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Abstract

The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been
done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environ-
ments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of
ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we
aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha
Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experi-
ment outside the International Space Station with analysis of the metagenomics data previously produced. Thus,
we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded
to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-
exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs
and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining
antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic
resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses. Key Words:
Antimicrobial resistance—Extraterrestrial environment—Metal resistance—Kombucha multimicrobial commu-
nity. Astrobiology 22, 1072–1080.

1. Introduction

Antimicrobial resistance has been spreading widely
due to the massive use and misuse of antibiotics (Levy

and Marshall, 2004); thus, this is becoming a major health
concern worldwide (Rolain et al., 2012). Antibiotic resis-
tance genes (ARGs) have an environmental and ancient ori-
gin (D’Costa et al., 2011; Perry et al., 2016), given that they

are part of the intrinsic or pre-resistome (i.e., antibiotic
resistance traits belong to metabolic pathways, having a
role in the physiology of the bacterial cells), and they can
rapidly evolve and become true ARGs, which is of clinical
interest due to the increasing use and environmental release
of antibiotics (Galán et al., 2013). Therefore, it is pivotal
to investigate the cycle of antibiotic resistome (total con-
tent of ARGs) and its dynamics with exposure to different
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environmental stresses to estimate the possible risk for
humans, animals, and environmental health following the
One-health (or Ecohealth) approach (Rabinowitz et al., 2013).

Currently, an increasing number of studies are performed
to improve our understanding of the dynamics and stress
response of the antibiotic resistome in microbial commu-
nities in both indoor and outdoor environments. Indeed, in
outdoor environments, the antibiotic resistome dynamics
have been studied in aquatic ecosystems and in the air under
different anthropogenic pressure levels (Corno et al., 2019;
Zhu et al., 2021). Similarly, in indoor environments where
there is a strict contact between people and where regular
and rigorous cleaning procedures are applied (determining a
high anthropogenic influence), the antibiotic resistome has
been extensively investigated (Fahimipour et al., 2018;
Mahnert et al., 2019; Ben Maamar et al., 2020).

Of particular interest for NASA is the characterization of
the microbiome that inhabits the indoor human-made envi-
ronment of the International Space Station (ISS), and to
ensure the health of an onboard crew (Mora et al., 2016).
Different studies have been performed, with a focus on
antibiotic resistance, to define the antibiotic resistome from
interior surfaces of the ISS (Urbaniak et al., 2018) and
investigate an increase and persistence of ARGs in real-time
space missions (Singh et al., 2018). To date, however, no
studies have been proposed to investigate the antibiotic
resistome outside the ISS, where anthropogenic pressure is
absent and space environmental conditions impose stress
for bacteria (Moissl-Eichinger et al., 2016). There is, of
course, no atmosphere outside the ISS, but inside one of the
BIOlogy and Mars EXperiment (BIOMEX) compartments
on the exposure platform EXPOSE-R2, a Mars-like envi-
ronment was created. The atmosphere inside the BIOMEX
is characterized as follows: CO2 (95.5%); N2, Ar, and O2

(2.7%, 1.6%, and 0.15%, respectively): *370 ppm H2O
and a pressure of 980 Pa with a high level of radiation
that reaches a total UV >200 nm fluencies of about 4.92 ·
102 kJ m-2 for the unprotected sample (de Vera et al., 2019).
Furthermore, no studies to date have addressed the mecha-
nisms involved in the spread of antibiotic resistance such as,
for instance, metal resistance genes (MRGs) as co-selectors
of ARGs in the absence of antibiotic selective pressure
(Baker-Austin et al., 2006), in extraterrestrial environments.
Thus, no information is available about how ARGs and
MRGs interact and evolve in the complete absence of
anthropogenic pollution and in the outer reaches of a Mars-
like environment.

In this study, we analyzed the shotgun metagenomics data
(Góes-Neto et al., 2021), previously experimentally pro-
duced, of the microbiomes of the Kombucha Mutualistic
Community (producing known fermented product; KMC)
samples, which were exposed and non-exposed to Mars-like
environmental conditions (Podolich et al., 2019). We aimed
to (i) unveil the antibiotic and the metal resistome (total
content of MRGs) of KMC samples exposed to Mars-like
conditions; (ii) compare the composition of both resisto-
mes (antibiotic and metal resistance genes content) between
samples exposed to Mars-like environment and those non-
exposed with the intent to evaluate differences in richness
and relative abundance of ARGs and MRGs; and (iii) inves-
tigate whether MRGs could contribute to the maintenance
and spread of ARGs by co-selection mechanism.

