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Abstract—Urban Air Mobility introduces safety-related chal-
lenges for future avionics systems. The associated need for
increased autonomy demands novel functions based on high-
performance algorithms. To provide such functionality in future
air vehicles of all sizes, the trend is towards centralized and
powerful computing platforms. That turns avionics into a com-
plex, integrated, and software-intensive aircraft system. Simul-
taneously, this increases the need for adapted safety analyses.
The System-Theoretic Process Analysis is a promising approach
to analyze the safety of software-intensive systems. It enables
consideration of interaction and specification issues additional to
component failures. However, even when using state-of-the-art
analyses such as STPA, claiming the sufficiency of the safety
analysis efforts is a challenging tasks for systems with ever-
increasing complexity. To address this issue, this paper extends
the coverage analysis concepts known from the software devel-
opment to safety analyses. This is achieved with the utilization
of failure graphs, i.e., formalized analysis summaries that can be
automatically created during the safety analysis. Failure graphs
have two advantages: they provide the possibility for visual
analysis state indication and can be used to calculate various
statistical metrics. Thereby, they allow to improve the knowledge
about the depth, breadth, and state of the safety analysis. Both
visual and statistical consideration complement each other to
enhance the safety analysis coverage assessment for future avionic
systems. To show all capabilities, the analysis of a flight assistance
system serves as demonstrator.

Index Terms—Safety, Coverage, Metrics, MBSE, STPA, SysML

I. INTRODUCTION

Safety is of utmost importance for systems in the aviation
domain, since accidents entail huge consequences in physical
harm, economic value [1], and public perception of involved
companies [2]. Claiming sufficiency of safety analysis ef-
forts is a challenging endeavor for future systems with ever-
increasing complexity. Essentially, the same issue applies as
for proving the absence of bugs by testing, where the difficulty
is well recognized [3]. Especially for avionics systems in
segments such as Urban Air Mobility (UAM), novel function
based on high performance algorithms and increasing soft-
ware complexity [4] complicate the claim of sufficient safety
consideration. For future systems, reducing the unknown and
unsafe scenario space will be required. This approach is also
targeted in the automotive domain with standards such as
Safety Of The Intended Functionality (SOTIF) [5]. To achieve

Umut Durak
Institute of Flight Systems
German Aerospace Center (DLR)
Braunschweig, Germany
umut.durak @dlIr.de

this goal, suitable safety analyses are needed. The System-
Theoretic Process Analysis (STPA) with its system-theoretic
analysis approach can contribute in this area, as highlighted
by the recent recommended practice SAE J3187 [6]. It allows
identifying interaction and specification issues additional to
component failures [7].

Even when using state-of-the-art analyses such as the STPA,
identification of all potential accident causes is not guaranteed.
In addition, the rising complexity also increases certification
difficulty. Hence, safety engineers require assistance for effi-
cient investigation and means to build sound safety arguments.
To cope with these challenges, adapted and more formal
practices to certify future safety-critical systems are required
[8]. Both analysis execution and the certification processes
could benefit from improved coverage assessments. That is
why this paper targets to improve coverage assessment of
safety analyses by providing statistical and visual indications
that enable assistance during multiple phases of the safety
analysis.

In the software-related context of DO-178C [9], Coverage
Analysis is defined as “the process of determining the degree
to which a proposed software verification process activity
satisfies its objective”. In this paper, we extend the cover-
age concept to the coverage assessment of safety analyses.
Therefore, a methodology will be presented that enables the
novel concept of Safety Analysis Coverage Assessment (SACA)
for the STPA. This is achieved by applying a formalized and
model-based STPA version on a system architecture modeled
with the Systems Modeling Language (SysML) [10]. Previous
work already demonstrated how a formalized STPA can be
integrated into SysML [11], [12]. By slightly extending this
approach, we demonstrate automated extraction of Failure
Graphs (FG), i.e., formalized analysis summaries, from the
model-based safety analysis.

Definition 1. Safety Analysis Coverage Assessment (SACA)
describes the process of determining the degree to which a
safety analysis process activity satisfies its objective.

