

altitude the static pressure and temperature are constant, consequently the air density is

also constant. Under this condition the true airspeed, Mach number and square of the

dynamic pressure differ only by a scaling factor.
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Figure 8.13: Measured atmospheric data during one of HALO’s flights as function of the
pressure altitude. The temperature varies linearly in a wide range, the air pressure and altitude
follow a decaying power law. The horizontal red lines delimit the tropopause. Below them
is the troposphere, above them the stratosphere. The yellow line is the ground level. The
temperature excursion from early to late morning is recorded in the lower right corner of the
temperature plot. See text for discussion.
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8.2.4 Measurement plan

The HALO flight envelope is reproduced in figure 8.14 as a function of Mach number

and pressure altitude with respect to maximal operating conditions and according to

certification. The flutter boundary is at a safe distance from the allowed operational range,

therefore the steep damping ratio drop of critical wing modes will not be observed. Table 8.1

summarizes the measurement points reported in this chapter. The test campaign defined

several stationary measurement points in order to provide a variety of flight conditions and

excitation types. The study of the effects of air brakes deployment, rudder kicks, aileron

jerks, wake turbulence of a preceding plane and maneuvers on the response are part of the

measurement plan and will be elaborated later.

Table 8.1: Overview of measurement points (data sets). The first digit of the code denotes
the experimental flight, the second digit the specific measurement point.

Code Pressure Mach Description Duration
altitude number

MP11 27000 ft 0.55 Stabilized flight, turbulence excitation 267.4 s
MP12 27000 ft 0.65 Stabilized flight, turbulence excitation 306.3 s
MP13 27000 ft 0.70 Stabilized flight, turbulence excitation 324.4 s
MP14 27000 ft 0.78 Stabilized flight, turbulence excitation 310.3 s
MP15 27000 ft 0.77 Stabilized flight, turbulence excitation, air brakes 304.7 s
MP21 27000 ft 0.70 Stabilized flight, stochastic elevator/aileron excitation 434.5 s
MP40 27000 ft 0.70 Chase flight flying in preceding airplane’s wake 375.0 s
MP41 27000 ft 0.53÷0.74 Chase flight as MP40 but with variable speed 2687 s
MP50 <48000 ft <0.88 Stabilized stochastic elevator/aileron impulses 9650 s
MP51 48000 ft 0.88 Descent maneuver 800 s

Figure 8.14: HALO flight envelope as function of Mach number and pressure altitude. The
gray line represents the entire experimental campaign’s data. The markers denote stationary
measurement points. VD/MD: structural loads design true airspeed/Mach, VS: stall speed,
VMO/MMO: maximal operating true airspeed/Mach, VFT/MFT: maximal allowed flight test
true airspeed/Mach (according to certification). KCAS: calibrated airspeed in knots. The
VS and VMO/MMO are partly or completely covered by the VFT/MFT curve. The flutter
boundary is at a safe distance.
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8.3 Real-time automated modal analysis

The data throughput and the busy schedule during wind tunnel experiments or flight

vibration testing require automation. For the task at hand, a real-time automated modal

analysis application is deployed to track the evolution of the system’s eigenvalues as function

of environmental and operational conditions. The purpose of this software is to assist

the test engineer during flutter testing. An important factor for success is the ability to

process large sensor setups in little time and to produce clear stabilization diagrams. The

application developed for automated system identification is called OnLine Monitoring

(OLM) and meets the following requirements:

• efficient algorithmic implementation: the modal parameters estimates must be re-

freshed within seconds to provide up-to-date information to the test engineer

• extensive and responsive graphical user interface providing a comprehensive output

assisting the test engineer in the interpretation of results

• ability to run continually for indefinite amounts of time and recover autonomously in

case of unexpected errors

• ability to track several (possibly closely-spaced) eigenmodes simultaneously

The development of the OLM required a considerable investment in terms of time, therefore

it would be a disservice to so much effort not to spend a few words about it. Within the

scope of this thesis, many methods have been researched and implemented to perform

calculations and analyze time-varying aeroelastic systems. The resulting algorithms have

been coupled with a graphical user interface to construct a suite of instruments that can

be deployed during experiments. A screenshot of the OLM’s graphical user interface is

displayed in figure 8.15 as example. The OLM is pictured in action during a wind tunnel

test campaign in figure 8.16.

The importance of integration of aeroelastic software development has been recognized

early [Looye, 1999]. A precursor FVT monitoring application on the HALO is presented

in [Schwochow and Zöger, 2013], where control surface excitation is used in-flight

to estimate the damping ratio of critical modes. The first version of the OLM has been

deployed in a transonic wind tunnel flutter test to track the damping evolution of critical

modes [Jeličić et al., 2015]; excitation is provided by air turbulence and shakers. The

OLM backbone has been then stress-tested offline using existing FVT data to refine its

performance in terms of computational speed and system identification results [Jeličić

et al., 2016]. The flight vibration test data presented in this chapter were acquired in

2016 by an airworthy OLM version and published in [Jeličić et al., 2017]. Since then,

the OLM has been deployed to monitor the aeroelastic behavior of a wing with nacelle

model in a transonic wind tunnel and to assist the wind tunnel operators while approaching

the flutter boundary [Böswald et al., 2019; Govers et al., 2019].
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Figure 8.15: OLM’s graphical user interface. Top row, left to right: window with analysis
settings, display of current time data buffer, animated mode shapes plot and options. Middle
row: MAC matrix of current modal model, stabilization diagram. Bottom row: spectra of
current data buffer, first four principal moments, channel selection window. The user controls
which instruments are displayed during experiments.

Figure 8.16: Computer setup for OLM in a wind tunnel. The two top screens display various
instruments and analyses while the experiment is running. A display with estimated spectra, a
stabilization diagram, a spectrogram and a tracking can be recognized. The bottom left screen
belongs to a computer in a parallel connection that acts as fail-safe. Author’s photograph.
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8.3.1 Design principle

The experience gained with the OLM’s precursors made clear that overseeing vibration

tests requires considerable internal software development. For example, one requirement is

the ability to expand and adapt the suite of instruments according to the test profile.

The core design principle of the OLM is to attain from and contribute to the modal

analysis framework used at DLR-AE. This is enforced in order to benefit from the latest

scientific developments, from high-quality data visualization meant for publishing and from

a larger pool of users for testing and debugging.

The OLM software is written entirely in MATLAB with object-oriented programming.

The MATLAB language is well-suited for numeric computing and is widely adopted by

the digital signal processing, control engineering and modal analysis communities. Some

publicly-available toolboxes and data sets are used as benchmarks. According to experience,

fixes and expansions during an experimental campaign are always required, therefore object-

oriented programming is much more suitable than “classical” script-based code. The OLM

per se acts as a director that manages the hardware data stream, compiles metadata,

parses inputs, launches the modal analysis chain, updates the graphical user interface and

forwards results to a database. Its algorithmic core is comprised of low-level mathematical

functions performing signal processing, system identification and other calculations. Within

the scope of this research, several efficient algorithms have been implemented or devised to

reach the target performance.

8.3.2 Data flow

A general diagram of the OLM data flow is reproduced in figure 8.17:

1. Either a DeweSoft or National Instruments DAQ runs on a dedicated PC (“DAQ

computer”) that records and broadcasts to a LAN network.

2. Networked PCs (“analysis computers”) running a client application forward the

acquired data into MATLAB using a DCOM/ActiveX interface. The arrival of new

data is detected by the OLM instance.

3. The OLM retrieves a set amount of samples and appends this data block onto a

first-in-first-out time data buffer. This event triggers the execution phase, which

checks any user inputs or settings, launches the requested analyses and gathers

results.

4. The modal analysis output is sent to a database for easy access and browsing.

The OLM is structured as a collection of objects for data acquisition, processing and

display, respectively called Datastream, Kernel and Monitor in figure 8.18.

The Datastream’s job is to assemble the time data buffer and collect the necessary

metadata. This constitutes the data source for all analyses. The buffer typically contains

104÷105 samples per channel. Within the course of a measurement campaign several sensor

configurations may be tried out, some sensors will have the wrong labels, wiring or direction
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and some will fail, consequently a robust channel handling is obligatory. Furthermore, wind

tunnel and flight parameters are almost always acquired with a much lower sample rate

than accelerometers, therefore at least two data streams with different sampling frequencies

must be managed.

The Kernel oversees the analysis parameters and the calculations (see figure 8.19).

Input parsing and preprocessing is performed only if there is a change in user input and

not at each execution cycle. Low-level but related algorithms are clustered together to ease

development and maintenance. Figure 8.20 illustrates the structure of a spectral estimation

block as an example.

The Monitor updates the graphical user interface with current results (see figure 8.15).

Given the number of instruments and displays, the GUI must be optimized to reduce the

CPU time required to refresh the plots.

8.3.3 Performance

Computational time complexity is critical because the whole analysis chain must be com-

pleted within two refresh events. In particular, spectral analysis and system identification

methods are selected by their ability to handle large data sets very efficiently and to

produce clear stabilization diagrams. The algorithms are implemented to favor low CPU

load over memory efficiency. The OLM must run satisfactorily on a notebook, hence it is

important to study the time complexity of its algorithms and to address bottlenecks. Even

the cost of data and metadata management is noticeable given the numerous steps in the

analysis chain.

The target OLM performance is: a new analysis every two to three seconds. In order

to achieve maximum computational speed, said informally, all kinds of optimizations,

shortcuts, undocumented features, dirty programming tricks, and hacks have been utilized.

Whenever possible, vectorization6 and lazy copy7 are exploited. Parallel processing is not

employed because set-up time and overhead are a large fraction of the total analysis time,

therefore the gain of parallel computation would be eroded according to Amdahl’s law at the

additional cost of rewriting code. GPU computing is likewise suboptimal because sending

and retrieving continually arrays from the GRAM is slow. MATLAB uses automatically

multi-threading for matrix division, fast Fourier transform, eigenvalue and singular value

decompositions, thus offering a considerable speedup for the most computationally intensive

and common operations.

6 Vectorization denotes operations that are performed on whole arrays in one instruction. In MATLAB
this is performed, for example, by linear algebra operators. Vectorization improves performance significantly
and is thus used whenever possible.

7 Unlike Python, the MATLAB assignment instruction A = B does not create a pointer/handle A to
a variable B. Instead, it uses lazy copy to create a variable that points to the same memory address
(effectively using a pointer/handle!). New memory is allocated only if the variable A is modified in any way.
Performance and code readability can be improved considerably by exploiting lazy copy.
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Figure 8.17: OnLine Monitoring data flow from acquisition to postprocessing. From left to
right: DeweSoft or National Instruments DAQs provide sensor data, networked PCs running a
client application retrieve measured data into MATLAB using a DCOM/ActiveX interface,
data is processed automatically by the OnLine Monitoring (see figure 8.18). The modal analysis
results are organized by an SQL database for easy browsing.

Figure 8.18: OnLine Monitoring structure: the Datastream retrieves the latest data and
metadata from the hardware interface, appends it to a first-in-first-out buffer and manages
all sensor channels. The Kernel then reads any user input or settings, runs the analysis chain
and organizes the calculation output (see figure 8.19). The Monitor displays the results and
manages the GUIs. Results and metadata are sent to the database.

Figure 8.19: The OLM Kernel’s modal analysis chain. The “time data” block includes
any digital signal processing performed to condition the acquired signals. Spectra are always
estimated. Either an SSI or LSCF estimator is used to identify the modal parameters, after
which the stabilization diagram is constructed. The tracking diagram is updated when a new
data block arrives. Calculations are performed by mathematical functions (see figure 8.20).

Figure 8.20: Mathematical function organization concept. The input parsing is performed
separately and only if changes are detected. The algorithmic cores are used by several functions
at once to improve speed and maintainability (in this example: APSD: auto-power spectral
density, FRF: frequency response function, MCOH: multiple coherence). Results and metadata
are collected at the end of the execution phase.
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8.4 Results

The FVT results are presented in terms of flight parameters, acquired sensor data, estimated

spectra, identified modal parameters and tracking diagrams.

The OLM retrieves a block of two to three seconds worth of data (depending on the

desired refresh rate) and appends it to a first-in-first-out buffer, which then forms the data

source for all calculations. The test engineer tags the data blocks with a code referring

to an entry in the measurement matrix and by state (stationary, non-stationary, invalid,

maneuver etc...) in order to facilitate offline post-processing.

The time-domain analysis encompasses the measured acceleration response and flight

computer data. Vibration data are normally acquired at a higher sample rate than

strictly necessary for system identification because of limits imposed by the DAQ, hence

the sensor signals are decimated8 on-line to reduce sample number and frequency range.

Accelerometers and flight parameters have different (usually much lower) sample rates,

therefore the latter are resampled to match the former.

Spectral analysis includes the estimation of the APSD and spectrogram of the data

buffer in order to examine the signals’ frequency content, to compare excitation types

and to assess data quality. If necessary, digital signal processing is applied at this stage

to enhance data quality. The full or positive cross-power spectral density matrix of the

responses is estimated only if frequency-domain system identification is performed.

Modal parameters are estimated continually during the course of a test and are displayed

in a stabilization diagram, similarity matrix plot, animated mode shapes and tracking

diagram. The test engineer can easily follow the eigenvalue evolution of the last hour of

flight. Stationary measurement points are evaluated as a whole by dynamically increasing

the time data buffer’s length until the end of the stationary conditions. The estimated

modal parameters are sent to a database to facilitate browsing.

The results in remaining half of the chapter are presented according to the modal anal-

ysis chain. Several pages are dedicated to data quality analysis and spectral estimation

techniques that guide the experimenter in the search of errors and in the interpretation of

system identification results. In the first part of this section we are interested in stationary

flight conditions, while the second part treats continuous mode tracking.

The HALO’s eigenfrequencies are adimensionalized because of confidentiality reasons.

8 Decimation is performed in real-time efficiently by designing an FIR or IIR low-pass filter in advance.
The filter has a normalized cut-off frequency of 0.8/q, where q is the integer decimation factor. The factor
0.8 is set to account for the filter’s transition band. Time data is passed through the filter and then every
other q samples are kept.
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8.5 Stationary system identification

The flight 1 ground track is reproduced on the map in figure 8.21, illustrating a typical

mission profile for aeroelastic testing. The experiments during flight 1 take place at three

constant altitudes while the Mach number is increased step-wise. The aircraft “flies in

circles” because a temporary reserved airspace (TRA) is allocated by the air traffic control

for every day in the measurement campaign. The maximal duration of a straight flight

for each measurement point (see table 8.1) is thus constrained by the size of the TRA.

