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ABSTRACT 

Forests are an integral part of the natural ecosystem and are beneficial to humankind in 

many ways. Natural disturbances, both biotic (insects and pathogens) as well as abiotic 

(wildfire, drought, windthrow) are key processes in temperate forest ecosystems. Recent 

increases in both disturbance severity and frequency have been observed around the globe. 

Nowadays, numerous forest condition monitoring studies implementing remote sensing 

datasets for assessing biophysical and biochemical properties of vegetation species are 

widely used. The purpose of this study is to monitor changes in vegetation conditions inside 

the Bavarian Forest National Park (BFNP) which are mostly induced by outbreaks of the 

European Spruce Bark Beetle. For this purpose, a novel hyperspectral dataset acquired by 

the DLR Earth Sensing Imaging Spectrometer (DESIS) along with Sentinel-2 Multispectral 

(S2 MSI) time series are used. This study aims to develop an integrated approach by 

examining spatial-temporal patterns and spectral properties using Vegetation Indices (VIs) 

to identify stressed conifers vegetation. Computation of several VIs enables to analyze the 

spatial patterns of change in vegetation happening inside the BFNP. The BFNP has a 

mixture of tree species, of which conifers are mainly affected by bark beetles. Seasonal 

variation in conifers from 2017 to 2021 are estimated for S2 MSI using a vegetation vitality 

index called Combined Vegetation Index (CVI). In addition, narrow-band indices are 

estimated for multi-annual DESIS data between 2019 and 2021 to determine a suitable 

spectral index to identify changes in vegetation conditions. Results show CVI from S2 in 

combination with narrowband VI Modified Chlorophyll Absorption Ratio Index (MCARI) from 

DESIS performs well in identifying changes due to infestation. Also, mean CVI from the S2 

time-series shows subtle changes when observed season-wise. Finally, the results are 

validated in correspondence with in-situ field observations of bark beetle infested areas. 

Accuracies are acquired by validating the combined index results with ground truth data 

from which (i) area-based calculation provided initially 54% to improved accuracy of 63% 

when excluding smaller regions of infested areas, (ii) polygon-based yielded 57% mapped 

correctly increasing to 63% when focusing on larger pixels than DESIS. The study also 

concludes that S2 results can be reliable if there is no imbalance in time series for each 

season. Also, DESIS provides high-quality spectral input data suitable for mapping inter-

annual changes in vegetation conditions. 

Keywords: DESIS, S2 MSI, Bavarian Forest National Park, bark beetle infestation, 

Narrowband VIs. 
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1. INTRODUCTION 

1.1. Motivation  

 

Forests are an important part of the natural environment which spreads nearly over 30% of 

the earth’s surface [1,2]. The ecosystem services and socio-economic benefits provided by 

forests are immense to the mankind [3–6]. Apart from which, forests also provide resistance 

against erosion and help in controlling the flood. Even though the forests were exploited for 

centuries, people in recent times started recognizing the need for the existence and good 

health of the forests. Forest health is often naturally disturbed by both biotic and abiotic 

agents [7]. In addition, global changes such as human influenced climate change increases 

the effect of both biotic and abiotic agents in degrading the forest health in unprecedented 

ways [1,8–10]. Globally in recent times, there has been an upsurge in the occurrence of 

disturbance events [11,12]. Furthermore, forecast models also predict that there will be an 

increase in the number of disturbance events in the coming years which would largely affect 

the forest health [13–15]. Increasing disturbance events can result in significant loss in the 

ecosystem services and benefits obtained from forests[9,16]. Given the significance of the 

forests and the threat to their health, forest health monitoring is a requisite for the 

implementation of sustainable management of forests [17–21]. 

 

Most forests in Central Europe have hilly or mountainous terrain with a densely wooded 

mixed variety of tree species showing diversity in growth and other phenological aspects. 

Apparent changes in individual species in climate-sensitive zones depend on altitude levels 

[22]. It was also a prominent fact observed in Central European forests that there was an 

annual change in vegetation seasonally, mainly with the proliferation of bark beetle (Ips 

typographus, L.) infestation which caused huge ecological loss by damaging vast spruce 

species [19,20,23,24]. The infestation was more obvious in all species of conifers when 

compared to that of deciduous forest types.  

 

There have been both customary and modern methods used for monitoring the forest health. 

The traditional techniques, including inventory plotting through field surveying can be both 

time consuming and laborious [3]. In addition, traditional surveys can be only carried out 

annually due to its labor-intensive and time taking process. Furthermore, field surveys are 

suitable in the case of small areas whereas for covering a large area wouldn’t be apt [25]. On 

the contrary, contemporary remote sensing techniques can aid in monitoring the health of 

forests over large areas easily [18,26–28]. Apart from covering large areas, remote sensing 
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helps in quick, repeatable, synoptic, and cost-effective monitoring of forest health [29]. For 

forest health monitoring using remote sensing, various bio-physical and bio-chemical indices 

are used by the researchers [17,18].  

 

Timely monitoring of vegetation species and understanding their adaptability to external 

ecological factors are an integral part in preserving a healthy forest ecosystem [30]. 

Phenological changes in species observed on a larger scale is mainly due to climatological 

aspects. Each individual species undergo a shift based on climate fluctuations showing 

transition in distribution patterns [31]. Observing satellite imageries with longer time series 

provides in-depth records of changes happening within forest landscapes.   

 

Hyperspectral sensors having several contiguous, narrow spectral bands serves a variety of 

vegetation mapping applications including forest health monitoring [32,33]. In recent times, 

there has been a greater utility of hyperspectral sensors due to its growing value in terms of 

accuracy compared to multispectral data [34]. Spectral bands of spaceborne and airborne 

hyperspectral remote sensing have unlocked approaches in agricultural and forest research 

especially in monitoring forest health assessment and it’s management [35,36]. One such 

novel hyperspectral dataset used for this study purpose is the DLR Earth Sensing Imaging 

Spectrometer (DESIS) installed on the International Space Station (ISS), and jointly operated 

with Teledyne Brown Engineering in the USA. The hyperspectral instrument measures in the 

spectral range from 400 and 1000 nm with a spectral sampling distance of 2.55 nm [37]. 

DESIS delivers accurate spectral measurements in a moderate spatial resolution of 30 m 

which can be useful in spatio-temporal measurement of the vegetation parameters over a 

wider area [38]. 

1.2. Knowledge gap 

 

DESIS, being a novel hyperspectral spaceborne data having higher spectral resolution, is 

compared with Sentinel-2 Multispectral Image data (S2 MSI), having finer spatial resolution, 

for evaluating the potentials to use both sensors in combination for monitoring the forest 

health. This study aims to develop an integrated approach by assessing spatio-temporal 

patterns by examining Vegetation Indices (VIs) to identify vegetation changes occurring in 

the forest. The study purely uses spaceborne remote sensor datasets to observe spatial 

patterns of vegetation change through VIs and the results are validated with ground truth 

samples from field observations. Computation of several VIs enable to analyze the spatial 

pattern of change in vegetation especially season-wise inside the BFNP. Additionally, pure 
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reflectance spectra extracted from spectral imagery discriminates between healthy vs. 

stressed vegetation. Moreover, the novelty of this study in specific is to compare and analyze 

synergies between multi-annual hyperspectral DESIS, multi-temporal S2 MSI time series 

through a variety of spectral indices to detect changes in vegetation happening inside the 

forest.  