FGs provide the means for automated visualization of
identified accident causes. Visualizing FGs in combination
with the corresponding analysis model gives a quick overview
of the safety analysis status. This visualization can even
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incorporate information about which parts of the FG were
assessed to be properly mitigated or approved by an authorized
agency. Beyond visual analysis, FGs can also be exported and
algorithmically analyzed for various properties. For instance,
statistical metrics can be calculated, assisting to identify weak-
nesses of the analyst team towards the detection of specific
accident causes. To demonstrate the methodology, a logical
architecture model of a Flight Assistance System is used in
this paper. Overall, the derivation and application of FGs
shows promising signs to improve SACA. Both visual and
algorithmic functionality complement each other to enhance
the SACA for complex avionic systems.

The following sections will elaborate the FG concept and
application in more detail. To introduce the topic, background
information will be provided in Section II. Using this baseline,
the FG concept will be outlined in Section III and demon-
strated in Section IV. Finally, the concept is discussed in
Section V and summarized in Section VI.

II. BACKGROUND

In order to provide a better understanding for the FG con-
cept, background knowledge will be introduced in this section.
This includes a short introduction to existing SACA activities,
the formalized STPA foundation, and a brief description of
the use case that will be used to demonstrate the methodology
within this paper.

A. Safety Analysis Coverage Assessment

Typically, guidance in terms of the aspects to be cov-
ered during safety analysis is provided by standards of the
corresponding domains. Software-intensive avionic systems
[13] will mainly need to consider guidance of documents
such as DO-178C [9] and DO-297 [14]. Similarly, the STPA
handbook itself proposes accident cause categories that should
be evaluated during analysis [7]. This failure categorization
can also be found in practical applications of the STPA [15],
[16]. Other than the classical categorization of accident causes,
it is argued that an important part of the safety analysis is
the assurance of a well-defined analysis model [17]. This
is especially important in a analysis such as STPA, where
the model-based control structure is the centerpiece for the
analysis execution. In this direction, [17] proposes ways to
establish confidence in the safety assessment by improving
the analysis model. Reviewing the STPA, [18] argues that
the systematic top-down approach of STPA already lays a
good foundation to identify many accident causes. However,
in current literature, there is a lack of automated and scalable
support for SACA. We argue that enabling such an automated
SACA support will be more and more important to assist in
the systematic analysis of systems with ever-increasing com-
plexity. One way of achieving scalable SACA support could be
the combination of Model-Based Systems Engineering (MBSE)
with safety analyses. For example, [19] proposes to use SysML
tables to support quick identification of element coverage for
analyses such as Failure Mode And Effects Analysis (FMEA).

B. Formalized Model-Based STPA

STPA is a rather novel safety analysis based on system-
theoretic principles and a control-based view of systems and
their interactions. The premise of the STPA is to identify
not only component-related failures, but also failures based
on interactions and specifications [20]. This analysis focus is
particular interesting for complex, software-intensive systems
[7]. During previous work, a formalized STPA version, first
introduced in [21], was integrated in a MBSE environment
[11]. Formalization is achieved by using SysML stereotypes
with precisely defined relationships that can be mapped to
every part of the STPA. This not only allows to automate
creating parts of the analysis, but also introduces the ability to
automate verification and validation activities. A sample ap-
plication of the analysis was published in [12]. In the SysML-
based analysis, the main steps of the STPA are recreated as
outlined in Fig. 1. In the first step, the analysis purpose has
to be specified. This includes the definition of hazards and
losses to be considered, as well as the definition of the system
boundary. In the second step, the control structure of the
system to analyze has to be modeled. The control structure
is the centerpiece of the STPA and lays the foundation for the
analysis execution. Important aspects of the control structure
are the interacting systems called controllers, their corre-
sponding Control Actions (CA), and the associated Process
Variables (PV). In the third step, the control structure helps
in combination with guidewords to identify potential Unsafe
Control Actions (UCA). In the final step, Loss Scenarios (LS)
and their Causal Factors (CF) are derived for each UCA.
After identification of LSs and their underlying CFs, mitigating
requirements can be derived and used to improve the overall
system safety.

Definition 2. Control Actions (CA) are actions provided by a
controller to achieve a change in the controlled process. Set
and element: CA, ca.

Definition 3. Process Variables (PV) are variables that rep-
resent important properties about the controlled process or
other relevant system- and environment-related aspects. They
provide valuable insight about the important aspects of each
controller. Set and element: PV, po.

