
DELOOP: Automatic Flow Facts Computation1

using Dynamic Symbolic Execution2

Hazem Abaza1 !3

TU Dortmund, Germany4

Zain Alabedin Haj Hammadeh !�5

Institute for Software Technology, German Aerospace Center (DLR)6

Braunschweig, Germany7

Daniel Lüdtke ! �8

Institute for Software Technology, German Aerospace Center (DLR)9

Braunschweig, Germany10

Abstract11

Constructing a complete control-flow graph (CGF) and computing upper bounds on loops of a12

computing system are essential to safely estimate the worst-case execution time (WCET) of real-13

time tasks. WCETs are required for verifying the timing requirements of a real-time computing14

system. Therefore, we propose an analysis using dynamic symbolic execution (DSE) that detects15

and computes upper bounds on the loops, and resolves indirect jumps. The proposed analysis16

constructs and initializes memory models, then it uses a satisfiability modulo theories (SMT) solver17

to symbolically execute the instructions. The analysis showed higher precision in bounding loops of18

the Mälardalen benchmarks comparing to SWEET and oRange. We integrated our analysis with19

the OTAWA toolbox for performing a WCET analysis. Then, we used the proposed analysis for20

estimating the WCET of functions in a use case inspired by an aerospace project.21

2012 ACM Subject Classification Computer systems organization → Real-time system specification;22

Software and its engineering → Real-time systems software23

Keywords and phrases Real-Time, WCET, Symbolic execution24

Digital Object Identifier 10.4230/OASIcs.WCET.2022.325

Acknowledgements The authors thank Prof. Dr. Heiko Falk for his valuable feedback. Also, they26

thank Patrick Kenny for proof-reading the paper.27

1 Introduction28

Timing analyses aim to verify the timing constraints of a computing system. A timing29

analysis should start with computing a safe upper bound on the worst-case execution time30

(WCET) of each task (or sub-task in the case of directed acyclic graph (DAG) tasks) in31

the computing system. Then, a response-time analysis or a schedulability test should follow32

considering the scheduling policy and the deadline of each task. Estimates of the WCET of33

tasks can be obtained by using measurement, static or hybrid methods. The applications34

may be complex, therefore, the choice of the best method is not straightforward. However,35

only the static methods can cover all corner cases and can therefore provide safe upper36

bounds on the WCETs. Also, the development process is iterative, hence, setting up a static37

analysis would potentially save time and effort after applying changes compared to using38

measurements.39

1 This author’s contribution has been conducted at the German Aerospace Center (DLR) while pursuing
his Master’s degree

© Hazem Abaza and Zain Alabedin Haj Hammadeh and Daniel Lüdtke;
licensed under Creative Commons License CC-BY 4.0

20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022).
Editor: Clément Ballabriga; Article No. 3; pp. 3:1–3:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hazem.abaza@tu-dortmund.de
mailto:zain.hajhammadeh@dlr.de
https://orcid.org/0000-0001-7539-2393
mailto:daniel.luedtke@dlr.de
https://orcid.org/0000-0002-6758-1562
https://doi.org/10.4230/OASIcs.WCET.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

A static WCET analysis has to provide an abstract model of the micro-architecture40

including, e.g., pipeline and caches, and facts on the program flow. Flow facts include41

program control-flow and upper bounds on loops. The Implicit Path Enumeration technique42

(IPET) computes the WCET as an objective function maximization in an integer linear43

programming (ILP) problem of the abstract interpretation of the micro-architecture and44

the execution paths of the program [19]. This paper presents an analysis based on dynamic45

symbolic execution (DSE) to automatically 1) compute upper bounds on loops and; 2) resolve46

indirect jumps to construct the control flow of the program. Automatic loop bounding and47

indirect jump resolution are desirable over manual annotation, which is error-prone and48

sometimes not manageable due to the amount of annotation needed [8].49

DSE is a systematic approach to explore program paths and defining predicates [4]. A50

satisfiability modulo theories (SMT) [7] solver checks the satisfiability of the predicates to51

identify the next path. DSE has been used widely in computer security for, e.g., vulnerability52

discovery and reverse-engineering [27]. We use DSE in this work to explore program paths53

to identify potential jump targets and compute loop bounds. DSE reports results based54

on the given input values to the program, therefore, it cannot guarantee computing a safe55

upper bound on the loop bounds for applications implemented as an input-value-based state56

machine. In such applications, a value analysis should support DSE. However, applications57

that are implemented following the data-flow programming paradigm can use our DSE-based58

analysis safely as long as the control flow is input-value independent. In this work, we have59

special interest in data-flow applications, such as some on-board data processing (OBDP)60

applications. Hence, a value analysis is beyond the scope of this paper.61

Developing embedded software using the inversion control programming principle improves62

modularity and maintainability [10]. Therefore, it is not uncommon nowadays to develop63

embedded software using e.g. C++-based software frameworks. C++-based software64

frameworks are the main motivation for this work. The German Aerospace Center (DLR)65

has developed a C++ software framework for developing OBDP applications, called Tasking66