2. Materials and Methods

2.1. Experimental setup

Kombucha Mutualistic Community samples were used
to investigate the influence of exposure to spaceflight and
Mars-like conditions on antibiotic and metal resistomes by
experimental settings previously described (Podolich et al.,
2019). Briefly, desiccated KMC pellicles of IMBG-1 eco-
type (from the collection of IMBG, Kyiv, Ukraine) (embed-
ded in the anorthosite/egg white mixture) were exposed for
18 months to simulated Mars-like conditions on low Earth
orbit in a three-layer carrier mounted on the EXPOSE-R2
facility (Rabbow et al., 2017) outside the ISS. The upper-
level sample was unprotected from UV radiation (sample
named KMC_1b), while samples from the middle and bot-
tom levels were maintained in the darkness (samples named
KMC_2b and KMC_3b, respectively). The non-exposed
KMC sample was maintained in the laboratory at room
temperature in the darkness (sample named KMC_4b). The
samples exposed to Mars-like conditions and the non-
exposed samples were reactivated, and aliquots of each were
cultured monthly for 2.5 years (exposed cultured samples
named KMC_1c, KMC_2c, and KMC_3c, non-exposed
cultured sample named KMC_4c) as previously described in
the work of Góes-Neto et al. (2021). Aliquots of all the
samples and an aliquot of the initial KMC ecotype used for ex-
periment preparation (named KMC_5) were processed for DNA
extraction and sequencing (shotgun metagenomics) as al-
ready described by Góes-Neto et al. (2021).

2.2. Bioinformatic analyses

The community composition in target resistance induc-
ing genes (resistome) was inferred by MetaStorm, an online
platform for fully automated sequence analysis and visual-
ization (Arango-Argoty et al., 2016). Data and metadata
analysis were retrieved from the Sequence Read Archive
(NCBI, BioProject access numbers: PRJNA636820, PRJN
A636837, PRJNA636891, PRJNA637016, and PRJNA63
7018).

The compressed raw read files were uploaded to Meta-
Storm and processed through a read matching pipeline. The
read matching pipeline performed a quality filtering of
reads, followed by annotation against one or more sequence
databases selected by users. On average, more than 98% of
raw reads passed the quality filtering step. Raw reads and high-
quality reads are summarized in Supplementary Table S1.

For the functional annotation, functions were associated
with the quality-filtered reads. Thus, lists of resistance genes
that most probably belong to the query sequences were
generated. MRG-like sequences were produced out of the
annotation to the BacMet database of experimentally con-
firmed resistance genes (BacMet v2.0) (Pal et al., 2014).
ARG-like reads were obtained through the annotation to the
DeepARG database (deepARG-DB-v1.1.1) (Arango-Argoty
et al., 2018). Alignment thresholds on sequence identity and
minimum alignment length were set according to the work
of Li et al. (2015) (E-value <1e-10, identity >90%, and min-
imum alignment length of 25aa). Copies of 16S rRNA genes
were inferred by mapping against the 2013 release of the
GREENGENES database (DeSantis et al., 2006). The num-
ber of 16S rRNA gene-like hits per sample was used for the
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normalization of ARG-like fragments and MRG-like frag-
ments abundances, as described by Li et al. (2015). The
processed data can be found by browsing the project name
‘‘Kombucha mutualistic community resistome’’ on the
MetaStorm website (http://bench.cs.vt.edu/MetaStorm/).
Pivot tables of relative abundance were created separately
for the ARG-like sequences and the MRG-like sequences
and, subsequently, exported for statistical analyses.