Definition 4. Unsafe Control Actions (UCA) are CAs that, in
a particular context and worst-case environment, will lead to
a hazard [7]. Set and element: UC A, uca.

Definition 5. Loss Scenarios (LS) describe the Causal Factors
(CF) leading to the identified UCAs and ultimately to hazards
[7]. Set and element: LS, (5.

Definition 6. Causal Factors (CF) are underlying factors that
in a particular context lead to a LS. Set and element: CF, cf.

C. Flight Assistance System Use Case

Assuring non-functional properties for embedded systems is
an important part of certification in safety-critical sectors [9],
[14]. To assist in this process, an X-By-Construction toolchain
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is developed in the European XANDAR project' [22]. The
project focuses on enforcing non-functional properties in the
design process of embedded systems. To validate the toolchain,
two use cases will be utilized. One of the use cases is a
Flight Assistance System, developed by the German Aerospace
Center (DLR). Flight assistance will be increasingly important
for pilots in urban air scenarios since pilots have to execute
many tasks while monitoring multiple functionality at the same
time. Airborne vehicles will have to cope with higher traffic
densities while also avoiding tall structures. Hence, desired
assistance includes advisories regarding traffic and terrain.
Further, navigational advisories are also very important to
guide the vehicle to the correct destination. To enable such
functionality for UAM vehicles, a suitable assistance system
needs to be developed. The corresponding high-level logical
architecture is shown in Fig. 2. The main components of
the architecture are the following: a Data Acquisition System
enabling perception of the situation, an Avionic Computer pro-
viding all computational functionality, and a Pilot Assistance
HMI that notifies the pilot in case of dangerous situations.
Within this paper, the logical use case architecture will be
used to demonstrate the FG concept in Section IV.

Uhttps://xandar-project.eu/

III. PROPOSING FAILURE GRAPHS
A. Failure Graph Concept

As introduced, the trend towards complex and software-
intensive systems enforces new challenges on the development
processes and certification. This strengthens the need for
a systematic safety assessment that enables SACA support
during analysis execution and certification. Consequently, the
FG concept will be introduced, allowing for various assistance.

Definition 7. Failure Graphs (FG) are formalized safety
analysis summaries. They are created for every CA that was
analyzed with the STPA and inherit the structure of the
STPA execution. Thereby, they contain the entire accident
cause information as well as the corresponding interconnection
identified within the analysis. Set and element: 5, fg.

In terms of processing, FGs provide the ability to extract
important SACA-related metrics. Metrics will be especially
essential for the systematic assessment of complex systems,
where it is not obvious when the analysis is sufficiently
executed. In such cases, metrics might be essential to create a
safety case to certify future systems.

Looking at the safety analysis execution, a tight coupling
between the development and analysis activities would allow
various benefits. For instance, a combination of development
activities and safety analysis execution would enforce the
usage of the same system state for development and safety
aspects. Considering the FG concept, the integration would en-
able a visualization of the identified accident cause relations in
combination with the development model. These visualizations
can be used to facilitate interdisciplinary discussions between
safety and development engineers that would ultimately lead
to improved system safety.

B. Failure Graph Structure

After explaining the concept behind FGs, a more concrete
implementation structure will be presented. The idea was to
build FGs upon a formal STPA structure. To outline how a
FG will be extracted, an overview image of the underlying
relationships is provided in Fig. 3. FGs shall be created for
every analyzed CA. In Fig. 3, it is shown how every CA can be
linked to one or more unsafe counterparts identified during the



initial analysis. Every identified UCA can be caused by one
or multiple LSs, which again have their own CFs. Exemplary
causes are inadequate incoming CAs, inadequate PVs or even
multi-causal combinations of these factors. Considering these
connections, a FG covers a complete analysis summary for one
specific CA, including all related unsafe scenarios and their
corresponding CFs. Due to the fact that a CA can again be
a CF for a failure in a LS, a hierarchical linking of FGs can
be established. For instance, in Fig. 3., fg.q, is also linked to
f9:a, because of ca; being a CF identified for a ca related
LS as highlighted in red. With this connection, the depth of
the FG is extended by one level in the example. This linking
will be from now on referred to as depth-level:

Definition 8. Depth-Level refers to the level of repeated
linking of FGs. Hierarchic linking is established when a FG
is linked to another FG through a CF (e.g. a CA).
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Fig. 3: Formalized Safety Analysis Structure

C. Foundation & Creation of Failure Graphs

To make the automatic creation and application of FGs pos-
sible, a sufficiently formalized analysis structure is required.
Without this being the case, it is not possible to automate
the creation of FG analysis summaries. The prerequisites can
be met with the usage and slight extension of the formalized
and model-based version of the STPA previously introduced
in Section II-B. To create a FG automatically, every analysis
step has to be linked and the results formalized. This was
not the case for the LS description in the previous analysis
implementation [11], [12], where only textual rationals were
used to document the LSs in the UCA elements. To formalize
the LSs, the textual rationals were extracted from the UCA
elements and a separate LS element type was created. This
new LS element type includes all required properties and
thereby enables a linking of related model elements as visible
in Fig. 4. LS properties that should be defined are: Causal
Factor Classification, Causal Factor Source, Causal Factor,
Loss, Mitigations, and Approval. Each of these values provides
the ability to establish a link to one or more corresponding
model elements (systems, interactions and requirements). In
addition, the textual description of the LS is included in the
form of the Loss Scenario Description. In the LS element,
multiple CFs can be linked simultaneously. This consideration
of multi-causal accident causes is an important property of the
STPA and distinguishes it from bottom-up safety analyses such
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as FMEA. Without the ability to consider multi-causal issues,
non-trivial LSs can be missed [7].

In summary, the previously called rationale was extracted
from the UCA elements and formalized in a separate LS
element. In combination with the already established formal-
ized and model-based STPA of Section II-B, this provides
a sufficient basis to implement the FG concept. Finally, the
split-up also enables the reuse of identified LSs in multiple
UCA elements. A reuse of LSs can be useful to link accident
causes that are relevant to more than one UCA. This removes
repeated entries of the same failure cause and thereby reduces
ambiguity. In addition, this can improve analysis efficiency in
some cases, where the failure-related causation is very similar.
One example could be that a power-related LS similarly effects
multiple outputs of the Avionic Computer. In Fig. 3, the
repeated linking of the same (4; element is highlighted in
blue to exemplify such a structural relation.

Definition 9. LS Repeat Rate describes the ratio of LSs that
are used more than once in a FG over the number of overall
identified LSs linked to the FG.

Since FGs are based on the formal relationships shown in
Fig. 3, they can be easily extracted after executing the model-
based STPA. An exemplary algorithm layout to create FGs is
provided in Alg. 1. Using the existing UCA, L8, and CA
sets of the executed analysis, the overarching F( set can be
created. The overarching F( set includes a fg., for every
analyzed ca element.

D. Failure Graph Metrics & Visualization

After the analysis execution, the created FGs can be used
to support the SACA. This support is possible in multiple
ways. Metrics can provide insight into the depth and breadth
of the analysis execution, and also help to identify potential
weak spots. More precisely, they can give an overview of
how deep every CA was analyzed and how many LSs were
identified. Similarly, the type of the identified CFs can give an
insight into the potential biases of the analysis execution. For
instance, if only causes of one specific type (e.g. environmental
or component failure) were identified, other categories of
accident causes might have been overlooked. A reason for this
could be that the expertise of the safety engineer executing



Algorithm 1: Creating Failure Graphs
Imput: UCA, LS, CA
Output: 5¢
// create a fg.. for each ca
forall ca in C.A do
fgt‘a = {}
// uca connects ca to (4
forall uca in UCA do
// check if ca is ¢f in uca
if ca is cf in uca then
// add wuca info to fg.
fgm = fgt‘a Uuca
// loop linked (s of uca
forall (s,., in LS, do
L // add (44 info to fg
fgua = fgua U [)Auca

// add fg.. to overall F(@ set
L FC=5CGU /g
return Q¢
// if cause of fg.. is other fg...,
// recursive linking is possible

the analysis lies in a specific field. The consideration of
irregularities in causal categories relates metrics to SACA
considerations described in Section II-A.