During flight 1 the HALO flew at speeds between 600 and 840 km/h, therefore it can travel

straight for 50 to 70 km in 5 minutes before it must turn. The TRA’s size, respectively the

duration of a straight flight, imposes a non-negotiable constraint on system identification.
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Figure 8.21: Flight 1 ground track (gray line). The airfield at DLR-Oberpfaffenhofen near
Munich is denoted by its ICAO-code EDMO. The HALO must fly within the temporary reserved
airspace (TRA) assigned by traffic control The measurements points are at altitude 27000
ft, Mach number 0.55, 0.65, 0.70 and 0.78, stabilized flight, with pure turbulence excitation
in MP11÷MP14, active air brakes in MP15. The measurement point MP11 is shorter due to an
unexpected maneuver.

The flow variables relevant to aeroelasticity are read directly from the BAHAMAS (see

instrumentation in section 8.2.1) and plotted in figure 8.22. The air speed is computed

using equation (8.1) since the Mach number and static temperature are known. The air

density is calculated from the measured static pressure and temperature using the ideal

gas law (8.6). It can be noticed that static pressure increases slightly when the aircraft

accelerates, whereas the pressure altitude remains constant. As discussed in section 8.2.3,

the altitude at which HALO flies is set by the pressure altitude instrument reading and

not by the static pressure port measurement. At fixed flight level the air density variation

is negligible. Stationary conditions in flight cannot be as precise as those achieved in a

wind tunnel, nevertheless within the interval of each measurement point MP11÷MP15 the

flow variables do not deviate significantly from the nominal mean (see figure 8.23).
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Figure 8.22: Flight 1, measurement points MP11÷MP15: measured flow variables (blue lines)
and relative deviations from nominal stationary values (orange lines). Each pair of vertical gray
lines delimits one measurement point. The Mach number, static pressure, static temperature
and pressure altitude are read from the the air data computer (ADC). The temperature,
pressure and altitude are constant within 0.2%. Since the temperature is constant, the Mach
number and the true airspeed curves have the same shape. The static pressure varies slightly
with speed, see text.
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Figure 8.23: Flight 1 measurement points MP11÷MP15: aeroelastic quantities. The true
airspeed is measured directly, while air density is calculated from the ideal gas law (8.6). The
air density varies by less than 0.2 % from the mean value of each measurement point and by
less than 3.7 % overall.
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8.5.1 Time-domain data

Five stationary measurement points have been defined in flight 1 to provide suitable and

representative data for the fine-tuning/calibration of the system identification procedure.

The signals acquired by all accelerometers during measurement points MP11 to MP15 are

displayed in figure 8.24 (straight level flight, see table 8.1). A closer look at the time record

reveals that some transients are present, therefore we proceed with statistical analysis.

The first four principal moments of the sample data have been calculated in figure 8.25.

The appendix A.11 provides more details about their estimation. The mean reveals that

some sensors have some drift or very low-frequency components and should be flagged for

later analyses. The variance provides an indication of how stationary the excitation level is.

Figure 8.24: Flight 1, accelerometer signals during stationary flight conditions. From left to
right, MP11÷MP15 are displayed. The black line is the Mach number. The pressure altitude is
constant h = 27000 ft. The higher acceleration level at MP15 is due to air brakes deployment.

Figure 8.25: Flight 1, measurements points MP11÷MP15: first four principal moments of
accelerometer signals. The moments have been calculated using the unbiased estimators (see
appendix A.11) from 20 s blocks with overlap 0.75. See text for discussion.
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The skewness measures the symmetry of a random variable’s probability density function.

The excess kurtosis quantifies the weight of the tails of a distribution.

Turbulence can be modeled as a normally distributed random variable, therefore,

assuming that the aircraft is a linear system, its response must also be a normally distributed

random variable. Where the skewness and excess kurtosis are both zero, the response is

normally distributed. When nonlinearities are present, the system response can have a

different distribution (for example, if a limit cycle is developed, the sample distribution

may resemble that of a sine wave). The measured responses have a fairly symmetrical

distribution. i.e. there is no preference for one direction or the other. The excess kurtosis

plot reveals that the data distribution tends to be leptokurtic (positive excess kurtosis)

in MP11÷ MP14, which highlights the presence of outliers in the data (the tails of the

distribution are heavier). This suggests that in the normal flight regime (without air

brakes) the sensors are susceptible to transients, impulsive events, course corrections, gusts

or errors. Due to the presence of transient effects, the assumption of ergodicity is violated,

but fortunately only locally and temporarily. Nevertheless, ergodicity is a fairly reasonable

assumption for steady flight (i.e. the principal moments are independent of time).

Strikingly, when the air brakes are active, the system response is more stationary and

normally-distributed. However, air brakes deployment changes the wing’s inertial and

elastic properties and modifies the flow around it. Raising spoilers impacts the lift in their

vicinity by disturbing the attached flow and generating vorticity, which decelerates the

aircraft and reduces flight altitude simultaneously. Thus, the measurement points MP14

and MP15 represent effectively two different system configurations. Figure 8.26 illustrates

the air brakes deployment.

Figure 8.26: A schematic representation of airflow around the wing when air brakes are
deployed is provided on the left. A wing section is displayed on the right: the flight spoiler is
raised to disrupt the suction side flow and the flap slides down to increase lift and drag. The
raised spoiler disturbs the attached flow and generates additional vorticity. The flow around
the wing and its inertia are thus changed.
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8.5.2 Frequency-domain data

We recall from chapter 5 that an underlying assumption of OMA is that the magnitude of

the input power spectra be constant. Under such condition it is possible to express the

output power spectra in modal form 4.21 (weighted sum of simple poles). We also know

from section 3.3 that air turbulence has a decaying spectrum, therefore this assumption

is not entirely valid, but still helpful for obtaining useful data. In the case of HALO, the

three wind spatial components are measured by the five-hole probe positioned at the nose

boom. The measured power spectral density in figure 8.27 shows the power-law magnitude

decrease with frequency as modeled by the von Kármán spectra (3.35).
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Figure 8.27: Auto-power spectral densities of longitudinal Gu(f), lateral Gv(f) and vertical
Gw(f) free-stream velocity components measured by five-hole probe located at HALO’s nose
boom. The lateral and vertical components are very similar.

The recorded aircraft response is monitored by a spectrogram in order to observe the

variation of its frequency content over time. In operational modal analysis, the spectrogram

provides vital information about transients, stationarity or harmonic components; the PSD

plot alone is not sufficient because it condenses any information about spectral variance.

The spectrogram is used to gain precious insight into the acquired data and to set up the

system identification, particularly concerning the choice reference channels and frequency

range for SSI or LSCF. Figure 8.28 displays the spectrogram of a triaxial sensor (see figures

8.8 and 8.9 for the instrumentation). In this case it highlights the magnitude variance over

nominally stationary conditions and the energy distribution over frequency depending on

sensor direction. Figure 8.29 displays the power spectral density for all sensors grouped

by component and by direction (evaluated over stationary conditions). The sensors of

the hanger beam, PMS carrier, wings and winglets are arranged symmetrically on the left

and right sides of the aircraft. Each pair has almost identical response spectra. Some

sensor/direction combinations have systematically low response levels (for example lateral

hanger beam and wings, longitudinal fuselage and under-wing stores). In some channels,

the frequency range where the PSD sets on a “noise plateau” and does not have visible

antiresonances indicates a low signal-to-noise ratio (for example for the y-direction sensors

on the wing and hanger beam components). Such sensors are excluded from the reference

channel selection.
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Figure 8.28: Flight 1, spectrogram of a triaxial sensor on the right winglet. From left to
right, each pair of gray lines delimits MP11÷MP15. The resonance peaks of elastic modes f < 2
are clearly visible. This spectrogram illustrates nicely the broadband effect of air brakes
deployment compared to pure air turbulence. The spectrogram is estimated by the segmented
multi-taper method (algorithm 3) to produce a better qualitative time-frequency representation
of the data.

Figure 8.29: Flight 1, measurement point MP13: power spectral density of all sensors grouped
by component. The colors denote the sensor direction: red: x -direction (longitudinal), green:
y-direction (lateral), blue: z -direction (vertical). The PSD of stationary points is here estimated
with Welch’s modified periodogram; a Hann window with optimal overlap is used and its size
is set to obtain at least 50 averages. See text for discussion.

The power spectral density of the vertical winglet sensors during stationary flight is

displayed in figure 8.30. It can be noticed that the excitation level grows with airspeed and

that air brake deployment injects more energy into the system, in particular in the higher

frequency range (f ≥ 2). The variance of the estimated APSD is typical for the system

response during FVT (see for comparison another FVT in [Jeličić et al., 2016]).
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Figure 8.30: Auto-power spectral density of the left and right WING+Z sensors for station-
ary flight level and Mach number MP11÷MP15. The response spectra of the left and right
accelerometer are practically identical. The excitation level grows with the Mach number. The
turbulence induced by the air brakes clearly injects more energy into higher frequencies. The
spectra are estimated using the segmented multi-taper method from about 5 min of data.

Various excitation types have been tested during the measurement campaign in order

to assess the capabilities of the system identification methods:

• Continuous air turbulence (MP13) is the baseline excitation in terms of magnitude and

frequency content encountered during steady level flight. It is representative of the

aircraft’s design operating condition and does not require any additional excitation

devices.

• Air brakes deployment (MP15) manifests globally as increased vibration in the higher

frequency range. A benefit of this excitation method is that the system response is less

susceptible to transients. However, the air brakes alter the aircraft’s mass distribution

(inertial and elastic properties) and especially the flow around it (aerodynamics),

thus deviating from the “nominal” operating condition (see figure 8.26). The flow

interaction between the PMS carrier and the extended trailing edge flaps results in a

more complex excitation spectrum at its location.

• Stick raps (MP21) are random rudder kicks and aileron jerks performed by the pilot.

The impulse duration determines the main lobe width in the frequency-domain.

The resulting excitation is limited to the lower frequency range and has a modest

magnitude increase compared to continuous air turbulence. The physical effort and

strain that are required from the pilot restrict this technique. Furthermore, the

impulse duration and amplitude are constrained by the aircraft’s controls. Control

surface excitation for FVT is usually performed by dedicated devices.

• Wake turbulence (MP40) was generated by the DLR-Falcon 20-E5 flying ahead at a safe

distance. Judging from the response spectra, the spectrum of the wake turbulence

appears to have the same shape but different magnitudes compared to the pure

continuous air turbulence. However, given that the aircraft tends to be expelled from

the wake, the pilot must actively try to fly back inside, which results in an excitation

that is hardly stationary.
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Figure 8.31: Comparison of different excitation types. The plot shows the mean APSDs of all
channels for h = 27000 ft, Mach number Ma = 0.70 (level flight with constant heading). MP13
is pure air turbulence and noise excitation, MP21 is obtained by stochastic aileron/elevator
maneuvers, MP40 is the response spectrum during flight inside the wake of a preceding aircraft.
Measurement point MP15 (air brakes, h = 27000 ft, Ma = 0.77) is plotted for comparison.

Figure 8.31 compares the power spectral densities acquired for different excitation types

for the same altitude and Mach number. The spectra have been estimated at constant

altitude and speed and with a long buffer in order to determine an average.

The stationarity of the response can be conveniently visualized by a persistence spectrum

in figure 8.32. This is essentially a histogram of the occurrences of a combination of

frequency bin and spectrum amplitude that is displayed as an image. It can be also seen

as quantifying the percentage of time a given frequency component is present in the signal.

The more stationary the data are, the more the persistence spectrum approaches the mean

obtained from the whole data buffer.

Furthermore, the presence of transients in frequency-domain can be quantified by the

spectral kurtosis k(f) of each response y(t):

k(f) =
⟨|ỹ(t, f)|4⟩
⟨|ỹ(t, f)|2⟩2

− 2 [adim] (8.8)

where ỹ(t, f) =
∫ +∞
−∞ y(t)w(t− τ)e−2πftdt is the short-time Fourier transform of the signal,

w(t) the window function and ⟨ · ⟩ is the time-average operator. If the response contains

only stationary Gaussian noise, then k(f) is asymptotically normally distributed with zero

mean and variance 4/N, where N is the number time bins of ỹ(t, f). Mode details can be

found in [Antoni, 2006]. Spectral kurtosis can be used as a type of weighting for system

identification because frequencies with larger kurtosis (more variance or transients) can

be weighted down in the pole estimation. Figure 8.33 displays the spectral kurtosis of a

vertical wing sensor for different excitation types.
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Figure 8.32: Persistence spectrum of a vertical wing sensor for various excitation types (same
data as in figure 8.31). The red line is the APSD estimated from the whole data buffer. The
image is the persistence spectrum estimated from short blocks of 4096 samples, 0.75 overlap
and 128 amplitude levels (yellow: high occurrence, blue: no occurrence).

Figure 8.33: Spectral kurtosis of a vertical wing sensor for various excitation types (same
data as in figure 8.31). The band delimited by dashed red lines contain the area of stationary
and normally-distributed signals with a confidence interval of 95%. The larger the amount of
spectral lines within this band, the smaller the effect of transients. The data is leptokurtic
(more concentrated around the mean and with heavier tails of the distribution).
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8.5.3 Reference channels

System identification methods such as SSI-ref and LSCF require reference signals chosen

among the available responses. In the OMA context the selection of reference channels

may not be straightforward because of noise and transients. It is known from experience

that the reference channel selection should be balanced according to the modes of interest,

i.e. the sensor locations and orientation should be representative of the most important

mode shapes. For instance, if we consider HALO’s modes 8.12, we see that the wing’s

participation is significant, therefore vertical wing sensors should be included. A possible

and effective criterion is to select the most stationary and normally-distributed outputs

as references. It is possible to localize transients in both the time and frequency domains

and to select the reference channels accordingly. As already shown in figure 8.25, a

fairly simple way of revealing the presence of outliers and errors in the data buffer is the

estimation of the principal moments of each data block, specifically when skewness and

kurtosis vary unpredictably over time. For example, sensors whose principal moments

deviate considerably from the trend of all other sensors during steady flight may be faulty

or detached and should be ignored. Since the airplane is constantly performing course

corrections, the movement of the control surfaces appears to have a noticeable effect on the

measured responses even during steady flight. To this end, the stationary measurement

points MP11 to MP15 from flight 1 have been analyzed in detail before flight 2 in order to

gain more knowledge about the system.

8.5.4 Harmonic components

The presence of extraneous frequency components due to operating rotating machinery –

pumps in wind tunnels, engines in aircraft – can disrupt the modal parameter estimation.

Engine harmonics appear as well-defined and narrow peaks in the frequency domain. If

they are stationary, the identification algorithm will correctly find a damping ratio equal

to zero at the right frequency (see, for example, the stabilization diagram 5.1 in chapter 5).