2.3. Statistical analysis

The statistical analyses were performed in the R envi-
ronment (version 3.6.0) (R Core Team, 2019), considering
nine samples: KMC_1b, KMC_1c, KMC_2b, KMC_2c,
KMC_3b, KMC_3c, KMC_4b, KMC_4c, KMC_5. For the
tests, we used as explanatory variables both the exposure
to the Mars-like conditions, two groups: ‘‘Exposed’’ n = 6
(KMC_1b, KMC_1c, KMC_2b, KMC_2c, KMC_3b,
KMC_3c) versus ‘‘Non-exposed’’ n = 3 (KMC_4b, KMC_4c,
KMC_5), and the culturing, two groups: ‘‘Cultured’’ n = 4
(KMC_1c, KMC_2c, KMC_3c, KMC_4c) versus ‘‘Non-
cultured’’ n = 5 (KMC_1b, KMC_2b, KMC_3b, KMC_4b,
KMC_5).

Starting from ARGs and MRGs datasets obtained from
shotgun metagenomics data (Góes-Neto et al., 2021), we
calculated the richness in ARGs and MRGs (as the number
of different genes) of each sample and investigated the
factor (exposure/culturing) that influences its variation
through a negative-binomial linear model (NBLM). Simi-
larly, the beta diversity, as abundance-based Bray-Curtis
dissimilarity index, was determined and analyzed by using
PERMANOVA. The differences in the total relative abun-
dances of ARGs and MRGs were evaluated by ANOVA. In
this case, the total relative abundances of the genes were
used as response variables. Abundances were transformed,
prior to analysis, into the arcsine of the square root of their
value, due to the proportional nature of the data. The cor-
relation between the total relative abundance of ARGs and
MRGs was assessed by using Spearman rank correlation
(considering them as correlated for rho >0.75). For the
analysis, the MRGs dataset used was adapted by subtracting
the genes also present in the ARGs dataset to avoid redun-
dancy.

2.4. Network analysis

The co-occurrence between ARGs and MRGs was further
investigated by network analysis, using the abundances
retrieved by the KMC samples previously described (Góes-
Neto et al., 2021). A matrix of correlation was constructed
through the Spearman rank correlation function of the psych
package version 1.9.12.31 (Revelle, 2015). On this basis, a
table was prepared that contained only those couples of
genes strongly and significantly correlated (rho >0.8 and
p < 0.01). Then, the table was imported in Gephi (software v.
0.9.2) for network visualization (Bastian et al., 2009).

3. Results

3.1. Antibiotic resistome composition

Antibiotic resistance genes were detected in all analyzed
samples. In detail, a total of 200 different genes that belong
to 22 resistance classes were found, with multidrug resis-

tance as the most represented class in all samples (Fig. 1a).
Richness of ARGs was significantly higher in the exposed
samples than it was in the non-exposed samples (NBLM:
p = 0.0174) (Fig. 2a). Among 200 ARGs, 101 genes were
exclusively present in the exposed samples. Four genes
characterized the non-exposed samples, and 95 were shared
between them (Table 1; for details, see Supplementary
Table S2). Conversely, the culturing did not affect richness
(NBLM: p = 0.7992). Regarding the ARG composition, only
17.6 and 12.2% of the beta diversity were explained by the
exposure and the culturing, respectively (Supplementary
Table S3). The Principal Coordinates Analysis (PCoA) ordi-
nation, based on the Bray-Curtis dissimilarity index, did not
show clear clusters, both in terms of exposure and culturing
(apart for the KMC_2b sample, in a separated area of the
figure) (Supplementary Fig. S1a). The relative abundance of
ARGs ranged from 1.0 · 10-5 to 1.23 · 10-1 gene copies/16S
rRNA gene copy in the exposed samples and from 1.0 · 10-5

to 4.83 · 10-2 gene copies/16S rRNA gene copy in the non-
exposed samples. The most abundant ARG was sul1 (1.23 ·
10-1 gene copies/16S rRNA gene copy, KMC_1b), followed
by mexA (7.23 · 10-2 gene copies/16S rRNA gene copy,
KMC_2b) and mdtB (5.39 · 10-2 gene copies/16S rRNA
gene copy, KMC_1b) (Supplementary Fig. S2a). The total
relative abundance was not significantly different among
samples when considering the exposure to Mars-like condi-
tions and the culturing (ANOVA: p > 0.05), even if a quasi-
significant increase in ARG abundances in the exposed
samples was determined (ANOVA: p = 0.0578) (Fig. 3a).