1.3. Research questions 

 

A detailed analysis on the relationship between the higher spectral resolution of DESIS and 

S2 data, their different temporal and spatial resolution, and the resulting possibilities to use 

both systems in combination for monitoring tasks in the field of forest health are exploited. 

Implementing these datasets, the following research questions are examined which includes: 

• What are the spatial patterns of vegetation change when analyzing time series and 

when focusing on spectral information?  

• Do all narrowband indices of DESIS show similar temporal variations compared to 

multispectral time series, and which VIs and bio-physical indicators are most suitable?  

• Do these patterns match with bark beetle-infested regions collected from the field? 

1.4. Research objectives  

 

The study aims to monitor forest health and detect spatial patterns of change in vegetation 

inside Bavarian Forest National Park (BFNP) using spaceborne hyperspectral and 

multispectral datasets. The objectives used for achieving the aim includes: 

• To estimate seasonal variation in vegetation from 2017 to 2021 for S2 using 

Combined Vegetation Index (CVI) time series. 

• To examine multi-annual DESIS data using narrowband VIs to determine the 

suitable spectral index. 

• To analyze possibilities and limitations of DESIS data in comparison to and in 

combination with S2 data to serve this application. 

• To validate the acquired results using additional information such as ground truth 

samples and high-resolution orthomosaics provided by BFNP team.  

 

These objectives are fulfilled by incorporating a formulated workflow that is sub-divided into 

data preparation and preprocessing, analysis of indices and validation of results. This work 

was conducted in frame of the Data Pool Initiative for the Bohemian Forest Ecosystem [39].   
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2. MATERIALS AND METHODS 

2.1. Study area 

 

The study area opted is the BFNP in Germany. The BFNP covers a total area of 24,250 

hectares bordering Czech Republic in the southeastern part of Germany. It has an altitude 

ranging from 600 to 1453 m above sea level. It has a mean annual temperature ranging 

between 2,0 – 5,0˚C at high elevation regions and 3,0 – 6.5˚ C at the valley. The annual 

precipitation ranges between 830 – 2,280 mm at higher altitudes and 1,030 - 1,630 mm at 

valleys. It was also inferred from weather statistics of BFNP that, 2019 had 350 mm lower 

precipitation than average being recorded as the hottest year, and 2020 was the year with 

fewer snowy days exhibiting observable climate changes in the forest [40]. The graphs 

below in Figure 1 show monthly precipitation observed in BFNP from January 2019 to 

December 2021. The study location map is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Monthly precipitation observed in BFNP from January 2019 to December 2021 

 

The Park was established in the year 1970, and this forest ecosystem has about 70% of 

spruce conifer [41]. Some of the species identified are Norway spruce (Picea abies L.), 
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Mountain ash (Sorbus aucuparia L.) and Sycamore maple (Acer pseudoplatanus L.) [42]. 

Apart from these, the forest has a significant amount of deciduous and mixed tree species 

like silver fir (Abies alba) and European beech (Fagus sylvatica). In the National Park, it is 

seen during spring that when there is an increase in ambient air temperature, there occurs a 

notable damage caused by the bark beetles since 1990’s [43]. The European spruce bark 

beetle are considered to be a dominant infestation outbreak showing distinct stress 

symptoms in healthy canopies. This attack in turn, causes change in needle color followed 

by shedding of needles leaving only grey bark remains. These are categorized to be dead 

trees or deadwood found inside the National Park [44]. These information can be gained 

with little or no human interference norms as per the policy of BFNP [42].  

 

In this master thesis importance is given to the conifers species since changes are clearly 

visible due to any external environmental factors and they are mainly infested by the bark 

beetles. Also, conifers specifically show no phenological or seasonal changes like 

deciduous or mixed which tend to lose leaves every season. 

 

 
Figure 2. Study area location map 
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2.2. Datasets 

 

The datasets used for the study includes hyperspectral DESIS Level-2A (L2A) products 

processed with DLR’s processing chain [45] along with S2 MSI L2A time series datasets 

based on the MAJA processor [46]. The DESIS instrument is mounted at the International 

Space Station (ISS) and integrated through the Multi-User-System for Earth Sensing 

(MUSES) platform [38,47]. DESIS has a target lifetime from 2018 – 2023 and has a capacity 

to acquire data for about 3000 Km on ground. It is operated in an image strip acquisition 

mode rendering target-specific multi-angular characteristics with an off-nadir look angle of 

±15˚ [38]. Some additional features about the datasets utilized are mentioned in Table 1. 

 

Table 1. Characteristics of datasets used 

DESIS L2A Product S2 MSI L2A Product 

• 4* binning with 60 Spectral bands (54 

bands considered for analysis) at 

~10.20 nm FWHM 

• 12 Spectral bands (9 bands considered 

for analysis) 

• Spatial resolution: 30 meters • Spatial resolution: 20 meters (for all 

bands, resampled) 

• Wavelength range: 400 to 1000 nm 

• Revisit frequency: 3 to 5 days (on an 

average) 

• Swath: 400 Km 

• Wavelength range: 490 to 2185 nm 

• Revisit time: 5 to 10 days 

 

• Swath: 290 Km 

 

Some salient features of DESIS are it has a Pointing Unit (POI) with a rotating mirror having 

±15˚ forward or backward change in view angle providing BRDF (Bidirectional Reflectance 

Distribution Function) measurements of targets in ground [47]. The instrument is also 

equipped with an in-built calibration and Inertial Measurement Unit (IMU).  Initially, DESIS 

acquisitions over the BFNP started from 2019 with varied time, date of acquisitions and 

pointing angles. It had very few cloud-free footprints having acceptable quality rating. Since 

the ISS orbit is changing, DESIS does not have a fixed revisit time. Hence only a total of 10 

cloud-free acquisitions starting from 12.06.2019 to 17.06.2021 were considered for analysis.  

 

Additionally, to monitor seasonal changes in phenology of conifers over time, S2 MSI time 

series were considered. S2 MSI instrument uses three mirror telescopes operated at both 

Visible and Near-Infrared (VNIR) and Short-Wave Infrared (SWIR) wavelengths. This 

provides finer L2A Bottom-Of-Atmosphere (BOA) reflectance corrected products for both S2A 

and S2B utilized in this study. Positioning the two S2 sensors are maintained by a Global 
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Navigation Satellite System (GNSS) receiver. Sensors are equipped with an onboard diffuser 

for radiometric calibration [48]. Total of 20 S2 acquisitions from 13.07.2017 to 17.06.2021 

were considered for this study. Processing these S2 tiles is useful to look at the changes in 

trend of vegetation with respect to season. DESIS and S2 time series acquisitions available 

for the study area are shown in Figure 3 below.   

 

 

Figure 3. DESIS and S2 MSI datasets acquired over the BFNP between 2017 and 2021 

 

2.3. Methodology 

 

The methodology implemented for the study is represented in Figure 4. The workflow is split 

up into three parts namely preprocessing, indices analysis and validation for clear 

understanding.  
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Figure 4. Formulated workflow 

 

2.3.1 Data quality assessment 

 

For the choice of optimal DESIS data from a series of several cloud-free available datasets a 

few factors were considered to be essential. L2A reflectance product with cloud-free 

acquisitions and solar zenith angle <40˚ that reduces shadows, effects in BRDF, influence of 

atmosphere and influence of anisotropic effects were selected. Two multi-annual DESIS 

datasets, 29.06.2019 and 17.06.2021 both from summer months were opted for detecting 

temporal changes in vegetation. As 2018 was the year with a larger infestation rate followed 

by 2019, one of the most drought-prone years of BFNP, the datasets from 2019 were well 

suited for assessing forest changes. Initially, with no spectral binning, there are 235 spectral 

bands in DESIS but for this study, 4xbinning with 60 spectral bands were selected as 

spectral resolution depends on bands. Bands 1-3 and 58-60 were removed to minimize any 

spectral distortions in the image. After removal of noisy bands, 54 spectral bands from 430-

975 nm were considered for further processing. 