Framework [17]. We will use it in this paper as a case study. Modularity and maintainability67

come at the cost of the underlying complexity. Therefore, performing static WCET analysis68

for such software is challenging. The challenges can be narrowed down to:69

Control-flow reconstruction due to indirect jumps70

Indirect jumps result mainly from virtual methods. They ensure that the correct function71

is called for an object. Calling a virtual method is translated at the binary level to an72

indirect jump instruction, in which the memory location of the target function is stored73

in a register. In Listing 1, the function synchronizeStart() in the Tasking Framework is74

defined as a virtual method. Listing 2 shows in Line 3 how the call is translated to an75

indirect jump in assembly. Such as branching instruction is challenging for the static76

analysis as it fails to fully construct the control-flow graph (CFG).77

Listing 1 Indirect jump inside a simple for-loop where the bound is known at compile time
78

1 void Tasking : : TaskImpl : : s ynchron i z eS ta r t (void){79
2 for (unsigned int i = 0 ; (i < inputs . s i z e ()) ; i++){80
3 static_cast<ProtectedInputAccess&>(inputs [i]) . s ynchron i z eS ta r t () ; } }8182

Listing 2 Indirect jump in the assembly code
83

1 00009 cca l d r r3 , [r3 , 0 x7f f000000000]84
2 00009 ccc move r0 , r285
3 00009 cce blx r38687

H. Abaza et al. 3:3

Loop Bounding88

Loops that iterate over lists as shown in Listing 3 are specially challenging source-level89

loop bounding tools. The information about the list’s size and its location in memory is90

not always available at the source level and requires additional binary level analysis to91

extract. Even simple for loops like the one presented in Listing 1 may be bounded by an92

object’s value, which requires knowledge of the content of the memory location where93

the object is stored. Moreover, some loops are only available at the binary level. For94

example, constructing n objects from the same class sometimes is translated into loops95

at the binary level. These loops are hard to detect and bound at the source level.96

Listing 3 A loop iterates over a bounded list
97

1 //The loop i t e r a t e s over the a s s o c i a t e d inputs to n o t i f y the t as k .98
2 void Tasking : : Channel : : push (void) {99
3 for (InputImpl∗ i = m_inputs ; i != NULL; i = i−>channelNextInput){100
4 i−>not i f y Input () ; } }101102

Our analysis uses a low level intermediate representation (LLIR) of the analyzed program103

as input. It translates each instruction into an SMT formula and symbolically executes them.104

We build a memory model, stack model, and register model to enhance the DSE such that105

each SMT formula updates the memory, stack and register models accordingly. With the106

help of a loop detection algorithm, namely Johnson’s Algorithm [20], we bound loops.107

We evaluated our analysis on the Mälardalen benchmark and compared the results with108

other tools, e.g., oRange [5]. The results showed high precision in bounding loops. We used109

the proposed analysis to provide flow facts to the open-source toolbox OTAWA [2]. Then110

OTAWA was used to compute the WCET of some Tasking Framework methods for the111

Cortex M3 architecture.112

The rest of the paper is organized as follows: Chapter 2 visits the related work. In113

Chapter 3, we present our DSE-based analysis to compute loop bounds and resolve indirect114

jumps. The proposed analysis is evaluated in Chapter 4. Chapter 5 concludes the paper.115

2 Related Work116

In the scientific literature, SMT has been used to expose the program semantics to improve117

the tightness of the computed WCETs by eliminating infeasible paths. In [24], Ruiz et al.118

worked on machine code where they formulated the program states as sets of predicates to119

expose infeasible paths using SMT solvers. Henry et al. in [18] formulated the problem of120

computing the WCET as optimization modulo theory, which extends the satisfiability modulo121

theory. Neither paper addressed the problem of resolving indirect jumps. In [18], the loops122

must be unrolled before applying the proposed analysis. The analysis of program semantics123

is admitted to be easier at the source level [23]. However, for C++ software frameworks,124

performing the analysis at LLIR level is easier than at source level due to the complexity of125

the C++ language.126

Gustafsson et al. presented in [16] an automated analysis to derive loop bounds using127

abstract execution. However, the proposed analysis was not developed to bound loops that128

iterate over a bounded list like in Listing 3. Therefore, we doubt that the polynomial129

correlations from the abstract execution can comprehend such loops. Besides that, the130

analysis was not developed to resolve potential indirect jumps in the CFG.131

In many aerospace projects, intensive measurements are applied to estimate the WCET [12]132

using commercial tools like RapiTime [22]. Applying static analysis is done on critical133

functions [13]. Using aiT [11] is common to that end. Both approaches need human134