Among the 22 resistance classes, 17 occurred in exposed
and non-exposed samples, while five classes were absent
in the non-exposed samples; the tet (encoding tetracycline
resistance) and the van genes (encoding for vancomycin
resistance) were absent in non-exposed samples (Supple-
mentary Table S4). Multidrug resistance genes were the
most abundant class (1.95 · 10-1 copies/16S rRNA gene copy,
KMC_2b). Sulfonamide resistance genes were the second most
abundant class, with 1.23 · 10-1 copies/16S rRNA gene copy
(KMC_1b), followed by aminocoumarin resistance genes
(1.03 · 10-1 copies/16S rRNA gene copy, KMC_3b).

3.2. Metal resistome composition

Metal resistance genes were detected in all analyzed
samples. A total of 179 different genes that belong to 17
resistance classes were found, and the multi-metal resistance
was the most represented class in the different samples
(Fig. 1b). The exposure to Mars-like conditions had only
limited effect on the richness of MRGs (NBLM: p = 0.0708)
(Fig. 2b). Among 179 MRGs, 90 genes were characteristic
of the exposed samples, three were only present in the non-
exposed ones, and 86 were distributed in both (Table 1,
Supplementary Table S5). The culturing had no effect on the
richness (NBLM: p = 0.7371). Conversely, taking the com-
position of MRGs into account, the culturing was the main
factor (25.7%) that shaped the beta diversity (vs. 12.3% of
the exposure) (Supplementary Table S3). Also, the PCoA
ordination depicted samples that were partially separated on
the basis of culturing as a factor (apart for the KMC_2b
sample, in a distinct area of the figure) (Supplementary
Fig. S1b). The relative abundance of MRGs comprised
between 1.0 · 10-5 and 2.48 · 10-1 gene copies/16S rRNA
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FIG. 1. Resistance class composition. Composition of the samples according to (a) antibiotic or (b) metal resistance
classes. The relative abundances of specific resistance classes (against antibiotics or metals) were expressed as percentage
for each sample.

FIG. 2. Richness of resistance genes. Boxplot of the richness of (a) ARGs and (b) MRGs. The thick horizontal line
represents the median, the box represents 50% of the values, the whiskers extend to the highest and lowest value within the
1.5 interquartile range.
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gene copy in the exposed samples, and between 1.0 · 10-5

and 9.06 · 10-2 gene copies/16S rRNA gene copy in the
non-exposed samples. The MRG with the highest abundance
was arsH (2.48 · 10-1 gene copies/16S rRNA gene copy,
KMC_1b), then arsC (2.37 · 10-1 gene copies/16S rRNA
gene copy, KMC_1b), and pstB (1.07 · 10-1 gene copies/
16S rRNA gene copy, KMC_1b). No patterns were observed
with regard to the MRGs relative abundances (Supplemen-
tary Fig. S2b), and no significant differences in total relative
abundances of MRGs were determined when considering
both the exposure to Mars-like conditions and the culturing
on Earth (ANOVA: p > 0.05) (Fig. 3b).

Among the 17 resistance classes, 16 were present in both
exposed and non-exposed samples, while the genes that con-
ferred resistance to tungsten and almost all the genes en-
coding for nickel resistance were absent in the non-exposed
samples (Supplementary Table S6). Multi-metal resistance
genes had the highest abundance (4.11 · 10-1 copies/16S rRNA
gene copy, KMC_1b), followed by arsenic resistance genes
(3.55 · 10-1 copies/16S rRNA gene copy, KMC_1b), and
zinc resistance genes, as a third most abundant class with
1.40 · 10-1 copies/16S rRNA gene copy (KMC_1c).

3.3. Correlation between ARGs and MRGs

A positive correlation in the total relative abundances of
ARGs and MRGs was obtained by Spearman rank correla-
tion analysis (rho = 0.80, p = 0.014).