 

A total of 20 multi-temporal S2 MSI time series were taken into account. In order to increase 

the number of datasets for the study, few tiles with some clouds were considered as well. 

These needed to be cloud masked using the F-mask algorithm [49,50]. About 9 spectral 

bands with ground reflectance corrected for slope effects for each S2 MSI scene from the 

MAJA processor were stacked for analysis [46].  
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2.3.2 Examining Spectral properties for DESIS and S2 MSI 

 

Spectral reflectance for both datasets were observed for conifers which discriminates healthy 

vs. stressed vegetation. In DESIS, the spectral response from numerous pixels were 

collected and averaged as shown in Figure 5 for 2019 and Figure 6 for 2021 to obtain the 

mean spectra for different species type inside BFNP. Spectral signatures for conifers were 

observed closely around the infested zones which clearly shows a transition in curve. This 

type of transition shown in the stressed vegetation is so called “blue-shift” observed near the 

red-edge range of the spectrum [51,52]. It determines a reduction in green and NIR 

reflectance denoting green leaves under stress and for DESIS inflection is significant around 

723nm, as shown in Figures 7 and 8. To detect the change in reflectance pattern a tool from 

the EnMAP toolbox known as Interactive Red Edge Inflection Point (iREIP) was used. The 

shift in patterns indicate vegetation stress that might have caused between 2019 – 2021 that 

are later examined in results of narrowband VIs. Mean reflectance spectra of stressed 

patches defines the traits such as cuticle, outer epidermal layer of the conifers and upper 

needle surface that are prone to infestation[53]. Like DESIS, the spectral response patterns 

from S2 MSI having better Ground Sampling Distance (GSD) yet coarser spectral resolution 

were analyzed for three seasons.  For the entire S2, time-series mean reflectance spectra 

were generated as shown in Figure 9 for better understanding seasonal variations [54,55]. 

Pure crown spectra from S2 show few discrepancies which can be due to presence of cloud 

shadows or other outliers.  
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Figure 5. Mean spectra of DESIS with conifers/deciduous/mixed species for 2019 

 

 

Figure 6. Mean spectra of DESIS with conifers/deciduous/mixed species for 2021 
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From the mean spectral plots of DESIS, conifers plots were checked for change in spectral 

pattern that denotes blue-shift near the red-edge to indicate stress in vegetation. On a closer 

observation as shown in Figure 7 the mean spectra plots clearly represents a shift in 

spectral response pattern which is also verified using the iREIP tool as shown in Figure 8.  

 

 

Figure 7. Mean spectra assessed for conifers between 2019 and 2021 for DESIS 

 

 

Figure 8. Interactive Red Edge Inflection Point from EnMAP toolbox   
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Additionally, the spectral plots of S2 time series are assessed season wise which shows 

slight variations. Few plots such as 29.05.2018 in the spring and 03.07.2018 in summer are 

seen with greater variation which could be due to masking or not fully removed clouds. Plots 

for fall, spring and summer are shown in Figures 9. 

 

Figure 9. Mean spectral plots of S2 MSI for (a) Fall, (b) Spring and (c) Summer from 2017 - 2021 

(a) 

(b) 

(c) 
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2.3.3 Calculation of VIs for S2 MSI time series 

 

S2 MSI sensor renders high spatial data spectrally covering the VNIR-SWIR region with 

which a wide variety of VIs are calculated to identify changes in canopy properties.  It was 

also inferred that S2 derived indices for detecting changes caused by bark beetle infestation 

showed improved results when compared to Landsat 8 datasets [56]. For this study, mostly 

cloud-free S2 MAJA corrected tiles were downloaded from 2017 to 2021. Compared to 

DESIS that has multi-annual datasets from 2019 and 2021, details from past forest events 

were required for better understanding the activities occurred at BFNP. Therefore, the time 

series of S2 were planned to be expanded from 2017. From the entire time-series of S2, a 

very few scenes from 2017 and 2018 namely on 26.09.2017 and 03.07.2018 were taken with 

cloud cover <20% as the cloud-free datasets were scarcely available for those years. A F-

mask algorithm potential enough to mask out cloud and cloud shadows through object-based 

matching technique for each individual scene was applied using ENVI [49].  

 

Forest phenology varies with disturbance events like bark beetle attack observed in conifers. 

However, with the time series years considered for this study and reports from authorities at 

BFNP it was understood that there was an infestation started to swarm during May 2016 [41] 

followed by another attack in early January 2018 with continued drought [57]. S2 MSI MAJA 

corrected tiles for BFNP were available only from 2017 with minimal cloud coverage and 

therefore multi-temporal images were categorized showing different periods based on 

seasonality. In general, the forest dynamic phase is ordered based on season, such as (1) 

spring months where new leaves are developed, followed by (2) summer months showing 

intense foliage coverage and finally (3) fall months that shows autumnal foliage.  

 

A list of vegetation indices was estimated by considering the bio-physical variables such as 

structure, chlorophyll, and leaf pigment into account as VIs are specifically not always 

sensitive to a single variable. Utmost care is taken while choosing each index from bio-

physical variable when concerned with heterogeneous canopy covers including healthy vs. 

stressed trees [58]. Estimation of vegetation indices are a prime component in analyzing 

forest health. Response from the vegetation indices can be used to quantify several exterior 

parameters like damage due to bark beetle infestation, drought, and wild forest fires that 

occur [17,59,60]. Since the entire forest health cannot be determined from a single 

vegetation index, a vegetation vitality index called CVI in Table 2, is proposed [61] by giving 

equal weightage to one index from every bio-physical variable. CVI is represented in 

equation 1 as: 
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                          CVI = ∑ One index per bio − physical propertyk/nn
k=1              (1) 

 
 

Table 2. CVI calculated from VIs for S2 MSI 

 

Bio-physical 
variable 

Index Sentinel-2 DESIS (Wavelength in nm) 

 
Structural component, 

LAI coverage 
 

NDVI (NIR – Red) / (NIR + Red) (ρλ840 – ρλ666) / (ρλ840 +ρ λ666) 

Chlorophyll 
 

NDRE (NIR – RE) / (NIR + RE) (ρλ779 – ρλ708) / (ρλ779 +ρλ708) 

Leaf pigment VIGreen 
(Green- Red) / (Green+ 

Red) 
(ρλ554 – ρλ666) / (ρλ554 +ρλ666) 

 

 CVI (NDVI + NDRE + VIGreen) / 3 

 

2.3.4 Estimating annual change in vegetation using narrowband VIs for DESIS 

 

It is stated that hyperspectral sensor imageries facilitate identifying forest disturbances by 

analyzing several narrowband VIs [62]. DESIS having contiguous narrow bands, increases 

the SNR providing capability to assess plant bio-physical parameters to explore forest health 

status. It provides in-depth spectral information in the visible, near infrared and red edge 

regions [63]. Besides, stress conditions in vegetation species are mapped using 

hyperspectral derivative reflectance especially by examining the red-edge range [64]. Varied 

traits in foliage cover such as LAI, chlorophyll content, or leaf nitrogen content are mapped 

by analyzing field spectra or other potentially derived VIs from high-quality airborne HySpex 

or other hyperspectral datasets taken over BFNP study site [55,65–67]. To fulfil this study 

objectives, for the multi-annual reflectance corrected DESIS summer month datasets, 

fourteen narrowband VIs were estimated and categorized based on bio-physical properties. 