WCET 2022

3:4 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

interaction, e.g., manual annotation. This work aims to automate the flow facts computation135

and to use the open-source toolbox OTAWA.136

3 DSE-based Flow Fact Computation137

LLIR Translate to
SMT Formula

Check
SAT

Update

Si

Memory M. µ

Stack M. σ

Register M. ρ

Engine

Figure 1 Analysis steps in DELOOP with the engine state

In this section, we elaborate on our proposed analysis: Dynamic symbolic Execution-based138

LOOP bounding (DELOOP). The analysis steps are shown in Figure 1. DELOOP takes the139

executable binary of the given program as input, computes loop bounds and resolves indirect140

jumps. The analysis carries out the following steps:141

1. Lifting the executable binary to static single-assignment (SSA) LLIR. We use the com-142

mercial tool BINARYNINJA [3] for that purpose. Performing the analysis on LLIR makes143

the analysis platform-independent.144

2. Detecting the loops using Johnson’s Algorithm.145

3. Translating each SSA instruction in the LLIR into SMT formulas. We use Microsoft146

Z3 [6] as the SMT solver.147

4. Building and initializing memory, stack and register models as arrays of bit vectors. The148

models will store the state of the memory, stack and registers.149

5. Symbolically executing each instruction by checking the satisfiability of the equivalent150

SMT formula and updating the affected model.151

After lifting the executable binary of the given program, the CFG is reconstructed. DELOOP152

computes an upper bound on the number of executions for each basic block. Combined with153

the loop detection algorithm, DELOOP can report an upper bound on loops. The lifting154

tool, BINARYNINJA, is a reverse engineering framework used mainly for binary analysis.155

We used its Python API to parse the assembly code and facilitate all parts of the analysis.156

3.1 Loop Detection157

We implemented Johnson’s Algorithm to detect loops in the given CFG. The algorithm takes158

the CFG as a directed graph G (V, E), which consists of a non-empty set of vertices V and159

a set of ordered pairs of vertices called edges E. The algorithm can detect the loops, known160

as elementary circuits, within a time bounded by O((n + e)(c + 1)) and space by O(n +161

e), where n is the number of vertices, e the number of edges and c the elementary circuits in162

the graph. A single elementary circuit is defined as a closed path where no node appears163

twice, except that the first and last nodes are the same. Two elementary circuits are distinct164

if they are not cyclic permutations of each other.165

DELOOP groups the basic blocks in a single elementary circuit (i.e., loop). Each detected166

loop, denoted by λ, is given a loop ID that is equal to theID of the last basic block in the167

loop. Recursive function calls are not handled with the loop detection algorithm. However,168

DELOOP can automatically bound the depth of recursion during the DSE phase.169

H. Abaza et al. 3:5

3.2 SMT formulas and engine state170

To symbolically execute the program, we compile the SSA LLIR into SMT formulae. The171

SSA form of the LLIR facilitates the whole translation process as every SSA instruction is172

directly mapped to one SMT formula using array and bit vector theories.173

Two memory models are built based on the array theory. Data inside the arrays are174

formulated as bit vectors with a size that matches the target architecture; thus, the arrays175

are defined as arrays of bit vectors. The first memory is used for symbolic execution of the176

load/store instructions and is initialized with the values of all the program’s data variables177

in the given executable binary. The second memory, the stack, is dedicated for the push/pop178

instructions. Both memory models grow and are updated dynamically along the DSE of the179

program.180

Besides the models for memory and stack, we have a third model for representing the181

registers and flags. This model is also updated dynamically. Together, the memory model µ,182

the stack model σ and the register model ρ represent the engine state S. SSA instructions are183

translated to formulas in a form that implies the mathematical effect of the SSA instruction184

on the engine state. For example, the SSA instruction R2 = R3 + 1 is translated as shown in185

Equation 1 where bit vector variables are defined for R2, R3 and the immediate value.186

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(R3, size) +BitV ec(1, size) (1)187

Memory instructions are also interpreted in the same way. For example, the SSA instruction188

shown in Equation 2 is computed as select(mem,0x8080) where mem is the memory model189

and 0x8080 is the load address. The translator performs the previous steps for all kinds of190