However, if they vary within the spectral estimation buffer, they can form a wide peak

akin to the example in figure 8.2. Fortunately, for the HALO experimental campaign the

frequency range of interest is below the engine’s RPM. [Brandt, 2015] discusses periodic

disturbances in machinery.
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8.5.5 System identification

System identification on stationary data sets is performed by OMA techniques described

in chapter 5. The stationary measurement points are held for approximately 300 seconds

(see table 8.1), which is appropriate given the low eigenfrequencies of the aircraft. The

purpose of these measurements is to provide information for continuous tracking, which

will be discussed in the next section. The determination of the damping ratio of the first

few elastic modes is important for aeroelastic testing, therefore system identification is

tailored towards this goal.

The SSI algorithms require decimation or resampling to reduce bandwidth and com-

putation time because the frequency band of interest ∆fB is very small compared to the

sampling rate fs (in this case: ∆fB/fs < 0.02). Figure 8.34 displays a typical stabilization

diagram obtained by the data-driven SSI. The DAQ computer performs the first decimation

stage before transmitting the data to the analysis computers in order to increase ∆fB/fs.

In some cases, identification results can be improved by removing the low-frequency com-

ponents around DC. In principle it is possible to use a low-pass or band-pass filter to

reduce the bandwidth at will, but this approach is difficult to realize during FVT because

Figure 8.34: Stabilization diagram of measurement points MP14 (top) and MP15 (bottom)
(flight level 27000 ft, Ma = 0.78 and Ma = 0.77, without and with air brakes). The eigenvalues
have been identified with SSI using a single band [0.25 , 1.75] and [1.7 , 3.15] for orders up to
80, without weighting and without any pole sorting/filtering. The use of two bands reduces
the overall model order.
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it requires careful filter design (for instance, the requirements on the filter’s transition band

might be too tight). Instead, another decimation stage followed by a frequency shift is

applied as detailed in section 5.4.4. Another possibility is to use mode tracking to remove

the spurious poles around DC.

The LSCF algorithm estimates modal parameters either from the full or positive

cross-power spectral densities. The former can be computed very efficiently with Welch’s

modified periodogram or the multi-taper method (see section 4.3). The latter are more

computationally expensive, but they can be coupled with exponential windowing to reduce

noise and are easier to fit when estimating the mode shapes. Given the amount of sensors

on the HALO, the poly-reference pLSCF algorithm has been found to be computationally

feasible only when a limited number of reference channels is selected. This may be necessary

depending on the data quality. A stabilization diagram obtained with LSCF is displayed

in figure 8.35.

The stabilization diagrams in figures 8.34 and 8.35 reveal that the excitation type

(air turbulence versus air brakes) affects identified modes, particularly in the range above

f > 1.5. The ambient excitation can be considered white noise colored by some filter whose

poles are highly-damped, therefore they can be easily separated from structural poles.

Certain excitation types have repercussions on damping identification, i.e. the estimated

Figure 8.35: Same data as for 8.35, frequency-domain system identification. The data
source for LSCF is a 48× 38 output CPSD matrix. The eigenvalues are identified using two
bands [0.25 , 1.75] and [1.7 , 3.15] for orders up to 80 without weighting and without any pole
sorting/filtering. The resulting stabilization is of clear interpretation.
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damping ratio is very low and the corresponding peak fit is not good or the estimate does

not converge along a column of the stabilization diagram. For example, in figure 8.35

the second f2 = 0.55 and fourth f4 = 1.01 modes are not identified well when air brakes

are active. Another tell-tale sign is the complexity of the associated eigenvectors: the

mode shapes of aeroelastic systems do become more complex, but with a smooth phase

difference between neighboring degrees of freedom compared to badly-identified mode

shapes. Complexity due to bad identification can be easily spotted by the test engineer,

but can still confuse the tracking algorithm. This happens often to antisymmetric wing

modes and will be observed when performing continuous tracking.

The identification algorithms have been studied with numerical data in chapter 7,

particularly with regard to damping estimation. In the OMA framework with real data,

eigenfrequencies can be estimated well, whereas accurate damping estimation is much more

difficult or sensitive to errors. In this regard the tested SSI algorithms tend to provide

higher (less conservative) estimates than LSCF in terms of mean values. LSCF always

requires the careful selection of reference channels, whereas this is only the case for the

reference-based SSI-ref algorithm. On the other hand, LSCF appears to be able to work

with smaller buffer lengths and benefits from direct access to various spectral estimation

techniques. LSCF usually requires a lower model order (defined as the size of the matrix

that must be decomposed to extract the estimated eigenvalues). Table 8.2 condenses a

comparison of SSI and LSCF as transpired from their application to the HALO flight

vibration data. The two system identification methods will be applied interchangeably,

depending on data set at hand.

Table 8.2: System identification methods in the OMA framework. This comparison applies
to the modal analysis of HALO data.

Method Advantages Disadvantages

SSI • Direct time data processing
• Fewer identification parameters
• Better damping estimate

• Requires data/bandwidth reduction
(filtering/resampling/decimation)
• High model orders unless multi-
band processing is used
• Less clean raw stabilization di-
agram due to spurious modes
around DC

LSCF • Simple multi-band approach
• Clean raw stabilization diagram
• Works with short data block

lengths and low model orders

• Selection of reference channels
• Requires spectra with correct pa-
rameters (more computation time)
• Worse damping estimate if a lot of
noise is present
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8.5.6 Eigensurface reconstruction

The experimental flutter curves are normally determined by stabilizing at a certain altitude

and by performing system identification for all Mach numbers of interest, as illustrated in

figure 8.4. The result is a graph of the eigenfrequency and damping variation over true

airspeed or Mach number. The flutter diagram reconstructed from part of flight 1 is shown

in figure 8.36.
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Figure 8.36: Flutter diagram reconstructed from MP11÷MP14. Measurement point MP15 is
excluded because air brakes are deployed. The first eight elastic modes are shown (see figure
8.12). The estimated eigenvalues are denoted by markers and connected by straight lines.
Aerodynamic effects on the first symmetric wing bending (mode 1) result in high damping.

The HALO campaign planned several measurement points where the aircraft is stabilized

and excited purely by turbulence (not all stationary measurement points have been included

in table A.1). This data is used to construct the eigensurface of the first symmetric wing

bending, i.e. the eigenfrequency and damping ratio as functions of two aeroelastic variables.

Figures 8.37 and 8.38 present the reconstructed eigensurface. The flight parameters do not

lie on a regular grid (see flight envelope and test points in figure 8.14) and the identified

modal parameters are affected by noise, particularly the damping ratio, therefore the

eigensurface is constructed by regression instead of interpolation. We have seen in figure

7.7 in chapter 3 that even analytical eigensurfaces have shapes with sudden bends which

may be difficult to describe analytically. No numerical data is available from which to

infer an analytical representation, consequently the best fit of a polynomial surface is

sought by a robust linear least-squares method with least absolute residuals. The regression

results in a third-order function of two variables9. Since polynomials tend to overshoot, the

fit’s domain is only the parameter space enclosed by the the convex hull of the available

stationary points.

9 The regression surface has the form

f(x, y) =
{
1 x̂ x̂2 x̂3

}T

p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 0
p2,0 p2,1 0 0
p3,0 0 0 0




1
ŷ
ŷ2

ŷ3

 (8.9)

where x̂ ≜ (x−µx)/σx and ŷ ≜ (y−µy)/σy are the centered and scaled independent variables (for example,
air speed and air density, or equivalently pressure altitude and Mach number). µ and σ are respectively the
mean and standard deviation of the independent variables
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Figure 8.37: Eigensurface of the first symmetric wing bending (mode 1) reconstructed from
the modal parameters identified at stationary measurements points (denoted by circles in the
plots). The eigenfrequency and damping ratio as functions of true airspeed and air density are
fitted using a third-degree polynomial surface.

Figure 8.38: Contour plot of the eigensurfaces from figure 8.37. The domain of the fitted
function is limited to the convex polygon encircling the sample points. The residuals from the
resulting approximation are less than 0.01 for the normalized eigenfrequency and less than
0.03 for the damping ratio.
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8.6 Continuous system identification

The OLM produces permanently new modal analysis results during FVT, therefore mode

tracking is carried out to determine the eigenvalues’ evolution. As we already know well, the

modal parameters’ variance is inversely proportional to the buffer duration. In principle the

buffer length could be set dynamically depending on flight parameter stationarity, but it in

practice it is determined through iteration. If the buffer duration is too long, then transient

flight parameter variations are averaged out. If the buffer duration is too short, then the

modal parameters will be badly identified. The test engineer is thus forced to compromise

between responsiveness and accuracy of estimated parameters. The stabilization diagram

8.39 displays a stationary measurement point analyzed first as a single compact data set

and then by continuous tracking. The “single” analysis estimates the eigenvalue variance

from the whole data set. The “continuous” analysis estimates several mode sets from

shorter data blocks. The estimated eigenvalues are clearly scattered, but their centroids

are in good accordance with the previous result. In order to be as responsive as possible to

aircraft flight parameter variation, continuous tracking attains from a buffer containing

only 40÷160 s of data compared to about 300 s available to stationary measurement points.
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Figure 8.39: Modal parameters estimated from measurement point MP14 (steady level flight).
The stabilization diagram in the top figure is obtained from the whole dataset (T = 300 s),
while in the bottom figure 36 mode sets are estimated from very short overlapping blocks
(T = 40 s). The sample covariance of each eigenmode is computed and displayed as an error
ellipse. The mean values of eigenfrequency and damping ratio are in good accordance.
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The lower limit of 40 s has been found as the minimum duration at which useful results

can be produced. This data amount may be too meager for some system identification

procedures and leads to a high scatter of damping estimates. Too long a buffer acts as a

moving average that “smooths” out the external parameters acting on the system – the

maximal duration is thus 160 s for continuous tracking. A new modal analysis is to be

completed every two to three seconds, so that the resulting buffer overlap is 0.925÷ 0.987.

8.6.1 Chase flight

During the HALO experimental campaign a chase flight was planned together with the

DLR-Falcon 20-E5 to create wake turbulence. The purpose was to investigate the effect

of wake excitation and of continuous maneuvers on operational modal analysis. The

comparison of response spectra for different excitation types has been presented in figures

8.31, 8.32 and 8.33. The illustration 8.40 provides a schematic representation of the chase

flight. The Falcon flew about 1 km ahead at constant flight level while the HALO gave

chase and carefully approached trying to enter the wake and stay inside. This proved to

be not easy because the wake moves and because the aircraft is spontaneously ejected out

of it. The pilot must actively maneuver to enter the wake and to keep the aircraft inside

it. The maximal turbulence level is experienced when the aircraft is at the wake’s center.

In [Burwitz et al., 2017] we provide more information about the chase flight from the

perspective of a flight test engineer.

Figure 8.41 displays the flight track of the chase flight. The flight parameters are

plotted in figure 8.42. The pressure altitude is kept at 27000 ft, but the static pressure

does vary a bit, leading to a 2% variation of air density. The static temperature is constant

within 0.4%, therefore the true airspeed and Mach number curves have virtually the same

form. The main aeroelastic parameter during the chase flight is the true airspeed.

Figure 8.40: Schematic representation of the chase flight. The DLR-Falcon 20-E5 aircraft
flew 1 km ahead of the HALO. The HALO maneuvered to enter the wake and stay in its
central region in order to experience the highest atmospheric turbulence excitation level.
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Figure 8.41: Flight 4 ground track (gray line), and HALO chase flight at 27000 ft (blue line).
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Figure 8.42: Flight 4, flow variables during chase flight MP41. The chase flight includes
correction maneuvers performed to enter the DLR-Falcon’s wake and bank turns when the
edge of the temporary reserved airspace is reached.
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8.6.2 Time-domain data

The acceleration history of all channels is displayed in the plot 8.43. Various events during

the chase flight are labeled in table 8.3 in relation to the flight parameters from figure 8.42.

This is not a comprehensive list that can describe every feature seen in the data, but rather

a summary of the most important changes in flight attitude.

Table 8.3: HALO chase flight MP41 events.

Label Event Label Event

1 Sudden heading change 6 Steep speed increase
2 Impulsive altitude variation 7 Steep speed increase
3 Impulsive altitude variation 8 Sudden heading change
4 Impulsive altitude variation 9 Steep speed increase
5 Sudden heading change 10 Sudden heading change

From the beginning up to section 6, the HALO performs a careful approach of the

DLR-Falcon while searching for its wake. In this interval the effect of maneuvering on the

aircraft response can be observed. The larger amplitudes in the intervals 6-7, 8-9 and 9-10

correspond to the wake turbulence excitation.

The principal moments of the response sensors are plotted in figure 8.44. Concerning

statistics, similar considerations as those expressed for the stationary data points are valid.

The maneuvers during chase flight cause a deviation from the normal distribution in the

response (recognizable by the larger skewness and kurtosis values). The response RMS

clearly increases due to wake turbulence, although it is difficult to maintain a constant

excitation level. The variance of the measured accelerations is plotted in figure 8.45 grouped

by component and by direction.

Figure 8.43: Measured accelerations during chase flight 1 (MP41). The pressure altitude is
constant h = 27000 ft, the black line is the Mach number. The vertical lines mark the events
from table 8.3. The HALO is in the wake when the RMS increases significantly. The initial
data up to section 6 is the approach phase. Between sections 6-10, little course corrections are
sufficient to enter or to exit the wake.
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Figure 8.44: Chase flight (MP41). The vertical lines mark the events from table 8.3. The
skewness suggests that, despite the complicated excitation environment, the signal distribution
is symmetrical (there is no preferred direction). The kurtosis increases when with when
maneuvers take place (influence of outliers).

Figure 8.45: Response variance during chase flight (MP41) for each sensor component (see
8.9). The colors denote the sensor direction: red: x -direction (longitudinal), green: y-direction
(lateral), blue: z -direction (vertical). The winglet and T-tail sensors are have similar load
levels for any direction, therefore they are a good choice as references.
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8.6.3 Frequency-domain data

The time-domain data analysis confirmed the non-stationary behavior of the system response

during the chase flight. This is a demanding case for the assumptions of operational modal

analysis because the system variation has a complicated profile. We proceed with the

analysis of the Mach number because it is the main aeroelastic parameter and is equivalent

to the true airspeed in this case. We are interested in its frequency components and their

location in time in order to determine if dynamic effects due to parameter variation are

expected to appear in the data. We are dealing with a long signal with low frequency

content, therefore it is best analyzed by the continuous wavelet transform instead of the

spectrogram. To this end, figure 8.46 displays the scalogram of the Mach number for low

frequencies (large time scales). Appendix A.12 and especially the books from [Walnut,

2002] and [Mallat, 2008] provide more details about this topic. Most of the signal’s

frequency components are one to two orders of magnitude lower that the aircraft’s first

eigenfrequency. The signal’s duration is T = 2687 s, therefore the scalogram’s lower

frequency bound is π/T = 0.0012 Hz. The upper bound is set at 1 Hz because beyond

this point the signal has no significant frequency content. The scalogram reveals that the

unsteady flight profile in up to section 5 (where Ma ≈ 0.55) has negligible components

above 0.1 Hz. Furthermore, we know from the data collected from stationary measurement

points (see figure 8.36) that a Mach number variation in the range Ma = [0.55 , 0.78] does

not cause a large eigenfrequency variation. The high-frequency but small speed changes

in the interval 7-10 are thus unimportant. We have seen in chapter 2 that magnitude

and frequency must contribute in tandem in order to have appreciable dynamic effects.