The less frequent DESIS data is applied to emphasize the annual changes of forest condition 

in a more detailed manner. Regarding vegetation health, the bark beetle infested areas, in 

particular, were examined more closely. From the retrieved VI results, areas showing 

negative change in vegetation were checked for correspondence with the infested area field 

information provided. The narrowband VIs were estimated to quantify the temporal changes 

among conifers between 2019 and 2021. The narrowband VIs applied for DESIS are listed in 

Table 3. The indices are classified based on structural, chlorophyll, and other leaf-pigment 

properties defined to find the suitable index that enhances quality of spectrally precise input 

DESIS dataset. The results, in turn would reflect visible stressed conifers stands for which 

spectral properties can be checked and cross verified with geolocations of affected regions. 
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Table 3. Narrowband VIs for DESIS 

Narrowband VI Specific formula 

Application/

Biophysical 

Property 

Reference 

Plant Senescence Reflectance 

Index 

PSRI = (678nm−500nm)/ 

750 nm 

Dry or 

Senescent 

Carbon 

(Scale: Leaf) 

[68] 

 

Photochemical Reflectance 

Index 

PRI = (531nm−570nm)/ 

(531nm+570nm) 
Chlorophyll [69] 

Modified Red Edge Simple Ratio 
MRESR=(750nm−445nm)/ 

(705 nm−445nm) 
Chlorophyll 

[70,71] 

 

Greenness Index GI= 554nm/677 nm Chlorophyll [72] 

Simple Ratio SR = 675nm/700nm Chlorophyll [73,74] 

Anthocyanin Reflectance Index 1 ARI1 = (1/550 nm - 1/700 nm) Leaf pigment [75] 

Carotenoid Reflectance Index 1 CRI1 = (1/510 nm - 1/550 nm) Leaf pigment [76] 

Carotenoid Reflectance Index 2 CRI2 = (1/510 nm - 1/700 nm) Leaf pigment [76] 

Vogelmann Red Edge Index 1 VREI1 = (740nm / 720 nm) Chlorophyll [77] 

Red Edge Position Index 
REPI = 700+40*((670nm+780nm/2)-

700nm/(740nm-700nm) 
Chlorophyll [78–80] 

Modified Red Edge NDVI 
MRENDVI= (750 nm - 705 nm)/ (750 

nm + 705 nm - 2*445 nm) 
Chlorophyll [71] 

Modified Chlorophyll Absorption 

Ratio Index 

MCARI= [(700 nm-670 nm)-0.2(700 

nm-550 nm)] *(700 nm / 670nm) 
Chlorophyll [81] 

Normalized Difference Red Edge 

Index 

NDRE = (790nm−720nm)/ 

(790nm+720nm) 
Chlorophyll [82] 

Normalized Difference 

Vegetation Index 
NDVI = (NIR – Red) / (NIR + Red) Structure [83] 

 

2.3.5 Validation and accuracy assessment 

 

It is essential to examine the correctness of classes with respect to reference data that 

emphasizes the usage of remote sensing imageries. An overall accuracy exhibits pixels 

correctly classified or misclassified that defines the reliability of processing [84]. From the 

confusion matrix, dividing the sum of correctly classified values with total number of ground 

truth values provides an overall accuracy which is a measure of performance and a kappa 
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value which is a measure of agreement between change class vs ground truth reference [85–

87]. In this study, retrieved results are validated using in-situ observations collected from the 

BFNP. Ground truth datasets used for validation includes shapefile information of infested 

regions, mainly due to bark beetles from 2019 – 2021 and an airborne orthomosaics 

collected between 14.06.2021 – 06.07.2021 over BFNP. The GSD of the orthomosaics used 

was 0.1m. For the computed temporal changes from DESIS, a suitable spectral index MCARI 

that matches very well with field-collected measurements was selected. Additionally, from the 

S2 time series, CVI difference between June 2019 and June 2021 that closely matches with 

DESIS overpass dates were selected. S2 CVI difference was resampled and rescaled to 

match with DESIS pixel size for comparison. Further, for these two indices defined thresholds 

that clearly denotes negative changes in conifers: (p ≤ -0.01) for DESIS MCARI and (p ≤ -

0.35) for S2 CVI were considered.    

 

The two indices were combined to spatially detect changes within conifers named ‘combined 

detection index.’ A buffer of one pixel is applied to evaluate if accuracy is improved. 

Improving the overall accuracy also works with few methods like applying buffer to pixels and 

other morphological operators [88,89]. An accuracy is generated by examining combined 

detection index pixels that intersects with ground truth infested samples. Occurrence of event 

or no events are calculated using predicted indices measurement and reference ground truth 

datasets to estimate True Positives (TP), False Positives (FP). Accuracies are assessed in 

two ways (1) with respect to area coverage (2) with respect to number of polygons to see 

changes detected.   

 

Overall accuracy = 
Total number of combined detection index area / polygons

Total number of infested area / polygons
     (2) 

 

The results acquired are validated and explained in further section 3.  
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3. RESULTS 

3.1 Seasonal changes from S2 CVI time series 

Spatio-temporal transition in conifers stands were assessed for S2 MSI from 2017 to 2021 

by evaluating results of vegetation vitality index CVI and other individual indices. These 

indices show varied vegetation patterns observed between healthy vs stressed conifers over 

time. Each index was mapped with a specific bio-physical property that shows patterns of 

change in vegetation seasonally. S2 MSI does not have a balanced count in number of 

datasets due to longer time lag in minimal cloud cover acquisitions for example the datasets 

in time series had 9 summer days, 6 spring days and 5 fall days from 2017 to 2021. As per 

year, number of days count were 2 in 2017, 4 in 2018, 6 in 2019, 7 in 2020 and 1 in 2021, 

with which time series for each index were plotted sorted by JD order as shown in Table 4.  

Table 4. JD labeled for S2 MSI time series 

S2 MSI Time series Season JD 

08.04.2020 Spring 099 

19.04.2019 Spring 109 

24.04.2019 Spring 114a 

23.04.2020 Spring 114b 

18.05.2020 Spring 139 

29.05.2018 Spring 149 

03.06.2019 Summer 154 

17.06.2021 Summer 168 

28.06.2019 Summer 179 

03.07.2018 Summer 184 

13.07.2017 Summer 194 

23.07.2019 Summer 204 

06.08.2020 Summer 219 

21.08.2020 Summer 234 

27.08.2018 Summer 239 

16.09.2018 Fall 259a 

15.09.2020 Fall 259b 

21.09.2019 Fall 264a 

20.09.2020 Fall 264b 

26.09.2017 Fall 269 
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S2 derived indices shows spatial patterns distributed among conifers in the BFNP. The 

indices from S2 provides adequate results due to added SWIR range information, unlike 

DESIS data with no SWIR bands. From the patterns identified, only a few changes can be 

detected in the conifers due to the different seasons. With this confirmation, it will be feasible 

to directly attribute major differences in VIs to changes in forest status. Subtle changes over 

time are plotted against JD of year to monitor variations. S2 results signify not much of 

seasonal changes are observed among conifers posing a hypothesis that any changes 

observed in trees could also be due to biotic or abiotic factors. It is evident that most changes 

occurred in forest during 2019-2020 are due to a major infestation outbreak in 2018 followed 

by a continuous drought [57]. It was verified with meteorological information that 2019 was 

the hottest and dry year with 350mm lower precipitation than average [40], thus justifying 

change in vegetation patterns.  