LLIR operations.191

R2 = [data_0x8080] =⇒ BitV ec(R2, size) = select(mem, 0x8080) (2)192

3.3 Dynamic symbolic execution193

DSE is used in a number of industrial tools to explore the CFG of a sequential program P194

for identifying test inputs that can lead the execution to new paths [7]. A path Π in the195

program P is said to be feasible if there is a non-empty set of inputs I such that ∀i ∈ I the196

execution of P follows the path Π. If I = ∅, then the path is not feasible.197

Inspired by that concept, we try to explore loop bounds. For a program P starting at an198

initial path Πin with a set of initial inputs Iin, we aim to deduce the set of outputs at the199

end of the path Πin: Iout. Our approach uses Iout as the new Iin to reach the next path.200

Following this concept, we dynamically execute all the feasible paths in the given CFG.201

DELOOP checks the satisfiability of every SMT formula and updates the engine state202

S with the effect of execution. The SMT formulas are categorized into four main types:203

memory-related, stack-related, register-related and director formulas. Director formulas204

represent the branching instructions and are responsible for setting the execution path for the205

solver. Memory-related formulas update the memory model µ in the engine state. Similarly,206

stack and registers-related formulas update the stack σ and register ρ models respectively.207

The concept of states transformed our execution from a static to a dynamic symbolic208

execution. For example, during the translation of R2 = R3 + 1, the translator first checks209

whether there are previous variables in the engine state for R3 and R2. In the case of already210

existing variables, the value of R3 is fetched from ρ and increased by one and then assigned211

to R2. If R3 has a previous value of 100, then the translation process is done as follows:212

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(100, size) +BitV ec(1, size) (3)213

WCET 2022

3:6 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

The same is true for the memory instruction in Equation 2. If the address 0x8080 has a214

value, let it be 0xa080, then R2 will be updated as follows: R2 = [data_0x8080] =⇒ 0xa080.215

3.3.1 Bounding loops216

The execution starts from the program entry point and continues to the CFG’s exit function,217

or to the synthetically inserted exit point, which can be defined by the person who performs218

the analysis to stop the analysis at a designated point. DELOOP symbolically executes each219

SSA instruction and updates the engine state. Also, for each basic block Bi, DELOOP stores220

the number of executions EXi of Bi. After finishing executing, the loops that are detected221

by Johnson’s Algorithm, are visited and the bound is computed as the maximum number of222

executions for each basic block in loop λ. Let β̄ be a function that returns an upper bound223

for a given loop λ:224

β̄(λ) = max
∀Bi∈λ

{EXi} (4)225

In the case of nested loops, Equation 4 returns the total number of executions of the inner226

loop, which is a non-necessary over-approximation. Therefore, before reporting the loop227

bounds we check if there are nested loops and update the loop bounds of inner loops as228

follows: β̄(λinner) = β̄(λinner)/β̄(λouter)229

3.3.2 Indirect jumps230

Symbolic execution builds correlations between basic blocks for the program under analysis.231

It generates equations depending on an input variable to describe the jump target and the232

execution sequence of the program. These correlations can be used to resolve indirect jumps233

and anticipate the next basic block to be executed. However, the static symbolic execution234

generates multiple equations, based on the input and CFG path, that may satisfy the jump235

target resolution. These equations can be represented as first-degree-polynomial equations in236

the form of a+ x ∗ C where a is the base of the jump table and x ∗ C is an offset. In each237

SMT formulated equation, C will depend on the input and the CFG path. The dynamic238

symbolic execution narrows the search space for these equations as it defines the execution239

path based on the given inputs for every solution iteration. In our generated engine model,240

the value of the indirect jump register is being updated based on the SAT formulations from241

state i till the indirect jump call instruction. That implicitly resolves the generated SAT242

inter-basic block formulations.243

During the execution in our execution model, the indirect jump target is correlated to244

the CFG and the input through the forward propagation of the data. The result correlation245

is an SMT formulation of bit vectors and memory arrays. To resolve the formulation into246

meaningful targets, a reversed data-flow analysis with defined stop conditions needs to be247

run. However, this solution will lead to multiple resolutions for the formulation with no SAT248

guarantees. The dynamic symbolic solution solves this problem through the forward update249

of the engine states.250

251

call(R3) =⇒ BitV ec(R3, size) = BitV ec(select(mem, 0x8080), size)+252

BitV ec(select(mem,BitV ec(R1, size)), size) (5)253
254

The update of the state after each execution implicitly preserves forward propagation of255

the memory arrays and bit vector values that will correctly resolve the jump target. For256

example, an indirect jump call formulation as in Equation 5 can be resolved to the jump257

H. Abaza et al. 3:7

Table 1 Benchmark results where L: loops; E: exact bounding

Program #L E Program #L E Program #L E
adpcm 27 27 bs 1 1 cnt 4 4
cover 3 3 crc 6 6 duff 2 2
edn 12 12 expint 3 3 fac 1 1
fdct 2 2 fft1 30 30 fibcal 1 1
fir 2 2 inssort 2 2 jcomplex 2 2
ludcmp 11 11 matmult 7 7 ndes 12 12
ns 4 4 nsichneu 1 0 prime 2 2
qsort-exam 6 6 qurt 3 3 select 4 4
ud 11 11