Rapid and simultaneously large speed changes through maneuvers are constrained by the

aircraft’s control characteristics or the pilot’s judgement. Since the parameter variation

is slow compared to the system’s eigenfrequencies, we expect only secular variations of

Figure 8.46: Mach speed scalogram and superimposed time history. The colormap represents
the magnitude of the continuous wavelet transform (using a Morlet wavelet) over the duration
of the chase flight and in the frequency range [0.001 , 1] Hz. The white dashed line denotes
where edge effects of the continuous wavelet transform occur: the external regions on the left
and the right are thus ignored. The vertical white lines denote the chase flight events (refer to
table 8.3). See text for discussion.



250 8. Experimental results

the eigenvalues, i.e. no observable dynamic peaks and no significant dynamic coupling.

Consequently, for the purpose of spectral estimation and modal analysis we may consider

the system as slowly-varying.

The spectrogram in figure 8.47 shows the frequency content of one of the sensors during

the chase flight. The points in time where the aircraft enters the wake correspond to higher

amplitudes, as can be already inferred from the time history. We can assume that the

excitation level and its frequency content play a more significant role in the quality of

system identification than dynamic effects due to parameter variation. The chase flight data

set has already been investigated in terms of persistence spectrum and spectral kurtosis in

figures 8.32 and 8.33 respectively.

Figure 8.47: Flight 4, spectrogram of the vertical right wing sensor (WING RH+Z). The white
lines mark several events during the chase flight (refer to table 8.3). The time intervals
where the amplitude is clearly higher correspond to the wake turbulence. The spectrogram is
estimated by the segmented multi-taper method in order to increase the time resolution.

8.6.4 System identification

The test engineer constructs the full stabilization diagram to assess the system identification

settings (band, order, weighting etc..). Once these have been fixed, only the highest

four model orders are computed in order to save computational resources. The system

identification method is selected depending on the application and data quality, but for the

purpose of online monitoring the tracking results are an additional evaluation criterion.

The eigenvalues identified using three different identification algorithms are plotted

in figure 8.48. For demanding OMA applications such as the chase flight, the system

identification parameters for continuous tracking can be determined by iteration over several

mode sets as data is acquired until clean tracking diagrams are produced. About ten modes

are found in the range of interest f = [0.3 , 2], therefore a single identification band with

modal orders starting at 40 is sufficient. The goal of this analysis is the calibration of each

identification algorithm’s parameters. The data-driven SSI performs particularly well in

the higher frequency range. However, the first symmetric wing bending trace often breaks

because several spurious poles are estimated at its location. As a consequence, the tracking

algorithm fails to recognize this mode family. The covariance-based SSI-cov delivers better
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Figure 8.48: Chase flight 1 (data set MP41), raw identification results using the data-driven
SSI, covariance-based SSI and LSCF. The plots display the mode tracking from 255 modes
sets estimated from short overlapping blocks with duration 160 s. The gray dots are spurious
modes that have not been associated to any family. The colored dots belong to mode families
that have a sufficiently large number of members. See text for discussion.

results because it can track well the first symmetric wing bending. Both SSI methods

deliver better identification results when the frequency components around DC are filtered

out and the data bandwidth is reduced to about f < 2.5. On the other hand, the LSCF

method leads to a clean tracking diagram, but requires adjustments for spectral estimation.

The full or positive cross-power spectral density can serve as data source for LSCF. For the

application at hand the estimation of the latter is not feasible unless the acquired response

is decimated to remove the influence of out-of-band resonance peaks. Likewise, depending

on the number of reference channels, the applicability of the poly-reference pLSCF method

may be compromised. Compared to the SSI algorithms, LSCF has the advantage of being

able to deliver good tracking results with short data blocks, therefore it is appropriate for

the chase flight data set. The next section shall investigate the effect of buffer length on

modal parameter estimation.

8.6.5 Mode tracking

The continuous evolution of the eigenvalues is reconstructed by tracking the modal models

corresponding to each data block. The tracking algorithm identifies and excludes spurious

mode families automatically. The modal model is usually formed by picking the eigenvalues

corresponding to the highest model order, but if sufficient CPU resources are available, it

is composed from the last four model orders of the stabilization diagram by performing

a search of the “best” modes as mentioned before. Unexpected interruptions of a mode

family chain can occur, for example, due to sudden maneuvers or turbulence. The tracking

algorithm can counter with a longer reference memory (reference modes that are further

back in time) to “catch” the mode if it is seen again after the disturbance has ended.

A sporadic manual correction by the test engineer can be enormously beneficial to the
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tracking algorithm. However, it is entirely possible that some modes cannot be tracked

reliably. Among the eight HALO eigenmodes displayed in figure 8.12, the six listed in

table 8.4 are to be tracked during the chase flight. Mode 5 (aft fuselage torsion plus wing

in-plane bending) is weakly excited and difficult to track due to its proximity to mode 4

(first fuselage bending), therefore it is excluded from this list. Mode 8 (first in-plane wing

bending) is also excluded in order to display 6 modes in a 2× 3 grid.

Table 8.4: Tracked modes of the HALO chase flight (data set MP41).

Mode
number

Mean scaled
eigenfrequency

Mode
name

1 0.385 first symmetric wing bending
2 0.538 first antisymmetric engine bending
3 0.778 first antisymmetric wing bending
4 0.978 first fuselage bending
6 1.18 second symmetric wing bending
7 1.42 PMS antisymmetric bending

The tracking diagram of the chase flight is displayed in figure 8.49. The flight condi-

tions vary unpredictably, therefore fast/transient variations can be followed more closely

by a short buffer, at the expense of modal parameter variance. To this end, a very short

data block with T = 40 s is set (the stationary points MP11÷ MP15 used about 300 seconds

of data). The plot displays the measured (true) Mach number and the moving average

corresponding to each data block. The smoothing is indeed noticeable in the interval

t = [300 , 1000] s where the Mach number oscillates around Ma ≈ 0.55, but the true value

is followed quite closely. System identification is performed by LSCF because the amount

of data appears to be too scant for SSI or SSI-cov. The output CPSD matrix is estimated

by the segmented multi-taper method (algorithm 3) to increase the number of spectral

averages. Figure 8.50 plots the corresponding damping ratio. It displays a large scatter,

therefore a simple moving average (FIR filter with equal coefficients) or Savitzky-Golay

filter can be applied to facilitate the interpretation of results [Schafer, 2011]. When

the system is stationary, the variance of the estimated eigenvalues decreases with buffer

duration, but system identification is less responsive. When the system is non-stationary, a

long buffer collects the responses produced under disparate flight conditions, impacting the

estimated modal parameters. In order to understand the effect of buffer length, the same

tracking procedure is repeated with T = 40, 80, 160 s (overlap 0.75) and the results are

collected in figure 8.51. The plots suggest that the eigenfrequency trend can be determined

even with very short buffer lengths and it appears that sudden speed variations do not

severely impact its estimation. A longer buffer leads to a higher damping estimates, while

a short buffer corresponds to more conservative values. Continuous tracking during FVT

does not compute an interpolating function or a regression of the estimated parameters.

Compared to previously published results in [Jeličić et al., 2017], the buffer size is

reduced by a factor 2 to 8.
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Figure 8.49: Fully automated tracking diagram produced during chase flight 1 (MP41). Modes
1, 2, 3, 4, 6, 7 are tracked (see table 8.4). The jagged blue line is the measured Mach number,
the smooth red line is its mean value within each data block. The data blocks are only 40 s
long with 0.75 overlap. The eigenvalues are identified with LSCF from 48× 38 CPSDs that are
estimated with the multi-taper method. The similarity metric is HDM with 160 s (16 mode
sets) of reference memory. See text for discussion.

Figure 8.50: Estimated damping ratio of the first six eigenmodes from figure 8.49. The
black line is the smoothed data obtained with a Savitzky-Golay filter of length 16. See text for
discussion.

The aircraft speed in data set MP41 varies unpredictably, therefore it is useful to plot

the eigenfrequency and damping ratio of each mode as a function of Mach number. In the

ideal case, with equal operational conditions, there would be only one estimated eigenvalue

for each Mach number at constant altitude. The system identification results obtained

from SSI-cov and LSCF are compared in figure 8.52 using the same block length (buffer

duration) and block overlap. The scatter of the estimated parameters at each Mach number

is due to the non-stationary flight conditions as the aircraft flies into the wake. This is

especially visible in the estimated damping ratio. The system identification results mirror

the considerations made for spectral estimation with regard to the effect of maneuvers. The

wing’s control surfaces alter the airflow around it and the resulting unsteady aerodynamics

appear as additional stiffness and damping. The rudder and the vertical stabilizer affect



254 8. Experimental results

the T-tail similarly, but to a lesser extent. Furthermore, the control surface actuators

may increase energy dissipation and therefore affect the damping ratio of the wing modes.

The SSI-cov and LSCF deliver very similar eigenfrequency estimates. SSI-cov identifies

generally a higher damping ratio, but in this case it is still comparable with LSCF. In

particular, the first symmetric wing bending matches well. However, this mode is not as

easy to track because SSI-cov often finds multiple poles around its peak, which somewhat

hinders tracking. LSCF has the advantage of producing clear stabilization diagrams and

is fast even when factoring in the CPSD computation. If the buffer duration study from

(a) Eigenfrequency estimates using different block lengths

(b) Damping ratio estimates using different block lengths

Figure 8.51: Chase flight 1, data set MP41: eigenfrequency and damping ratio estimates
with different block lengths (overlap 0.75). Yellow line: T = 40 s, red line: T = 80 s, blue
line: T = 160 s. The damping ratio estimates have been smoothed by a Savitzky-Golay filter
of length 16, 8 and 4 respectively. The averaging length is inversely proportional to buffer
duration so that the smoothed eigenvalue traces are extracted at the same time instants. When
a mode family chain has a “jump” longer than the filter length, its edges are not connected by
a line. The identification procedure is the same as in figure 8.49. See text for discussion.
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figure 8.51 holds under other conditions, then perhaps even a very short buffer duration

T = 40 s can be set to accommodate the mission profile. The peaks of the synthesized

spectra provide a means to assess the estimates and are always displayed in the stabilization

diagram. In particular, mode sets where the damping ratio drops very close to zero can

be correlated to bad excitation. Under such conditions both the SSI and LSCF system

identification algorithms are affected and produce less reliable results.

(a) Comparison of eigenfrequencies estimated by SSIcov and LSCF

(b) Comparison of damping ratio estimated by SSIcov and LSCF

Figure 8.52: Chase flight (data set MP41), comparison of estimated modal parameters using
SSIcov (blue) and LSCF (red). The two methods attain from the same data blocks of duration
T = 80 s. See text for discussion.
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8.6.6 Large parameter variation

The previous sections have presented the modal analysis results obtained from continuous

mode tracking during the chase flight MP41.

In this section we shall track the modes during the whole Flight 5 (measurement point

MP50, see table A.1). This data set features a large parameter variation during a descent

maneuver that is of interest to system identification. Some of the events of Flight 5 are

reported in table 8.5.

Table 8.5: HALO Flight 5 MP50 events.

Label Event Label Event

1 Stochastic aileron/elevon input 4 Beginning of rapid descent
2 Climb into stratosphere 5 End of rapid descent
3 End of climb 6 Beginning descent for landing

Figure 8.53 displays the measured flow variables. The HALO flew just under its

operating ceiling at 48000 ft (see flight envelope 8.14). The change of the temperature

gradient sign denotes the crossing of the tropopause at t = 4000 s (just after event 2) and at

t = 6800 s (just after event 4). Between these two points the HALO is in the stratosphere

(see also figure 8.13 in section 8.2.3). The same procedure described for the chase flight in

section 8.6 is used to monitor the aircraft response during Flight 5. The HALO’s attitude

and GPS positioning are not available for this flight.

The spectrogram 8.54 displays the acceleration measured by a wing sensor. The response

level varies appreciably between time data blocks (similarly to other data sets). The higher

amplitude in interval 1-2 is due to stochastic aileron/elevon excitation. The wandering of

the first elastic mode due to the speed increase is already noticeable in the spectrogram.

The tracking diagram 8.55 is constructed from the continuous identification during the

whole flight. Higher modes (f > 2.2) are difficult to identify at least because of insufficient

turbulence excitation levels that lead to a high scatter. Two notable features are the overall

eigenfrequency trend due to fuel consumption (mass decrease) and the stronger modal

parameter variation during rapid descent (interval 4-5). They will be addressed in the

coming sections. The estimated damping ratio is displayed in figure 8.56 along with a

moving average using a long window. When viewed over the entire flight, the damping

ratio estimate scatters around a secular (slowly-varying) mean value. Such variance has

been observed consistently by other authors in flight vibration testing when comparing

different estimators and excitation types [Peeters et al., 2006].
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Figure 8.53: Flight parameters during HALO Flight 5. The Mach number is increased
stepwise in the interval 1-2. Afterwards, in interval 2-3 a slow climb into the stratosphere is
performed. The maximum altitude at 48000 ft is maintained in interval 3-4. A rapid descent
maneuver takes place in 4-5, followed by various load maneuvers in 5-6.

Figure 8.54: Spectrogram of a vertical wing sensor during Flight 5 (MP50) with overlaid
flight parameters. The higher system response amplitude in interval 1-2 is due to the applied
stochastic aileron/elevon inputs. In the middle of 3-4 some light rudder kicks were applied. In
4-5 the flight spoilers are raised during the descent maneuver some periodic flow separation
could be observed.
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Figure 8.55: Mode tracking performed during Flight 5 (measurement point MP50). System
identification is performed from data blocks with T = 80 s and overlap 0.5. The black line is
a running average of length 4. The corresponding damping is displayed in figure 8.56. The
eigenfrequency variation during descent is prominent, particularly for the first symmetric wing
bending (mode 1). The overall eigenfrequency trend is due to fuel consumption. Mode 5 cannot
be tracked reliably because of its proximity with mode 4.

Figure 8.56: Mode tracking performed during Flight 5 (MP50). The plots display the damping
ratio of the modes shown in figure 8.55. The marker color represents the eigenfrequency (blue:
low, red: high). The black line is a moving average with a large window in order to highlight
the secular damping ratio variation. See text for discussion.