Looking at the differences between the infested and non-infested areas, the VIGreen index 

reflecting leaf pigment bio-physical characteristics shows visible changes compared to NDVI 

and NDRE that shows minimal variations in conifers. The patterns of changes for 2017, 

2018, and 2019 show smaller changes over years and 2020 has some fluctuations. Results 

shows that most of the differences are visible in May-June and during the September months 

[90]. From the spatial patterns of mean CVI as shown in Figure 10 and associated plots 

between healthy vs stressed conifers indices as shown in Figures 11,12,13 and 14. In (1) 

2017, there are smaller difference in July and September (2) 2018 has a smaller difference in 

May and no difference in July, August, September (3) 2019 shows a slight variation in April, 

small differences in June, and larger changes in July and September.  

Mean CVI showed significant changes between healthy vs. stressed conifers that are closely 

associated with mean values of VIGreen index. These negative values identify subtle 

changes in conifers that might have been influenced by the outbreak of bark beetle activity. 

Singe indices shows higher differences in 2020 and 2021 that are more visible than no 

changes seen in other years but when combining them as CVI most differences are exposed. 

Vegetation degradation could also be due to several other external environmental factors that 

affect the trees showing minimal foliage cover and therefore, differences between indices are 

assessed. These changes are later verified with ground truth reference data using difference 

maps calculated between two summer months of S2 that closely matches with satellite 

overpass dates of DESIS.    
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Figure 10. Mean CVI mapped for S2 MSI season wise  
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Figure 11. Comparison of S2 NDRE index between Conifers vs stressed conifers.  

From NDRE, highest differences in 2021 are observed. Almost no changes visible in JD 234 – 

259, and most changes visible JD 99, 109, and 158-219. 

 

Figure 12. Comparison of S2 NDVI index between Conifers vs stressed conifers. 

NDVI shows Highest difference in 2020 and without considering 2020, most changes visible 

between JD 109-194, and no changes are visible in JD 239 – 269.   
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Figure 13. Comparison of S2 VIGreen index between Conifers vs stressed conifers. 

Highest difference in 2020 and 2021. Without considering 2020 & 2021, most changes are 

visible in JD 99-149 and 264 – 269, and almost no changes are visible in JD 154-259.  

 

 

Figure 14. Comparison of S2 mean CVI values between Conifers vs stressed conifers. 

Highest difference observed in 2020 and 2021. 
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3.2 Temporal change estimated from DESIS narrowband VIs 

Several narrowband VIs were tested with DESIS to identify suitable indices that fit for this 

study. Inter-annual change in conifers vegetation was calculated by computing each 

narrowband index for June 2019 and June 2021 datasets and then deriving a difference 

image to check its correspondence with the bark beetle infested areas. Scale for all 

difference maps were normalized and negative values which potentially indicate changes 

occurred within two years are analyzed. The negative changes represented in red denotes 

stressed vegetation due to post infestation of bark beetle attack and drought factor from 2018 

to 2019. Mainly all the narrowband VIs were examined closely to see if all results were 

closely relevant with respect to bio-physical property and if they were all capable to highlight 

changes inside the forest. Additionally, to support the assessment, a few specifications about 

the behavior of each narrowband VI in correspondence with infested regions is tabulated in 

Table 5 below.  

Table 5. Narrowband indices for temporal change estimation using DESIS 

Narrowband VIs 
Correspondence of negative change 

in index with infested areas 
Reason 

PSRI Not matching 

Increase in PSRI denotes an increase in 

canopy stress. Physiological stress 

behavior for conifers varies with crown 

spatial coverage and chlorophyll content. 

Sometimes PSRI is more suitable for 

broadleaf canopies [68]. 

PRI Not matching 

The index tends to get highly affected by 

more background features as infested 

canopy has sparser or no foliage cover. 

It is also affected by leaf pigment levels 

and other structural variables [91]. 

MRESR Matches partially 
It uses red-edge and incorporates a 

correction for leaf specular reflection. 

GI Not matching 

Needles of conifers show minimal 

change during season affecting 

chlorophyll absorption in green. 

SR Not matching 

This index suits well for vegetation with 

dense foliage coverage. It is sensitive to 

background variables like soil, 

atmospheric effects and viewing angle. 
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ARI1 Not matching 

Anthocyanins are responsible for 

coloration and indicates plant stress. 

Reflectance of anthocyanins is observed 

higher around 550nm and reflects only 

chlorophyll near 700nm. As conifers 

needles show minimal foliage cover, this 

index is not well suited [92]. 

CRI1 Matches partially 

Higher chlorophyll reflectance near 

550nm than carotenoids in needles or 

maybe highly sensitive to growing or 

young leaves during early summer. 

CRI2 Not matching 

It is slightly modified than CRI 1, where 

effect of chlorophyll is reduced by 

reciprocal of 700 nm denoting the 

concentration of only carotenoids. 

VREI1 Matches partially 

With reference to spectral response 

curve, vegetation stress indication 

(inflection point observed near red edge 

region). 

REPI Matches partially 

Chlorophyll absorption and leaf internal 

scattering influences change in index but 

matches partially due to red edge range 

[80]. 

MRENDVI Matches partially 
Includes red edge range but difficult to 

interpret LAI. 

MCARI Matches well 

Index is potential to detect sensitivity of 

LAI changes[81,93]. It is influenced by 

chlorophyll and LAI chlorophyll 

interaction proving a good fit for 

monitoring temporal changes in 

vegetation [54]. 

NDRE Matches partially 

It is a sensitive index to monitor 

chlorophyll content in leaves but more 

suitable for broadleaf canopies than 

conifers which has less volume and 

stand density. Also, it is observed less 

sensitive to spatial changes [94]. 

NDVI Not matching 

The structural nonlinear index is 

sensitive to background reflectance and 

difficult to interpret low LAI (leaf area 

coverage). It is well suited for broad leaf 

structures. 
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BFNP has a complex heterogeneous forest cover with a lot of understory influence observed 

during spring and early summer. In general, most of the retrieved narrowband VIs potentially 

matches for chlorophyll bio-physical property. This is due to the influence of the red-edge 

region that eliminates most of the background effects and crown shadows in closed forest 

canopies, especially in conifers [78]. MCARI, out of all chlorophyll indices, performs well 

proving as a suitable spectral index for this study. Chlorophyll component in deciduous or 

mixed forest types are greatly accounted for with larger tree crown density, foliage cover, or 

volume. But for the conifers, phenological changes reflect from needle chlorophyll content 

and crown LAI [54]. There may be minimal crown density in needles thus showing sparse 

matching with structural or leaf pigment properties which is in turn well suited for broadleaf 

canopies having intense crown volume and foliage. Spatially mapped temporal changes are 

shown from Figures 15 to 28. As few narrowband VIs shows varied minimum/maximum value 

range each VIs were normalized separately based on histogram measures. They were 

categorized as negative change, no change, and change where negative changes indicate 

the least values representing changes over time. Those values are checked for 

correspondence with the infested regions collected from 2019 to 2021. Few narrowband 

indices listed above were estimated using DESIS and are shown as following.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Temporal change calculated for PSRI for DESIS between 2019 and 2021 
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Figure 16. Temporal change calculated for PRI for DESIS between 2019 and 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Temporal change calculated for MRESR for DESIS between 2019 and 2021 
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Figure 18. Temporal change calculated for GI for DESIS between 2019 and 2021 