Table 2 Loop-bounding tools comparison where BLT: bounded loop total

Tool BLT % BLT E % E
DELOOP 158 99% 158 99%
oRange [5] 134 84% 117 73.5%
SWEET [9] 100 63% 81 51%

target address by substituting the propagated values of the memory address and R1 at the258

engine state executing the indirect call instruction.259

4 Evaluation260

4.1 Mälardalen WCET benchmarks261

The Mälardalen WCET benchmarks [15] are open-source test programs for WCET analysis.262

Although the Mälardalen WCET benchmarks are ANSI-C code, they can be used to verify263

our tool and compare its results against the state-of-the art tools. For validating our tool,264

we use Tasking Framework in the next section.265

We used 25 programs from the Mälardalen WCET benchmark suite to test our tool. The266

results are presented in Table 1. E represents the number of loops which could be exactly267

bounded. For all programs except one, DELOOP can exactly bound the loops. For the268

very large function nischneu, the lifter, BINARYNINJA, failed to restore the CFG of the269

main function. It might not be surprising to exactly bound all the detected loops because270

we symbolically execute the program using the SMT formulas. In Table 2, we compare our271

results with oRange [5] and SWEET [9]. For oRange and SWEET, we recall the results from272

the cited papers. BLT and %BLT represent the number of bounded loops and percentage273

out of 159 loops respectively.274

4.2 A use case developed using Tasking Framework275

Tasking Framework [17] is an open-source [14] software development library. Also, it is a276

multithreading event-driven execution platform for embedded software. It provides abstract277

classes with virtual methods to realize an application by a directed graph of connected tasks278

and channels, where each computation block of a software component is realized by the279

class task, and the data exchanged between tasks is an object of the class channel. Periodic280

tasks are connected to a source of events as shown in Figure 3. Tasks can start executing281

WCET 2022

3:8 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

Camera1 Crater
Mapping10Hz

Camera2 Feature
Tracking

IMU 100Hz

Navigation
Filter

100Hz

Logger

Flight
Controller
100Hz

Figure 2 Use case inspired from the optical navigation sub-system in the ATON project [25]

camTask1 imgChannel10 craterTask craterChannel

timer
10Hz

camTask2 imgChannel45 featureTask featureChannel

timer
100Hz

navTask outChannel

logTask

flightTask

Input Task Channel

Figure 3 The use case in Figure 2 as realized by the Tasking Framework

as soon as their input data is available, thus, some of them can work concurrently. A task282

forwards the data to the next task by pushing it to the associated channel, which represents283

an interface between two tasks, and activating the next task. This data-driven activation284

mechanism is implemented in Tasking Framework with different activation semantics, e.g.,285

and, or semantics.286

Tasking Framework has been used for many real-world aerospace applications such as287

Autonomous Terrain-based Optical Navigation (ATON)[25] and Scalable On-Board Comput-288

ing for Space Avionics (ScOSA)[21]. ScOSA is an ongoing project in 2022.289

We evaluated our analysis on a use case inspired from the optical navigation sub-system in290

the ATON project [25], and implemented using the Tasking Framework. In this sub-system,291

two camera drivers, camTask1 and camTask2, run periodically and transfer the images to 1)292

a crater navigation component craterTask and 2) a feature tracking component featureTask293

respectively. The output of these components feeds the navigation filter navTask to estimate294

the position. The output is logged by logTask and forwarded to the flight controller flightTask.295

4.2.1 Results296

SWEET: Its input is an IR based on the ARTIST2 Language for Flow Analysis (ALF).297

To apply SWEET, we built the binary code, then lifted it to LLVM using RetDec [1],298

which is a retargetable machine code decompiler based on LLVM. We translate the LLVM299

IR to ALF using the translator introduced in [26]. SWEET failed to build its abstract300

execution model.301

oRange: We generated the binary code and lifted it back to C code using RetDec.302

oRange reports NOCOMP for all loops in the use case.303

DELOOP: We integrated DELOOP with OTAWA as shown in Figure 4 to compute the304

WCET.305

The results are presented here:306

Loops: Unlike the loops in the benchmark, Tasking Framework does not contain any307

simple loop like the one in Listing 4. The loops in Tasking Framework are either bounded308

by an object’s attribute, see Listing 1, or iterates over a list, see Listing 3. However, the309