8.6.7 Fuel consumption

The estimated eigenfrequencies display a noticeable trend due to the consumption of fuel

over the course of over two hours and a half in figure 8.55. At take-off fuel constitutes

about a 27% of HALO’s total mass and by the end of Flight 5 the percentage has decreases

to about 15%. Fuel is stored mostly in the wing tanks, therefore, as its mass decreases, the

eigenfrequency of wing modes is expected to increase. Figure 8.57 displays the reading of

the fuel mass during Flight 5; fuel consumption increases with thrust and other factors,

but a linear fit still provides a good approximation given the length of the flight.
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The effect of fuel consumption is modeled as described in appendix A.13 and the results

are presented in figure 8.58. This model takes into account the fuel and dry mass of the

wings, the fuel consumption over time and the estimated eigenfrequencies at the beginning

of the flight (where aerodynamic effects are low). We are interested in the values towards

the end of the mission when aerodynamic effects are not significant. The eigenfrequencies

of the modes where the wings participate the most are estimated well. In mode 7 (first

PMS antisymmetric bending) the PMS’s offset from the elastic axis acts as additional

inertia. In mode 8 (first in-plane wing bending) the total wing inertia and stiffness are a

combination of the moments around the x and z axes, therefore the approximation may

be simply too coarse. The simplified model may be used to compare the eigenfrequencies

estimated at different times during the flight starting from the values obtained shortly

after take-off. The HALO employs a pump to redistribute fuel in-flight over the whole

wingspan. The wing spars passing through the tank prevent the fuel from sloshing and

thus increasing the energy dissipation. We can see from figure 8.56 that the damping ratio

is largely unaffected by fuel consumption.
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Figure 8.57: Measured fuel consumption during Flight 5. The linear fit describing fuel mass
over time is used for estimating the eigenfrequency variation of wing modes.
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Figure 8.58: Model of the eigenfrequency variation due to fuel consumption. The starting
values for the eigenfrequency are taken right after take-off. The black lines model the eigenfre-
quency purely as a function of time (the lines are very slightly curved). This simplified model
shows good agreement with experimental data. See text for discussion.
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8.6.8 Descent maneuver

The HALO climbed slowly and at constant speed up to 48000 ft and then performed a

rapid descent maneuver that is interesting for modal analysis. The spectrogram 8.59 of

a measured wing response is overlaid with the relevant aerodynamic quantities. During

descent, a periodic flow separation could be observed on the wings for a short time and left

a trace in the middle of interval 1-2 where the excitation level on the wings is higher. The

altitude decreases and the speed is approximately constant in the interval 1-4, therefore

dynamic pressure increases. As soon as the speed is also reduced, dynamic pressure

decreases as well. The air density increases like the static temperature starting at section 3.

We should thus expect that the first wing bending eigenfrequency follows the same trend

as the measured dynamic pressure (see section 3.1.5 for the dynamic mass, damping and

stiffness).

The evolution of eigenfrequency and damping ratio during the descent is displayed in

figure 8.60. It can be noticed already in the tracking diagram of the whole flight 8.55 that

during the descent modes 2, 4 and 7 (respectively: first antisymmetric engine bending, first

fuselage bending and first antisymmetric PMS bending) cannot be tracked (irrespective

of system identification technique). Consequently, we focus on the uninterrupted mode

families 1, 3, 6 (first symmetric wing bending, first antisymmetric wing bending and

second symmetric wing bending). Due to the swept back wing the frequency of the first

symmetric wing bending is increasing with higher dynamic pressure. On the other hand,

the aerodynamic damping forces are lower at high altitudes due to the reduced density.

That is why there is a maximum in bending frequency in moderate altitudes at high Mach

numbers (interval 3-4). The same happens for antisymmetric bending.

Given that the descent maneuver covers a wide parameter space by virtue of the

simultaneous Mach number and altitude variation, it would be possible to approximate the

eigensurface of a mode shape. Modal parameters can be predicted from past estimates using

Figure 8.59: Spectrogram of a vertical wing sensor in the interval [6600 , 7400] s (MP51). The
descent maneuver proper beings at section 1 and completes at section 6. Flight spoilers are
raised in the intervals 1-2, 3-4 and 5-6. The temperature gradient changes sign as the HALO
reenters the troposphere. The dynamic pressure increases while the altitude is decreasing, but
as soon as the aircraft starts slowing down, dynamic pressure decreases as well.
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a statistical model and a Kalman filter as demonstrated in [Soal, 2018]. Alternatively,

the eigensurface can be then used to extrapolate the modal parameters during other flight

conditions. Figure 8.61 provides an example for the first symmetric wing bending mode.

The extrapolation works best if the training data is representative of other flight conditions

in terms of excitation or maneuvers.

Figure 8.60: Eigenfrequency and damping ratio of the first wing bending, first antisymmetric
wing bending and second symmetric wing bending (modes 1, 3 and 6) during the descent
maneuver. The marker color denotes the eigenfrequency (blue: low, red: high). The black line
is a moving average. The gray areas in the background denote, from left to right, the intervals
1-2, 3-4 and 5-6 defined in figure 8.59. See text for discussion.

2.5

3

3.5

4

4.5

5

P
re

s
s
u

re
 a

lt
it
u

d
e

 [
ft

]

104

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [s]

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
ig

e
n

fr
e

q
u

e
n

c
y
 [

 -
 ]

Training data

Measured data

Reconstructed

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
a

c
h

 n
u

m
b

e
r 

[ 
- 

]

Figure 8.61: Eigenfrequency evolution reconstructed using only the descent maneuver
compared to data from the whole Flight 5. The Mach number and pressure altitude are
overlaid with their axes on the right. The fit before t = 4000 s displays an offset with respect
to experimental data due to different excitation conditions (see spectrogram 8.54).
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8.6.9 Periodic flow separation

Periodic flow separation on the raised spoilers could be observed while descending at

Ma > 0.86 during a window of about 40 s. The estimated PSD shows an enlarged

resonance peak where the first elastic mode is located. The stabilization diagram 8.62

reveals several poles around the first symmetric wing bending mode f1 = 0.49. The first

antisymmetric engine and wing bending modes are at f2 = 0.61 and f3 = 0.84 respectively.

Dynamic poles f1 + k∆f appear at k = −2, −1, +1, where ∆f = 0.07 is the frequency

of the induced parameter variation. The mode shapes associated to these poles have

MAC > 0.9. The pole f1 −∆f has higher damping as would be the case for a periodic

parameter variation (see chapter 2). The damping estimate of the dynamic poles f1 − 2∆f

and f1 +∆f is likely to be biased, given that the duration of available data is very short.

Figure 8.62: Aircraft response and corresponding stabilization diagram as periodic flow
separation from the raised spoilers is observed. The duration is only 40 s window. The
harmonics of the first symmetric wing bending (mode 1) can be observed, with almost identical
associated mode shapes. See text for discussion.
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8.7 Chapter summary

The modal analysis methods and developments detailed in the previous chapters are

deployed during flight vibration testing on the DLR-HALO research aircraft. The ex-

perimental campaign consists of five flights at different stationary and variable flight

conditions. The aircraft is subject to atmospheric turbulence, air brake deployment,

stochastic aileron/elevon excitation and the wake of a preceding aircraft.

The modal parameters are permanently estimated and tracked by the online monitoring

software developed within the scope of this thesis. The system is identified at station-

ary measurement points or continually while flight conditions vary. We show that the

eigensurfaces can be constructed experimentally by covering several points withing the

flight envelope. The deployment of air brakes modifies the airflow around the wings and

affects accordingly the modal parameters, however the resulting increase in the excitation

amplitude and bandwidth leads to a better data quality.

The analysis of data acquired during continuous tracking confirms that it is possible

to increase the time resolution of identified modal parameters by decreasing the buffer

length, at the cost of increased variance of the estimates. This can be offset by applying

an averaging filter on the tracked data, resulting in consistent damping estimates. In

continuous tracking with highly variable conditions such as the chase flight, the SSI

and LSCF identification algorithms display a similar performance. The influence of fuel

consumption on the eigenfrequency of wing modes has been modeled analytically to good

agreement with experimental data. The effect of a large parameter variation during rapid

descent has been also examined. The modal parameters estimated from this data set

can be used to extrapolate the eigenfrequency over the rest of the flight. The results

confirm the eigenfrequencies of wing modes are influence appreciably by changes in the

airflow induced by the action of control surfaces. During the rapid descent, periodic flow

separation on the wing spoilers took place briefly. Some of the theoretical predictions could

be directly observed in the system identification results, for example the appearance of

multiple instances of the first wing bending mode due to rapid airflow variation.

In summary: atmospheric turbulence provides sufficient excitation levels for operational

modal analysis. The real-time monitoring of the aircraft response proves useful for con-

ducting flight vibration testing by detecting changes in modal parameters with varying

flight conditions.





9 Conclusions

The conclusions are organized as the three tasks in which the thesis is subdivided:

Task 1: Develop methods for investigating time-varying systems: linear time-varying systems

and aeroelastic systems (chapters 2 and 3).

Task 2: Implement output-only modal analysis methods: spectral estimation, system identifi-

cation, mode tracking (chapters 4, 5 and 6)

Task 3: Demonstrate methods on simulated and experimental test cases: simulation and

experimental results (chapters 7 and 8)

Develop methods for investigating parameter-varying systems: the relevant linear

time-varying systems theory has been reviewed in the first part of the thesis. Based on

previous research, we have derived the parametric description of the response in frequency-

domain in order to study the dynamic effects on parameter-varying aeroelastic systems.

The main difficulty that we have addressed is that the concepts of transfer function and

eigenvalues that are so important in time-invariant case, are in general not well-defined in

the time-varying one. Fortunately, periodic systems can be decomposed into equivalent

time-invariant ones with periodically-modulated inputs and outputs. The thesis exploits

this by computing a periodic representation of a general time-varying system to render

it tractable, allowing a parametric description of the response in terms of poles and

mode shapes. This theoretical development allows a characterization of the influence of

amplitude and rate of parameter variation case-by-case; we proposed a simplified criterion

involving frozen-time eigenvalues, while a completely general formulation is not attempted.

Furthermore, we introduced a definition of slow, intermediate and fast time-variation

regimes. We researched and compared several numerical methods for the solution of

time-varying systems. Their application to aeroelasticity appears novel or not as mature

as in other fields and some limitations persist. Lastly, we developed a simplified analytical

approach by deriving the exact solutions to complex exponential and linear parameter

variations.

The theoretical framework focuses on the study of parameter-varying aeroelastic systems.

The standard modeling procedure has been researched to improve the generation of

aeroelastic models and to understand the role of airflow variables in the onset of flutter.

This work’s mathematical development introduces the time-dependence of system matrices

and criteria for quantifying the dynamic effects of parameter variation. The dynamic mode

coupling weakens when the rate of change is lower than the frozen-time eigenfrequencies.

Slowly-varying systems can be thus analyzed with good accuracy assuming time-invariance

within the estimation window. The parametric representations of LTV systems agree well

with nonparametric results obtained by integration of the equations of motion.
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Implement output-only modal analysis methods: aeroelastic testing is conducted in

the operational modal analysis framework because aircraft and wind tunnel models are

subject to unknown turbulent excitation. In this task we implemented the analysis chain

necessary to perform real-time output-only system identification in order to observe the

evolution of modal parameters with varying operating conditions.

Spectral estimation must be performed to monitor the experiments and to provide data

to frequency-domain system identification algorithms. The aircraft response is broadband

random with many lightly-damped resonances affected by noise and the system’s variation

is usually slow compared to its dynamics. The theoretical developments have shown that

slowly-varying systems can be treated as time-invariant within a sufficiently short time

frame. This motivates the use of the short-time Fourier transform over other time-frequency

analysis methods because it is computationally fast, produces easy-to-interpret results,

does not require any foreknowledge about acquired data and can be coupled with frequency-

domain system identification methods. We have combined Welch’s modified periodogram

and the multi-taper method into the segmented multi-taper estimator to improve spectral

estimation when little data is available. This new contribution allows shorter data buffers

compared to results we have previously published.

Spectral and modal parameter estimation are performed using sequential or ensemble

averaging/identification. The former utilizes a buffer of time data that slides forward as

measurements progress and is applicable to slowly-varying systems. The latter can be

applied when the system variation is arbitrary, but in turn multiple experiments with

the same parameter variation must be conducted. Ensemble averaging is possible in

controlled environments such as wind tunnels and simulations but it is not feasible in the

case of flight testing. We concluded that modal parameter estimation can be performed by

the stochastic subspace identification (SSI) and least-squares complex frequency (LSCF)

algorithms. The thesis contributes with a signal processing technique for data reduction

and multi-band identification for SSI and with improved stabilization diagrams for LSCF.

The interpretation of modal analysis results for time-varying systems is supported by the

theoretical development presented before, which provides, for instance, an explanation for

the appearance of clustered poles.

The selected system identification techniques are nonparametric with regard to time

or parameter variation, therefore we devised a quick mode tracking method based on

similarity metrics and mode quality indices to track the identified eigenvalues. The

algorithm organizes the estimated modal parameters so that the test engineer is able to

observe their evolution over time or as function of airflow variables. The algorithm is

capable of processing heterogeneous sets of modal parameters obtained from different model

orders, estimators, response channels or arbitrary parameter variations. The tracking

output consists of several mode families where all instances of the same mode of vibration

are collected together. It is then possible to fit the tracked data to construct a parametric

representation of the modal parameter variation.
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Demonstrate methods on simulated and experimental test cases: three-DoF

airfoil-rudder system, wind tunnel experiments, flight vibration test.

Time-varying dynamics have been investigated numerically by simulating the response

to turbulence of two airfoil-rudder aeroelastic systems. To this end, we have derived an

analytical higher-order discretization method for the solution of LTV systems and employed

it alongside standard ODE solvers. The objective here is to research the effect of rate of

system variation on spectral estimation and modal parameters. We show that damping

can be tracked accurately even with a fast parameter variation and short buffers, provided

that spectrum variance is reduced by ensemble averaging.

The real-time online monitoring software application developed within the scope of

this thesis has been demonstrated in wind tunnel testing at the DNW-TWG, DNW-KKK

and DNW-HST facilities and during flight vibration testing on the DLR-HALO research

aircraft. We focus on the latter because it operates in the LTV framework. The system

is identified in the time-domain by the data-driven or covariance-based SSI. Frequency-

domain identification is performed by LSCF from cross-power spectral densities estimated

by the segmented multi-taper method. The effect of various excitation types on system

identification has been researched. Atmospheric turbulence and acoustic noise at constant

speed and altitude constitute the nominal ambient excitation of the aircraft. Outliers in

the measured responses due to small course corrections are present. The excitation level

can be increased by air brake and spoiler deployment to obtain better data, at the cost of

modifying the airflow around the wing and consequently the system’s modal parameters.