The co-occurrence of retrieved ARGs and MRGs was
investigated by network analysis via Spearman rank corre-
lation (Fig. 4), considering two elements as correlated for
rho >0.8 and p < 0.01. The network was composed by 274
nodes (ARGs and MRGs) that formed 1447 interconnections
(edges) and showed a modular structure (modularity index
>0.4, as defined in Newman, 2006) that consisted of 46
modules (Fig. 4, Supplementary Table S7). Module A, shown
in green, had the most complex correlations (involving
17.52% of network nodes), followed by modules B and C
(each comprising 8.39% of nodes), shown in light blue and
yellow, respectively (the other modules contained less than
6.5% of network nodes) (Fig. 4). In all the main modules, a
co-occurrence between ARGs and MRGs was found.
Module A was composed mainly by ARGs (54.2%), mod-
ules B and C mainly by MRGs (59.1% and 52.2%, respec-
tively) (Fig. 4). Furthermore, module A comprised genes
shared between Mars-like conditions exposed and non-
exposed samples, whereas modules B and C contained only
genes exclusive to the exposed ones (Fig. 4).

4. Discussion

Our findings, although limited to the analysis of the
reads annotated as ARG-like sequences and, thus, based on
a gene-centric approach (instead of genome-centric one),
show that the antibiotic resistome in KMC samples respon-
ded to the extraterrestrial Mars-like conditions. Indeed, the
total relative abundance of the detected ARGs was not sig-
nificantly different between the exposed and non-exposed
samples, with the former having a quasi-significant higher
abundance than the latter. However, this result was affected
by the high intragroup variability. This finding is not sur-
prising, taking into account that, when bacteria are under
stress conditions, they can respond by recruiting or activat-
ing ARGs or inducing physiological changes that impair or
reduce their antimicrobial sensitivity (Poole, 2012).

With regard to the richness of the antibiotic resistome,
it is surprising that, in the samples exposed to Mars-like

Table 1. Number of Different ARGs and MRGs

Present in the ‘‘Exposed’’ and ‘‘Non-exposed’’

Samples or Shared between Them

Exclusive to

Shared TotalExposed Non-exposed

ARGs 101 4 95 200
MRGs 90 3 86 179

FIG. 3. Total relative abundances of resistance genes. Boxplot of the total relative abundances of (a) ARGs and
(b) MRGs. The thick horizontal line represents the median, the box represents 50% of the values, the whiskers extend to the
highest and lowest value within the 1.5 interquartile range.
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conditions, it was significantly higher in respect to that
determined in the non-exposed samples. At the present, it is
known that controlled indoor environments, such as that
inside the ISS (defined as the most confined human-made
inhabited environment to date and considered as an extreme
environment) (Mora et al., 2016; Checinska Sielaff et al.,
2019), are particularly selective for antibiotic-resistant bac-
teria (Mora et al., 2016; Be et al., 2017). Nonetheless, to the
best of our knowledge, this is the first study in which the
antibiotic resistome was analyzed outside the ISS without
the contribution of the strict interaction between people.

Therefore, it is interesting to note that, in the absence of
anthropogenic pressure, the antibiotic resistome in the sam-

ples exposed to Mars-like conditions evolved by increasing
the number of different ARGs. In particular, it was only
in these samples that different ARGs, that is, aph(6)-IC,
aph(3’)-IB, mdtE, mdtL, and tetM, all of which are classi-
fied at the highest risk for human health (Zhang et al.,
2021), were detected. Furthermore, the tetracycline (tet) and
vancomycin (van) resistance genes were detected only in
samples exposed to Mars-like conditions.

This indicates that the potential phenotype of resistance
against tetracycline and vancomycin—the former belonging
to the first generation of antibiotics and used in clinical
practice to treat uncomplicated urogenital, respiratory, and
other infections (Grossman, 2016) and the latter defined as a

FIG. 4. Co-occurrence network. For network construction, elements with a significant and strong correlation (rho >0.8
and p < 0.01) were chosen. Node size is proportional to the number of edges. ARGs are indicated in blue, MRGs in red.
Different colors were used for the modules in the network (Supplementary Table S7). In green: module A; in light blue:
module B; in yellow: module C; in gray: modules with less than 6.5% of network nodes.
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‘‘mainstay of antimicrobial therapy’’ and considered a
‘‘valuable clinical tool that provides effective gram-positive
coverage at a low drug cost’’ (Dilworth et al., 2021)—
appeared because of the exposure to Mars-like environmental
stressors. Indeed, the factors influencing the recruitment of
ARGs in the samples exposed to a Mars-like environment
should be further investigated under these environmental
conditions, that is, the composition of the atmosphere and
Mars-like pressure.