code of the user-developed tasks may contain different types of loops.310

Listing 4 Simple ANSI-C loop
311

1 for (int i =0; i <20 ; i++){}312313

H. Abaza et al. 3:9

OTAWA

HW
description

file

Architecture Abstraction

Program Representation

Annotations

WCET Computation

Results

Analysis

Binary
file

LifterLLIR

DELOOP

Flow
Facts

Indirect
Jump
Targets

Figure 4 DELOOP integrated with OTAWA

DELOOP provides more than one bound for loops, one bound per instance. For example,314

each channel in our case study will run its own copy of the push() function; thus, the315

loop in Listing 1 will be executed by different tasks in the case study. DELOOP will316

compute an upper bound for each copy of the loop. The loop is bounded by the number317

of associated inputs and is thus bounded by two for the navTask while it is bounded by318

one for all other tasks.319

Also, DELOOP detected an implicit loop, which does not appear in the source code, as320

shown in Listing 5. navTask has three input objects, thus, the bound of this loop is three.321

Listing 5 A constructor template translated into a loop in assembly code
322

1 template<size_t n>323
2 InputArrayProvider<n>:: InputArrayProvider (void) :324
3 InputArray (inputMemory , n) {}325326

Indirect jumps: The indirect jumps in Tasking Framework are mainly due to virtual327

methods. Virtual methods are there to support, for instance, three scheduling policies.328

After compilation, each indirect jump has only one target. Therefore, resolving the329

indirect jumps using DSE is safe. All the indirect jumps in our case study were resolved.330

WCET Computation: As mentioned earlier in this paper, we use OTAWA as a static331

analyzer and DELOOP as a flow facts generator as shown in Figure 4. This setup332

expands the capabilities of OTAWA in estimating WCET for C++ code. After given333

OTAWA a hardware description file for armv-7m, the WCET estimation starts with334

reconstructing the CFG. Then, the results of the loop analysis performed by DELOOP335

are passed to OTAWA for the WCET analysis. The analysis is performed for a bare-metal336

implementation.337

In OBDP applications based on a data-flow programming paradigm, ideally, each task338

pushes to the associated channel to activate the next task. This data-driven activation339

mechanism is implemented in Tasking Framework via the push() method. push() starts a340

chain of method calls, which ends with queue() that queues the next connected task in the341

ready queue. The chain contains two loops and one indirect jump. Bounding the WCET342

of push(), i.e., the chain of function calls, helps in estimating the overhead imposed by343

Tasking Framework. The implementation of push()2 contains two loops: Loop1 is the344

2 https://github.com/DLR-SC/tasking-framework/commit/349ce3ddd98cd1fe69daf08318e1b8cbf9c01e9b

WCET 2022

3:10 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

outer loop that iterates over the tasks associated with the considered channel; Loop2 is345

executed for each iteration on Loop1 and it iterates over the inputs of each associated346

task with the considered channel. The WCET of push() executed by the task camTask1347

is 2435 cycles. Note that the channel imgChannel10 is associated with only one input348

object, i.e. task craterTask. The same result is valid for the push() executed by the task349

camTask2 because it has the same flow facts. The WCET of push() executed by the task350

featureTask and craterTask is 3635 cycles. Finally, the WCET of push() executed by the351

task navTask is 4800 cycles. Table 3 summarizes the results. As the results show, push()352

has different WCET values for different tasks, but it is bounded and fixed for each task.353

Table 3 Results of the WCET analysis for the push function in the use case in Figure 3

Task Loop1 Loop2 WCET (cycles)
camTask1 1 1 2435
camTask2 1 1 2435
craterTask 1 3 3635
featureTask 1 3 3635
navTask 2 1 4800

Performance: The analysis was executed on a workstation with Linux, i7-9750H354

processor and 16Gbyte RAM. The use case has a binary size = 664 kbyte. The analysis355

used 25% of the CPU capacity and 640 Mbyte of memory. The analysis took about 81356

seconds to compute the flow facts.357

5 Conclusions358

The complexity of modern architectures, software development practices and compilers often359

leads to executable code which is difficult to match to its source code. Additionally, manual360

computation of flow facts and manual annotation are error-prone especially for software361

developed using object-oriented practices, in which one loop can be executed many times by362

different objects for different number of iterations. This provides motivation to compute the363

flow facts at the binary level.364

In this work, we proposed an analysis to bounding loops and resolving indirect jumps365

using DSE. The proposed analysis lifts the executable binary to SSA LLIR, then each SSA366

instruction is translated into an SMT formula. Using the Z3 SMT solver, the satisfiability is367

checked and memory, stack and register custom models are updated accordingly. We showed368

that the proposed analysis can safely compute upper bounds on loops in the Mälardalen369

benchmarks. Also, we used the proposed analysis together with OTAWA to compute the370