Random impulsive rudder kicks and aileron jerks increase the excitation at the lowest

modes, but are straining for the pilot and irregular. High levels of broadband excitation are

provided by wake turbulence without the need of any additional control surface deployment,

but constant maneuvering and course corrections are necessary to keep the aircraft within

the wake. The acceleration responses acquired during stabilized level flight show that some

channels have a bad signal-to-noise ratio, measured signals are not normally-distributed,

that the excitation is not stationary and that its spectrum is not constant. The evaluation

of experimental data shows that the eigenfrequency and damping ratio can be estimated

successfully and that the eigensurfaces of the lower modes can be reconstructed from

stationary measurement points.

Vibration monitoring has been also performed at constant altitude for varying Mach

number while flying in the wake of the DLR-Falcon aircraft. The wavelet analysis of

the flight speed profile suggests that dynamic effects due to parameter variation can be

neglected. In continuous modal analysis the buffer length is a compromise between the

ability to resolve the parameter variation in time-domain and collecting sufficient data for

system identification, while the overlap is determined by the desired refresh rate of the

analysis (two to three seconds in our case). We show that it is possible to compensate for

a short data buffer by averaging the identification results over several time instants. The

comparison between LSCF and SSI reveals that the former produces clearer stabilization

diagrams and that the latter tends to have less conservative damping estimates. Thanks to
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the developments in spectral estimation and system identification presented in this thesis,

the modal parameters estimated from the HALO flight vibration test are obtained from

shorter buffer lengths than previously published. The analysis confirms that changes in the

airflow around the aircraft due to maneuvers or control surface deployment have a marked

effect on modal parameters.

Mode tracking over a whole three-hour flight reveals the effect of fuel consumption.

While negligible for a stationary measurement point, it is noticeable over timescales in

the order of one hour. A simplified analytical model has been devised to predict the

eigenfrequency variation of wing modes due solely to aerodynamic effects, showing good

agreement with the data. Periodic flow separation could be observed very shortly during a

rapid descent maneuver with large air density and air speed variations. System identification

confirms that multiple harmonics appear and that the damping ratio assumes the trend

predicted by the theory. The change in dynamic pressure has a significant effect on the first

symmetric wing bending. We use the tracking data from the rapid descent to extrapolate

over the whole flight. It is shown once again that, even at equal flight conditions, the

excitation type influences the modal parameter estimation, further motivating the need for

real-time online monitoring.

9.1 Summary of the conclusions

The effects of time variation on the system response have been characterized analytically in

frequency-domain in order to provide insights about time-varying systems. This theoretical

development allows a better characterization of slowly-varying systems and interpretation

of identification results. The real-time operational modal analysis of parameter-varying

aeroelastic systems has been demonstrated in wind tunnel experiments and during flight

vibration testing. The practical aspects and challenges presented by a complex dynamic

system have been elaborated. We conclude that the tracking of modal parameters can

be performed successfully under a variety of flight and excitation conditions. Online

monitoring of vibration tests can enhance security by providing an objective measure of

the flutter margin. The continuous identification does not require stationary measurement

points within the flight envelope and can provide the flight test engineer with experimental

flutter diagrams while the flight vibration test is ongoing. This enables a change in the

flight test philosophy and has the potential to reduce testing time.

9.2 Take-home message

The thesis contributes to the theory and solution methods of time-varying systems, to

the implementation of a mixed spectral estimation method, to improvements of system

identification techniques and to the formulation of an effective mode tracking strategy.

These techniques have been implemented into a vibration monitoring software.

The permanent real-time operational modal analysis of parameter-varying aeroelastic

systems has been demonstrated experimentally during flight vibration testing.
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9.3 Further research

There is always room for improvement. This can come from published works, better

software or entirely new directions. The section reviews some of the topics.

9.3.1 Parameter-varying aeroelastic systems

Recently, [Gosea et al., 2020] have improved the Loewner framework for the identification

of non-proper rational functions in the form of the continuous representation of aerodynamic

forces (3.25). It produces a linear state-space model with generalized displacements as

inputs and aerodynamic forces as outputs. This can lead to aeroelastic models with fewer

lag states compared to Roger’s approximation (3.13), with great gain in terms of efficiency.

However, some issues concerning pole placement and stability must still be addressed. The

Loewner framework (tangential interpolation) has been primarily developed for model

order reduction [Mayo and Antoulas, 2007], but it could be adapted to output-only

system identification. The main advantage of this technique is the direct construction of

implicit state-space models.

Reduced-order aeroelastic models are necessary to simplify calculations. In [Kim, 2019]

and the related papers from the same author, the dynamic mode decomposition is applied

to parameter-varying systems, resulting in models with a total number of states that is just

double the number of structural states. This would be extremely beneficial computationally

and from the point of view of mode tracking. This modeling technique can be combined

aerodynamic forces identified with the Loewner framework.

The Peano-Baker series (2.14), Magnus expansion (2.15) and MacLaurin series (7.22)

of the state transition matrix are extremely cumbersome for a symbolic computing envi-

ronment. An efficient arbitrary-precision representation using Chebyshev polynomials or

exponential basis functions should be employed. This can be implemented by overloading

the linear algebra and integration operators to be able to handle series. This could provide

precious insight into the frequency-domain structure of the response of linear time-varying

systems.

9.3.2 Spectral estimation

In [Prieto et al., 2007] the bias of multi-taper autopower spectral density estimates is

reduced by estimating the derivatives of the spectra. This technique could be expanded for

estimating full and positive cross-power spectral densities for frequency-domain methods.

Research on various time-frequency distributions [Cohen, 1995] applied to aeroelastic

systems could support the estimation of the spectrogram. This investigation falls partly

under the future improvements in system identification.

9.3.3 System identification

The implementation of SSI and maximum-likelihood LSCF algorithms for the estimation of

the covariance of modal parameters provide more information for the stabilization diagram
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and objective measures for assembling the modal model and for mode tracking. It could

constitute a criterion for recognizing the poles arising from the fit of transients or time-

varying effects, provided enough computing power is available. The eigenvalue covariance

estimation in subspace methods is analyzed in [Döhler et al., 2013b; Reynders et al.,

2008]. The maximum likelihood estimator for operational modal analysis is presented in

[Guillaume et al., 1999].

The time-frequency description of a system can be fitted by a maximum-likelihood

LSCF method [Zhou et al., 2014]. This requires ensemble identification, but can be

applied to general time-varying systems. By modifying its basis function it may be possible

to apply it to different time-frequency distributions.

The Hilbert-Huang transform could provide new insight into the time-frequency struc-

ture of nonstationary data and the presence of nonlinearities. While there exist some

applications in system identification [Bao et al., 2009] and structural health monitoring

[Chen et al., 2014], the application to flight vibration testing requires more research.

Recently-developed methods based on the dynamic mode decomposition show promising

results in time-varying system identification [Zhang et al., 2017] and compressed sensing

[Bai et al., 2020]. Their use for aeroelastic testing could be validated with wind tunnel

and FVT data collected for this thesis.

9.3.4 Mode tracking

In the future, mode tracking could be performed by more sophisticated techniques. For

instance, the linear assignment problem for pairing reference and comparison modes could

be solved more quickly using the Jonker-Volgenant algorithm.

The multi-stage automatic mode clustering proposed in [Neu et al., 2017] does not

require parameters or thresholds from the user, is not tied to a specific identification

technique and is consistent with regard to model order.

Some system identification methods estimate the population variance of modal param-

eters, which can greatly improve mode tracking; when this information is not available,

[Yaghoubi et al., 2018] employs a bootstrapping method for assessing the statistical

properties of the estimation that could be paired with the current framework.

The automated modal parameter selection using neural networks described in [Volkmar

et al., 2019] is envisaged as a helpful post-processing tool for optimization.

9.3.5 Flight vibration testing

The conventional flight testing procedure relies on stabilizing on a fixed altitude and speed

to test for flutter. In the future, operational modal analysis could be conducted while

accelerating the aircraft with a constant rate at a fixed altitude. This strategy is supported

by numerical investigations [Jacquier and Ayme, 2018].

Concerning a FVT on the HALO, results could be improved by a more balanced sensor

distribution if better access within the airframe were possible. This would help in separating
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similar modes with large participation of the wings such as the first antisymmetric engine

and wing bending (refer to figure 8.12).

We have shown in [Govers et al., 2016] that the measured strains can be used to

perform system identification. With this method, the estimation of mode shapes requires a

transformation from strains to deformations, but the poles of the strain spectra are the

same as those estimated using accelerometers or velocimeters. This technology is being

developed further for aeroelastic testing [Govers et al., 2018]. Given the compactness,

limited cost and robustness of strain sensors, they should find further modal analysis

applications in FVT.

The fusion of modal parameters obtained from different sensor types, spectral estimation

and system identification algorithms or settings is conceivable. For instance, higher modes

that are known to be sensitive to the change of flight conditions could be estimated from

shorter time data buffers (maintaining the same frequency bias error of lower modes).

Referring to the previous topic, another possibility is the combination of modal analysis

results obtained from strain sensors with those from accelerometers.

9.4 Words of wisdom

The process of doing your second draft, is a process of making it look like you knew

what you were doing all along.

– Neil Gaiman

Un directeur doit faire un film en accord avec ce qu’il est. Prendre la matière, la

déglutir, accoucher à sa façon. Et ça, c’est formidable!

– Alejandro Jodorowsky

Vassene ’l tempo e l’uom non se n’avvede.

– Dante
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M. Böswald, Y. Govers, G. Jeličić, and R. Buchbach. Online monitoring of flutter stability

during wind tunnel testing of an elastic wing with pylon and engine nacelle within the

HMAE1 project. In IFASD 2019 - International Forum on Aeroelasticity and Structural

Dynamics, June 2019.
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Analysis. Birkhäuser Boston, 2002. ISBN 978-0-8176-3962-4.

E. W. Weisstein. ”k-Statistic.”, 2022. https://mathworld.wolfram.com/k-Statistic.html.

N. Wereley and S. Hall. Frequency response of linear time periodic systems. In 29th

IEEE Conference on Decision and Control, pages 3650–3655 vol.6, Dec. 1990. doi:

10.1109/CDC.1990.203516.

N. M. Wereley. Analysis and control of linear periodically time varying systems. PhD

thesis, Massachusetts Institute of Technology, MIT Department of Aeronautics and

Astronautics, 1991.

J. Wright and J. Cooper. Introduction to Aircraft Aeroelasticity and Loads. AIAA education

series. American Institute of Aeronautics and Astronautics, 2007. ISBN 978-1-56347-

722-5.

M.-Y. Wu. A new concept of eigenvalues and eigenvectors and its applications. IEEE

Transactions on Automatic Control, 25(4):824–826, Aug. 1980. ISSN 1558-2523. doi:

10.1109/TAC.1980.1102448.

M.-Y. Wu. On stability of linear time-varying systems. International Journal of Systems

Science, 15(2):137–150, 1984. doi: 10.1080/00207728408926550. Publisher: Taylor &

Francis.

V. Yaghoubi and T. Abrahamsson. The Modal Observability Correlation as a Modal

Correlation Metric. Feb. 2014. ISBN 978-1-4614-6584-3. doi: 10.1007/978-1-4614-6585-0

47.

V. Yaghoubi, M. K. Vakilzadeh, and T. J. S. Abrahamsson. Automated modal parameter

estimation using correlation analysis and bootstrap sampling. Mechanical Systems and

Signal Processing, 100:289–310, 2018. ISSN 0888-3270. doi: https://doi.org/10.1016/j.

ymssp.2017.07.004.

L. Zadeh. Frequency Analysis of Variable Networks. Proceedings of the IRE, 38(3):291–299,

Mar. 1950. ISSN 0096-8390. doi: 10.1109/JRPROC.1950.231083.



294 BIBLIOGRAPHY

L. A. Zadeh. On Stability of Linear Varying-Parameter Systems. Journal of Applied

Physics, 22(4):402–405, Apr. 1951. ISSN 0021-8979, 1089-7550. doi: 10.1063/1.1699972.

H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta. Online dynamic mode

decomposition for time-varying systems, 2017. eprint: 1707.02876.

H. Zhou, K. Yu, Y. Chen, R. Zhao, and Y. Bai. Time-Varying Modal Parameters

Identification by Subspace Tracking Algorithm and Its Validation Method. Shock and

Vibration, 2018:4378793, Mar. 2018. ISSN 1070-9622. doi: 10.1155/2018/4378793.

Publisher: Hindawi.

S.-D. Zhou, W. Heylen, P. Sas, and L. Liu. Maximum likelihood estimator of operational

modal analysis for linear time-varying structures in time–frequency domain. Journal of

Sound and Vibration, 333(11):2339–2358, May 2014. ISSN 0022460X. doi: 10.1016/j.jsv.

2014.02.001.

J. Zhu and C. D. Johnson. New Results in the Reduction of Linear Time-Varying

Dynamical Systems. SIAM Journal on Control and Optimization, 27(3):476–494, 1989.

doi: 10.1137/0327025. eprint: https://doi.org/10.1137/0327025.



APPENDIX





A Appendix

A.1 Matrix exponential

The matrix exponential is defined as the infinite Taylor series (2.17). This equation

converges slowly, therefore the Padé approximant is used instead. MATLAB implements

Padé approximants in the function expm as described in [Al-Mohy and Higham, 2010].

For example, for numerator and denominator orders 3 we obtain:

expM ≈
(
120I− 60M+ 12M2 −M3

)−1 (
120I+ 60M+ 12M2 +M3

)
(A.1)

A.2 Iterative diagonalization of the state matrix

It is possible to diagonalize the state matrix iteratively without computing the state

transition matrix [Van der Kloet and Neerhoff, 2000; Wu, 1984]. While of fairly

simple formulation, its implementation must compute the mode coupling term Ψ(t)−1Ψ(t),

which requires a solid mode sorting method that can pair together the same eigenvalue at

two different time instants (eigenvalues cross each other’s path and bifurcations occur).