 

Figure19. Temporal change calculated for SR for DESIS between 2019 and 2021 
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Figure 20. Temporal change calculated for ARI for DESIS between 2019 and 2021 

  

 

Figure 21. Temporal change calculated for CRI- 1 for DESIS between 2019 and 2021 
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Figure 22. Temporal change calculated for CRI-2 for DESIS between 2019 and 2021 

 

Figure 23. Temporal change calculated for VREI for DESIS between 2019 and 2021 
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Figure 24. Temporal change calculated for REP for DESIS between 2019 and 2021 

 

Figure 25. Temporal change calculated for MRENDVI for DESIS between 2019 and 2021 
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Figure 26. Temporal change calculated for MCARI for DESIS between 2019 and 2021 
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Figure 27. Temporal change calculated for NDRE for DESIS between 2019 and 2021 

 

Figure 28. Temporal change calculated for NDVI for DESIS between 2019 and 2021 
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Assessing each VIs individually, indices with chlorophyll bio-physical properties show spatial 

similarities when having a closer look at negative changes especially in the northern part of 

BFNP. The 30m pixels of DESIS distinguishes apparent changes that show a uniform pattern 

for most of the chlorophyll indices. Few negative changes between these chlorophyll indices 

are comparable in certain regions where conifers are highly affected inside BFNP. Some 

interpretations within no change areas maybe the dead spruce trees that are left standing or 

fallen trees. Later, to avoid errors, ground truth information are matched with a perfectly 

matching MCARI index after refining its threshold to validate the result. It is evident from the 

results of narrowband VIs represented in above Figures 15 to 28 that showed significant 

changes visible in conifers between 2019 to 2021. This could steadily be relevant to relatively 

higher rates of bark beetle proliferation since 2018 leading to deterioration of conifers health. 

Statistically, it was also observed that conifers forests mainly spruce stands contribute to 

major forest loss among all European federal states between 2018 to 2020. Consequently, 

most of the forest loss were due to drought and beetle infestation [28].   

3.3 Threshold definition  

For the computed temporal changes from DESIS, a suitable spectral index MCARI that 

matches very well with field-collected measurements was selected. Additionally, from the S2 

time series, CVI difference between June 2019 and June 2021 that closely matches with 

DESIS overpass dates were selected. S2 CVI difference was resampled and rescaled to 

match with DESIS pixel size for comparison. After calculating the difference image between 

DESIS MCARI and S2 CVI, various thresholds were tested for selecting pixels that closely 

matches with infested regions based on histogram measures. Initially, MCARI with a negative 

change threshold (p ≤ -0.005) and CVI with range (p ≤ -0.35) showed good agreement with 

the ground truth pixels. The individual matching of pixels with MCARI and CVI indices are 

represented in Figures 29 and 30 respectively.  
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Figure 29. MCARI negative changes matching with orthomosaics and ground truth reference data with 

<= -0.005 threshold. 
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Figure 30. CVI negative changes matching with ground truth polygons with <= -0.35 threshold. 
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Several other threshold levels were also examined out of which MCARI with range (p ≤ -0.01) 

and CVI with same range (p ≤ -0.35) were finalized. The difference of CVI index was 

resampled to 30 meters to see if there are larger changes when matching with ground truth 

datasets when compared to DESIS. The combined results provide good coverage from which 

infested areas that fall within the combination of two indices are identified based on area 

coverage and polygon count. This method is implemented by adding a buffer of one pixel 

(i.e., 30 meters) to the combined index, which shows improvement in overall accuracy.  

3.4 Validation results  

The following sub-sections describe DESIS and S2 product intercomparison results also 

explains how single products are combined and validated with ground truth reference 

datasets. Further accuracies calculations based on areal coverage and polygon count are 

included.  

3.4.1 Product intercomparison 

 

The results that include a suitable spectral narrowband index of DESIS and mean CVI from 

S2 were validated using ground truth information. These datasets include reference polygons 

as region of interests and high-resolution orthomosaics that clearly shows stressed and cut-

down forest stands. In validation, a few sets of procedures were incorporated. Initially, TP 

and FP were identified by examining the overall accuracies adding two raster indices called 

“combined detection index.” To obtain this raster, difference is calculated between the 

summer months of MCARI and CVI matching approximately similar satellite overpass dates. 

Using this, product intercomparison is performed and results shows if the combination of both 

datasets are useful to detect changes in conifers. From the combined detection index, pixels 

that are predicted as infested area and are truly infested represents TP and pixels that are 

predicted as infested area but not infested represents FP were analyzed. Consequently, the 

combined index derived by testing different threshold values produced good results with no 

FP detected.  

3.4.2 Analysis of combined detection Index 

 

After matching the pixel size for both indices, overall accuracies were computed using ENVI. 

The change detection index clearly represents total number of change pixels only after the 

difference rasters were brought to a similar array dimension of 900*874 with 30 m resolution. 

The statistics of the combined detection index with applied buffering is analyzed to find out 
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how many pixels were associated within each category. The statistics retrieved from the 

raster index were mapped to see distribution of pixels in correspondence with the infested 

ground truth samples. Using these difference image of 2 indices (MCARI and CVI), a 

resulting output, as shown in Table 6 was derived at first.  

Table 6. Logic for the Combined detection index “MCARI – CVI” 

MCARI buffered 

pixels CVI buffered pixels Result 

1 1 0 (Agreement) 

1 0 

1 (detected only by DESIS – uncertain if 

correct or not) 

0 1 

-1 (detected only by S2  - uncertain if correct 

or not) 

0 0 0 (Agreement) 

 

As the resulting values 0 might represent either change detected by both or no change 

detected by both indices, a new raster (2*MCARI + CVI) was formed to detect changes as 

shown in Table 7. In this way, now there are 4 unique cases where each result represents 

changes of each index.  

Table 7. Logic for modified Combined detection index “2*MCARI + CVI” 

MCARI CVI Result 

2 1 3 (change detected by both) 

2 0 2 (change detected only by DESIS) 

0 1 1 (change detected only by S2) 

0 0 0 (no change by both) 

 

Analyzing the full conifers area, the results shows that a total of 3432 pixels represents 

change detected by both sensors, 2932 are change only by DESIS, and 2861 are change by 

S2 only. No change by both had 777375 pixels, including the background values when 

evaluated in ENVI. The results of detection index are shown in Figure 31 below. Each 

change pixels represented good agreement with the ground truth information producing 

highly reliable results with no false positives based on the defined threshold. A closer look of 

the combined detection results are shown in Figure 32 displayed over BFNP orthomosaic. All 
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these results are recorded as binary files while processing where 1 is change detected when 

combining results and 0 is no change detected. Hence the combined buffer S2 CVI and 

MCARI file is a binary file with total number of 1’s as 9225 (3432+2932+2861) and 0’s as 

777375 pixels. Supplementary figures representing pixel count acquired from ENVI are 

shown in Appendix 1. 
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Figure 31. Changes detected using Combined detection index from both DESIS and S2 indices with 
modified thresholds 
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Figure 32. Changes detected validated using orthomosaic and ground truth polygons 

3.4.3 Accuracy assessment  

 

3.4.3.1 Confusion matrix for raster in ENVI  

 

When estimating the overall accuracies derived from the confusion matrix between pixels 

before buffer and after buffering few variations were noted. Overall accuracies were 

calculated for the original difference image of MCARI and CVI, for the buffered MCARI and 
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CVI and when applying a morphological operator clump class to MCARI and CVI to check if 

there are improvement in results. All these methods were opted for evaluating raster results 

and ground truth ROI’s converted to a class image. The correct change and no change 

percentage were examined, and the results were validated based on them. The results are 

tabulated as shown in Table 8. Outputs from the confusion matrix are added as 

supplementary figures in Appendix 2. 