In this paper, the following metrics will be used to demon-
strate how FGs can be leveraged to improve the SACA:

« Bias and weakness indicating metrics:

— Classifications of LS causes per CA
— Classifications of LS causes per UCA

o Analysis state indicating metrics:

— Percentage of approved LSs
— Percentage of mitigated LSs

o Depth and breadth indicating metrics:

— Depth of FG per CA

— Number of UCAs per CA
— Number of LSs per CA

— Repeat rate of LSs per CA

In addition to the extraction of metrics, FGs enable visual
SACA support. This is especially helpful in combination with
the corresponding control structure diagram. To support the
SACA of specific CAs, the corresponding FG can be created
and visualized in parallel to the safety analysis execution.
Thereby, a simultaneous SACA is enabled. Furthermore, it is
possible to integrate specific feedback about the status of the
analysis. This is possible since the formalized analysis style
already includes properties to link mitigations and indicate
approvals in the LS elements of Fig. 4. Hence, when using
these entries, the analysis state is always known and can
be visualized. For a FG visualization in the system model,
the use of a traffic light principle is proposed to color the
background of elements in the following ways. Red highlights

elements that were identified as accident cause in one or
more LSs. highlights elements that were not only
identified, but also mitigated in all related LSs. Green high-
lights elements that were identified and approved in all related
LSs. Creating this visualization is always viewed in context
of a corresponding control structure diagram. Therefore, the
state s = {none, identi fied, mitigated, approved} has to be
evaluated and visualized for every element of the diagram.
This can be achieved with an algorithm such as Alg. 2,
where for each element e of the diagram’s element set &, the
lowest state in any related LS is identified. In the following
application Section IV, the visual and algorithmic features of
FGs will be demonstrated.

Algorithm 2: Visualizing a Failure Graph

Input: fg..,8&
Output: &,
// &, collects all element states e,
& ={}
// Evalute state for all e in &
forall ¢ in & do
// e, defines state of e
e, = none
// Evaluate if element ¢ is cause
// in any fg related to action ca
if ¢ is ¢f in fg.. then
// Find lowest state 4 of e
if ¢ is approved, ¥ (s in fg., then
| e, = approved
else if ¢ > matigated, ¥V (s in fg.. then
| e, = mitigated
else
| e, =identified
| &, =8, Ue,
return 8,

IV. APPLYING FAILURE GRAPHS

In this section, the application of FGs will be demonstrated
using the Flight Assistance System introduced in Section II-C.
Considering the number of steps used to execute the STPA
as outlined in Fig. 1, only an excerpt can be shown in this
paper. Hence, focus was directed towards diagrams containing
the output of the analysis execution. Namely, diagrams 4.1
to 4.4 of Fig. 1 are used to provide the basis for the FG
demonstration. Due to the length limitations, diagrams and
tables can only be partly displayed.

A. Assistance System STPA Execution

The Flight Assistance System’s high-level control structure
is displayed in Fig. 5. For now, the background coloring of the
diagram parts can be ignored, since this feature will be covered
at the end of this section. In addition to Fig. 2, it is now
visible how the logical system architecture parts and their inner
and outer CAs build up the control structure. Additionally, all
controllers are enriched with information regarding internal
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process-related variables. For example, the Model of Terrain
is an important PV of the Avionic Computer that has influence
on calculating terrain, but also navigation-related advisories.
In the following parts of this section, focus will be directed
towards the Calculated Advisories provided by the Avionic
Computer to the Pilot Assistance HMI.

Following the STPA execution of Fig. 1, the second part
of Identifying Unsafe Control Actions lays the foundation for
Identifying & Mitigating Causal Factors. An exemplary UCA
entry is shown in Fig. 6, stating that it was identified to be
dangerous, when the Avionic Computer applies unnecessary
Calculated Advisories to the Pilot Assistance HMI. To support
the engineer in the identification of LSs, information such as
incoming Command Variables, Feedback Variables as well
as internal Process Variables of the Avionic Computer are
automatically provided. Using this information, LSs were
derived and linked in the UCA element. Two of the five LSs
linked in Fig. 6 are again shown in more detail in Fig. 7, where
the newly introduced and formalized structure is applied. In
the formal LS elements, a linking to other model elements
is established with the Causal Factor Source, Causal Factor,
Loss, and Mitigations entries. Additionally, a textual Loss
Scenario Description is provided, as well as the ability to
state sufficient compliance with the Approved entry. The first
LS of Fig. 7 describes that the Model of Terrain used to

generate advisories always needs to be up-to-date. Otherwise,
inaccurate advisories can be generated as described in the Loss
Scenario Description. In the worst case, unfitting advisories
could contribute to a Near Mid Air Collision (NMAC) or
Controlled Flight Into Terrain (CFIT). As Causal Factor
Source, the Avionic Computer itself is specified while the
Model of Terrain is linked as corresponding Causal Factor. To
mitigate the identified causation, a requirement was derived in
Fig. 8 and linked in the LS. For this LS, it was exemplary
shown with the Approved entry, how a certification agency
could state sufficiency of introduced mitigations.