Algorithm 5: Iterative diagonalization of LTV systems

The time-dependency such as A(t) is dropped for legibility
Initialize: j ← 0 Λ0(t)← A(t) Ψ0 ← I E = I;
while ∥E∥Fro > εtoll do

Compute the instantaneous eigenvectors:

Λj−1
eig
= ΨjΛjΨ

−1

j

Calculate the dynamic mode coupling term (cost function):

E← Ψ−1

j−1Ψ̇j−1

Compute the dynamically similar new state matrix:

Λj ← Ψ−1

j (Λj−1 −E)Ψj

Increase loop counter: j ← j + 1
end
Result: Diagonalized state matrix and tranformation matrix

Λ(t) = Λj(t) T(t) =
∏j

n=0
Ψn(t)
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A.3 Linear parameter variation

This section derives the analytical expressions of the solutions in time and frequency

domains for the case of linear parameter variation of 1-DoF systems. The homogeneous

and inhomogeneous solutions are obtained from equation (2.123):

A(t) = a0t+
1

2
a1t

2 + c =⇒

xh(t) = x(0)eA(t)

xi(t) = eA(t)
∫ t
0 e

−A(τ)
∑Nq

q=1 cqe
sqτdτ

(A.2)

Time now appears squared in the exponent. This type of integrals is best handled with

the error function1:

erf(z) ≜
2√
π

∫ z

0
e−u2

du z ∈ C (A.3)

The notation in this section is simplified by introducing:

• α ≜
√
−a1/2 is the coefficient of the quadratic term so that it appears squared and

with a negative sign in all equations

• β is the linear term’s coefficient (case-specific)

• µ ≜ β/(2α) is an adimensional quantity defined case by case (analogous to the mean

of the Gaussian distribution)

Under these definitions, the linear and quadratic terms’ coefficients in equation (A.2) both

have units [time−1]. With this in mind, the following recurring indefinite integral is solved

by completing the square in the exponent:∫
e−α2t2±βtdt =

∫
e−(αt∓

β
2α)

2
+( β

2α)
2

dt =

√
π

2α
eµ

2
erf (αt∓ µ) + c (A.4)

This is expression will be helpful in the coming pages. It reduces to the Gaussian integral

when the limits of integration are ]−∞,+∞[:∫ +∞

−∞
e−α2t2−βtdt =

√
π

α
exp

(
β

2α

)2

ℜ
{
α2
}
> 0 (A.5)

The condition for the convergence of this integral is ℜ
{
α2
}
> 0, equivalently ℜ{a1} < 0

(even if ℜ{a0} > 0). The underlying time-invariant system may be unstable, but a

parameter variation can stabilize the whole system (and vice versa). The N -point discrete

Fourier transform with sampling rate fs = 1/∆t is calculated analytically:

xh[k] = x(0)

√
π

2α
eµ[k]

2(
erf (αt1 + µ[k])− erf (αt2 + µ[k])

)
(A.6)

1 If the argument z is real, then erf(z) is a monotonic, odd and bounded real function. Since in this
analysis the argument z is generally complex, erf(z) is oscillating, unbounded and complex. Along the real
axis, the error function is exactly ±1 at ±∞; along the imaginary axis, it tends to ±i∞.
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where the new symbols are:

µ[k] ≜
2πi
N∆tk − a0

2α
t1 =

N − 1/2

∆t
t2 = −

1/2

∆t
(A.7)

The inhomogeneous solution in time-domain (A.2) can be written explicitly by calculating

the definite integral of a shifted Gaussian:

xi(t) = ea0t+
1
2
a1t2

∫ t

0
e−a0τ− 1

2
a1τ2

Nq∑
q=1

cqe
sqτdτ

= e−α2t2+a0t

Nq∑
q=1

cq

∫ t

0
e−(iα)2τ2−(a0−sq)τdτ

= e−α2t2+a0t

Nq∑
q=1

cq

[√
π

2iα
e

(
a0−sq
2iα

)2

erf

(
iaτ +

a0 − sq
2iα

)]τ=t

τ=0

=

√
π

2iα

Nq∑
q=1

cqe
−α2t2+a0t+µ2

q
(
erf
(
iαt+ µq

)
− erf (µq)

)

(A.8)

where the constants are α ≜
√
−a1/2 and µq ≜

a0−sq
2iα . The first addend of equation (A.8)

is the forced (steady-state) response, the second addend is the transient response due to

the inhomogeneous term. The inhomogeneous solution in frequency domain is:

xi(ω) =

√
π

2iα

Nq∑
q=1

cqe
µ2
qF
{
e−α2t2+a0t

(
erf (iαt+ µq)− erf (µq)

)}
(A.9)

The first addend is the integral of a shifted Gaussian multiplying the error function, which

is not easy to evaluate because of the particular factors of the quadratic terms2:

I1(ω) ≜
∫ +∞

−∞
e−α2t2+a0terf (iαt+ µq) e

−iωtdt (A.11)

In order to calculate integral (A.11), the Faddeeva3 function is introduced:

w(z) ≜ e−z2
(
1 +

2i√
π

∫ z

0
eu

2
du

)
≡ e−z2 (1 + erf(iz)) (A.12)

2 The comprehensive tables in reference [Ng and Geller, 1969] provide the solution for:∫ +∞

−∞
e−(αx+β)2erf(γx+ δ)dx =

√
π

α
erf

(
αδ − βγ√
α2 + γ2

)
ℜ
{
α2/γ2} > 0 (A.10)

however, in the case at hand: γ = iα =⇒ ℜ
{
α2/γ2

}
= −1

3 The function w(z) has many names: Faddeeva function, Kramp function, complex error function,
probability integral, plasma dispersion function. Specialized algorithms are needed for calculating w(z)
accurately with complex input
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Its integral representation is equal to the convolution of a Gaussian with a simple pole, i.e.

to the Hilbert transform of a Gaussian:

w(z) =
i

π

∫ +∞

−∞

e−u2

z − u
du = e−z2 ∗ i

πz
= iH

{
e−z2

}
ℑz > 0 (A.13)

This observation allows us to calculate the following Fourier transform4:

F
{
e−α2t2erf(iαt)

}
= F

{
w(αt)− e−α2t2

}
= F

{
e−α2t2 ∗ i

πt
− e−α2t2

}
= F

{
e−α2t2

}
F
{
i

πt

}
−F

{
e−α2t2

}
=

√
π

α
exp

(
iω

2α

)2 (
sgn(ω)− 1

)
(A.14)

It is now possible to calculate the Fourier transform (A.11) by changing integration variable

t′ ≜ t+
µq

iα , then by substituting sq ≡ a0− 2iαµq in order to isolate the e−α2t2erf(iαt) term

in the integrand:

I1(ω) =

∫ +∞

−∞
e−α2t2+a0terf (iαt+ µq) e

−iωtdt

=

∫ +∞

−∞
e−α2(t′−µq

iα )
2
+(a0−iω)(t′−µq

iα )erf
(
iαt′

)
dt′

= eµ
2
q+

µq
iα

(iω−a0)F
{
ei(−isq)t′e−α2t′2erf(iαt′)

}
=

√
π

α
e

(
iω−a0

2α

)2(
sgn(iω − sq)− 1

)
(A.15)

which takes care of the first addend of equation (A.9). This integral can also be solved by

using “Feynman’s trick” to differentiate the constant µq under the integral sign. For each

index q:
∂I1
∂µq

=
2√
π

∫ +∞

−∞
e−α2t2−(iω−a0)t

(
e−(iat+µq)2 − e−µ2

q

)
dt

=
2√
π
e−µ2

qF
{
e(a0−2iαµq)t − e−α2t2+a0t

}
=

2√
π
e−µ2

q

(
δ(iω − a0 + 2iαµq)−

√
π

α
e

(
iω−a0

2α

)2) (A.16)

Integrate∫ µq

0

∂I1
∂µq

du =
2√
π

∫ µq

0
e−u2

δ(iω − a0 + 2iαµq)−
√
π

α
e
−
(

iω−a0
2iα

)2

du

=

√
π

iα
e

(
ω+ia0
2iα

)2

(sgn(iω − a0 + 2iαµq)− 1)

(A.17)

4 The Fourier transform F
{

i
πt

}
= sgn(ω) is obtained by taking the Cauchy principal value of the integral.

The signum function is defined as sgn(z) ≜ z/|z| for complex arguments.
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This is the same result that was derived with Faddeeva’s function in equation (A.16). The

second addend is a shifted Gaussian and has an immediate transform:

I2(ω) ≜ −
∫ +∞

−∞
e−α2t2+a0terf(µq)e

−iωtdt = −
√
π

α
e

(
iω−a0

2α

)2

erf(µq) (A.18)

The inhomogeneous solution (A.8) in frequency domain can now be written by substituting

I1(ω) and I2(ω) into equation (A.9):

xi(ω) =
π

2α2

Nq∑
q=1

cqe
µ2
qe

(
iω−a0

2α

)2(
sgn(iω − sq)− 1− erf(µq)

)
(A.19)

The time-varying case with linear parameter variation has now a complete frequency-domain

description of the inhomogeneous solution.

A.4 Exponential parameter variation

This section denotes summations as
∑Nk

k=1 ak, where Nk is the size of the set containing

elements ak with index k. The goal is deriving the complete solution to equation (2.131)

in frequency-domain. The integral of the parameter a(t) is

A(t) ≜
∫
a(τ)dτ = a0t+

Np∑
p=1

ape
spt + c (A.20)

where ap ≜ cp/sp in order to simplify the notation. The complete solution is given explicitly

by the method of variation of constants (2.123):

x(t) = c0e
A(t) +

Nq∑
q=1

∫ t

0
eA(t)−A(τ)cqe

sqτdτ (A.21)

where the constant c0 is determined from the initial condition x(0):

x(0) = c0e
−

∑Np
p=1 ap =⇒ c0 = x(0)e

∑Np
p=1 ap (A.22)

Consider the Taylor series expansion of a double exponential:

ex =
∞∑
n=0

1

n!
xn =⇒ exp

(
ape

spt
)
=

∞∑
n=0

anp
n!

enspt (A.23)

Its Fourier transform is an infinite sum of poles with spacing |sp| that decay faster than

geometrically:

F
{
exp

(
ape

spt
)}

= 2π

∞∑
n=0

anp
n!
δ(iω − nsp) (A.24)
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The exponential of a sum can be reduced to a single infinite sum5:

eP (t) = exp

 Np∑
p=1

ape
spt

 =

Np∏
p=1

∞∑
n=0

anp
n!

enspt ≜
∞∑
k=1

cke
skt (A.26)

The last summation is over all elements {ck , sk} ∈ Sp of the set of complex amplitude

and frequency pairs that results from repeatedly applying the Cauchy product. The

complex frequencies sk have dimensions [rad/s] and in general their spacing is unequal. If

sp = inpω0, np ∈ Z, ω0 ∈ R, then the energy of F
{
eP (t)

}
is concentrated at multiples of

the fundamental frequency sk = ikω0, k ∈ Z.

An explicit expression for the inhomogeneous solution in time domain under the

assumption (2.131) is sought:

xi(t) = eA(t)

∫ t

0
e−A(τ)q(τ)dτ (A.27)

The term e−A(t) can be expressed as a series6 according to equation (A.26):

e−A(t) = exp

−a0t− Np∑
p=1

ape
spτ

 ≜
∞∑
k=1

c̄ke
(sk−a0)τ (A.28)

The integrand e−A(τ)q(τ) is therefore a sum of exponentials:

e−A(τ)q(τ) = exp

−a0τ − Np∑
p=1

ape
spτ

 · Nq∑
q=1

cqe
sqτ

=

( ∞∑
k=1

c̄ke
(sk−a0)τ

)
·
Nq∑
q=1

cqe
sqτ

=

Nq∑
q=1

∞∑
k=1

c̄kcqe
(sk+sq−a0)τ

(A.29)

5 Apply the Cauchy product Np − 1 times:(
∞∑
i=0

aie
αit

)
·

(
∞∑
j=0

bje
βjt

)
=

∞∑
k=0

cke
θkt cke

θkt =

k∑
l=0

albk−le
(αl+βk−l)t (A.25)

6 In general, F
{
eA(t)

}
and F

{
e−A(t)

}
are not easily related unless all terms of A(t) have zero phase.
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The inhomogeneous solution xi(t) can be now written explicitly by integrating the last

equation and then applying the Cauchy product rule:

xi(t) = eA(t)

∫ t

0

Nq∑
q=1

∞∑
k=1

c̄kcqe
(sk+sq−a0)τdτ

= ea0t
∞∑
k=1

cke
skt ·

Nq∑
q=1

∞∑
k=1

[
c̄kcq

sk + sq − a0
e(sk+sq−a0)τ

]τ=t

τ=0

=

Nq∑
q=1

( ∞∑
k=1

cke
skt ·

∞∑
k=1

c̄kcq
sk + sq − a0

(
e(sk+sq)t − ea0t

))

=

Nq∑
l=1

∞∑
n=0

n∑
m=0

ck,n−mcm,l

(
e(sq,l+sk,m+sk,n−m)t − e(a0+sk,n−m)t

)
(A.30)

where the newly introduced constant (dimensions: [state]) is:

cm,l ≜
c̄k,lcq,k

sk,l + sq,k − a0
(A.31)

This result suggests that equation (A.30) is the sum of a forced (steady-state) part and

a transient part: the inhomogeneous term’s poles sq affect only the forced part and the

time-invariant pole a0 affects only the transient part. The inhomogeneous solution can be

expressed as a sum of poles similarly to the homogeneous solution:

xi(ω) =
∑
Sf

rf
iω − λf

+
∑
St

rt
iω − λt

(A.32)

where the sets of residue-eigenvalue pairs {rf , λf} ∈ Sf and {rt , λt} ∈ St are calcu-

lated with equation (A.30). The formulation can be extended to handle combinations of

polynomial and exponential functions:

ẋ(t) = a(t)x(t) + q(t) a(t) =
∑

apt
peσt (A.33)

Ap(t) =

∫
apt

peσptdt = eσpt
p−1∑
k=0

ckt
k ck ≜ −ap

p!

k!
(−σp)k−p−1 (A.34)

eAp(t) =
∞∑
n=0

(ckt
peσp)n

n!
(A.35)

The sums can be worked out until terms in the form tpeσt, which are simple poles with

multiplicity p+ 1:

tpeσt c s p!

(s− σ)p+1
(A.36)
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A.5 Theodorsen’s function

The Theodorsen’s function original definition is found in [Theodorsen, 1935, Eq. XI]. A

simplified formulation is found in [Bisplinghoff et al., 1996, Eq. 5-309]:

C(k) ≜ F (k) + iG(k) =
H

(2)
1 (k)

H
(2)
0 (k) + iH

(2)
1 (k)

=
K1(ik)

K0(ik) +K1(ik)
(A.37)

where H
(2)
0 and H

(2)
1 are Hankel functions of the second kind, K0 and K1 are Bessel’s

functions of the second kind and k is the reduced frequency (3.6).
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Figure A.1: Theodorsen’s function C(k) = F (k) + iG(k).

A.6 Wagner’s function

Wagner’s function is defined as [Bisplinghoff et al., 1996, eq. 5-368b]:

Φ(τ) = H(τ) +
1

π

∫ +∞

0
(F (k)− 1)

sin(kτ)

k
+G(k)

cos(kτ)

k
dτ (A.38)

where H(τ) is the Heaviside function and τ is the adimensional time τ ≜ tV∞/b and k is

the reduced frequency. A good approximation of Φ(τ) is [Bisplinghoff et al., 1996, eq.