Table 8. Overall accuracies of percent change and no change compared between original, buffer and 
clump classes for MCARI and CVI 

Index 

Correct no change Correct change 

MCARI CVI MCARI CVI 

Original index 84% 84% 18% 20% 

Buffer pixels 30 m 65% 52% 79% 61% 

Clump class 68% 71% 70% 86% 

 

The detection rate for the “Correct change” class increased from 18% in MCARI to over 70% 

when applying a buffer of 1 pixel, or when using the morphological clump operator. This 

indicates that the spatial co-registration between the ground-truth and the imagery might 

have a small shift within the mountainous terrain. The overall accuracy decreases as for 

the buffer and clump cases, the background class is less accurate, and as this is the largest 

class, this influences the overall accuracy. Hence the values for the large "No Change" class 

dominate the result for the overall accuracy indicated as 777375 pixels and could not be 

neglected during confusion matrix calculation using ENVI. It is evident from the results that 

buffer or clump classes are consistent but the values slightly changes due to influence of 

background pixels. Therefore, alternatively another method was implemented to check the 

accuracy by matching vector polygons of detection index with ground truth ROI’s using 

intersect operation from QGIS.   

3.4.3.2 Accuracies by matching vectors in QGIS  

 

The predicted detection index was converted into a vector file and intersected with the 

reference filed collected ROI’s. This was to check if the combined approach of S2 CVI and 

DESIS MCARI effectively corresponds with the infested regions. The calculations were 

computed based on the area covered and number of polygons that were correctly identified. 

The vectors were checked to analyze if all polygons overlap with infested areas as shown in 

raster output.  
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➢ Accuracies with respect to area coverage: 

After intersecting the combined detection index with ground truth ROI’s, ratio between two 

areas were computed to check how much areas were successfully mapped inside affected 

regions. The area of detection index intersect was 1,774,015 Sq. m and the total area of 

infestation was 3,273,724 Sq. m. The ratio between the two areas provides that accuracy 

rate of polygons matching well with infested regions, and it was 54%. Additionally, to improve 

the accuracy and see if sub-pixel level changes are detectable, a few tiny polygons were 

excluded from the infested region vector file. For this, only polygons that were > 900 Sq. m 

(i.e., areas larger than DESIS 30m*30m pixels) were considered, and the resulting area 

coverage was 2,797,054 Sq.m. Computing the ratio between detection index intersect and 

area of infested regions with pixel size greater than DESIS its accuracy increased to 63%. 

The results are also listed in Table 9. 

Table 9. Accuracies with respect to area coverage 

Description Area in Sq. Km Accuracy 

Total area covered by combined S2 CVI + 
DESIS MCARI index that are truly infested 1.77 

Accuracy by area = 54% 
Total area covered by the in-situ collected 

infested regions 3.27 

Total area covered by combined S2 CVI + 
DESIS MCARI index that are truly infested 1.77 Improved accuracy for areas 

larger than DESIS 30*30 m 

pixels = 63% Total area covered by excluding tiny regions 
(> 900 Sq. m) 2.79 

 

➢ Accuracies with respect to number of polygons: 

The accuracies are checked again based on the number of polygons between the two vector 

files to see if there are any variations or improvements in accuracies. Initially, all the multi-

part polygons were split as single-part polygons to keep distinct count on each feature. The 

combined detection intersect had 1269 single polygons and the total vector file had 3365 

single-part polygons within affected areas. Estimating the ratio between the two yielded an 

accuracy of 38%. Since there were too many tiny polygons included, the same scale analysis 

used for computing accuracies by area coverage was applied. Ground truth polygons > 900 

Sq.m (30m*30m) were in total 707 and the same was applied for intersect which showed 405 

polygons. The output accuracy increased to 57% and the results are tabulated in Table 10. 

The method was also tested with quarter > 225 Sq.m (15m*15m) and an extended pixel > 

2025 Sq.m (45m*45m) limits to see if the accuracy truly improves, and the results are shown 

in Table 11. 
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Table 10. Accuracies with respect to number of polygons 

Description 
No. of 

polygons 
Accuracy 

Total number of polygons intersecting 
combined index detection results 

1269 

Accuracy by area = 38% 

Total number of ground truth polygons 
within infested area 

3365 

Total number of polygons intersecting 
combined index excluding tiny 

polygons (>900 Sq. m) 
405 

Improved accuracy for polygons larger 

than DESIS 30*30 m pixels = 57% Total number of ground truth polygons 
within infested area excluding tiny 

polygons (>900 Sq. m) 
707 

 

Table 11. Accuracies based on polygon count with varied pixel size 

 
Polygons within 

infested areas 
Intersect polygons % Correctly identified 

All polygons 3365 1269 38 

>225 Sq.m 1439 685 48 

>900 Sq.m 707 405 57 

>2025 Sq.m 350 208 59 

 

As an inference from these methods using vector files for accuracy assessment, using the 

combined approach of S2 and DESIS, 54% of the infested area was successfully mapped as 

affected, and 38% of the single infested regions were identified. When focusing only on 

infested areas larger than the DESIS pixel, 57% of the affected tree regions were 

successfully identified, also increasing the correctly mapped area to 63%. 

 

 

 

 



 

49 

4. DISCUSSION 

The overall goal of this study was to identify patterns of change in vegetation especially 

focussing on the behaviour of conifers with respect to external environmental factors. This 

was achievable with aggregation of resourceful S2 multitemporal and DESIS multi-annual 

spaceborne datasets. DESIS proved to be a spectrally high-resolution input data for 

monitoring temporal changes in vegetation over years whereas S2 measurements after 

excluding data artifacts or clouds provided essential improvements required for comparison. 

However, seasonal changes could be improved if time series of S2 are expanded with 

minimal to no cloud cover acquisitions. The study uses concurrent observations from the 

BFNP for validation. The method developed for this study allows to assess the correct year of 

vegetation degradation events by analysing temporal variations referring to loss of healthy 

conifers canopies detected by analysing VI’s of DESIS and S2. Further, quantifying areal 

measurements with recorded ground truth information provided added value thus 

representing forest loss due to drought impact and infestation. Inter-annual difference maps 

between two years of DESIS demonstrated large scale vegetation degradation within the 

forest in an obvious way.  Additionally, S2 seasonal observations consequently showed 

subtle changes within conifers forest over the years. These multi-temporal spatial patterns of 

changes in conifers were verified with few readily available map sources like global forest 

watch which shows good agreement having large-scale canopy loss in conifers [26,28]. 

Records show that most part of European forests are affected by external disturbance factors 

but could not be mapped promptly. Hence nationwide systems are being implemented across 

Europe to maintain records of disturbance events accomplished by several field surveys [95].    