WCETs for a use case developed using the Tasking Framework.371

Although successful in computing loop bounds and resolving indirect jumps, the proposed372

analysis has two main limitations: 1) the need for value analysis for some applications to373

guarantee that the computed bounds are safe; 2) using a memory model, which might be very374

complex for large applications and therefore increase the analysis time. We will investigate375

in the future development the scalability of DELOOP to larger applications in our ScOSA376

project. Also, we are interested in verifying whether DELOOP yields any improvement in377

terms of WCET estimation by conducting more case studies for which oRange and SWEET378

can compute the flow facts.379

H. Abaza et al. 3:11

References380

1 Avast. RetDec. https://github.com/avast/retdec. [accessed May 03, 2022].381

2 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an open382

toolbox for adaptive WCET analysis. In IFIP International Workshop on Software Technolgies383

for Embedded and Ubiquitous Systems, pages 35–46. Springer, 2010.384

3 BINARYNINJA. Binary Ninja. https://binary.ninja/. [accessed May 03, 2022].385

4 Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure386

Potet, and Jean-Yves Marion. Binsec/se: A dynamic symbolic execution toolkit for binary-level387

analysis. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and388

Reengineering (SANER), volume 1, pages 653–656, 2016. doi:10.1109/SANER.2016.43.389

5 Marianne de Michiel, Armelle Bonenfant, Hugues Casse, and Pascal Sainrat. Static loop bound390

analysis of C programs based on flow analysis and abstract interpretation. In 2008 14th IEEE391

International Conference on Embedded and Real-Time Computing Systems and Applications,392

pages 161–166, 2008. doi:10.1109/RTCSA.2008.53.393

6 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International394

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages395

337–340. Springer, 2008.396

7 Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and397

applications. Commun. ACM, 54(9):69–77, September 2011. doi:10.1145/1995376.1995394.398

8 Andreas Ermedahl and Jakob Engblom. Execution time analysis for embedded real-time399

systems. International Journal on Software Tools for Technology Transfer, 4:437–455, 2007.400

9 Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper.401

Loop bound analysis based on a combination of program slicing, abstract interpretation, and402

invariant analysis. In Christine Rochange, editor, 7th International Workshop on Worst-403

Case Execution Time Analysis (WCET’07), volume 6 of OpenAccess Series in Informatics404

(OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.405

doi:10.4230/OASIcs.WCET.2007.1194.406

10 Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Commun.407

ACM, 40(10):32–38, oct 1997. doi:10.1145/262793.262798.408

11 Christian Ferdinand and Reinhold Heckmann. aiT: Worst-case execution time prediction by409

static program analysis. In Renè Jacquart, editor, Building the Information Society, pages410

377–383, Boston, MA, 2004. Springer US.411

12 Jorge Garrido, Daniel Brosnan, Juan A. de la Puente, Alejandro Alonso, and Juan Zamorano.412

Analysis of WCET in an experimental satellite software development. In Tullio Vardanega,413

editor, 12th International Workshop on Worst-Case Execution Time Analysis, volume 23 of414

OpenAccess Series in Informatics (OASIcs), pages 81–90, Dagstuhl, Germany, 2012. Schloss415

Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2012.81.416

13 Jorge Garrido, Juan Zamorano, and Juan A. de la Puente. Static analysis of WCET in a417

satellite software subsystem. In Claire Maiza, editor, 13th International Workshop on Worst-418

Case Execution Time Analysis, volume 30 of OpenAccess Series in Informatics (OASIcs),419

pages 87–96, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.420

doi:10.4230/OASIcs.WCET.2013.87.421

14 German Aerospace Center (DLR). Tasking Framework. https://github.com/DLR-SC/tasking-422

framework. [accessed May 03, 2022].423

15 Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen WCET424

Benchmarks: Past, Present And Future. In Björn Lisper, editor, 10th International Workshop425

on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series in426

Informatics (OASIcs), pages 136–146, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-427

Zentrum fuer Informatik. The printed version of the WCET’10 proceedings are published428

by OCG (www.ocg.at) - ISBN 978-3-85403-268-7. URL: http://drops.dagstuhl.de/opus/429

volltexte/2010/2833, doi:10.4230/OASIcs.WCET.2010.136.430

WCET 2022

https://binary.ninja/
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/RTCSA.2008.53
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.4230/OASIcs.WCET.2007.1194
https://doi.org/10.1145/262793.262798
https://doi.org/10.4230/OASIcs.WCET.2012.81
https://doi.org/10.4230/OASIcs.WCET.2013.87
http://drops.dagstuhl.de/opus/volltexte/2010/2833
http://drops.dagstuhl.de/opus/volltexte/2010/2833
http://drops.dagstuhl.de/opus/volltexte/2010/2833
https://doi.org/10.4230/OASIcs.WCET.2010.136

