Recursive and robust InSAR Phase Estimation

Francesco De Zan

DLR - Remote Sensing Technology Institute

EUSAR 2022

Closure phases and mean velocity biases

- 2015, TGRS, Phase inconsistencies and multiple scattering in SAR interferometry
 - Closure phase are among us, just compute them!
 - We predicted the existence of biases in InSAR deformation products
- 2020, TGRS, Study of Systematic Bias in Measuring Surface Deformation with SAR Interferometry
 - Sentinel-1 (C-band) data over Sicily (Italy)
 - Different temporal bandwidth for interferograms (~30 days, ~60 days, ~4 years)
 - We've observed different mean-velocity bias (3-6 mm/yr)
 - The bias depends on the temporal baseline (longer temporal baselines are less affected)

Deformation rate	Bias wrt PS's (mm/year)	Dispersion wrt PS's (mm/year)
Band 5 (~30 days)	-6.50	2.58
Band 10 (~60 days)	-3.05	1.55
Full covariance	-0.24	0.70

Phase estimation algorithms

Once could just recommend covariance-based algorithms

• Phase linking (Tebaldini 2008), EMI (Ansari 2018), ...

or adding some long-span interferograms (Doin)

or de-biasing solutions

Zheng 2022, Maghsoudi 2022

and proceed with feeding the phases to a e.g. PS-like chain to derive deformation products

However... this is not fully satisfying, as we would like to have:

- Continuous updates for a phase product (Analysis Ready Product)
- Automatic long-term stability & short term quality

I'm trying to develop a new approach

- Generation of simple interferograms
- Linear combination ("filtering") of acquisitions in time
- Recursive implementation
- Special care for long-term phase quality

Recursive InSAR Phase Estimation

- A new phase estimation algorithm
 - Simple & Fast
 - Minimal I/O requirements

Recursive InSAR Phase Estimation

- A new phase estimation algorithm
 - Simple & Fast
 - Minimal I/O requirements

Recursive InSAR Phase Estimation

- A new phase estimation algorithm
 - Simple & Fast
 - Minimal I/O requirements
 - Good short-term quality (like 6-day interferograms)
 - Good long-term quality (like full covariance)

Usage of phase product

- Nominally, all interferograms are referred to the same reference
- Computing any "interferogram" is easy:

$$\phi_{ab} = \phi_a - \phi_b \pmod{2\pi}$$

- Users will still have to do the phase unwrapping
- Long- and short-term coherence as quality measures

Simulations based on complex coherence model

RIPE with and w/o anchoring

Temporal separation 1032 days

Short-term (top) and long-term coherence (bottom)

DS - PS mean velocity difference

- Average difference: -0.32 mm/yr
- Comparable to using full stack (-0.24 mm/yr for DS)
- It might be possible to reduce it further
- It's going to be smaller with longer time series

Towards an phase product

- Test and tune algorithm on different climates and land covers
- Design for forward compatibility with ESD, split-spectrum, etc.
- Probe product usability, users of this intermediate product should "just" unwrap the phases

To conclude...

• New algorithm based on interferograms and linear combination of images

• It's possible to give continuous updates

• A recursive formulation minimizes the storage and I/O needs

 $ref' \leftarrow w \cdot ref' + SLC_N \cdot exp(-j \phi_N)$

- The algorithm tackles explicitly
 - Short term coherence
 - Long term stability (small velocity bias w.r.t. PS's)
- The results on simulated and real data are meaningful