 

Ground truth datasets were considered as an important asset for this study, allowing for a 

verification of results. Differences in indices that were made comparable between two sensor 

products and matched further with reference data proves the novelty of the study. Results 

explicitly presented forest changes identifiable from the combination of indices using DESIS 

and S2 MSI datasets. Infested trees detection by S2 CVI and DESIS MCARI indices 

performed the best. However, individual results by S2 CVI and DESIS MCARI alone are 

mostly complementary. Combination of these two indices works very well where minute 

changes based on threshold defined proved existence of infested trees. Altering threshold 

limits for single indices were quite challenging due to spatial resolution of DESIS and S2 but 

it was managed and cross-verified by overlaying pixels upon orthomosaics that clearly 

displayed infested tree patches. The polygon detection and area coverage identified within 

infested regions yielded improved accuracies. Most of the larger polygons fall over infested 



 

50 

patches and single polygons represents trees cut down or windthrow areas. Though there 

was a slight influence of pixel size, sub-pixel level changes were detectable from DESIS.  

 

The objective behind following this method by interpreting simple differences between the VIs 

of two years is to show how reliable these indices are when applied to hyperspectral and 

multispectral datasets in detecting changes. Each index applied for both DESIS and S2 

irrespective of bio-physical parameters represented negative changes that are further refined 

for processing. In general, change detection using a hyperspectral dataset is quite complex 

compared to multispectral datasets. These could be due to changes that might occur 

because of spectral aspects as there are numerous contiguous bands [96]. But the difference 

image from combined indices was more consistent with statistics derived and field 

observations showing actual regions of vegetation loss. Changes in vegetation species within 

forest affected by infestation, windthrow, or drought indicates certain magnitude and direction 

of change that are identified from difference images. Moreover, these negative changes 

detected from VIs indicate potentially underestimated vegetation change which had 

happened over past two years. The results were acceptable not only through visual analysis 

but also by assessing accuracies with ground truth information. In a nutshell, change 

detection by integrating VIs and using combination of hyperspectral and multispectral sensor 

datasets to analyse vegetation shift patterns yielded potential outcomes spatially and 

statistically thus fulfilling objectives of this study.   

 

Additionally, a few limitations faced in this study includes threshold definition, where several 

tests were run to identify an appropriate range defining event occurrence as true. Since the 

field information had numerous tiny single polygons, matching pixels of 30 meters to some 

extent was highly challenging. Interpretation of S2 CVI was derived by observing pattern 

change from each individual index season wise to see how they behave with respect to its 

biophysical property. Further, cloud masking showed significant change in spectral response 

after applying F-mask for S2 time series inclusions from 2017 and 2018, but VIs had 

influence from cloud shadows.   
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5. CONCLUSION AND RECOMMENDATION  

5.1. Conclusions 

 

In this research work, a novel hyperspectral DESIS dataset in combination with multispectral 

S2 MSI time series were used to interpret changes in vegetation patterns by determining 

forest health status within BFNP. From this study, some of the derived conclusions are: 

• For DESIS, narrowband indices which focus on chlorophyll bio-physical parameter 

at red-edge range yielded potential information on negative changes occurring in 

conifers forests. In particular, MCARI, MRESR, MRENDVI were found useful. Most 

of the changes are observed near the northern part of the study area having dense 

young stands of conifers. These negative changes correspond closely to the 

infested areas that represents changes due to bark beetle attacks. Also, additional 

similarities between leaf pigment indices (CRI 1 and 2) having were observed. 

DESIS can therefore detect changes to some extent even with 30-meter GSD and 

proved that increased pixel size improves overall accuracies. Forest health 

monitoring from VIs were opted for this study as indices contribute a lot of 

information by reducing illumination effects or canopy shading aspects. Another goal 

was to combine the results with multi-temporal S2 acquisitions to produce a 

combined output to analyse spatial patterns of change in conifers species.  

• Further VIs estimated from S2 time series showed seasonal changes within certain 

areas of the forest. To interpret the correct year of larger infestation, the time series 

was expanded to check increased stress in conifers vegetation by sorting the 

datasets as per JD to match with DESIS. Mean of CVI, and other spectral indices 

were assessed and plotted as mentioned in section 3.1. Sorting JD close to each 

other enabled to check the differences between every index of S2. The results of 

2020 had few fluctuations due to some outliers but 2018 and 2019 looked fine. 

Higher differences were observed in 2020 and 2021 that were more visible but not 

much changes were seen in other years. The idea was to see if there were any large 

changes in years by observing the patterns of CVI. As an average, CVI showed up 

subtle changes than individual indices but these changes are not much due to 

seasonal variations. Also, the fact is that external environmental factors, both biotic 

and abiotic elements could be a driving force for vegetation degradation apart from 

bark beetle infestation and drought events. For monitoring forest change 

development over time there are only few datasets available having high temporal 

resolution like S2 MSI. Though they have comparatively lower number of bands, 
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some information from SWIR can be obtained which is still seen as a fallback in 

DESIS.    

• Using a combined detection index from DESIS and S2 provided the best information 

on changes between 2019 and 2021. When validating, the pixel count and area-

based approach with ground truth information reflected actual canopy cover loss in 

conifers that could be due to infestation by bark beetles or other environmental 

disturbance events. Therefore, a combination of time series data with high spectral 

resolution data was found to be superior to using only one source of information. 

DESIS, seen as a high-quality spectrally input dataset when combined with S2 

having finer spatial resolution proves to perform well, showing good agreement with 

ground truth reference observations. It is also inferred from the accuracy results that 

these two datasets determine their credibility when combined and applied for forest 

health monitoring studies.   

5.2. Recommendations  

 

A few suggestions as future work from this study could be listed as follows: 

 

• Expanding the time series of S2 with more cloud free or improved cloud-masked data 

for every season may provide consistent seasonal variations with which changes can 

be detected. 

• So far, only indices were used for interpretation of the results which were absolute 

values retrieved from direct difference between rasters. Another option would be 

using classification algorithms like Random Forest or using Radiative Transfer 

models.  

• Further inputs from the suitable indices found shall be used for training such models 

as changes were already identified.   
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APPENDICES 

Appendix 1: Combined Detection Index  

 

 

Statistics for modified Combined detection index “2*MCARI + CVI” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combined detection index to binary – Changes detected by DESIS + S2 + both 
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Appendix 2: Accuracy assessment 

 

MCARI Threshold definition  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCARI Original derived Accuracy - Correct No change 84% and Correct change 18%  

 

 
 

 

 

 

Binary file conversion (chose threshold) 
Mcari <  -0.01 as 1 

Mcari >= 0.003 as 0 
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MCARI Buffer to 30 meters  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCARI One pixel buffer accuracy - Correct No change 65% and Correct change 79% 

 

 
 

 

 

 

 

 

 

 

a) MCARI binary image overlayed with ground truth ROI in change regions 

(a) (b) 

b) Buffer for “change class” to 30 meters (identified change regions)  
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MCARI Clump class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCARI Clump class accuracy - Correct No change 68% and Correct change 70% 

 

 
 

 

 

 

 

 

 

a) MCARI binary image 

(a) (b) 

b) Clump class for “Change class” only (identified change regions)  
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In a similar way, accuracy estimated for S2 CVI 

 

CVI Original accuracy - Correct No change 84% and Correct change 20% 

 

 
 

 CVI Buffer pixels accuracy - Correct No change 52% and Correct change 61% 

 
 

 CVI Clump class accuracy - Correct No change 71% and Correct change 86% 

 