5-372]:

Φ(τ) =
τ + 2

τ + 4
(A.39)

Alternatively, a form that has an elementary Laplace transform is [Bisplinghoff et al.,

1996, eq. 5-371]:

Φ(τ) = 1− 0.165e−0.0455τ − 0.335e−0.3τ (A.40)

but is less accurate for large τ .
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A.7 Measurement time nomogram

Figure A.2: Nomogram for computing the measurement time for reducing the spectral
estimation’s frequency bias error εf (4.28) and random error εr (4.29) below the desired
threshold for a given resonance bandwidth 2ζfn.



306 A. Appendix

A.8 Automated decimation algorithm

Algorithm 6: Automated decimation staging

Data: Frequency band [fmin , fmax], sample rate fs, number of stages S
Result: Integer decimation factors for each stage q

Run:
Set maximal decimation factor: qmax = 13
Get effective decimation factor: q0 ≜ fs/2/(fmax − fmin)
Get first integer small or equal to decimation factor: M = ⌊M0⌋
Get prime factors: k = factors{M}
Reduce decimation factor until all its factors are smaller that qmax:
while any(k > qmax) do

q ← q − 1
k = factors{q}

end

Compute optimal staging ratio: k0 ≜ q1/S

Find appropriate divisors of the decimation factor
n← 1
while q > 1 do

Find divisors (exclude 1):
if q > qmax then

x← 2 : min(⌈q/2⌉, qmax)
else

x← 2 : q
end

Find divisor nearest to staging ratio: d← x(rem(q,x) ̸= 0)
if d[end] = q then

q[n]← dend

else
Get index I of minimum min |d−R|
q[n]← d(I)

end

Set decimation factor of next stage: q ← q/q[n]
Increase stage count: n← n+ 1

end
Calculate new optimal staging ratio with current number of stages:
if n ̸= S then

k0 ← q1/n

end
Sort q according to deviation from R: I← sort(|q− k0| , descend)
Let the first stage do the most work: q← q[I]
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A.9 Ordinary differential equation solvers

The pseudo-code of the ODE solvers used for the state-space representation of time-varying

systems in this thesis is displayed in this section. A recommended book on ODE solvers is

[Quarteroni et al., 2006].

The Runge-Kutta coefficients are arranged in so-called Butcher’s tableaus [Hairer et al.,

2008]. For example, if we denote the number of stages as s, then a Butcher’s tableau has

the form:

0

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as1 · · · as,s−1

b1 b2 · · · bs−1 bs

The matrix [aij ] is the Runge-Kutta matrix, [bj ] are the weights and [ci] are the nodes.

Note. In the code the indexing of the Runge-Kutta matrix ARK ignores the first row for

convenience, therefore ARK [1, 1] in the algorithm 7 corresponds to “a21” in literature.

In literature, the Adams-Bashforth and Adams-Moulton coefficients are arranged so

that the first element corresponds to the newest sample. For example, written explicitly,

the fifth-order ABM method is:

fn ≜ Anxn +Bnun

xn+4 = xn+3 +
∆t

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn)

xn+4 = xn+3 +
∆t

24
(9fn+3 + 19fn+2 − 5fn+1 + 1fn)

(A.41)

Note. In the code presented in this section, the order of the coefficients b is reversed. This

change has been made to have the states x and outputs y with consistent indices across all

methods.
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Algorithm 7: Ad-hoc Runge-Kutta method

Data: System matrices S, input un, parameters pn, time step ∆t, initial
conditions x0, Bucher’s tableau, number of steps N

Result: System response y

Set-up:
Get coefficients from Butcher’s tableau (Ns: number of stages):

Runge-Kutta matrix: ARK (aij coefficients of Butcher’s tableau)
weights: bRK

nodes: cRK

initialize slopes: K← 0Nx,Ns

Construct interpolants:
input: fp(tj) = interp(un, (0 :N − 1)∆t, tj)
parameters: fu(tj) = interp(pn, (0 :N − 1)∆t, tj)

Set initial conditions x1 ← x0

Get system matrices: S1 ← S(0) ([A(0),B(0),C(0),D(0)])

Run-time:
for for every time step n = 1 :N do

for for every stage j = 1 :Ns do
Calculate x(tj): x̂j ← xn +K[: , 1 : j]ARK [1 : j , j]

if cRK [j] == 0 (beginning of n-th step) then
Retrieve system matrices from previous step: Sj ← Sn
Retrieve input from previous step: ûj ← un

else
Get time of current slope: tj ← (n− 1 + cRK [j])∆t
Get input: ûj ← fu(tj)
Get parameters: pj ← fp(tj)
if ∥pn − pj∥ > εp∥pn∥ (no significant parameter variation) then

Construct system matrices: Sj ← S(pj)
end
if cRK [j] == 1 (end of n-th step) then

Store system matrices for next step: Sn ← Sj
Store input for next step: un ← ûj

end
Evaluate integrand f(xj , tj): fj = Ajx̂j +Bjûj

Update j-th slope: K[: , j]← ∆tfj
end
Calculate next state vector: xn+1 ← xn +KbRK

end
Calculate output: yn ← Cnxn +Dnun

end
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Algorithm 8: Ad-hoc Adams-Bashforth-Moulton method

Data: System matrices S, input un, parameters pn, time step ∆t, initial
conditions x0, order Ns, number of steps N

Result: System response y

Set-up:
Get Adam-Bashforth predictor coefficients for order Ns: b

p and kp

Get Adam-Moulton corrector coefficients for order Ns: b
c and kc

Calculate first Ns steps using RK: y1:Ns and x1:Ns

Seed circular array:
for j = 1 :Ns do

[Aj , Bj , Cj , Dj ]← S(pj)
vj ← Bjuj

end
Run-time:
for for every time step n = Ns :N − 1 do

Get system matrices:
if |pn − pn+1| > εp|pn| (no significant parameter variation) then

[A1, B1, C1, D1]← S(pn+1)
ANs+1 ← A1

vNs+1 ← B1un+1

else
ANs+1 ← ANs

vNs+1 ← BNsun+1

C1 ← Cn

D1 ← Dn

end

Adams-Bashforth predictor:
for j = 1 :Ns do

F[:, j]← Ajxn−Ns+j + vj

end
xn+1 ← xn +∆t/kp · Fbp

Adams-Moulton corrector:
for j = 1 :Ns do

F[:, j]← Aj+1xn−Ns+j+1 + vj+1

end
xn+1 ← xn +∆t/kc · Fbc

Calculate output: yn ← Cnxn +Dnun

Perform circular shift of state equation terms:
A← [A2:Ns+1,A1] v← [v2:Ns+1,v1]
Store input and feedthrough matrices for next step:
Cn ← C1 Dn ← D1

end
Calculate output at last step: yN ← CnxN +DnuN
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A.10 G550 DLR-HALO aircraft data

Table A.1: G550 DLR-HALO technical data [DLR.de, 2021]. These specifications differ
somewhat from the production aircraft [HALO.DLR.de, 2021].

Aircraft Performance

Maximum Range

(the actual range is affected by speed,

weather, outfitting options etc.)

12,501 km at Mach 0.8

Maximum Operating Mach Number Mach 0.885 (340 KCAS, 1054 km/h)

Maximum Cruise Altitude 15545 m (51000 ft)

Range > 8000 km

Weights

Maximum Takeoff Weight 41277 kg (91000 lb)

Maximum Landing Weight 34156 kg (75300 lb)

Maximum Zero Fuel Weight 22230 kg (49000 lb)

Maximum Payload 2812 kg (6200 lb)

Fuel capacity 18734 kg (4100 lb)

Design Standards

Propulsion 2 Rolls-Royce BR710 Engines

Thrust 2× 68.4 kN

Exterior

Length 29.4 m

Height 7.9 m

Wingspan 28.5 m

Interior

Cabin Length 11.3 m

Cabin Height 1.88 m

Cabin Width 2.24 m

Cabin Volume 47.3 m3

Seating capacity
19 (normally 3 crew and

5 to 8 scientists and engineers)
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A.11 Standardized principal moments

Let X be a random variable. The first four principal moments are:

mean: µ = E {X} skewness: µ3 = E

{(
X − µ
σ

)3
}

variance: σ2 = E
{
(X − µ)2

}
kurtosis: µ4 = E

{(
X − µ
σ

)4
} (A.42)

where E[X] =
∫ +∞
−∞ xp(x)dx is the expectation operator and p(x) the probability density

function of X.

The estimation of the principal moments from a sample of finite size is more involved.

We take the formulae from [Weisstein, 2022], where many additional references for the

k-statistic are listed. Let us suppose there are N samples of the random variable X. We

define sp as the average of Xp:

sp ≜
1

N

N∑
n=1

Xp
n (A.43)

The first four central moments are then:

m1 = s1 m3 = s3 − 3s1s2 + 2s31

m2 = s2 − s21 m4 = s4 − 4s1s3 + 6s21s2 − 3s41
(A.44)

The biased estimators for the first four principal moments are:

µ = m1 g1 =
m3

m
3/2
2

σ2 = m2 g2 =
m4

m2
2

(A.45)

The unbiased estimators for the first four principal moments are:

µ = m1 G1 =

√
N(N − 1)

N − 2
g1

s2 =
N

N − 1
σ2 G2 =

(N − 1)(N + 1)

(N − 2)(N − 3)
g2 −

3(N − 1)2

(N − 2)(N − 3)
+ 3

(A.46)

The skewness and kurtosis of a Gaussian distribution are 0 and 3 respectively. The excess

kurtosis is defined as kurtosis minus 3 and is used throughout this thesis. The sample

moments are calculated using the unbiased estimators.
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A.12 Continuous wavelet transform

Refer to [Mallat, 2008; Walnut, 2002] for more information. The continuous wavelet

transform (CWT) x̃w(a, b) of a signal x(t) is defined as:

x̃w(a, b) ≜
1√
a

∫ +∞

−∞
x(t)ψ∗

(
t− b
a

)
dt

a ∈ R+

b ∈ R
(A.47)

where ψ(t) (the “mother wavelet”) is a continuous function in both time and frequency

domains, a the wavelet scales and b the locations. In the case of a time-domain sequence

x(t), the CWT returns a time-frequency representation x̃w(f, t) of the signal.

The mother wavelet ψ(t) is a rapidly decreasing function localized in both time and

frequency domains. For example, the Morlet (or Gabor) wavelet is:

ψ(t) = cσe
−t2/2

(
eiσt − eσ

2/2
) c s ψ(ω) = cσ

(
e−(σ−ω)2/2 − e−(σ2+ω2)/2

)
(A.48)

where a σ is a width parameter and cσ ≜ π−1/4
(
1 + e−σ2 − 2e−

3
4
σ2
)−1/2

a normalization

parameter. Figure A.3 shows the Morlet (Gabor) wavelet in the time and frequency

domains for various values of the parameter σ. The FFT is a special case of CWT where

ψ(t) = e−i2πt, which extends over the whole time domain, but is localized to one Dirac

delta in frequency domain.
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Figure A.3: Morlet (Gabor) wavelet in the time and frequency domains.
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A.13 Model of the eigenfrequency variation due to fuel consumption

Our objective is to model the eigenfrequency variation of the wing modes due to fuel

consumption during flight. The available data are the geometry and masses of the wing

and fuel and the eigenfrequencies of the wing modes estimated with full tank at the start

of the flight. We use [Den Hartog, 1985] as reference for the structural dynamics of the

wing components.

The wing is modeled as illustrated in figure A.4. It consists of three sub-models: a

cantilevered beam with mass, a point mass and a spring with mass suspended at the end.

The beam has only flexural modes and there is no There is no fuel sloshing.

Figure A.4: The wing is modeled as a combination of a continuous cantilevered beam
(structure and fuel), a point mass (winglet) and a heavy, flexible appendage (PMS carrier).

Notation. We adopt the following subscripts for the masses: “w” wing (dry), “f” fuel,

“l” winglet, “p” PMS carrier. The numerical subscripts for the fuel mass are 0 for take-off

and 1 for landing.

The eigenfrequencies of a continuous cantilevered beam are given by:

ω2
w = αn

EJ

ρAL4
(A.49)

where E is Young’s modulus, J the area moment of inertia, ρ the material density, A the

section area, L the beam’s length and αn is the constant pertaining to the n-th bending

mode eigenfrequency of the beam αn = [1.875 , 4.694 , 7.885 , · · · ]. The eigenfrequency of

the beam with a point mass ωl is:

ω2
l =

3EJ

mlL3
(A.50)

The eigenfrequency of the PMS carrier ωp is unknown at this stage and will be determined

later.

We can use Dunkerley’s method to determine the eigenfrequency of the whole assembly

from those of the three sub-models:

1

ω2
n

≈ 1

ω2
w

+
1

ω2
l

+
1

ω2
p

(A.51)

Equation (A.51) can be then written as:

1

ω2
n(t)

=
1

k0

(
mw +mf (t)

αn
+
ml

3

)
+

1

ω2
p

(A.52)
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where the fuel mass is time-dependent mf (t) and where

ω2
w = αn

k0
mw +mf

ω2
l = 3

k0
ml

(A.53)

since the structural stiffness term k0 = EJ/L3 does not change because we consider two

instants t0 and t1 when the aerodynamic contributions to the overall wing stiffness can be

either neglected or are equal.

We can equate this expression for the time instants 0 and t to remove k0:(
1

ω2
n(t)
− 1

ω2
p

)(
mw +mf (0)

αn
+
ml

3

)
=

(
1

ω2
n(0)

− 1

ω2
p

)(
mw +mf (t)

αn
+
ml

3

)
(A.54)

where the unknowns are ωn(t) and ωp. The latter can determined by a least-squares fit of

all known eigenfrequencies ωn(0) or taken from GVT data.

The fuel consumption is determined by thrust, angle of attack, altitude et cetera.

Nevertheless, the fuel mass variation mf (t) over the duration t1 − t0 of an experimental

flight (less than 3 hours) can be assumed to be linear:

mf (t) = mf (t0) +
mf (t1)−mf (t0)

t1 − t0
t (A.55)

Fuel mass has been recorded in the flight records after every maneuver and is displayed in

figure 8.57, showing good agreement with this assumption.

Finally we need to estimate the wing dry mass mf . The zero-fuel mass and fuel mass

are recorded in the flight sheets after every flight. Most fuel is stored in the wings, but

up to 10% is found within the fuselage, so the fuel mass in the wings mf is about 45% of

the total fuel mass. The wing dry mass can be estimated from the HALO’s Weight and

Balance Record where all relevant items, including paint, are accounted for.

Equation (A.54) can now be solved for ωn(t) to obtain the eigenfrequency variation

over time for each eigenmode. The results are plotted in figure 8.58.
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