B. Failure Graph Interpretation

Even though the analysis process was only shown in more
detail for the Calculated Advisories of Fig. 5, it should be
executed for all CAs of the control structure. This includes
CAs such as: Traffic Advisories, Terrain Advisories, Change
Settings, Intruder State, Aircraft State. All of the information
collected through the corresponding STPA execution can be
used to automatically create FGs for each of these CAs. A
segment of the FG created for the Calculated Advisories is
shown in Fig. 9. It is structured according to the formal
FG relationships presented earlier in Fig. 3. This relation is
highlighted by the information annotated using curly braces.
It is important to note that only the first depth-level of the
FG is shown in Fig. 9. The depth-level refers to hierarchic
linking of FGs, which can happen when CAs are the cause
identified within a FG as described at the end of Section III-
B. Similarly, for all metrics presented in the following, only
the first depth-level will be used.

In TABLE 1, extracted metrics are displayed that help to
understand the depth, breadth and analysis state. For instance,
the distinct count of UCAs and LSs helps to quickly get an
idea of the extent to which the analysis was executed. When
comparing the counts of the Calculated Advisories with the
counts of the Change Settings CA, a big disparity regarding the
identified LSs can be observed. This indicates that a lot more
effort was placed on analyzing the Calculated Advisories.
Similar observations can be extracted for all analyzed CAs.
Additionally, the UCA to LS count ratio might be an interest-
ing indicator in some instances. When very similar CAs show
huge differences in the number of UCAs, LSs or even their
ratio, it might be necessary to look into the reasoning. This
could help to identify missing UCAs or LS reasons, leading
to a more exhaustive analysis.

Since LSs can be reused in multiple UCAs as explained
in the end of Section III-C, an interesting indicator is the LS
repeat rate. The repeat rate in this paper shows the percentage
of individual LSs that are used in more than one UCA. This
is only one way of many to calculate the repeat rate and could
be adapted if preferred. In TABLE I, we can see that the LS
repeat rate is very high for the Terrain Advisories. This could
lead to the false impression of a further advanced analysis
state because every UCA might have many LSs linked to it.
Furthermore, a correlation between the number of UCAs and
the repeat rate is visible. This is reasonable, since the benefit
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Fig. 7: Identified Loss Scenarios with Formal Linkage to Model

TABLE I: Extracted Depth, Breadth and Analysis State Metrics for Analyzed CA

Analyzed CA Depth  UCA Count LS Count LS Repeat Rate  Mitigated  Approved

Calculated Advisories 2 3 14 21% 86% 21%

Traffic Advisories 3 6 13 31% 8% 0%

Terrain Advisories 3 6 12 75% 8% 0%

Change Settings 3 4 3 33% 0% 0%

Intruder State 1 3 10 0% 0% 0%

Aircraft State 1 3 3 0% 0% 0%
# Name Text | classification of the CF was introduced. When deliberately
1 @ 20025 UptoDate An up-to-date terrain model shall be filling out the corresponding classification, valuable insight
Weipln Dats  pusedie caalEhe Bive reiaied fisoes, can be gained. In TABLE II, the classifications are shown for

The aircraft state input to the avioni .

5 (5] 2001, Monitor Aircraft CO;SLrgfshzlf:e':f:nitgredetg";:fre every analyzed CA. For the Calculated Advisories, the most

State Input only reasonable states being transferred.

Fig. 8: Mitigating Requirements

for reuse increases with a higher number of potentially similar
UCA:s.

