IVHM FOR UAVs FOR FUTURE MRO – OPERATIONAL FRAMEWORK, REQUIREMENTS, AND GAP ANALYSIS

Ann-Kathrin Koschlik, Hendrik Meyer, Jan Torben Dohmen and Florian Raddatz

German Aerospace Center- Institute of Maintenance, Repair and Overhaul

Knowledge for Tomorrow

1st International Conference for CBM in Aerospace, 24.-25.05.22, Delft

Importance of MRO for UAV

UAV crash close to skier Marcel Hirscher 22.12.2015

IVHM in Product Life Cycle

- Integrated vehicle health management (IVHM)
- Capability of systems to assess current and future state of member system health
- Framework of available resources and operational demand

Research Questions

- What are current regulations concering the MRO of UAVs in order to enable highly automated operations in urban area?
- And what is the impact on the IVHM design?

Agenda

- 1. Introduction & IVHM concept
- 2. Operational framework for UAV
- 3. Regulations for operations
- 4. IVHM strategies
- 5. Conclusion

Three operational use-cases

- The EU regulations 2019/947 [3] and EASA 2919/945 [4] introduces three classes
 - Open category (no-approval)
 - Specific category (higher risk)
 - Certified (~manned operation)

Sparsely operated area# manual control# BVLOS

Urban area# manual control# BVLOS

Assembly of People# autonomous flights# BVLOS

[1]

Certification of UAS – Specific Category

Specific Operations Risk Assessment (SORA)

- Multi-stage process of risks (ground and mid-air collision)
- Resulting in Specific Assurance and Integrity Level (SAIL)

Low risk (SAIL I & II)		Me (SA	Medium risk (SAIL III & IV)		High risk (SAIL V & VI)	
		Scenario	l Scenai	io II	Scenario III	
	SAIL Level	III		V	V	

[AMC and GM to Commission Implementing Regulation (EU) 2019/947]

Operational Safety Objectives (OSO)

- In total 24 OSOs
- 4 categories:
 - Technical issue with the UAS
 - Deterioration of external systems supporting UAS operations
 - Human Error
 - Adverse operating conditions

5 relevant OSOs identified

#OSO 03 - UAS maintained by competent and/or proven entity

Μ

L

Μ

Η

Η

Level of integrity	Task/ Item	Details	Realized by	Released/ supported by
Low level	Maintenance instructions	Maintenance routines	Authorized mainenance staff	OEM
Medium level	Maintenance programe	Scheduled Maintenance activities + Documentation of maintenance acitivies	Staff members with respective qualifications	The respective competent authority
High level	Maintenance procedure	Detailed description for the maintenance tasks	Similar to medium	Third party

#OSO 03 - UAS maintained by competent and/or proven

ICAs := Instruction for continuous Airworthiness CAO-CAM (not formal denomination) := Part-CAO organization with continuing airworthiness management privilege.

IVHM for future MRO

Conclusion

- Currently MRO not sufficiently considered for small-scaled UAVs
- Future demand expected for certified as well as for specified category
- Need for Continuous Airworthiness & Maintenance Organization (CAMO)
- Promising concept of IVHM in order to bridge the gap for efficient and holistic MRO processes

Thank you for your attention!

Bibliography

References

[1] Infront Sports & Media AG. Updated Statement – regarding FIS Alpine Ski World Cup, slalom race, on 22 December 2015. https://www.infront.sport/en/news/updated-statement-regarding-fis-alpine-ski-world-cup-slalom-race-on-22-december-2015 (accessed June 22, 2022).

[2] Jennions, I. K. *Integrated Vehicle Health Management: Perspectives on an Emerging Field*; SAE International: Warrendale, PA, 2011.

[3] EASA. Acceptable Means of Compliance (AMC) and Guidance Material (GM) to Commision Implementing Regulation (EU) 2019/947: Annex I to ED Decision 2019/021/R, 2019.

[4] Office, P. COMMISSION DELEGATED REGULATION (EU) 2019/945: on unmanned aircraft systems and on third-country operators of unmanned aircraft systems, 2019.

[5] European Commission. COMMISSION REGULATION (EU) No 1321/2014: on the continuing airworthiness of aircraft and aeronautical products, parts and appliances, and on the approval of organisations and personnel involved in these tasks, 2014.