3:12 DELOOP: Automatic Flow Facts Computation using Dynamic Symbolic Execution

16 Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Automatic derivation431

of loop bounds and infeasible paths for WCET analysis using abstract execution. In 2006432

27th IEEE International Real-Time Systems Symposium (RTSS’06), pages 57–66, 2006. doi:433

10.1109/RTSS.2006.12.434

17 Zain Alabedin Haj Hammadeh, Tobias Franz, Olaf Maibaum, Andreas Gerndt, and Daniel435

Lüdtke. Event-driven multithreading execution platform for real-time on-board software436

systems. In Proceedings of the 15th Annual Workshop on Operating Systems Platforms for437

Embedded Real-time Applications, pages 29–34, 2019.438

18 Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza. How to compute worst-case439

execution time by optimization modulo theory and a clever encoding of program semantics.440

SIGPLAN Not., 49(5):43–52, jun 2014. doi:10.1145/2666357.2597817.441

19 Hajer Herbegue, Hugues Cassé, Mamoun Filali, and Christine Rochange. Hardware architecture442

specification and constraint-based WCET computation. In 2013 8th IEEE International443

Symposium on Industrial Embedded Systems (SIES), pages 259–268. IEEE, 2013.444

20 Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on445

Computing, 4(1):77–84, 1975.446

21 Andreas Lund, Zain Alabedin Haj Hammadeh, Patrick Kenny, Vishav Vishav, Andrii Kovalov,447

Hannes Watolla, Andreas Gerndt, and Daniel Lüdtke. ScOSA system software: the reliable448

and scalable middleware for a heterogeneous and distributed on-board computer architecture.449

CEAS Space Journal, May 2021. doi:https://doi.org/10.1007/s12567-021-00371-7.450

22 RAPITASytems. RapiTime. https://www.rapitasystems.com/products/rapitime. [ac-451

cessed May 03, 2022].452

23 Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs,453

Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet. Improving WCET evaluation using454

linear relation analysis. Leibniz Transactions on Embedded Systems, 6(1):02:1–02:28, Feb. 2019.455

URL: https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a002,456

doi:10.4230/LITES-v006-i001-a002.457

24 Jordy Ruiz and Hugues Cassé. Using SMT solving for the lookup of infeasible paths in458

binary programs. In Francisco J. Cazorla, editor, 15th International Workshop on Worst-Case459

Execution Time Analysis (WCET 2015), volume 47 of OpenAccess Series in Informatics460

(OASIcs), pages 95–104, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer461

Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2015/5260, doi:10.4230/462

OASIcs.WCET.2015.95.463

25 Stephan Theil, N Ammann, Franz Andert, Tobias Franz, Hans Krüger, Hannah Lehner, Martin464

Lingenauber, Daniel Lüdtke, Bolko Maass, Carsten Paproth, et al. ATON (autonomous terrain-465

based optical navigation) for exploration missions: recent flight test results. CEAS Space466

Journal, 10(3):325–341, 2018.467

26 Rick Veens. Adding support for static WCET analysis to LLVM,468

2018. Master’s thesis. URL: https://research.tue.nl/en/studentTheses/469

adding-support-for-static-wcet-analysis-to-llvm.470

27 Alexey Vishnyakov, Andrey Fedotov, Daniil Kuts, Alexander Novikov, Darya Parygina, Eli471

Kobrin, Vlada Logunova, Pavel Belecky, and Shamil Kurmangaleev. Sydr: Cutting edge472

dynamic symbolic execution. In 2020 Ivannikov Ispras Open Conference (ISPRAS), pages473

46–54, 2020. doi:10.1109/ISPRAS51486.2020.00014.474

https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1145/2666357.2597817
https://doi.org/https://doi.org/10.1007/s12567-021-00371-7
https://www.rapitasystems.com/products/rapitime
https://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a002
https://doi.org/10.4230/LITES-v006-i001-a002
http://drops.dagstuhl.de/opus/volltexte/2015/5260
https://doi.org/10.4230/OASIcs.WCET.2015.95
https://doi.org/10.4230/OASIcs.WCET.2015.95
https://doi.org/10.4230/OASIcs.WCET.2015.95
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-analysis-to-llvm
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-analysis-to-llvm
https://research.tue.nl/en/studentTheses/adding-support-for-static-wcet-analysis-to-llvm
https://doi.org/10.1109/ISPRAS51486.2020.00014

	1 Introduction
	2 Related Work
	3 DSE-based Flow Fact Computation
	3.1 Loop Detection
	3.2 SMT formulas and engine state
	3.3 Dynamic symbolic execution
	3.3.1 Bounding loops
	3.3.2 Indirect jumps

	4 Evaluation
	4.1 Mälardalen WCET benchmarks
	4.2 A use case developed using Tasking Framework
	4.2.1 Results

	5 Conclusions