In terms of the analysis state, the counts only give a partial
overview. To get a broader idea of the analysis state, it is also
relevant to look at the percentage of mitigated and approved
LSs. TABLE I shows that only the Calculated Advisories
contain a high rate in terms of mitigated and approved LSs.
This rightfully indicates that currently, the analysis is only
further advanced in regard to the Calculated Advisories. Initial
analysis focus in the project was directed towards the Calcu-
lated Advisories, because the Avionic Computer will be the
main target for the use case driven evaluation of the XANDAR
toolchain introduced in Section II-C.

The final metric-related examples introduced in this paper
provide insight into bias and potential weaknesses of the
executed analysis. Within the LSs, the ability to specify a main

LS causes were attributed to process-related issues. On the
other side, no causes were attributed to human-related issues.
Even if the Avionic Computer does not take direct input of the
Pilot, still a bunch of human-related LSs affecting the Avionic
Computer could be present. Exemplary, the Change Settings
CA from the Pilot might also propagate through the Pilot As-
sistance HMI to the Avionic Computer and cause a selection of
an inappropriate operational mode. Another example would be
the maintenance crew that has the ability to cause malfunction
of the Avionic Computer, when maintenance is not rightfully
executed. Here, a reason for not identifying the potential issues
could be the missing connection to the human-operators in the
control structure of Fig. 5. As visible with this example, the
classification amount allows identifying potential weaknesses
of the analysis. In general, an interpretation of the metrics can
be executed in multiple hierarchical levels. For instance, on
a overarching analysis level, the summed number per cause
classification can help to identify biases. In TABLE II, a
substantial number of causes were attributed to process-related
issues. Hence, it is possible to question this amount and
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Fig. 9: Failure Graph Extract of Calculated Advisory (1% Depth-Level)

identify biases of the analyst team. Biases could be introduced
by the analysis process, the analyst’s experience, and many
other factors. If biases and weaknesses are identified after
thorough consideration of the classification values, supportive
measures can be introduced for long-term improvement of
the safety assessment. Exemplary measures are the training of
analysts in areas of identified weaknesses, the staff extension
with corresponding experts or the purposeful adjustment of the
analysis process.

Additional to the algorithmic analysis of FGs, the advan-
tages of introducing visual SACA support will be demon-
strated in the following. As explained at the end of Section III-
D, a visual support is preferably established in combination
with the control structure used for the analysis. Hence, in
Fig. 5, a FG is visualized on top of the control structure
diagram. Again, the FG for the Calculated Advisories is
used for demonstration purposes. Unlike the previous FG cut-
off after the first depth-level, the visualization benefits from
using the full depth-level. All calculated depth-levels of the
analyzed CAs are listed in TABLE I. Looking at the Calcu-
lated Advisories FG visualization in Fig. 5, the two depth-
levels of analysis are emphasized through the background
coloring. Since both Intruder State and Aircraft State were
found to be a potential LS cause for an inadequate Calculated
Advisories execution, also their respective LS causes have to
be considered and mitigated to ensure correct functionality.
Since no feedback or input is currently envisioned from the
Pilot Assistance HMI to the Avionic Computer, no direct

causal connection was identified. This is something that should
be investigated and adjusted accordingly.

Not only the causal relationships of component CAs can be
emphasized by visualizing FGs. Another important aspect is
the coloring of control structure parts. Through the traffic light
principle, the analysis state can be quickly observed. All parts
that do not include any coloring were not identified as a part
of the Calculated Advisories FG. In Fig. 5, this among other
includes the Model of Aircraft Motion, which could surely be
a CF for an inadequate advisory. Hence, parts that were not
even considered once can be quickly identified. Furthermore,
the traffic light coloring scheme underlines the analysis state.
It is visible through the orange and green coloring that most
of the identified accident causes of the Avionic Computer were
at least mitigated and some even approved. This is not yet the
case for the accident causes of the Data Acquisition System.
Overall, during the analysis, the visualization proved to be a
very valuable tool to identify missing analysis parts in multiple
facets. In some cases, the LSs were even identified but not
linked to the corresponding UCAs. Here, the missing coloring
led to a quick identification of the missing establishment of
formal links.