The atmosphere in the present study was mainly com-
posed of CO2 that recently has proven to promote cell-to-
cell contact and plasmid transfer, which determines the
horizontal spread of ARGs (Liao et al., 2019). Similarly,
microgravity has previously been well documented as a
condition that could induce the selection and spread of anti-
biotic resistance in both potential pathogenic (Tirumalai
et al., 2019) and non-pathogenic (Shao et al., 2017) bacteria.

The increased richness of the antibiotic resistome in the
samples exposed to Mars-like conditions was accompanied
by an increased richness in the bacterial community—this
was previously analyzed by Góes-Neto et al. (2021) and,
thus, was not reanalyzed here—and this suggests that these
increases were likely brought about by the antibiotic resis-
tomes exposure to such conditions. This result is in contrast
to what was observed by Mahnert et al. (2019) in microbial
communities isolated inside the ISS. Indeed, Mahnert and
colleagues (2019) found an increased antibiotic resistance
in correspondence to a reduction of microbial diversity.
This suggests that different mechanisms govern the ARGs
dynamics inside and outside the ISS despite showing similar
results.

The metal resistome was not significantly enriched in the
samples exposed to Mars-like conditions with regard to total
relative abundance or diversity. This finding clearly shows
that the Mars-like environment did not affect the metal
resistome composition. Nevertheless, with regard to the
single MRG classes, except for aluminum, cadmium, sele-
nium, and vanadium, there were MRGs detected for all the
other classes in the Mars-like conditions exposed samples
only, for example, the sole gene encoding for tungsten re-
sistance and almost all the nickel resistance genes. Further-
more, MRGs, known as selectors of ARGs (Di Cesare et al.,
2016a) and extensively found correlated with ARGs in dif-
ferent environments (Di Cesare et al., 2016b; Thomas et al.,
2020; Wang et al., 2021), co-occurred with ARGs in both
Mars-like conditions exposed and non-exposed samples.

It is noteworthy that the network analysis showed that two
of three main modules were composed by genes exclusive
to the samples exposed to Mars-like conditions. In particu-
lar, two ARGs, that is, aph(3’)-IB and mdtE, classified at the
highest risk for human health (Zhang et al., 2021) and co-
occurred with genes coding for different metal resistances,
for example, arsenic, copper, nickel. This result enforces the
hypothesis that MRGs could be involved in the co-selection
of ARGs also in the extraterrestrial environment.

5. Conclusions

Our study overall, though it was carried out by using a
gene-centric approach (annotating the reads as ARG-like
sequences), revealed for the first time the dynamics of ARGs
and MRGs in KMC samples exposed to a Mars-like envi-

ronment and will help deepen our understanding of the
behavior of the total resistome (total content of ARGs and
MRGs) of microbial communities exposed to a unique harsh
environment such as extraterrestrial space outside the ISS
and its BIOMEX setup. Our results show that, in the absence
of anthropogenic pressure as well, the antibiotic resistome
responds to Mars-like conditions by enriching itself with
undetected ARGs in respect to non-exposed ground-based
samples and with potential new antibiotic resistance pheno-
types (tetracycline and vancomycin resistance). Further-
more, MRGs could also contribute to the spread of ARGs
in the extraterrestrial environment by a co-selection mech-
anism. Overall, these results contribute to a new scenario
whereby ARGs can be selected and spread in microbio-
mes exposed to harsh extraterrestrial conditions, also in the
absence of anthropogenic pressure. This outcome calls for
follow-up experiments focused on analysis of the dynamics
of ARGs with the intent to contribute to a deeper under-
standing of the mechanisms involved in their selection and
spread (e.g., co-selection, horizontal gene transfer) in Mars-
like environments and the threat posed by antibiotic resis-
tance in future spaceflights.

Acknowledgments

The authors acknowledge the use of the computing
resources of the Center for Excellence in Bioinformatics,
CEBio/FIOCRUZ, Brazil.

Author Contributions

Raffaella Sabatino: conceptualization, statistical analysis,
writing, review, and editing. Tomasa Sbaffi: bioinformatic
analysis, writing, review, and editing. Gianluca Corno: con-
ceptualization, writing, review, and editing. Daniel Santana
de Carvalho: bioinformatic analysis, writing, review, and
editing. Ana Paula Trovatti Uetanabaro: writing, review, and
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