Using the SACA supporting concepts in combination with
the STPA as presented in this paper, a more exhaustive safety
analysis was enabled for the Flight Assistance System used
in the XANDAR project. As a result, valuable safety-related
requirements for the use case itself, but also the toolchain that
is developed within the project were derived. Additional to



TABLE II: Extracted Loss Scenario Classification Count for Analyzed CAs

Analyzed CA Input  Algorithm  Environment  Process Component  Transfer =~ Human
Calculated Advisories 2 1 1 7 2 1 0
Traffic Advisories 0 3 2 3 1 2 2
Terrain Advisories 0 3 2 2 1 2 2
Change Settings 0 0 0 0 0 0 3
Intruder State 0 2 1 3 1 3 0
Aircraft State 0 0 0 0 1 2 0
Summation 2 9 6 15 6 10 7

the requirements, safety-guided architecture extensions were
introduced through the results.

V. DISCUSSION

Within this paper, the formalization of the previously in-
troduced model-based STPA implementation was extended.
These extensions allow novel functionality such as the SACA
support by using automatically created FGs. With this exam-
ple, it is visible that even a small extension of the formalization
enables novel automated functionality. Since formalization in
a model-based context can be easily established by linking
model elements, there should not be a big barrier for practical
application. Safety analysis formalization not only allows
SACA support as presented in this paper, but enables a
lot of helpful features. Other automatable examples include
the creation of safety artifacts, the execution of verification
activities [11] and the tracing of design changes towards safety
artifacts [23]. It is therefore possible that the FG analysis
summaries can enable a lot of functionality additional to the
SACA-related support that was presented in this paper. For
the efficient development and safety assessment of complex
future systems, we would argue that both formalization and
resulting automation will become increasingly necessary.

However, there are also some areas that require careful
consideration and training when working with automation.
Looking at the current visualization of FGs, it has to be
considered that it is not represented how thorough each of the
control structure parts was analyzed. Therefore, two diagram
elements can appear in the same coloring even if one was
approved in one and the other approved in hundreds of LSs.
Reason being that the visualization only marks the lowest
analysis state of all related LSs. Thus, conclusions should
only be carefully derived from automated functionality such
as visualization, which requires training. Thinking about the
approval process, this information can be still really valuable.
If the agency wants to make sure that every LS-related to one
CA was approved, all parts of the related control structure
have to appear with a green background coloring. To extend
the SACA-related knowledge gained from the visualization
with additional information about the depth of the analysis
execution, the introduced metrics can be used. This highlights
the potential synergy of combining the FG visualization and
the related metrics to improve the overall SACA. For instance,
the background coloring could be adjusted in terms of the
darkness depending on the number of LSs calculated by the
metrics.

After considering limitations of the visualization, also the
limitations of metrics have to be discussed. Metrics can
indicate analysis weaknesses, but are not the panacea. They are
not able to provide full insight into the quality of the analysis
execution and results. Hence, interpretation always requires
caution. In a company or for a certification agency, they should
not be used as a sole indicator for the analysis quality. This
could lead to deliberate manipulation to adhere to company
or agency-related requirements. Additionally, metrics always
need to be interpreted in context of the analyzed system, since
the classification of accident causes can be highly depended
on the corresponding context. For instance, if a system under
analysis directly involves a human operator, the likelihood of
human-related accident causes should be a lot higher than if no
humans are directly involved. Similarly, the classification into
groups can be ambiguous sometimes and should be clearly
defined beforehand.

VI. CONCLUSION & OUTLOOK

To support the SACA for software-intensive, cyber-physical
systems, analysis summaries in the form of FGs are introduced
in this paper. When applying a formalized safety analysis,
FGs can be automatically extracted and enable algorithmic
as well as visual SACA indications. Both algorithmic and
visual indications complement each other to reach the final
goal of improving the SACA for future safety-critical systems.
Additional to the presented techniques, there are many ways
to leverage formalization for SACA support just waiting to
be discovered. This is why we want to encourage people
to think about formalizing parts of their safety assessment.
Formalization can be achieved without a lot of effort or
required expert knowledge in a model-based context. In our
opinion, focus should be directed towards automating error-
prone and facilitating creative parts of the analysis. Especially
for future and iterative developments of complex software-
intensive systems, the need for automation also within the
safety analysis will rapidly increase. However, integrating
automation in the assessment process will still demand proper
training to avoid intentional and unintentional misuse. Moving
forward, it should be further evaluated how the presented
derivation of SACA fits together with the overall assessment
process of safety-critical systems. One area of synergy could
be the combination with systematic and model-based safety
assurance cases.
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